JP2004156492A - 内燃機関の蒸発燃料処理装置 - Google Patents

内燃機関の蒸発燃料処理装置 Download PDF

Info

Publication number
JP2004156492A
JP2004156492A JP2002321657A JP2002321657A JP2004156492A JP 2004156492 A JP2004156492 A JP 2004156492A JP 2002321657 A JP2002321657 A JP 2002321657A JP 2002321657 A JP2002321657 A JP 2002321657A JP 2004156492 A JP2004156492 A JP 2004156492A
Authority
JP
Japan
Prior art keywords
canister
fuel
blow
possibility
closing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321657A
Other languages
English (en)
Other versions
JP4107053B2 (ja
Inventor
Toru Kidokoro
徹 木所
Takuji Matsubara
卓司 松原
Yoshihiko Hyodo
義彦 兵道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002321657A priority Critical patent/JP4107053B2/ja
Publication of JP2004156492A publication Critical patent/JP2004156492A/ja
Application granted granted Critical
Publication of JP4107053B2 publication Critical patent/JP4107053B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】本発明は蒸発燃料処理装置に関し、燃料タンクを密閉するための封鎖弁を備える構成を用いつつ、洩れ検出の実行中に蒸発燃料が大気に放出されるのを確実に防ぐことを目的とする。
【解決手段】燃料タンク10とキャニスタ26の間に封鎖弁28を設ける。パージ通路34にパージVSV36を設ける。キャニスタ26の大気孔50に負圧ポンプモジュール52を連通させる。通常制御では、パージVSV36が閉じた状態で封鎖弁28を閉から開とする処理と、パージVSV36が閉じ、かつ、封鎖弁28が開いた状態でポンプ74によりキャニスタ26内部を負圧とする処理と、その結果生ずる圧力変化に基づいて洩れを検査する処理とを実行する。通常処理の過程でキャニスタ26から蒸発燃料が吹き抜ける可能性がある場合は、通常処理の実行を禁止する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、蒸発燃料処理装置に係り、特に、燃料タンク内で発生する蒸発燃料を大気に放出させずに処理するための蒸発燃料処理装置に関する。
【0002】
【従来の技術】
従来、例えば特開2001−294052号公報に開示されるように、燃料タンクと連通するキャニスタを備える蒸発燃料処理装置が知られている。この装置は、燃料タンクとキャニスタとをつなぐ経路に配置された封鎖弁を備えている。封鎖弁は、給油時など、燃料タンク内の蒸発燃料の流出を許容すべき状況下では開状態とされる。この場合、燃料タンクから流出した蒸発燃料はキャニスタに吸着される。キャニスタに吸着された蒸発燃料は、所定のパージ条件が成立する場合に、内燃機関の吸気通路にパージされる。その結果、燃料タンク内で発生した蒸発燃料は、大気に放出されることなく、燃料として処理される。
【0003】
上記従来の装置は、以下に示す手法で装置内に洩れが生じているか否かを判断する機能を有している。すなわち、この装置は、内燃機関が始動された後、先ず、封鎖弁が閉じられた状態でタンク内圧を検出する。その結果得られたタンク内圧が大気圧近傍の値である場合は、封鎖弁を開いて、燃料タンクとキャニスタの双方を含む系全体を対象として洩れ検出を行う。一方、封鎖弁が閉じられた状態で検出されたタンク内圧が所定の正圧または負圧である場合は、その時点で、先ず、燃料タンクに洩れが生じていないことを判断する。そして、その後、封鎖弁を閉じたまま、キャニスタ側の系に洩れが生じているか否かを検査する。このような手法によれば、内燃機関が始動された後、燃料タンク単体での異常の有無を精度良く速やかに検出することができる。
【0004】
【特許文献1】
特開2001−294052号公報
【0005】
【発明が解決しようとする課題】
ところで、上記従来の装置において、封鎖弁の開弁は、燃料タンクの状態やキャニスタの燃料吸着状態とは無関係に行われる。燃料タンク内に多量の蒸発燃料が存在する状況下、或いは、キャニスタに多量に蒸発燃料が吸着されている状況下で封鎖弁が開かれると、その開弁に伴ってキャニスタに流入する蒸発燃料が、キャニスタを吹き抜けて大気へ流出する事態が生じ得る。このため、上記従来の装置においては、洩れ検出の実行中に蒸発燃料が大気に放出されるのを確実に防ぐことはできなかった。
【0006】
本発明は、上記のような課題を解決するためになされたもので、燃料タンクを密閉するための封鎖弁を備え、かつ、洩れ検出の実行中に蒸発燃料が大気に放出されるのを確実に防ぐことのできる蒸発燃料処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
第1の発明は、上記の目的を達成するため、燃料タンク内で発生した蒸発燃料をキャニスタで吸着して処理する蒸発燃料処理装置であって、
前記燃料タンクと前記キャニスタとの導通状態を制御する封鎖弁と、
前記キャニスタと内燃機関とを連通するパージ通路の導通状態を制御するパージ制御弁と、
前記キャニスタの大気孔に設けられ、当該キャニスタの内外に差圧を発生させる差圧形成手段と、
前記パージ制御弁が閉じた状態で前記封鎖弁を閉から開とする封鎖弁開弁処理と、前記パージ制御弁が閉じ、かつ、前記封鎖弁が開いた状態で、前記キャニスタの内外に差圧が生ずるように前記差圧形成手段を作動させる差圧形成処理と、前記差圧形成処理の実行に併せて前記キャニスタおよび前記燃料タンクの双方を含む系のリークを検査するリーク検査処理と、を含む通常処理を実行する通常処理実行手段と、
前記通常処理の開始に先立って、前記通常処理の過程で、前記キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断する吹き抜け可能性判断手段と、
前記通常処理の過程で蒸発燃料が吹き抜ける可能性があると判断された場合に、前記通常処理の実行を禁止する通常処理禁止手段と、
を備えることを特徴とする。
【0008】
また、第2の発明は、第1の発明において、前記吹き抜け可能性判断手段は、前記封鎖弁開弁処理の実行に伴って前記キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断する開弁時吹き抜け可能性判断手段を含むことを特徴とする。
【0009】
また、第3の発明は、第1または第2の発明において、
前記差圧形成処理は、前記大気孔からガスを吸引して前記キャニスタの内部を負圧化させる負圧形成処理を含み、
前記吹き抜け可能性判断手段は、前記負圧形成処理の実行過程で前記キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断する負圧形成時吹き抜け可能性判断手段を含むことを特徴とする。
【0010】
また、第4の発明は、第1乃至第3の発明の何れかにおいて、前記通常処理禁止手段は、当該蒸発燃料処理装置におけるリーク検出処理の実行を中止するリーク検出中止手段を含むことを特徴とする。
【0011】
また、第5の発明は、第1乃至第3の発明の何れかにおいて、
前記パージ制御弁および前記封鎖弁が閉じた状態で、前記キャニスタの内外に差圧が生ずるように前記差圧形成手段を作動させる第2差圧形成処理と、前記第2差圧形成処理の実行に併せて前記キャニスタを含む系のリークを検査する第2リーク検査処理と、を含むキャニスタリーク検出処理を実行するキャニスタリーク検出処理実行手段を備え、
前記通常処理禁止手段は、前記通常処理に代えて、前記キャニスタリーク検出処理を実行させる処理切り換え手段を含むことを特徴とする。
【0012】
また、第6の発明は、第1乃至第5の発明の何れかにおいて、前記吹き抜け可能性判断手段は、前記封鎖弁の開弁に伴って前記燃料タンクから前記キャニスタに向かって流出するガス流量に基づいて、前記大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断することを特徴とする。
【0013】
また、第7の発明は、第6の発明において、前記吹き抜け可能性判断手段は、タンク内圧を検出するタンク内圧検出手段を備え、前記タンク内圧を、前記封鎖弁の開弁に伴って前記燃料タンクから前記キャニスタに向かって流出するガス流量の特性値として利用することを特徴とする。
【0014】
また、第8の発明は、第6または第7の発明において、前記吹き抜け可能性判断手段は、燃料タンク内の空間容積を検出する空間容積検出手段を備え、前記空間容積を、前記封鎖弁の開弁に伴って前記燃料タンクから前記キャニスタに向かって流出するガス流量の特性値として利用することを特徴とする。
【0015】
また、第9の発明は、第1乃至第8の発明において、前記吹き抜け可能性判断手段は、前記キャニスタの蒸発燃料吸着状態に基づいて、前記大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断することを特徴とする。
【0016】
また、第10の発明は、第9の発明において、
給油時に前記封鎖弁を開弁状態とする給油時制御手段を備え、
前記吹き抜け可能性判断手段は、給油の際に前記燃料タンクから前記キャニスタに流入して当該キャニスタに吸着された蒸発燃料量を給油時吸着量として推定する給油時吸着量推定手段を備え、前記給油時吸着量を、前記蒸発燃料吸着状態の特性値として利用することを特徴とする。
【0017】
また、第11の発明は、第9または第10の発明において、
所定のパージ条件が成立する場合に、前記パージ制御弁を開いて前記キャニスタ内の蒸発燃料を内燃機関に向けてパージさせるパージ制御手段を備え、
前記吹き抜け可能性判断手段は、
前記キャニスタからパージされた蒸発燃料の積算値を積算パージ量として算出する積算パージ量算出手段を備え、
前記積算パージ量を、前記蒸発燃料吸着状態の特性値として利用することを特徴とする。
【0018】
また、第12の発明は、第11の発明において、前記吹き抜け可能性判断手段は、給油後の積算パージ量を算出する給油後積算パージ量算出手段を備え、前記給油後積算パージ量を、前記蒸発燃料吸着状態の特性値として利用することを特徴とする。
【0019】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
【0020】
実施の形態1.
[装置の構成の説明]
図1(A)は、本発明の実施の形態1の蒸発燃料処理装置の構成を説明するための図である。図1(A)に示すように、本実施形態の装置は、燃料タンク10を備えている。燃料タンク10には、タンク内圧Ptを測定するためのタンク内圧センサ12が設けられている。タンク内圧センサ12は、大気圧に対する相対圧としてタンク内圧Ptを検出し、その検出値に応じた出力を発生するセンサである。また、燃料タンク10の内部には、燃料の液面を検出するための液面センサ14が配置されている。
【0021】
燃料タンク10には、ROV(Roll Over Valve)16,18を介してベーパ通路20が接続されている。ベーパ通路20は、その途中に封鎖弁ユニット24を備えており、その端部においてキャニスタ26に連通している。封鎖弁ユニット24は、封鎖弁28とリリーフ弁30を備えている。封鎖弁28は、無通電の状態で閉弁し、外部から駆動信号が供給されることにより開弁状態となる常時閉タイプの電磁弁である。リリーフ弁30は、燃料タンク10側の圧力がキャニスタ26側の圧力に比して十分に高圧となった場合に開弁する正方向リリーフ弁と、その逆の場合に開弁する逆方向リリーフ弁とからなる機械式の双方向逆止弁である。リリーフ弁30の開弁圧は、例えば、正方向が20kPa、逆方向が15kPa程度に設定されている。
【0022】
キャニスタ26は、パージ孔32を備えている。パージ孔32には、パージ通路34が連通している。パージ通路34は、その途中にパージVSV(Vacuum Switching Valve)36を備えていると共に、その端部において内燃機関の吸気通路38に連通している。内燃機関の吸気通路38には、エアフィルタ40、エアフロメータ42、スロットルバルブ44などが設けられている。パージ通路34は、スロットルバルブ44の下流において吸気通路38に連通している。
【0023】
キャニスタ26の内部は、活性炭で充填されている。ベーパ通路20を通って流入してきた蒸発燃料は、その活性炭に吸着される。キャニスタ26は、また、大気孔50を備えている。大気孔50には、負圧ポンプモジュール52を介して大気通路54が連通している。大気通路54は、その途中にエアフィルタ56を備えている。大気通路54の端部は、燃料タンク10の給油口58の近傍において大気に開放されている。
【0024】
図1(A)に示すように、本実施形態の蒸発燃料処理装置は、ECU60を備えている。ECU60は、車両の駐車中において経過時間を計数するためのソークタイマを内蔵している。ECU60には、上述したタンク内圧センサ12や封鎖弁28、或いは負圧ポンプモジュール52と共に、リッドスイッチ62、およびリッドオープナー開閉スイッチ64が接続されている。また、リッドオープナー開閉スイッチ64には、ワイヤーによりリッド手動開閉装置66が連結されている。
【0025】
リッドオープナー開閉スイッチ64は、給油口58を覆うリッド(車体の蓋)68のロック機構であり、ECU60からリッド開信号が供給された場合に、或いは、リッド手動開閉装置66に対して所定の開動作が施された場合に、リッド68のロックを解除する。また、ECU60に接続されたリッドスイッチ62は、ECU60に対してリッド68のロックを解除するための指令を送るためのスイッチである。
【0026】
図1(B)は、図1(A)に示す負圧ポンプモジュール52の詳細を説明するための拡大図である。負圧ポンプモジュール52は、キャニスタ26の大気孔50に通じるキャニスタ側通路70と、大気に通じる大気側通路72とを備えている。大気側通路72には、ポンプ74および逆止弁76を備えるポンプ通路78が連通している。
【0027】
負圧ポンプモジュール52は、また、切り替え弁80とバイパス通路82とを備えている。切り替え弁80は、無通電の状態(OFF状態)でキャニスタ側通路70を大気側通路72に連通させ、また、外部から駆動信号が供給された状態(ON状態)で、キャニスタ側通路70をポンプ通路78に連通させる。バイパス通路82は、キャニスタ側通路70とポンプ通路78とを導通させる通路であり、その途中には0.5mm径の基準オリフィス84を備えている。
【0028】
負圧ポンプモジュール52には、更に、ポンプモジュール圧力センサ86が組み込まれている。ポンプモジュール圧力センサ86によれば、逆止弁76の切り替え弁80側において、ポンプ通路78内部の圧力を検出することができる。
【0029】
[基本動作の説明]
次に、本実施形態の蒸発燃料処理装置の基本動作について説明する。
(1)駐車中
本実施形態の蒸発燃料処理装置は、車両の駐車中は、原則として封鎖弁28を閉弁状態に維持する。封鎖弁28が閉弁状態とされると、リリーフ弁30が閉じている限り燃料タンク10はキャニスタ26から切り放される。従って、本実施形態の蒸発燃料処理装置においては、タンク内圧Ptがリリーフ弁30の正方向開弁圧(20kPa)を超えない限り、車両の駐車中に蒸発燃料が新たにキャニスタ26に吸着されることはない。また、タンク内圧Ptが、リリーフ弁30の逆方向開弁圧(−15kPa)を下回らない限り、車両の駐車中に燃料タンク10の内部に空気が吸入されることはない。
【0030】
(2)給油中
本実施形態の装置において、車両の停車中にリッドスイッチ62が操作されると、ECU60が起動し、先ず、封鎖弁28が開状態とされる。この際、タンク内圧Ptが大気圧より高圧であれば、封鎖弁28が開くと同時に燃料タンク10内の蒸発燃料がキャニスタ26に流入し、その内部の活性炭に吸着される。その結果、タンク内圧Ptは大気圧近傍にまで低下する。
【0031】
ECU60は、タンク内圧Ptが大気圧近傍にまで低下すると、リッドオープナー64に対してリッド68のロックを解除する旨の指令を発する。リッドオープナー64は、その指令を受けてリッド68のロックを解除する。その結果、本実施形態の装置では、タンク内圧Ptが大気圧近傍値になった後にリッド68の開動作が可能となる。
【0032】
リッド68の開動作が許可されると、リッド68が開かれ、次いでタンクキャップが開かれ、その後、燃料の給油が開始される。タンクキャップが開かれる以前にタンク内圧Ptが大気圧近傍にまで減圧されているため、その開動作に伴い蒸発燃料が給油口58から大気に放出されることはない。
【0033】
ECU60は、給油が終了するまで(具体的にはリッド68が閉じられるまで)、封鎖弁28を開状態に維持する。このため、給油の際にはタンク内ガスがベーパ通路20を通ってキャニスタ26に流出することができ、その結果、良好な給油性が確保される。また、この際、流出する蒸発燃料は、キャニスタ26に吸着されるため、大気に放出されることはない。
【0034】
(3)走行中
車両の走行中は、所定のパージ条件が成立する場合に、キャニスタ26に吸着されている蒸発燃料をパージさせるための制御が実行される。この制御では、具体的には、切り替え弁80をOFFとしてキャニスタ26の大気孔を大気に開放したまま、パージVSV36が適当にデューティ駆動される。パージVSV36がデューティ駆動されると、内燃機関10の吸気負圧がキャニスタ26のパージ孔32に導かれる。その結果、大気孔50から吸入された空気と共に、キャニスタ26内の蒸発燃料が内燃機関の吸気通路38にパージされる。
【0035】
また、車両の走行中は、給油前の圧抜き時間の短縮を目的として、タンク内圧Ptが大気圧近傍に維持されるように封鎖弁28が適宜開弁される。但し、その開弁は、蒸発燃料のパージ中に限り、つまり、キャニスタ26のパージ孔32に吸気負圧が導かれている場合に限り行われる。パージ孔32に吸気負圧が導かれている状況下では、燃料タンク10からキャニスタ26に流入する蒸発燃料は、その内部に深く進入することなくパージ孔32から流出し、その後吸気通路38にパージされる。このため、本実施形態の装置によれば、車両の走行中に、多量の蒸発燃料が新たにキャニスタ26に吸着されることはない。
【0036】
以上説明した通り、本実施形態の蒸発燃料処理装置によれば、原則として、キャニスタ26に吸着させる蒸発燃料を、給油の際に燃料タンク10から流出する蒸発燃料だけに限ることができる。このため、本実施形態の装置によれば、キャニスタ26の小型化を図りつつ、良好な排気エミッションを実現し、また、良好な給油性を実現することができる。
【0037】
[異常検出動作の説明]
蒸発燃料処理装置には、系内の洩れの発生や、封鎖弁28の異常など、エミッション特性の悪化につながる異常を速やかに検出するための機能が要求される。以下、図2を参照して、本実施形態の装置が上記の機能を実現するために実行する異常検出処理の内容を説明する。
【0038】
図2は、本実施形態の装置が実行する異常検出処理の内容を説明するためのタイミングチャートである。尚、本実施形態において、異常検出処理は、種々の外乱の影響をできるだけ小さくする観点より、車両の駐車中において実行される。
【0039】
ECU60は、既述した通りソークタイマを内蔵している。ソークタイマにより所定時間(例えば5時間)が計数されると、異常検出処理を開始するため、図2に示すようにECUが起動される(時刻t1)。本実施形態の装置は、車両の駐車中は原則として封鎖弁28を閉じている。このため、図2(E)中に破線で示すように、ECU60が起動される時点で、通常はタンク内圧Ptが正圧または負圧となっている。
【0040】
ECU60が起動されると、先ず、図2(A)に示すように、封鎖弁28が閉状態から開状態とされる(時刻t2)。封鎖弁28が開かれると、燃料タンク10の内部が大気に開放されるため、タンク内圧Ptは、図2(E)に示すようにその後大気圧近傍値に変化する。
【0041】
また、本実施形態の装置は、時刻t2の時点では、負圧ポンプモジュール52のポンプ74および切り替え弁80を共にOFF状態としている。この場合、ポンプ通路78の内部には大気圧が導かれるため、ポンプモジュール圧センサ86の出力は大気圧相当値となる。
【0042】
以上説明した通り、時刻t2において封鎖弁28が開弁されると、その後、タンク内圧センサ12の出力およびポンプモジュール圧センサ86の出力は、何れも大気圧相当値となる。このため、ECU60は、それらのセンサ出力を大気圧相当値として認識し、その大気圧相当値に基づいて、タンク内圧センサ12およびポンプモジュール圧センサ86の較正処理を実行する。本実施形態では、この較正処理を「大気圧判定処理」と称す。
【0043】
大気圧判定処理が終了すると、次に、図2(B)に示すように、切り替え弁80がOFF状態からON状態に切り換えられる(時刻t3)。この段階ではパージVSV36が閉じられているため、切り替え弁80がON状態とされると、キャニスタ26と燃料タンク10を含む系が密閉空間となる。この場合、タンク内圧センサの出力、およびポンプモジュール圧センサ86の出力は、何れも、燃料タンク10内における蒸発燃料の発生状況、或いは、蒸発燃料の液化状態に応じた変化を示す(図2(E)および図2(F)中の破線参照)。
【0044】
そこで、ECU60は、時刻t3において切り替え弁をON状態とした後、タンク内圧センサ12の出力、或いはポンプモジュール圧センサ86の出力に基づいて、燃料タンク10内における蒸発燃料の発生状況(または液化状況)を推定する。以下、本実施形態では、この推定処理を「エバポ量判定処理」と称す。
【0045】
エバポ量判定処理が終了すると、次に、図2(B)に示すように切り替え弁80がON状態からOFF状態に戻されると共に、図2(C)に示すようにポンプ74がON状態とされる(時刻t4)。切り替え弁80がOFF状態に戻されると、ポンプ74の吸入口が逆止弁76および基準オリフィス84を介して大気に連通する状態が形成される。従って、この場合、ポンプモジュール圧センサ86の出力は、配管に0.5mmの基準穴が空いている状況下で、ポンプ74が作動しているのと同等の値(負圧値)に収束する。
【0046】
ECU60は、時刻t4の後、図2(F)に示すようにポンプモジュールセンサ86の出力Pc(以下、「ポンプモジュール圧Pc」と称す)が適当な値に収束するのを待って、その収束値をφ0.5穴判定値として記憶する。以後、このφ0.5穴判定値は、蒸発燃料処理装置に0.5mmの基準穴を超える洩れが生じているか否かを判断するための判定値として用いられる。以下、本実施形態では、φ0.5穴判定値を検出するための上記の処理を「φ0.5REF穴チェック処理」と称す。
【0047】
φ0.5REF穴チェック処理が終了すると、次に、図2(A)に示すように封鎖弁28が開状態から閉状態に切り換えられると共に、図2(B)に示すように切り替え弁80がOFF状態からON状態に切り換えられる(時刻t5)。切り替え弁80がON状態とされると、キャニスタ26が大気から切り放され、ポンプ74の吸入口に連通される。その結果、キャニスタ26の内圧が減圧され、ポンプモジュール圧Pcが徐々に負圧化する。
【0048】
封鎖弁28が適正に閉弁していれば、ポンプ74の作動に伴う負圧は、キャニスタ26のみに導かれる。従って、この場合は、時刻t5の後、ポンプモジュール圧Pcは急激な変化を示す。一方、封鎖弁28が適正に閉弁していない場合は、ポンプ74の作動に伴う負圧がキャニスタ26のみならず燃料タンク10にも導かれるため、ポンプモジュール圧Pcは、時刻t5の後、緩やかな減少傾向を示す(図2(F)参照)。
【0049】
そこで、ECU60は、時刻t5の後、ポンプモジュール圧Pcが速やかに減少する場合には、封鎖弁28が適正に閉弁していると判断し、一方、その減少傾向が緩やかである場合は、封鎖弁28が適正に閉弁していない、つまり、封鎖弁28に開故障が生じているとの判断を下す。
【0050】
ECU60は、封鎖弁28に開故障が生じているか否かを判断した後(時刻t6)、図2(A)に示すように封鎖弁28に対して開弁指令を発する。その結果、封鎖弁28が適正に閉弁状態から開弁状態に変化すると、燃料タンク10内のガスがキャニスタ26に流入してくることから、ポンプモジュール圧Pcは、ステップ的に大きな値に変化する。一方、封鎖弁28が適正に開弁しない場合は、ポンプモジュール圧Pcに何ら有意な変化は生じない(図2(F)参照)。
【0051】
そこで、ECU60は、時刻t6の後、ポンプモジュール圧Pcに十分な変化が認められる場合は、封鎖弁28が、閉状態から開状態に適正に変化したと判断し、一方、ポンプモジュール圧Pcにその変化が認められない場合は、封鎖弁28が適正に開弁していない、つまり、封鎖弁28に閉故障が生じているとの判断を下す。
【0052】
以上説明した通り、本実施形態の装置においては、時刻t5の後、ポンプモジュール圧Pcが速やかに減少するか否かに基づいて封鎖弁28に開故障が生じているか否かを判断することができ、また、時刻t6の後、ポンプモジュール圧Pcに有意な変化が生ずるか否かに基づいて封鎖弁28に閉故障が生じているか否かを判断することができる。以下、本実施形態では、上記の判断を下すための処理を「封鎖弁OBD処理」と称す。
【0053】
時刻t6において、封鎖弁28が適正に開弁すると、その時点でキャニスタ26と燃料タンク10とが密閉された空間となる。そして、その後、ポンプ74の作動に伴って、キャニスタ26の内圧と燃料タンク10の内圧とが共に減圧され始める。キャニスタ26および燃料タンク10の双方に洩れが生じていない場合は、ポンプモジュール圧Pcおよびタンク内圧Ptが、何れもφ0.5穴判定値より小さな値に収束する。一方、キャニスタ26および燃料タンク10の少なくとも一方に洩れが生じている場合は、PcおよびPtが、何れもφ0.5穴判定値まで減少しない。
【0054】
従って、本実施形態の装置においては、時刻t6の後、適当な時間が経過する以前に、PcまたはPtがφ0.5穴判定値より小さな値になれば、系全体に洩れが生じていないと判断することができる。また、その条件が成立しなかった場合は、系内の何れかの箇所に基準穴を超える洩れが生じていると判断することができる。以下、本実施形態では、上記の判断を下すための処理を「φ0.5穴リークチェック処理」と称す。
【0055】
φ0.5穴リークチェック処理が終了すると、図2(C)に示すようにポンプ74がOFFされる(時刻t7)。その後、適当な時間の後に、図2(D)に示すようにパージVSV36が開弁される(時刻t8)。この処理によりパージVSV36が適正に開弁すると、キャニスタ26と燃料タンク10を含む系の密閉が破られ、その後、ポンプモジュール圧Pcおよびタンク内圧Ptが上昇傾向を示す。一方、パージVSV36が適正に開弁しない場合は、PcおよびPtに何ら有意な変化は生じない(図2(E)および図2(F)参照)。
【0056】
そこで、ECU60は、時刻t8の後、ポンプモジュール圧Pc、或いはタンク内圧Ptに十分な変化が認められる場合は、パージVSV36が閉状態から開状態に適正に変化したと判断し、一方、PcおよびPtにその変化が認められない場合は、パージVSV36が適正に開弁していない、つまり、パージVSV36に閉故障が生じているとの判断を下す。以下、本実施形態では、上記の判断を下すための処理を「パージVSVOBD処理」と称す。
【0057】
パージVSVOBD処理が終了すると、一連の異常検出処理が終了する(時刻t9)。ECU60は、この時点で、全ての機構をOFF状態とする。その結果、蒸発燃料処理装置は、車両の駐車中における通常の状態、つまり、時刻t2以前の状態に復帰する。以後、適当な時間が経過した時点で、ECU60は停止状態となる(時刻t10)。
【0058】
以上説明した通り、本実施形態の蒸発燃料処理装置によれば、図2に示すタイムチャートに沿った処理(以下、この処理を「通常処理」と称す)を行うことにより、封鎖弁28の故障検出、系全体の洩れ検出、およびパージVSVの故障検出を順次行うことができる。
【0059】
[蒸発燃料の吹き抜け防止の必要性]
ところで、上述した通常処理によれば、時刻t2および時刻t6において、閉じていた封鎖弁28を開弁させる必要が生ずる。タンク内圧Ptが正圧化している状況下でこのような開弁動作が行われると、封鎖弁28が開くと同時に、燃料タンク10内に閉じこめられていた蒸発燃料が、キャニスタ26に向かって流出する事態が生ずる。そして、その際の流出量が過剰であると、キャニスタ26が全ての蒸発燃料を吸着することができず、蒸発燃料が大気孔50から吹き抜ける事態が生じ得る。
【0060】
また、図2に示す通常処理では、時刻t5〜t7の期間において、キャニスタ26内のガスをポンプ74により吸い出す必要が生ずる。キャニスタ26が多量に蒸発燃料を吸着している状況下で、キャニスタ26内のガスがポンプ74により吸い出されると、活性炭に吸着されていた蒸発燃料がパージされ、結果的に蒸発燃料の大気への吹き抜けが生ずることがある。
【0061】
本実施形態の装置において、良好なエミッション特性を得るためには、蒸発燃料が上記の如く大気孔50から吹き抜ける可能性がある状況下では、図2に示す通常処理の実行を禁止して、その吹き抜けを防止することが好ましい。そこで、本実施形態の装置は、異常検出の実行が要求される場合に、上記の通常処理を開始するに先立って、通常処理の実行中に蒸発燃料が吹き抜ける可能性があるか否かを判断し、その可能性がない場合にのみ通常処理を実行することとした。
【0062】
[ECUが実行する特徴的処理の内容]
図3は、車両の駐車中に、異常検出処理の実行時期を検知するためにECU60が実行するECU通電判定ルーチンのフローチャートである。尚、本ルーチンが実行される前提として、ECU60は、車両が駐車状態に移行すると、その時点からソークタイマのカウントアップを開始するものとする。
【0063】
ECU60は、車両が駐車状態になると、ソークタイマのカウントアップ、および図3に示すルーチンの実行のみが可能なスタンバイ状態となる。図3に示すルーチンは、車両の駐車中に所定時間毎に繰り返し起動される。このルーチンでは、先ず、ソークタイマの計数値が所定値に一致しているか否かが判別される(ステップ100)。
本ステップ100の条件は、車両の駐車状態に移行した後、例えば5時間程度の時間が経過することにより成立する。
【0064】
上記ステップ100の条件が成立しないと判別された場合は、以後、速やかに今回の処理サイクルが終了される。一方、この条件が成立すると判別された場合は、ECU60を本格的に作動させるための通電処理が実行される(ステップ102)。
【0065】
図4は、上記ステップ102の処理によりECU60への通電が開始された後、KEY OFFモニタ作動フラグの処理を行うべくECU60が実行する制御ルーチンのフローチャートである。尚、本実施形態において、KEY OFFモニタ作動フラグは、後述の如く、ECU60への通電を継続するか否かを表すために用いられるフラグである。
【0066】
図4に示すルーチンでは、先ず、蒸発燃料処理装置の異常検出を行うための前提条件が成立しているか否かが判別される(ステップ110)。
本実施形態では、既述した通り、蒸発燃料処理装置の異常検出を車両の駐車中に実行することとしている。このため、前提条件としては、イグニッションスイッチ(IGスイッチ)がオフであることが確認される。また、本実施形態では、異常検出の過程でポンプ74を作動させる必要がある。このため、前提条件としては、バッテリ電圧が適正値であるか否かが確認される。更に、誤判定を防ぐ意味で、極端な環境下での異常検出の実行は避けることが望ましい。このため、前提条件としては、前トリップ走行履歴(駐車状態に移行する前の走行履歴)が極端でないか、或いは、現在の吸気温および水温が極端(極低温)でないかなどが確認される。
【0067】
上記ステップ110において、前提条件が成立するとの判別がなされた場合は、次に、「HC吹き抜け発生状態」が形成されているか否かが判別される(ステップ112)。
ECU60は、その通電が開始されると、先ず、上記図2に示す通常処理が実行された場合に、その実行の過程で蒸発燃料がキャニスタ26の大気孔50から吹き抜ける可能性があるか否かを判断する。そして、その判断の結果に基づいて、HC吹き抜け発生フラグの処理を行う。尚、HC吹き抜け発生フラグの処理方法については、後に図12乃至図14を参照して詳細に説明する。
【0068】
図4に示すルーチンは、後述する図12乃至図14に示す何れかのルーチンによりHC吹き抜け発生フラグが処理された後に実行される。そして、本ステップ112では、そのHC吹き抜け発生フラグの状態に基づいて、蒸発燃料の吹き抜けが生ずる可能性があるか否か、すなわち、HC吹き抜け発生状態が形成されているか否かが判断される。
【0069】
図4に示すルーチン中、上記ステップ112において、HC吹き抜け発生状態が形成されていないと判断された場合は、KEY OFFモニタ作動フラグをONとする処理が実行される(ステップ114)。
【0070】
一方、上記ステップ110において前提条件が成立していないとの判断が成された場合、および上記ステップ112においてHC吹き抜け発生状態が形成されているとの判断が成された場合は、KEY OFFモニタ作動フラグがOFFとされる(ステップ116)。
【0071】
図5は、KEY OFFモニタ作動フラグがOFFとされた場合に、ECU60の電源を遮断するためにECU60が実行する制御ルーチンのフローチャートである。
図5に示すルーチンでは、先ず、KEY OFFモニタ作動フラグがOFF状態であるか否かが判別される(ステップ120)。
【0072】
その結果、KEY OFFモニタ作動フラグがOFF状態でないと判別された場合は、以後、ECU60への通電が維持されたまま今回の処理サイクルが終了される。一方、KEY OFFモニタ作動フラグがOFF状態であると判別された場合は、ECU60を再びスタンバイ状態とするため、ECU60の主電源が遮断された後(ステップ122)、このルーチンが終了される。
【0073】
以上説明したように、図3乃至図5に示すルーチンによれば、蒸発燃料処理装置の異常検出を行うべくECU60への通電が開始された場合に、通常処理の実行に伴って燃料の吹き抜けが生ずる可能性があるか否か、つまり、HC吹き抜け発生状態が形成されているか否かを速やかに判断することができる。そして、HC吹き抜け発生状態が形成されていると判断される場合は、ECU60への通電を遮断して異常検出の実行を禁止することができる。このため、本実施形態の構成によれば、燃料タンク10を密閉するための封鎖弁28を備え、かつ、異常検出の実行中に蒸発燃料が大気に放出されるのを確実に防ぐことのできる蒸発燃料処理装置を提供することができる。
【0074】
[通常処理の具体的内容]
ECU60は、上記ステップ102の処理により通電が開始され始めた後、KEY OFFモニタ作動フラグがOFFとされるまでその通電状態を維持する。そして、ECU60は、その通電状態が維持される限り、上記図2に示す通常処理を進めるべく、以下に説明する図6乃至図11に示すルーチンを実行する。
【0075】
図6は、ECU60が、「大気圧判定処理」を実現するために実行する制御ルーチンのフローチャートである。
図6に示すルーチンでは、先ず、図2中時刻t2に示す状態を形成するため、つまり、タンク内圧センサ12およびポンプモジュール圧センサ86の双方を大気に開放するため、蒸発燃料処理装置の各要素が以下のように制御される(ステップ130)。
・切り替え弁80:OFF
・ポンプ74:OFF
・封鎖弁28:ON(開)
・パージVSV36:OFF
【0076】
上記の処理が終了すると、次に、タイマーの初期化設定を行うべきか否かが判別される(ステップ132)。
ECU60の通電開始後、本ステップ132が初めて実行される場合は、初期化設定を実行すべきとの判定がなされる。この場合、次に、タイマーの初期化(計数値のリセット)が行われる(ステップ134)。
一方、ECU60の通電が開始された後、今回の処理サイクル以前に既に本ステップ132が実行されている場合は、初期化設定の必要はないと判断される。この場合、次に、タイマーのカウントアップが行われる(ステップ136)。
【0077】
図6に示すルーチンでは、次に、タンク内圧Ptおよびポンプモジュール圧Pcが安定したか否かが判別される。より具体的には、前回の処理サイクル時から今回の処理サイクル時にかけてのタンク内圧Ptの変化量ΔPt、およびポンプモジュール圧Pcの変化量ΔPcが、それぞれ所定の判定値より小さいか否かが判別される(ステップ138)。
【0078】
上記の判別の結果、未だPcおよびPtが安定していないと判別された場合は、次に、このルーチンが開始されてからの経過時間が、つまり、タイマーに計数されている経過時間が、所定値より短いか否かが判別される(ステップ140)。
【0079】
その結果、経過時間が未だ所定値より短いと判別された場合は、再び上記ステップ130以降の処理が繰り返される。一方、経過時間が、既に所定値以上であると判別された場合は、通常処理を進めるうえで不適切な事情が生じているとの判断がなされ、KEY OFFモニタ作動フラグがOFFとされる(ステップ142)。
【0080】
システムが正常な状態であれば、経過時間が所定値に達する以前に、ポンプモジュール圧Pcおよびタンク内圧Ptは、何れも大気圧に対応値に安定する。そして、この場合、PcおよびPtが安定した時点で上記ステップ138の条件が成立する。図6に示すルーチンでは、上記ステップ138の条件が成立すると、その時点のポンプモジュール圧Pcが、大気圧に対応するポンプモジュール圧センサ86の出力として記憶され、かつ、その時点のタンク内圧Ptが大気圧を表すタンク内圧センサ12の出力として記憶される(ステップ144)。
【0081】
ECU60は、上記図6に示すルーチンに従って「大気圧測定処理」を完了すると、以後、上記ステップ144で記憶したPcおよびPtを用いて、ポンプモジュール圧センサ86の出力、およびタンク内圧センサの出力を較正する。説明の便宜上、較正の実行については説明を省略するが、以下の記載において、ポンプモジュール圧Pcおよびタンク内圧Ptは、それぞれ較正後の値を意味するものとする。
【0082】
上記ステップ144の処理が終了すると、次に、図7に示すルーチンが実行される。図7は、ECU60が、「エバポ量判定処理」を実現するために実行するルーチンのフローチャートである。
【0083】
図7に示すルーチンでは、先ず、図2中時刻t3に示す状態を形成するため、つまり、燃料タンク10およびキャニスタ26を含む系を密閉空間とするため、蒸発燃料処理装置の各要素が以下のように制御される(ステップ150)。
・切り替え弁80:ON
・ポンプ74:OFF
・封鎖弁28:ON(開)
・パージVSV36:OFF
具体的には、「大気圧判定処理」の終了後、切り替え弁80をOFFからONとする処理が実行される。
【0084】
上記の処理が終了すると、次に、タイマーの初期化設定を行うべきか否かが判別される(ステップ152)。
ECU60の通電開始後、本ステップ152が初めて実行される場合は、初期化設定を実行すべきとの判定がなされる。この場合、タイマーを初期化する処理と(ステップ154)、その時点のポンプモジュール圧Pcを初期圧力として記憶する処理とが(ステップ156)、順次実行される。
一方、ECU60の通電が開始された後、今回の処理サイクル以前に既に本ステップ152が実行されている場合は、初期化設定の必要はないと判断される。この場合、次に、タイマーのカウントアップが行われる(ステップ158)。
【0085】
図7に示すルーチンでは、次に、このルーチンが開始されてからの経過時間が、つまり、タイマーに計数されている経過時間が、エバポ量判定処理の実行期間として定められている所定値を超えたか否かが判別される(ステップ160)。
【0086】
その結果、経過時間が未だ所定値を超えていないと判別された場合は、再び上記ステップ150以降の処理が繰り返される。そして、経過時間が所定値を超えたと判別されると、次に、その時点でのポンプモジュール圧Pcと上記ステップ156で記憶された初期圧力との差(Pc−初期圧力)が所定の判定値より小さいか否かが判別される(ステップ162)。
【0087】
「Pc−初期圧力<所定値」が成立しないと判別された場合は、エバポ量判定処理の実行期間中に、ポンプモジュール圧Pcが大きく上昇したと判断することができる。そして、この場合は、燃料タンク10の内部で蒸発燃料が多量に発生していると判断することができる。
【0088】
蒸発燃料処理装置の異常検出は、誤検出を避ける意味で、蒸発燃料が多量に発生しているような状況下で実行すべきではない。図7に示すルーチンによれば、上記ステップ162の処理により、燃料タンク10の内部で蒸発燃料が多量に発生していると判断できる場合は、以後KEY OFFモニタ作動フラグがOFFとされる(ステップ164)。
【0089】
KEY OFFモニタ作動フラグがOFFとされると、既述したようにECU60の電源が遮断され、通常処理の実行が中止される。従って、図7に示すルーチンによれば、蒸発燃料が多量に発生している状況下で、蒸発燃料処理装置の異常検出が継続されるのを避けることができる。
【0090】
図7に示すルーチン中、上記ステップ162において「Pc−初期圧力<所定値」が成立すると判別された場合は、蒸発燃料の発生量がさほど多量でないと判断することができる。この場合は、以後、通常処理を進めるべく、図8に示すルーチンが実行される。
【0091】
ところで、上記図7に示すルーチンにおいては、ポンプモジュール圧Pcの変化に基づいて蒸発燃料の発生量を推定することとしているが(ステップ156および162参照)、その推定手法はこれに限定されるものではない。すなわち、蒸発燃料の発生量は、タンク内圧Ptの変化に基づいて推定することとしてもよい。
【0092】
図8は、ECU60が、「φ0.5REF穴チェック処理」を実現するために実行するルーチンのフローチャートである。
図8に示すルーチンでは、先ず、図2中時刻t4に示す状態を形成するため、つまり、ポンプモジュール圧センサ86の周囲に、φ0.5mmの基準穴の存在を前提とした負圧を発生させるために、蒸発燃料処理装置の各要素が以下のように制御される(ステップ170)。
・切り替え弁80:OFF
・ポンプ74:ON
・封鎖弁28:ON(開)
・パージVSV36:OFF
具体的には、「エバポ量判定処理」の終了後、切り替え弁80をONからOFFとし、かつ、ポンプ74をONとする処理が実行される。
【0093】
上記の処理が終了すると、次に、タイマーの初期化設定を行うべきか否かが判別される(ステップ172)。
ECU60の通電開始後、本ステップ172が初めて実行される場合は、初期化設定を実行すべきとの判定がなされる。この場合、次に、タイマーを初期化する処理が実行される(ステップ174)。
一方、ECU60の通電が開始された後、今回の処理サイクル以前に既に本ステップ172が実行されている場合は、初期化設定の必要はないと判断される。この場合、次に、タイマーのカウントアップが行われる(ステップ176)。
【0094】
図8に示すルーチンでは、次に、ポンプモジュール圧Pcが安定したか否かが判別される。より具体的には、前回の処理サイクル時から今回の処理サイクル時にかけてのポンプモジュール圧Pcの変化量ΔPcが、所定の判定値より小さいか否かが判別される(ステップ178)。
【0095】
上記の判別の結果、未だPcが安定していないと判別された場合は、次に、このルーチンが開始されてからの経過時間が、つまり、タイマーに計数されている経過時間が、所定値より短いか否かが判別される(ステップ180)。
【0096】
その結果、経過時間が未だ所定値より短いと判別された場合は、再び上記ステップ170以降の処理が繰り返される。一方、経過時間が、既に所定値以上であると判別された場合は、通常処理を進めるうえで不適切な事情が生じているとの判断がなされ、KEY OFFモニタ作動フラグがOFFとされる(ステップ182)。
【0097】
システムが正常な状態であれば、経過時間が所定値に達する以前に、ポンプモジュール圧Pcはφ0.5穴判定値に安定する。そして、この場合、Pcが安定した時点で上記ステップ178の条件が成立する。図8に示すルーチンでは、上記ステップ178の条件が成立すると、その時点のポンプモジュール圧Pcが、φ0.5穴判定値として記憶される(ステップ174)。
【0098】
ECU60は、上記図8に示すルーチンに従って「φ0.5REF穴チェック処理」を完了すると、以後、図9に示すルーチンを実行する。図9は、ECU60が、封鎖弁28の開故障を検出するために実行するルーチンのフローチャートである。
【0099】
図9に示すルーチンでは、先ず、図2中時刻t5に示す状態を形成するため、つまり、キャニスタ26が燃料タンク10から切り放され、キャニスタ26の内圧のみがポンプ74により減圧される状態を形成するため、蒸発燃料処理装置の各要素が以下のように制御される(ステップ190)。
・切り替え弁80:ON
・ポンプ74:ON
・封鎖弁28:OFF(閉)
・パージVSV36:OFF
【0100】
上記ステップ190では、具体的には、「φ0.5REF穴チェック処理」の終了後、封鎖弁28をONからOFFとし、かつ、切り替え弁80をOFFからONとする処理が実行される。切り替え弁80がOFFとされている間は、ポンプモジュール圧センサ86が基準オリフィス84を介してキャニスタ26(大気圧)と連通している。一方、切り替え弁からONとされると、ポンプモジュール圧センサ86は、直接的にキャニスタ26と連通する。このため、ポンプモジュール圧Pcは、上記ステップ190の処理が実行されると同時に瞬間的に大きな値に変化する(時刻t5参照)。
【0101】
上記の処理が終了すると、次に、タイマーの初期化設定を行うべきか否かが判別される(ステップ192)。
ECU60の通電開始後、本ステップ192が初めて実行される場合は、初期化設定を実行すべきとの判定がなされる。この場合、次に、タイマーを初期化する処理が実行される(ステップ194)。
一方、ECU60の通電が開始された後、今回の処理サイクル以前に既に本ステップ192が実行されている場合は、初期化設定の必要はないと判断される。この場合、次に、タイマーのカウントアップが行われる(ステップ196)。
【0102】
図9に示すルーチンでは、次に、このルーチンが開始されてからの経過時間が、つまり、タイマーに計数されている経過時間が、封鎖弁OBD処理の最長実行期間として定められている所定値より小さいか否かが判別される(ステップ198)。
【0103】
その結果、経過時間が所定値より小さいと判別された場合は、その時点のポンプモジュール圧Pcが、封鎖弁28の開故障判定値より小さな値になっているか否かが判別される(ステップ200)。
尚、本ステップ200で用いられる封鎖弁28の開故障判定値は、既定の値でも、或いは、φ0.5穴判定値に基づいて設定した値であってもよい。
【0104】
上記ステップ200において、未だポンプモジュール圧Pcが開故障判定値より小さな値に低下していないと判別された場合は、次に、Pcが安定値に収束しているか否かが判別される(ステップ202)。
【0105】
その結果、ポンプモジュール圧Pcが未だ安定値に収束していない、つまり、Pcが未だ低下の過程にあると判別された場合は、そのまま今回の処理サイクルが終了される。この場合、以後、上記ステップ190以降の処理が繰り返される。
【0106】
一方、上記ステップ202において、ポンプモジュール圧Pcが既に安定値に収束していると判別された場合は、ポンプモジュール圧Pcが、封鎖弁28の閉弁時に到達すべき適正な値に低下しないことが認識できる。このような現象は、封鎖弁28が閉じていないか、或いは、キャニスタ26に大きな穴が空いている場合に限って発生する。このため、上記ステップ202において、Pcが安定値に収束していると判別された場合は、封鎖弁28の開故障異常、およびキャニスタ26の大穴異常が判定される(ステップ204)。
以後、KEY OFFモニタ作動フラグがOFFとされた後(ステップ206)、このルーチンが終了される。
【0107】
システムが正常な状態であれば、ポンプモジュール圧Pcが安定値に収束する以前に、その値Pcは開故障判定値より小さな値に低下する。そして、この場合は、Pcが開故障判定値を下回った時点で上記ステップ200の条件が成立する。図9に示すルーチンでは、上記ステップ200の条件が成立すると、その時点で、封鎖弁28の開故障、およびキャニスタ26の大穴故障に関して、正常判定がなされる(ステップ208)。
上記の処理が終了すると、以後、後述するステップ212の処理が実行された後、図9に示すルーチンが終了される。
【0108】
ポンプモジュール圧センサ86やポンプ74に異常が生じている場合は、封鎖弁28が正常に閉じていても、不当に長期に渡ってポンプモジュール圧Pcが開故障判定値を下回らず、また、安定値にも収束しないことがある。このような状況下では、封鎖弁28に開故障が生じているか否かを正確に判断することができない。
【0109】
図9に示すルーチンによれば、このような事態が生じた場合は、やがて上記ステップ198において、経過時間<所定値が成立しないとの判断がなされる。そして、ステップ198においてこのような判断がなされた場合は、その後、封鎖弁28の開故障に関して判断を保留する判定がなされる(ステップ210)。
【0110】
上述したステップ208の判定、或いはステップ210の判定が行われることにより封鎖弁28の開故障判定が終了する。ECU60は、このようにして開故障判定が終了すると、以後、封鎖弁28の閉故障判定に備えて、その時点のポンプモジュール圧Pcを封鎖弁閉時基準圧力として記憶した後(ステップ212)、図9に示すルーチンを終了する。
【0111】
ところで、本実施形態の蒸発燃料処理装置は、ポンプ74によりポンプモジュール圧Pcを負圧化させる手法(負圧法)により封鎖弁28の開故障判定を行うこととしているが、封鎖弁28の開故障判定の手法はこれに限定されるものではない。すなわち、ポンプ74を加圧用のポンプとして使用し、ポンプモジュール圧Pcを正圧化させる手法(正圧法)により封鎖弁28の開故障判定を行うこととしてもよい。そして、この場合は、上記ステップ200の処理を、「Pcが開故障判定値より大きいか否か(Pc>開固着判定値が成立するか否か)」を判断する処理に修正することで、所望の判定機能を実現することができる。
【0112】
ECU60は、上記図9に示すルーチンに続いて、図10に示すルーチンを実行する。図10は、ECU60が、封鎖弁28の閉故障を検出するために実行するルーチンのフローチャートである。
【0113】
図10に示すルーチンでは、先ず、図2中時刻t6に示す状態を形成するために、蒸発燃料処理装置の各要素が以下のように制御される(ステップ220)。
・切り替え弁80:ON
・ポンプ74:ON
・封鎖弁28:ON(開)
・パージVSV36:OFF
具体的には、封鎖弁28の開故障判定の終了後、封鎖弁28をOFFからONとする処理が実行される。
【0114】
上記の処理が終了すると、次に、タイマーの初期化設定を行うべきか否かが判別される(ステップ222)。
ECU60の通電開始後、本ステップ222が初めて実行される場合は、初期化設定を実行すべきとの判定がなされる。この場合、次に、タイマーを初期化する処理が実行される(ステップ224)。
一方、ECU60の通電が開始された後、今回の処理サイクル以前に既に本ステップ222が実行されている場合は、初期化設定の必要はないと判断される。この場合、次に、タイマーのカウントアップが行われる(ステップ226)。
【0115】
図10に示すルーチンでは、次に、現時点のポンプモジュール圧Pcと上記ステップ212において記憶した封鎖弁閉時基準圧力との差の絶対値が、所定値以上であるか否かが判別される。より具体的には、上記ステップ220の処理により封鎖弁28がON(開)とされることにより、ポンプモジュール圧Pcに有意な変化が表れているか否かが判別される(ステップ228)。
【0116】
封鎖弁28の開故障判定が終了した時点で(時刻t6)、タンク内圧Ptは、ほぼ大気圧とされている。一方、その時点で、キャニスタ26の内圧、つまり、ポンプモジュール圧センサ86の周辺圧力は、十分に負圧化されている。従って、上記ステップ220の処理により封鎖弁28が正常に開弁すれば、その後、燃料タンク10内のガスがキャニスタ26に流入して、ポンプモジュール圧Pcが大きく変化する。
【0117】
図10に示すルーチンでは、上記ステップ228の条件が成立しない(Pcに有意な変化が認められない)と判断される場合は、次に、このルーチンが開始されてからの経過時間が、つまり、タイマーに計数されている経過時間が、所定値以上となっているかが判別される(ステップ230)。
【0118】
その結果、経過時間が所定値より短いと判別された場合は、未だ封鎖弁28の開弁の影響がポンプモジュール圧Pcに反映されていない可能性があると判断され、再び上記ステップ220以降の処理が実行される。
【0119】
一方、経過時間が既に所定値以上であると判別された場合は、封鎖弁28が正常に開弁していないと判断することができる。この場合、封鎖弁28の閉固着異常が判定された後(ステップ232)、KEY OFFモニタ作動フラグがOFFとされ(ステップ234)、その後、図10に示すルーチンが終了される。
【0120】
システムが正常な状態であれば、経過時間が所定値に達する以前に、ポンプモジュール圧Pcに有意な変化が発生する。そして、この場合、Pcにそのような変化が生じた時点で上記ステップ228の条件が成立する。図10に示すルーチンでは、上記ステップ228の条件が成立すると、その時点で、封鎖弁28の閉故障に関して正常判定がなされる(ステップ236)。
【0121】
ところで、上記の説明は、封鎖弁28の開故障判定が負圧法により実行されることを前提としているが、封鎖弁28の開故障判定は、正圧法により実行されてもよい。正圧法が用いられる場合は、開故障判定の終了時にポンプモジュール圧Pcが正圧化しているため、時刻t6において封鎖弁28が開弁されると、その後Pcには減少方向の変化が生ずる。図10に示すステップ228では、Pcの変化を絶対値で捉えているため、Pcの変化方向に関わらず有意な変化の有無を判断することができる。このため、封鎖弁28の開故障判定が正圧法により行われる場合であっても、封鎖弁28の閉故障は、図10に示すルーチンに従うことで精度良く判定することができる。
【0122】
ECU60は、上記図9および図10に示すルーチンに従って「封鎖弁OBD処理」を完了すると、以後、図11に示すルーチンを実行する。図11は、ECU60が、「φ0.5リークチェック処理」を実現するために実行するルーチンのフローチャートである。
【0123】
図11に示すルーチンでは、先ず、図2中時刻t6に示す状態を形成するために、蒸発燃料処理装置の各要素が以下のように制御される(ステップ240)。
・切り替え弁80:ON
・ポンプ74:ON
・封鎖弁28:ON(開)
・パージVSV36:OFF
この状態は、図10に示す上記ステップ220において形成された状態と同じである。従って、本ステップ240では、上記の各要素の状態は現実には何ら変更されない。
【0124】
上記の処理が終了すると、次に、タイマーの初期化設定を行うべきか否かが判別される(ステップ242)。
ECU60の通電開始後、本ステップ242が初めて実行される場合は、初期化設定を実行すべきとの判定がなされる。この場合、次に、タイマーを初期化する処理が実行される(ステップ244)。
一方、ECU60の通電が開始された後、今回の処理サイクル以前に既に本ステップ242が実行されている場合は、初期化設定の必要はないと判断される。この場合、次に、タイマーのカウントアップが行われる(ステップ246)。
【0125】
図11に示すルーチンでは、次に、このルーチンが開始されてからの経過時間が、つまり、タイマーに計数されている経過時間が、φ0.5リークチェック処理の最長実行期間として定められている所定値より小さいか否かが判別される(ステップ248)。
【0126】
その結果、経過時間が所定値より小さいと判別された場合は、その時点のポンプモジュール圧Pcが、上記ステップ184において記憶されたφ0.5穴判定値より小さな値になっているか否かが判別される(ステップ250)。
【0127】
上記ステップ250において、未だポンプモジュール圧Pcがφ0.5穴判定値より小さな値に低下していないと判別された場合は、次に、Pcが安定値に収束しているか否かが判別される(ステップ252)。
【0128】
その結果、ポンプモジュール圧Pcが未だ安定値に収束していない、つまり、Pcが未だ低下の過程にあると判別された場合は、そのまま今回の処理サイクルが終了される。この場合、以後、上記ステップ240以降の処理が繰り返される。
【0129】
一方、上記ステップ252において、ポンプモジュール圧Pcが既に安定値に収束していると判別された場合は、ポンプモジュール圧Pcが、到達すべき適正な値にまで低下しないことが認識できる。このような現象は、キャニスタ26および燃料タンク10を含む系にφ0.5mmを超える洩れが生じているか、或いは、パージVSV36が適正に閉弁していない場合に限って発生する。このため、上記ステップ252において、Pcが安定値に収束していると判別された場合は、洩れ異常(リークチェック異常)、およびパージVSV36の開故障異常が判定される(ステップ254)。
以後、KEY OFFモニタ作動フラグがOFFとされた後(ステップ256)、このルーチンが終了される。
【0130】
システムが正常な状態であれば、ポンプモジュール圧Pcが安定値に収束する以前に、その値Pcはφ0.5穴判定値より小さな値に低下する。そして、この場合は、Pcがφ0.5穴判定値を下回った時点で上記ステップ250の条件が成立する。図11に示すルーチンでは、上記ステップ250の条件が成立すると、その時点で、洩れ故障およびパージVSV36の開故障に関して、正常判定がなされる(ステップ258)。
上記の処理が終了すると、以後、ステップ256においてKEY OFFモニタ作動フラグがOFFとされた後、このルーチンが終了される。
【0131】
ポンプモジュール圧センサ86やポンプ74に異常が生じている場合は、系内に洩れが生じていなくても、不当に長期に渡ってポンプモジュール圧Pcがφ0.5穴判定値を下回らず、また、安定値にも収束しないことがある。このような状況下では、洩れの有無を正確に判断することができない。
【0132】
図11に示すルーチンによれば、このような事態が生じた場合は、やがて上記ステップ248において、経過時間<所定値が成立しないとの判断がなされる。そして、ステップ248においてこのような判断がなされた場合は、その後、洩れの有無に関して判断を保留する判定がなされる(ステップ260)。
上記の処理が終了すると、以後、ステップ256においてKEY OFFモニタ作動フラグがOFFとされた後、このルーチンが終了される。
【0133】
ところで、上記の説明では、φ0.5リークチェック処理を負圧法で行うこととしているが、その処理の実行方法はこれに限定されるものではない。すなわち、φ0.5リークチェック処理は正圧法により実行することとしてもよい。そして、この場合は、上記ステップ250の処理を、「Pcがφ0.5穴判定値より大きいか否か(Pc>φ0.5穴判定値が成立するか否か)」を判断する処理に修正することで、所望の判定機能を実現することができる。
【0134】
以上説明した通り、本実施形態の装置においては、ECU60に、上述した図6乃至図11に示すルーチンを実行させることにより、図2に示す通常処理を実現することができる。
【0135】
[HC吹き抜け発生判定処理]
上記図4を参照して既述した通り、本実施形態の装置は、異常検出のためにECU60の通電が開始された直後に、通常処理の過程で蒸発燃料の吹き抜けが生ずる可能性があるか否かを判断する。以下、その判断のためにECU60が実行する処理の内容について説明する。
【0136】
図12は、HC吹き抜け発生判定処理のためにECU60が実行するルーチンの第1例のフローチャートである。
図12に示すルーチンでは、先ず、蒸発燃料処理装置の異常検出を行うための前提条件が成立しているか否かが判別される(ステップ270)。
尚、本ステップ270で判別される前提条件は、図4に示すステップ110で判別される条件と同一である。
【0137】
前提条件が成立していないと判別された場合は、KEY OFFモニタ作動フラグがOFFとされた後(ステップ272)、このルーチンが終了される。
一方、前提条件が成立していると判別された場合は、タンク内圧Ptが所定値を超えているか否かが判別される(ステップ274)。
【0138】
本実施形態の装置において、蒸発燃料の吹き抜けは、通常制御の過程で封鎖弁28が閉から開に切り換えられた際に、燃料タンク10内の蒸発燃料が一気にキャニスタ26に流入してくる際に生ずる可能性がある。また、蒸発燃料の吹き抜けは、燃料タンク10内の蒸発燃料がキャニスタ26に流入した後、キャニスタ26内のガスがポンプ74に吸い出される際にも生ずる可能性がある。このような蒸発燃料の吹き抜けは、封鎖弁28の開弁に伴ってキャニスタ26に流入する蒸発燃料量が多量であるほど発生し易い。そして、蒸発燃料の流入量は、封鎖弁28が開弁される際にタンク内圧Ptが高圧であるほど多量となる。従って、通常制御の実行中に蒸発燃料が吹き抜ける可能性は、封鎖弁28が開弁される直前のタンク内圧Ptに基づいてある程度推定することができる。
【0139】
上記ステップ274において用いられる所定値は、本実施形態の装置において通常処理の実行中に蒸発燃料の吹き抜けを生じさせることのないタンク内圧Ptの上限値として予め定められた値である。このため、上記ステップ274において、タンク内圧Pt>所定値が成立すると判別された場合は、蒸発燃料の吹き抜けが生ずる可能性が高いと判断できる。図12に示すルーチンでは、この場合、吹き抜けの可能性があることを表すべく、HC吹き抜け発生フラグがONとされる(ステップ276)。
【0140】
一方、上記ステップ274において、タンク内圧Ptが所定値より大きくないと判別された場合は、蒸発燃料の吹き抜けが生ずる可能性がないと判断できる。この場合、その可能性がないことを表すべく、HC吹き抜け発生フラグがOFFとされる(ステップ278)。
【0141】
これらの処理が終了すると、以後、KEY OFFモニタ作動フラグがONとされた後(ステップ280)、今回の処理サイクルが終了される。
【0142】
以上説明した処理によれば、通常制御が開始される以前に、通常制御の実行に伴ってキャニスタ26に流入してくると予想される蒸発燃料量に基づいて、より具体的には、現時点のタンク内圧Ptに基づいて、HC吹き抜け発生状態が形成されているか否かを判断し、更に、その判断に従って適切にHC吹き抜け発生フラグを処理することができる。
【0143】
ところで、上記図12に示すルーチンは、タンク内圧Ptを蒸発燃料量の流入量の特性値として捉え、タンク内圧Ptに基づいて吹き抜けの可能性を判断している。しかしながら、蒸発燃料の流入量の特性値は、タンク内圧Ptに限られるものではなく、例えば、タンク内ガスの体積、すなわち、燃料タンク10の空間容積も、その特性値として利用することができる。従って、タンク内圧Ptに代えて、或いは、タンクPtと共に、燃料タンク10の空間容積を基礎として、吹き抜けの可能性を判断することとしてもよい。尚、燃料タンク10の空間容積は、液面センサ14の出力に基づいて算出することができる。
【0144】
図13は、HC吹き抜け発生判定処理のためにECU60が実行するルーチンの第2例のフローチャートである。尚、図13において、上記図12に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0145】
図13に示すルーチンは、ステップ270の条件が成立する場合に、ステップ274の処理に代えてステップ290の処理が実行される点を除き、図12に示すルーチンと同様である。すなわち、図13に示すルーチンでは、異常検出実行のための前提条件が成立する場合に、前トリップ積算パージ量が、所定値より少ないか否かが判別される(ステップ290)。
【0146】
前トリップ積算パージ量とは、車両が現在の駐車状態に移行する前にIGスイッチがONとされていた間(前トリップ中)に、キャニスタ26から流出したパージ流量の積算量である。ECU60は、図13に示すルーチンを実行する場合、その前提として、車両の走行中に発生したパージ流量の積算値を公知の手法で算出する。そして、IGスイッチがOFFとされた後、最新の積算パージ量の記録を保管する。本ステップ290では、このようにして保管された前トリップ中の積算パージ量が、所定値より少ないか否かが判別される。
【0147】
本実施形態の装置において、蒸発燃料の吹き抜けは、既述した通り、封鎖弁28が閉から開に切り換えられた際、および、その後キャニスタ26内のガスがポンプ74により吸い出される際に発生する可能性がある。このような蒸発燃料の吹き抜けは、通常制御の開始時において、キャニスタ26に吸着されている蒸発燃料量が多量であるほど発生し易い。そして、蒸発燃料のキャニスタ吸着量は、前トリップ中にパージされた蒸発燃料が少ないほど、つまり、前トリップ積算パージ量が少ないほど多量となる。従って、通常制御の実行中に蒸発燃料が吹き抜ける可能性は、前トリップ積算パージ量に基づいてある程度推定することができる。
【0148】
上記ステップ290において用いられる所定値は、通常処理の実行中に蒸発燃料の吹き抜けを生じさせないために必要な最低限の積算パージ量として予め定められた値である。このため、上記ステップ290において、前トリップ積算パージ量<所定値が成立すると判別された場合は、蒸発燃料の吹き抜けが生ずる可能性が高いと判断できる。図13に示すルーチンでは、この場合、吹き抜けの可能性があることを表すべく、ステップ276においてHC吹き抜け発生フラグがONとされる。
【0149】
一方、上記ステップ290において、前トリップ積算パージ量が所定値より少なくないと判別された場合は、蒸発燃料の吹き抜けが生ずる可能性がないと判断できる。この場合、その可能性がないことを表すべく、ステップ278においてHC吹き抜け発生フラグがOFFとされる。
【0150】
以上説明した処理によれば、通常制御が開始される直前に、キャニスタ26内における蒸発燃料の吸着状態に基づいて、より具体的には、前トリップ中に生じたパージ流量の積算値に基づいて、通常制御の実行中に蒸発燃料の吹き抜けが生ずる可能性を判断すると共に、その判断に従って適切にHC吹き抜け発生フラグを処理することができる。
【0151】
図14は、HC吹き抜け発生判定処理のためにECU60が実行するルーチンの第3例のフローチャートである。尚、図14において、上記図12に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0152】
図14に示すルーチンは、ステップ270の条件が成立する場合に、ステップ274の処理に代えてステップ300の処理が実行される点を除き、図12に示すルーチンと同様である。すなわち、図14に示すルーチンでは、異常検出実行のための前提条件が成立する場合に、給油後からの積算パージ量が、所定値より少ないか否かが判別される(ステップ300)。
【0153】
本実施形態では、既述した通り、キャニスタ26が、給油時に流出する蒸発燃料のみを吸着するように用いられる。従って、キャニスタ26の蒸発燃料吸着状態は、給油後にどれだけのパージが行われたかにより決定される。ECU60は、図14に示すルーチンを実行する場合、その前提として、IGスイッチのON・OFFに関わらず、最後に給油が行われた後に発生したパージ流量の積算値を公知の手法で算出し、保管する。そして、本ステップ300では、このようにして保管された給油後の積算パージ量が、所定値より少ないか否かが判別される。
【0154】
本実施形態の装置において、蒸発燃料の吹き抜けは、通常制御の開始時において、キャニスタ26に吸着されている蒸発燃料量が多量であるほど発生し易い。そして、蒸発燃料のキャニスタ吸着量は、給油後からの積算パージ量が少ないほど多量となる。従って、通常制御の実行中に蒸発燃料が吹き抜ける可能性は、給油後からの積算パージ量に基づいてある程度推定することができる。
【0155】
上記ステップ300において用いられる所定値は、通常処理の実行中に蒸発燃料の吹き抜けを生じさせないために必要な最低限の積算パージ量として予め定められた値である。このため、上記ステップ300において、給油後からの積算パージ量<所定値が成立すると判別された場合は、蒸発燃料の吹き抜けが生ずる可能性が高いと判断できる。図14に示すルーチンでは、この場合、吹き抜けの可能性があることを表すべく、ステップ276においてHC吹き抜け発生フラグがONとされる。
【0156】
一方、上記ステップ300において、給油後からの積算パージ量が所定値より少なくないと判別された場合は、蒸発燃料の吹き抜けが生ずる可能性がないと判断できる。この場合、その可能性がないことを表すべく、ステップ278においてHC吹き抜け発生フラグがOFFとされる。
【0157】
以上説明した処理によれば、通常制御が開始される直前に、キャニスタ26内における蒸発燃料の吸着状態に基づいて、より具体的には、給油後からの積算パージ量に基づいて、通常制御の実行中に蒸発燃料の吹き抜けが生ずる可能性を判断すると共に、その判断に従って適切にHC吹き抜け発生フラグを処理することができる。
【0158】
ところで、上記図14に示すルーチンは、給油後の積算パージ量をキャニスタ26の燃料吸着状態の特性値として捉え、その積算パージ量に基づいて吹き抜けの可能性を判断している。しかしながら、キャニスタ26の燃料吸着状態の特性値は、給油後の積算パージ量に限られるものではなく、例えば、給油時にキャニスタ26に吸着された蒸発燃料量(以下、「給油時吸着量」と称す)も、その特性値として利用することができる。従って、給油後の積算パージ量に代えて、或いは、給油後の積算パージ量と共に、給油時吸着量を基礎として、吹き抜けの可能性を判断することとしてもよい。
【0159】
尚、給油時吸着量は、(1)給油時に燃料タンク10から流出した蒸発燃料の量、すなわち、給油された燃料の量、(2)給油時の燃料温度(残存燃料の温度、および給油燃料の温度)、および(3)キャニスタ26に流入するガスの流速、などにより決定される。従って、蒸発燃料の吸着量は、それらの因子に基づいて算出すればよい。この際、燃料の給油量(上記(1))は、給油前後の液面センサ14の出力変化に基づいて検出することができる。また、燃料温度(上記(2))は、燃料タンク10内に温度センサを設けることで実測することができる。更に、ガス流速(上記(3))は、給油時の液面センサ14の出力変化速度に基づいて検出することができる。
【0160】
本実施形態の蒸発燃料処理装置は、図12乃至図14を参照して説明したいくつかの手法の1つを単独で実行することにより、またはそれらの手法を組み合わせて実行することにより、HC吹き抜け発生フラグを処理することができる。この際、それらの手法を組み合わせて実行する場合は、ECU60に、個々の手法に対応する判定を別個独立のものとして実行させる他、それらの判定を以下に示すようにひとつにまとめて実行させることとしてもよい。
(給油時吸着量)
−(給油後の積算パージ量)
+(封鎖弁28の開弁に伴う蒸発燃料の流入量)>所定値
【0161】
以上説明した通り、本実施形態の装置は、車両の駐車中に異常検出の実行が要求された場合に、通常制御の実行に先立って、その実行中に蒸発燃料の吹き抜けが生ずる可能性があるか否かを適切に判断することができる。そして、その可能性がない場合に限って通常制御を実行し、その可能性がある場合には、異常検出自体を中止することができる。このため、本実施形態の装置によれば、異常検出の実行に伴ってキャニスタ26から蒸発燃料が吹き抜けるのを有効に防ぐことができる。
【0162】
ところで、上述した実施の形態1では、蒸発燃料処理装置の異常検出を、負圧法により実行することを前提としている。異常検出が負圧法により行われる場合、蒸発燃料の吹き抜けは、既述した通り、封鎖弁28が閉から開に切り換えられた場面、およびポンプ74によりキャニスタ26内のガスが吸い出される場面において生じ得る。このため、本実施形態において、上記ステップ274,290および300で用いられる所定値は、それら2つの場面の何れにおいても蒸発燃料の吹き抜けを生じさせない値に設定されている。
【0163】
これに対して、本実施形態の装置では、異常検出の手法として、負圧法に代えて正圧法を用いることが可能である。異常検出が正圧法により行われる場合、蒸発燃料の吹き抜けが生ずる場面が封鎖弁28の開弁時に限られる。このため、異常検出の手法として正圧法が用いられる場合は、上記ステップ274,290および300で用いられる所定値は、封鎖弁28の開弁時において蒸発燃料の吹き抜けを生じさせない値に設定されればよい。
【0164】
尚、上述した実施の形態1においては、負圧ポンプモジュール52が前記第1の発明における「差圧形成手段」に、上記ステップ130の処理により封鎖弁28をONとする処理が前記第1の発明における「封鎖弁開弁処理」に、φ0.5リークチェック処理が前記第1の発明における「差圧形成処理」および「リーク検査処理」に、それぞれ相当している。そして、ECU60が、上記図6乃至図11に示すルーチンを実行することにより前記第1の発明における「通常処理実行手段」が、上記図12乃至図13に示すルーチンのうち少なくとも1つを実行することにより前記第1の発明における「吹き抜け可能性判断手段」が、上記ステップ112および116の処理を実行することにより前記第1の発明における「通常処理禁止手段」が、それぞれ実現されている。
【0165】
また、上述した実施の形態1においては、ECU60に、図12乃至図14に示すルーチンにより、封鎖弁28の開弁に伴って蒸発燃料が吹き抜ける可能性があるか否かを判断させることにより、前記第2の発明における「開弁時吹き抜け可能性判断手段」を実現することができる。
【0166】
また、上述した実施の形態1においては、ポンプ74によりキャニスタ26内のガスが吸い出される場面で蒸発燃料の吹き抜けが生ずる可能性があるか否かが判断されるようにECU60が上記図12乃至図14に示すルーチンを実行することで、前記第3の発明における「負圧形成時吹き抜け可能性判断手段」が実現されている。
【0167】
また、上述した実施の形態1においては、ECU60が、上記ステップ112および116の処理を実行することにより前記第4の発明における「リーク検出中止手段」が実現されている。
【0168】
実施の形態2.
次に、図15乃至図20を参照して、本発明の実施の形態2について説明する。
本実施形態の蒸発燃料処理装置は、実施の形態1の場合と同様に、図1に示す構成により実現することができる。また、本実施形態において、ECU60は、実施の形態1の場合と同様に、図3に示すECU通電判定ルーチンおよび図5に示すECU電源遮断判定ルーチンを実行し、更に、図12乃至図14に示すHC吹き抜け発生判定ルーチンの少なくとも1つを実行する。そして、本実施形態の装置は、ECU60に、それらのルーチンと共に、後述する図15乃至図20に示すルーチンを実行させることにより実現することができる。
【0169】
上述した実施の形態1の装置は、通常制御の実行に伴って蒸発燃料が吹き抜ける可能性がある場合は、異常検出自体を中止することで、その吹き抜けを防止することとしている。ところで、このような蒸発燃料の吹き抜けは、通常制御の実行中に封鎖弁28が開かれることにより発生する。従って、吹き抜けの可能性があると判断された場合であっても、封鎖弁28さえ開かなければ、蒸発燃料の吹き抜けは防ぐことができる。そこで、本実施形態では、通常制御の実行に伴って蒸発燃料が吹き抜ける可能性があると判断される場合は、封鎖弁28を閉じたままキャニスタ26側だけを対象として異常検出を実行する。以下、この異常検出のための処理を「キャニスタリーク検出処理」と称す。
【0170】
[キャニスタリーク検出処理の説明]
以下、図15を参照して、ECU60の通電が開始された後、蒸発燃料の吹き抜けが生ずる可能性があると判断された場合に実行されるキャニスタリーク検出処理の内容について説明する。
【0171】
ECU60は、内蔵するソークタイマにより所定時間(例えば5時間)が計数されると、異常検出処理を開始するため、図15に示すように起動される(時刻T1)。封鎖弁28は、車両の駐車中は原則として閉じられている。このため、図15(E)中に破線で示すように、ECU60が起動される時点で、通常はタンク内圧Ptが正圧または負圧となっている。
【0172】
時刻T1の後、ECU60の内部では、通常制御の実行に伴って蒸発燃料の吹き抜けが生ずる可能性があるか否かが判断される。その結果、吹き抜けの可能性があると判断された場合は、封鎖弁28が閉じられたまま「大気圧判定処理」が開始される(時刻T2)。時刻T2の時点では、切り替え弁80がOFF状態とされているため、ポンプモジュール圧センサ86の周囲に大気圧が導かれている。このため、ECU60は、時刻T2の後、ポンプモジュール圧Pcが安定しているのを確認して、その時点におけるPcを大気圧相当値として認識する。以後、ECU60は、そのPc(大気圧相当値)に基づいて、ポンプモジュール圧センサ86の較正処理を実行する。
【0173】
キャニスタリーク検出処理は、封鎖弁28が閉じられたままの状態で行われる。つまり、キャニスタリーク検出処理は、燃料タンク10からキャニスタ26へ蒸発燃料が流出してこない状況下で、キャニスタ26の洩れを検出するために実行される。この場合、燃料タンク10の内部で蒸発燃料がどのように発生していても洩れ検出の精度には影響が生じない。このため、キャニスタリーク検出処理では、通常制御において実行される「エバポ量判定処理」(図2参照)が省略され、大気圧判定処理の後、速やかに「φ0.5REF穴チェック処理」が開始される(時刻T3)。
【0174】
図15(C)に示すように、時刻T3では、ポンプ74が作動状態とされる。この時点では切り替え弁80がOFFとされているため、ポンプ74の吸入口は、逆止弁76および基準オリフィス84を介して大気に連通している。従って、ポンプ74がONされると、ポンプモジュール圧センサ86の出力は、配管に0.5mmの基準穴が空いている状況下で、ポンプ74が作動しているのと同等の値(負圧値)に収束する。
【0175】
ECU60は、時刻T3の後、ポンプモジュール圧Pcが適当な値に収束するのを待って、その収束値をφ0.5穴判定値として記憶する。以後、このφ0.5穴判定値は、キャニスタ26に0.5mmの基準穴を超える洩れが生じているか否かを判断するための判定値として用いられる。
【0176】
通常処理では、「φ0.5REF穴チェック処理」に次いで、封鎖弁28の開閉を伴う「封鎖弁OBD処理」が実行される。キャニスタリーク検出処理は、封鎖弁28を閉じたまま進める必要があるため、その途中で、封鎖弁OBD処理を実行することはできない。このため、キャニスタリーク検出処理では、「φ0.5REF穴チェック処理」の終了後、「封鎖弁OBD処理」の実行が省略され、速やかに「φ0.5穴リークチェック処理」が開始される(時刻T4)。
【0177】
ECU60は、時刻T4において、切り替え弁80をONとする。切り替え弁80がONとされると、キャニスタ26の大気孔が大気から切り放されて、キャニスタ26内のガスがポンプ74により吸引され始める。キャニスタ26に洩れが生じていない場合は、ポンプモジュール圧Pcがφ0.5穴判定値より小さな値に収束する。一方、キャニスタ26に洩れが生じている場合は、Pcがφ0.5穴判定値まで減少しない。
【0178】
従って、ECU60は、時刻T4の後、適当な時間が経過する以前にPcがφ0.5穴判定値より小さな値になれば、キャニスタ26に洩れが生じていないと判断することができる。また、その条件が成立しなかった場合は、キャニスタ26に基準穴を超える洩れが生じていると判断することができる。
【0179】
φ0.5穴リークチェック処理が終了すると、その時点でポンプ74がOFFされ(時刻T5)、その後適当な時間が経過した時点で「パージVSVOBD処理」が開始される(時刻T6)。ECU60は、時刻T6においてパージVSV36に対して開弁指令を発する。この処理によりパージVSV36が適正に開弁すると、キャニスタ26の密閉が破られ、ポンプモジュール圧Pcは上昇し始める。一方、パージVSV36が適正に開弁しない場合は、Pcに何ら有意な変化は生じない。ECU60は、時刻T6の後、ポンプモジュール圧Pcに十分な変化が認められる場合は、パージVSV36が閉状態から開状態に適正に変化したと判断し、一方、Pcにその変化が認められない場合は、パージVSV36が適正に開弁していない、つまり、パージVSV36に閉故障が生じているとの判断を下す。
【0180】
パージVSVOBD処理が終了すると、キャニスタリーク検出処理が終了する(時刻T7)。ECU60は、この時点で、全ての機構をOFF状態とする。その結果、蒸発燃料処理装置は、車両の駐車中における通常の状態、つまり、時刻T1の状態に復帰する。以後、適当な時間が経過した時点で、ECU60は停止状態となる(時刻T8)。
【0181】
以上説明した通り、本実施形態の蒸発燃料処理装置によれば、図15に示すタイムチャートに沿った処理、すなわち、キャニスタリーク検出処理を実行することにより、封鎖弁28を閉じたまま、蒸発燃料の大気への吹き抜けを生じさせることなく、キャニスタ26を含む系に洩れが存在するか否かを判断することができる。
【0182】
[ECUが実行する具体的処理の説明]
以下、ECU60が、本実施形態において実行する具体的処理の内容について説明する。
ECU60は、車両の駐車中は、実施の形態1の場合と同様に図3に示すECU通電判定ルーチンを繰り返し実行する。その結果、ソークタイマにより所定値が計数されると、ECU60を本格的に起動させるための通電が開始される。
【0183】
ECU60は、また、上記の如く通電が開始された後、実施の形態1の場合と同様に、図5に示すECU電源遮断判定ルーチンを繰り返し実行する。そして、KEY OFFモニタ作動フラグがOFFとされると、その時点で通電を遮断してスタンバイ状態に移行する。
【0184】
図16は、本実施形態において、ECU60が、異常検出の実行に関する前提条件が成立可否に合わせてKET OFFモニタ作動フラグを処理するために実行する前提条件判定ルーチンのフローチャートである。図16に示すルーチンは、ステップ112が省略されている点を除き、実施の形態1において実行される図4に示すルーチンと同様である。
【0185】
図16に示すルーチンによれば、ステップ110において、所定の前提条件(前トリップ走行履歴、吸気温および冷却水温、バッテリ電圧、IGスイッチなどに関する条件)が成立するか否かが判別さえる。その結果、前提条件が成立すると判別される場合は、ステップ114においてKEY OFFモニタ作動フラグがONとされる。一方、前提条件が成立しないと判別される場合は、ステップ116においてKET OFF作動フラグがOFFとされる。
【0186】
上記ルーチンの処理によりKEY OFFモニタ作動フラグがOFFとされると、その後ECU60の通電が遮断されるため、異常検出の実行が禁止される。これに対して、上記ルーチンの処理によりKEY OFFモニタ作動フラグがONとされる限りは、ECU60の通電が維持され、以後、異常検出を進めるべく、以下に説明する処理が順次実行される。
【0187】
図17は、ECU60が、「大気圧判定処理」を実現するために実行する制御ルーチンのフローチャートである。図17に示すルーチンは、ステップ310および312が追加されている点、およびステップ140がステップ314に置き換えられている点を除き、実施の形態1において実行される図6に示すルーチンと同様である。尚、図17において、図6に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0188】
図17に示すルーチンでは、先ず、HC吹き抜け発生状態が形成されているか否かが判別される(ステップ310)。
ECU60は、実施の形態1の場合と同様に、その通電が開始された後速やかに、通常処理の実行に伴って蒸発燃料の吹き抜けが生ずる可能性があるか否かを判断し、その判断に従ってHC吹き抜け発生フラグをONまたはOFFとする(図12乃至図14参照)。本ステップ310では、このようにして処理されたHC吹き抜け発生フラグの状態に基づいて、HC吹き抜け発生状態が形成されているか否かが判別される。
【0189】
上記の判別の結果、HC吹き抜け発生状態が形成されていないと判別された場合は、以後、実施の形態1の場合と同様に、ステップ130以降の処理が実行される。この場合、図6を参照して説明した場合と同様の手順で「大気圧判定処理」が進められる。
【0190】
一方、上記ステップ310において、HC吹き抜け発生状態が形成されていると判別された場合は、図15中時刻T2に示す状態を形成するため、つまり、封鎖弁28を閉じたまま大気圧判定処理を実行するため、蒸発燃料処理装置の各要素が以下のように制御される(ステップ312)。
・切り替え弁80:OFF
・ポンプ74:OFF
・封鎖弁28:OFF(閉)
・パージVSV36:OFF
尚、本ステップ312で実現すべき状態は、時刻T2以前から実現されている。このため、本ステップ312では、具体的には、上記各要素の状態は、何ら変更されない。
【0191】
上記ステップ312により実現される状態によれば、ポンプモジュール圧センサ12の周囲には、大気圧が導かれる。ECU60は、以後、ポンプモジュール圧Pcが安定しているのを確認して、その値Pcを大気圧相当値として記憶する(ステップ138,144)。
【0192】
本実施形態では、手順の簡単化を優先して、通常制御とキャニスタリーク検出処理とでステップ144を区別しないこととしている。このため、ステップ144では、キャニスタリーク検出処理の場合にも、タンク内圧Ptの大気圧相当値が記憶される。キャニスタリーク検出処理の場合は、燃料タンク10の内部が大気圧に開放されないため、ステップ144が実行される時点で、タンク内圧Ptは大気圧相当値にはなっていない。しかしながら、キャニスタリーク検出処理の場合は、タンク内圧Ptが何らの処理にも利用されないため、上記の不一致によっては何ら弊害は生じない。
【0193】
図17に示すルーチン中、上記ステップ138において、ポンプモジュール圧Pcおよびタンク内圧Ptの何れかが安定していないと判別された場合は、次に、このルーチンが開始されてからの経過時間が、所定値AまたはBより短いか否かが判別される(ステップ314)。
【0194】
より具体的には、今回の処理が通常処理の一部として実行されている場合は、上記ステップ314において、経過時間<所定値Aの成立可否が判別される。ここで用いられる所定値Aは、図6に示すステップ140で用いられる所定値と同じ値である。一方、今回の処理がキャニスタリーク検出処理の一部として行われている場合は、上記ステップ314において、経過時間<所定値Bの成立可否が判断される。所定値Bは、所定値Aに比して小さな値である。
【0195】
通常処理の場合は、大気圧判定処理の開始時点(図2、時刻t2参照)で、封鎖弁28が開かれるため、タンク内圧Ptが収束するまでにある程度の時間が必要である。一方、キャニスタリーク検出処理では、大気圧判定処理の開始時点で、ポンプモジュール圧Pcやタンク内圧Ptを変動させる変化は何ら生じない。このため、通常制御の場合とキャニスタリーク検出処理の場合とで所定値A,Bを区別することによれば、後者の場合に無駄な待ち時間が生ずるのを防ぐことができる。
【0196】
図17に示すルーチン中、上記ステップ144の処理が終了すると、「大気圧判定処理」が終了する。以後、ECU60は、図18に示すルーチンを開始する。図18は、ECU60が、「エバポ量判定処理」を実現するために実行するルーチンのフローチャートである。図18に示すルーチンは、ステップ320が追加されている点を除き、実施の形態1において実行される図7に示すルーチンと同様である。尚、図18において、図7に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0197】
図18に示すルーチンでは、先ず、HC吹き抜け発生状態が形成されているか否かが判別される(ステップ320)。
【0198】
その結果、HC吹き抜け発生状態が形成されていないと判別された場合は、以後、実施の形態1の場合と同様に、ステップ150以降の処理が実行される。この場合、図7を参照して説明した場合と同じ手順で「エバポ量判定処理」が進められる。
【0199】
一方、上記ステップ320において、HC吹き抜け発生状態が形成されていると判別された場合は、エバポ量判定処理を実行する必要がないと判断される。この場合、以後、図18に示すルーチンがジャンプされ、速やかに図19に示すルーチンが開始される。
【0200】
図19は、ECU60が、「φ0.5REF穴チェック処理」を実現するために実行する制御ルーチンのフローチャートである。図19に示すルーチンは、ステップ330および332が追加されている点、並びにステップ184の後段にステップ334が追加されている点を除き、実施の形態1において実行される図8に示すルーチンと同様である。尚、図19において、図8に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0201】
図19に示すルーチンでは、先ず、HC吹き抜け発生状態が形成されているか否かが判別される(ステップ330)。
【0202】
その結果、HC吹き抜け発生状態が形成されていないと判別された場合は、以後、実施の形態1の場合と同様に、ステップ170以降の処理が実行される。この場合、図8を参照して説明した場合と同じ手順で「φ0.5REF穴チェック処理」が進められる。
【0203】
一方、上記ステップ330において、HC吹き抜け発生状態が形成されていると判別された場合は、図15中時刻T3に示す状態を形成するため、つまり、ポンプモジュール圧センサ86の周囲に、φ0.5mmの基準穴の存在を前提とした負圧を発生させるために、蒸発燃料処理装置の各要素が以下のように制御される(ステップ332)。
・切り替え弁80:OFF
・ポンプ74:ON
・封鎖弁28:OFF(閉)
・パージVSV36:OFF
【0204】
上記ステップ332では、具体的には、大気圧判定処理の終了後、ポンプ74をONとする処理が実行される。上記の処理によれば、封鎖弁28を閉じたまま、ポンプモジュール圧センサ74の周囲にφ0.5mmの基準穴の存在を前提とした負圧を発生させることができる。このため、図19に示すルーチンによれば、キャニスタリーク検出処理の場合にも、通常処理の場合と同様に、φ0.5穴判定値を正確に検知することができる。
【0205】
図19に示すルーチンでは、φ0.5穴判定値の検出が終了した後(ステップ184の処理が終了した後)、再びHC吹き抜け発生状態が形成されているか否かが判別される(ステップ334)。
【0206】
その結果、HC吹き抜け発生状態が形成されていないと判別された場合は、以後、実施の形態1の場合と同様の手順で「封鎖弁OBD処理」、「φ0.5リークチェック処理」、および「パージVSVOBD処理」が順次行われる(図9乃至図11参照)。一方、上記ステップ334において、HC吹き抜け発生状態が形成されていると判別された場合は、次に、図20に示すルーチンが開始される。
【0207】
図20は、ECU60が、キャニスタリーク検出処理の一部として「φ0.5REF穴チェック処理」を実現するために実行する制御ルーチンのフローチャートである。図20に示すルーチンは、ステップ240がステップ340に、ステップ254がステップ342に、また、ステップ258がステップ344に、それぞれ置き換えられている点を除き、実施の形態1において実行される図11に示すルーチンと同様である。尚、図20において、図11に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0208】
図20に示すルーチンでは、先ず、図15中時刻T4に示す状態を形成するため、蒸発燃料処理装置の各要素が以下のように制御される(ステップ340)。
・切り替え弁80:ON
・ポンプ74:ON
・封鎖弁28:OFF(閉)
・パージVSV36:OFF
【0209】
上記ステップ340では、具体的には、「φ0.5REF穴チェック処理」の終了後、切り替え弁80をOFFからONとする処理が実行される。切り替え弁80がONとされると、基準オリフィス84を介してキャニスタ26(大気圧)に連通していたポンプモジュール圧センサ86が、直接的にキャニスタ26と連通する状態となる。このため、ポンプモジュール圧Pcは、上記ステップ340の処理が実行されると同時に瞬間的に大きな値に変化する(時刻T4参照)。
【0210】
システムが正常である場合は、以後、適当な時間が経過することにより、ポンプモジュール圧Pcはφ0.5穴判定値より小さな値に低下する。そして、キャニスタリーク検出処理の実行中に「Pc<φ0.5穴判定値」が成立した場合は、キャニスタ26が適正に密閉されているとの判断を下すことができる。図20に示すルーチンでは、ステップ250において上記条件の成立が判定されると、以後、上記の判断に従って、キャニスタ26の洩れ故障、封鎖弁28の開故障、およびパージVSV36の開故障について正常判定が成される(ステップ344)。
【0211】
キャニスタ26に、φ0.5mmの基準穴を超える洩れが生じている場合は、ポンプモジュール圧Pcが、φ0.5穴判定値を下回ることなく安定値に収束する。そして、キャニスタリーク検出処理の実行中にそのような事態が認められる場合は、キャニスタ26が適正に密閉されていないとの判断を下すことができる。図20に示すルーチンでは、ステップ252においてポンプモジュール圧Pcの安定値収束が判定されると、以後、上記の判断に従って、キャニスタ26の洩れ故障、封鎖弁28の開故障、およびパージVSV36の開故障について異常判定がなされる(ステップ344)。
【0212】
以上説明した通り、図17乃至図20に示すルーチンによれば、ECU60の起動時にHC吹き抜け発生状態が形成されている場合には、通常処理に代えてキャニスタリーク検出処理を実行し、封鎖弁28を閉じたままキャニスタ26に洩れが生じているか否かを判断することができる。このため、本実施形態の蒸発燃料処理装置によれば、蒸発燃料の大気漏出を実施の形態1の場合と同様に防ぎつつ、キャニスタ26の洩れ検出に関して、実施の形態1の場合に比して高い実行頻度を確保することができる。
【0213】
尚、上述した実施の形態2においては、ECU60が、図9乃至図11に示すルーチンと、図17乃至図20に示すルーチンとを組み合わせて、図6乃至図11に示すルーチンと同様の処理を実行することにより前記第1の発明における「通常処理実行手段」が実現されていると共に、上記ステップ310、320、330および334の処理を実行することにより前記第1の発明における「通常処理禁止手段」が実現されている。
【0214】
また、上述した実施の形態2においては、上記ステップ340の処理が前記第5の発明における「第2差圧形成処理」に、上記ステップ250および252の処理が前記第5の発明における「第2リーク検査処理」にそれぞれ相当していると共に、ECU60が、図20に示すルーチンを実行することにより前記第5の発明における「キャニスタリーク検出処理実行手段」が、上記ステップ334の処理を実行することにより前記第5の発明における「処理切り換え手段」が、それぞれ実現されている。
【0215】
【発明の効果】
この発明は以上説明したように構成されているので、以下に示すような効果を奏する。
第1の発明によれば、キャニスタと燃料タンクの双方を含む系全体の洩れを検査するための通常処理を開始する前に、その通常処理の過程で、キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断することができる。そして、その可能性があると判断された場合は、通常処理の実行を禁止することができる。このため、本発明によれば、燃料タンクを密閉するための封鎖弁を備える蒸発燃料処理装置において、洩れ検出の実行中に蒸発燃料が大気に放出されるのを確実に防ぐことができる。
【0216】
第2の発明によれば、通常処理が実行された場合に、特に封鎖弁の開弁に伴って蒸発燃料が吹き抜ける可能性があるか否かを判断することができる。
【0217】
第3の発明によれば、通常処理が実行された場合に、特に負圧形成処理の実行に伴ってキャニスタ内のガスが吸引される過程で、蒸発燃料が大気に放出される可能性があるか否かを判断することができる。
【0218】
第4の発明によれば、通常処理の実行に伴う蒸発燃料の吹き抜けが予測される場合に、蒸発燃料処理装置におけるリーク検出処理の実行を中止することで、蒸発燃料の大気放出を確実に防ぐことができる。
【0219】
第5の発明によれば、通常処理の実行に伴う蒸発燃料の吹き抜けが予測される場合に、通常処理に代えて、キャニスタを含む系のリークのみを検査する第2リーク検査処理を実行することにより、蒸発燃料の大気放出を確実に防ぐことができる。
【0220】
第6の発明によれば、封鎖弁の開弁に伴って燃料タンクからキャニスタに向かって流れるガス流量に基づいて、蒸発燃料が大気孔から吹き抜ける可能性があるか否かを判断することができる。蒸発燃料は、上記のガス流量が多量であるほど大気に吹き抜けやすい。従って、本発明によれば、蒸発燃料が大気に吹き抜ける可能性があるか否かを精度良く推定することができる。
【0221】
第7の発明によれば、蒸発燃料が大気孔から吹き抜ける可能性があるか否かをタンク内圧に基づいて判断することができる。封鎖弁の開弁に伴って燃料タンクからキャニスタに向かって流れるガス流量は、その開弁時におけるタンク内圧が高いほど多量となる。従って、本発明によれば、蒸発燃料が大気に吹き抜ける可能性があるか否かを精度良く推定することができる。
【0222】
第8の発明によれば、蒸発燃料が大気孔から吹き抜ける可能性があるか否かを、燃料タンク内の空間容積に基づいて判断することができる。封鎖弁の開弁に伴って燃料タンクからキャニスタに向かって流れるガス流量は、その開弁時における燃料タンク内の空間容積が大きいほど多量となる。従って、本発明によれば、蒸発燃料が大気に吹き抜ける可能性があるか否かを精度良く推定することができる。
【0223】
第9の発明によれば、キャニスタの蒸発燃料吸着状態に基づいて、蒸発燃料が大気孔から吹き抜ける可能性があるか否かを判断することができる。蒸発燃料は、キャニスタに吸着されている蒸発燃料が多量であるほど大気に吹き抜けやすい。従って、本発明によれば、蒸発燃料が大気に吹き抜ける可能性があるか否かを精度良く推定することができる。
【0224】
第10の発明によれば、給油の際にキャニスタに吸着された給油時吸着量に基づいて、キャニスタの蒸発燃料吸着状態を精度良く推定することができる。
【0225】
第11の発明によれば、キャニスタからパージされた蒸発燃料の積算値、すなわち、積算パージ量に基づいて、キャニスタの蒸発燃料吸着状態を精度良く推定することができる。
【0226】
第12の発明によれば、給油後の積算パージ量を基礎とすることにより、キャニスタの蒸発燃料吸着状態を、極めて精度良く推定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の構成を説明するための図である。
【図2】実施の形態1において実行される通常処理の内容を説明するためのタイミングチャートである。
【図3】実施の形態1において実行されるECU通電判定ルーチンのフローチャートである。
【図4】実施の形態1においてKEY OFFモニタ作動フラグを処理するために実行されるルーチンのフローチャートである。
【図5】実施の形態1において実行されるECU電源遮断判定ルーチンのフローチャートである。
【図6】実施の形態1において実行される大気圧測定ルーチンのフローチャートである。
【図7】実施の形態1において実行されるエバポ発生量測定ルーチンのフローチャートである。
【図8】実施の形態1において実行されるREF穴基準圧力測定ルーチンのフローチャートである。
【図9】実施の形態1において実行される封鎖弁開故障判定ルーチンのフローチャートである。
【図10】実施の形態1において実行される封鎖弁閉故障判定ルーチンのフローチャートである。
【図11】実施の形態1において実行されるリークチェックルーチンのフローチャートである。
【図12】実施の形態1において実行されるHC吹き抜け発生判定ルーチンの第1例のフローチャートである。
【図13】実施の形態1において実行されるHC吹き抜け発生判定ルーチンの第2例のフローチャートである。
【図14】実施の形態1において実行されるHC吹き抜け発生判定ルーチンの第3例のフローチャートである。
【図15】本発明の実施の形態2において実行されるキャニスタリーク検出処理の内容を説明するためのタイミングチャートである。
【図16】実施の形態2においてKEY OFFモニタ作動フラグを処理するために実行されるルーチンのフローチャートである。
【図17】実施の形態2において実行される大気圧測定ルーチンのフローチャートである。
【図18】実施の形態2において実行されるエバポ発生量測定ルーチンのフローチャートである。
【図19】実施の形態2において実行されるREF穴基準圧力測定ルーチンのフローチャートである。
【図20】実施の形態2においてキャニスタリーク検出処理の一部として実行されるリークチェックルーチンのフローチャートである。
【符号の説明】
10 燃料タンク
12 タンク内圧センサ
14 液面センサ
24 封鎖弁ユニット
28 封鎖弁
26 キャニスタ
36 パージVSV
52 負圧ポンプユニット
60 ECU(Electronic Control Unit)
74 ポンプ
80 切り替え弁
86 ポンプモジュール圧センサ
Pc ポンプモジュール圧(ポンプモジュール圧センサの出力)
Pt タンク内圧(タンク内圧センサの出力)

Claims (12)

  1. 燃料タンク内で発生した蒸発燃料をキャニスタで吸着して処理する蒸発燃料処理装置であって、
    前記燃料タンクと前記キャニスタとの導通状態を制御する封鎖弁と、
    前記キャニスタと内燃機関とを連通するパージ通路の導通状態を制御するパージ制御弁と、
    前記キャニスタの大気孔に設けられ、当該キャニスタの内外に差圧を発生させる差圧形成手段と、
    前記パージ制御弁が閉じた状態で前記封鎖弁を閉から開とする封鎖弁開弁処理と、前記パージ制御弁が閉じ、かつ、前記封鎖弁が開いた状態で、前記キャニスタの内外に差圧が生ずるように前記差圧形成手段を作動させる差圧形成処理と、前記差圧形成処理の実行に併せて前記キャニスタおよび前記燃料タンクの双方を含む系のリークを検査するリーク検査処理と、を含む通常処理を実行する通常処理実行手段と、
    前記通常処理の開始に先立って、前記通常処理の過程で、前記キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断する吹き抜け可能性判断手段と、
    前記通常処理の過程で蒸発燃料が吹き抜ける可能性があると判断された場合に、前記通常処理の実行を禁止する通常処理禁止手段と、
    を備えることを特徴とする蒸発燃料処理装置。
  2. 前記吹き抜け可能性判断手段は、前記封鎖弁開弁処理の実行に伴って前記キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断する開弁時吹き抜け可能性判断手段を含むことを特徴とする請求項1記載の蒸発燃料処理装置。
  3. 前記差圧形成処理は、前記大気孔からガスを吸引して前記キャニスタの内部を負圧化させる負圧形成処理を含み、
    前記吹き抜け可能性判断手段は、前記負圧形成処理の実行過程で前記キャニスタの大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断する負圧形成時吹き抜け可能性判断手段を含むことを特徴とする請求項1または2記載の蒸発燃料処理装置。
  4. 前記通常処理禁止手段は、当該蒸発燃料処理装置におけるリーク検出処理の実行を中止するリーク検出中止手段を含むことを特徴とする請求項1乃至3の何れか1項記載の蒸発燃料処理装置。
  5. 前記パージ制御弁および前記封鎖弁が閉じた状態で、前記キャニスタの内外に差圧が生ずるように前記差圧形成手段を作動させる第2差圧形成処理と、前記第2差圧形成処理の実行に併せて前記キャニスタを含む系のリークを検査する第2リーク検査処理と、を含むキャニスタリーク検出処理を実行するキャニスタリーク検出処理実行手段を備え、
    前記通常処理禁止手段は、前記通常処理に代えて、前記キャニスタリーク検出処理を実行させる処理切り換え手段を含むことを特徴とする請求項1乃至3の何れか1項記載の蒸発燃料処理装置。
  6. 前記吹き抜け可能性判断手段は、前記封鎖弁の開弁に伴って前記燃料タンクから前記キャニスタに向かって流出するガス流量に基づいて、前記大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断することを特徴とする請求項1乃至5の何れか1項記載の蒸発燃料処理装置。
  7. 前記吹き抜け可能性判断手段は、
    タンク内圧を検出するタンク内圧検出手段を備え、
    前記タンク内圧を、前記封鎖弁の開弁に伴って前記燃料タンクから前記キャニスタに向かって流出するガス流量の特性値として利用することを特徴とする請求項6記載の蒸発燃料処理装置。
  8. 前記吹き抜け可能性判断手段は、
    燃料タンク内の空間容積を検出する空間容積検出手段を備え、
    前記空間容積を、前記封鎖弁の開弁に伴って前記燃料タンクから前記キャニスタに向かって流出するガス流量の特性値として利用することを特徴とする請求項6または7記載の蒸発燃料処理装置。
  9. 前記吹き抜け可能性判断手段は、前記キャニスタの蒸発燃料吸着状態に基づいて、前記大気孔から蒸発燃料が吹き抜ける可能性があるか否かを判断することを特徴とする請求項1乃至8の何れか1項記載の蒸発燃料処理装置。
  10. 給油時に前記封鎖弁を開弁状態とする給油時制御手段を備え、
    前記吹き抜け可能性判断手段は、
    給油の際に前記燃料タンクから前記キャニスタに流入して当該キャニスタに吸着された蒸発燃料量を給油時吸着量として推定する給油時吸着量推定手段を備え、
    前記給油時吸着量を、前記蒸発燃料吸着状態の特性値として利用することを特徴とする請求項9記載の蒸発燃料処理装置。
  11. 所定のパージ条件が成立する場合に、前記パージ制御弁を開いて前記キャニスタ内の蒸発燃料を内燃機関に向けてパージさせるパージ制御手段を備え、
    前記吹き抜け可能性判断手段は、
    前記キャニスタからパージされた蒸発燃料の積算値を積算パージ量として算出する積算パージ量算出手段を備え、
    前記積算パージ量を、前記蒸発燃料吸着状態の特性値として利用することを特徴とする請求項9または10記載の蒸発燃料処理装置。
  12. 前記吹き抜け可能性判断手段は、
    給油後の積算パージ量を算出する給油後積算パージ量算出手段を備え、
    前記給油後積算パージ量を、前記蒸発燃料吸着状態の特性値として利用することを特徴とする請求項11記載の蒸発燃料処理装置。
JP2002321657A 2002-11-05 2002-11-05 内燃機関の蒸発燃料処理装置 Expired - Fee Related JP4107053B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321657A JP4107053B2 (ja) 2002-11-05 2002-11-05 内燃機関の蒸発燃料処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321657A JP4107053B2 (ja) 2002-11-05 2002-11-05 内燃機関の蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2004156492A true JP2004156492A (ja) 2004-06-03
JP4107053B2 JP4107053B2 (ja) 2008-06-25

Family

ID=32802127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321657A Expired - Fee Related JP4107053B2 (ja) 2002-11-05 2002-11-05 内燃機関の蒸発燃料処理装置

Country Status (1)

Country Link
JP (1) JP4107053B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027595A (ja) * 2004-06-22 2006-02-02 Ti Group Automotive Systems Llc 自動車燃料装置
US7152587B2 (en) 2004-10-25 2006-12-26 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of internal combustion engine and evaporated fuel treatment method
US7536251B2 (en) 2005-03-18 2009-05-19 Toyota Jidosha Kabushiki Kaisha Motor vehicle and control method of motor vehicle
JP2010127225A (ja) * 2008-11-28 2010-06-10 Honda Motor Co Ltd 蒸発燃料処理装置及びそのパージ方法
US8770175B2 (en) 2008-11-28 2014-07-08 Honda Motor Co., Ltd. Evaporation fuel processing system and purging method therefor
JP2014206074A (ja) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 燃料タンクの異常検知装置
CN107709745A (zh) * 2015-06-23 2018-02-16 日产自动车株式会社 蒸发燃料处理装置的诊断装置
DE102018100132A1 (de) 2017-01-11 2018-07-12 Toyota Jidosha Kabushiki Kaisha Kraftstofftanksystem und Steuerungsverfahren des Kraftstofftanksystems
US10215659B2 (en) 2016-02-01 2019-02-26 Delphi Automotive Systems Luxembourg Sa Method and apparatus for leak detection
JP2019183677A (ja) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 蒸発燃料処理装置
JP2021050717A (ja) * 2019-09-26 2021-04-01 株式会社Subaru 車両の燃料装置
JP2021050718A (ja) * 2019-09-26 2021-04-01 株式会社Subaru 車両の燃料装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672454B2 (ja) * 2011-07-07 2015-02-18 三菱自動車工業株式会社 内燃機関の燃料蒸発ガス排出抑止装置
JP5704338B2 (ja) * 2011-07-07 2015-04-22 三菱自動車工業株式会社 内燃機関の燃料蒸発ガス排出抑止装置
JP5998529B2 (ja) 2012-03-09 2016-09-28 日産自動車株式会社 蒸発燃料処理装置の診断装置
JP5880159B2 (ja) 2012-03-09 2016-03-08 日産自動車株式会社 蒸発燃料処理装置の診断装置
JP6421927B2 (ja) * 2014-12-22 2018-11-14 三菱自動車工業株式会社 燃料蒸発ガス排出抑止装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733439B2 (ja) * 2004-06-22 2011-07-27 ティーアイ グループ オートモーティヴ システムズ リミテッド ライアビリティー カンパニー 自動車燃料装置
JP2006027595A (ja) * 2004-06-22 2006-02-02 Ti Group Automotive Systems Llc 自動車燃料装置
US7152587B2 (en) 2004-10-25 2006-12-26 Toyota Jidosha Kabushiki Kaisha Evaporated fuel treatment device of internal combustion engine and evaporated fuel treatment method
US7536251B2 (en) 2005-03-18 2009-05-19 Toyota Jidosha Kabushiki Kaisha Motor vehicle and control method of motor vehicle
JP2010127225A (ja) * 2008-11-28 2010-06-10 Honda Motor Co Ltd 蒸発燃料処理装置及びそのパージ方法
US8770175B2 (en) 2008-11-28 2014-07-08 Honda Motor Co., Ltd. Evaporation fuel processing system and purging method therefor
JP2014206074A (ja) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 燃料タンクの異常検知装置
CN107709745A (zh) * 2015-06-23 2018-02-16 日产自动车株式会社 蒸发燃料处理装置的诊断装置
CN107709745B (zh) * 2015-06-23 2018-12-28 日产自动车株式会社 蒸发燃料处理装置的诊断装置
US10215659B2 (en) 2016-02-01 2019-02-26 Delphi Automotive Systems Luxembourg Sa Method and apparatus for leak detection
DE102018100132A1 (de) 2017-01-11 2018-07-12 Toyota Jidosha Kabushiki Kaisha Kraftstofftanksystem und Steuerungsverfahren des Kraftstofftanksystems
US10400689B2 (en) 2017-01-11 2019-09-03 Toyota Jidosha Kabushiki Kaisha Fuel tank system and control method of fuel tank system
JP2019183677A (ja) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 蒸発燃料処理装置
JP7028694B2 (ja) 2018-04-03 2022-03-02 トヨタ自動車株式会社 蒸発燃料処理装置
JP2021050717A (ja) * 2019-09-26 2021-04-01 株式会社Subaru 車両の燃料装置
JP2021050718A (ja) * 2019-09-26 2021-04-01 株式会社Subaru 車両の燃料装置
JP7336936B2 (ja) 2019-09-26 2023-09-01 株式会社Subaru 車両の燃料装置
JP7372801B2 (ja) 2019-09-26 2023-11-01 株式会社Subaru 車両の燃料装置

Also Published As

Publication number Publication date
JP4107053B2 (ja) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4140345B2 (ja) 内燃機関の蒸発燃料処理装置
JP4110931B2 (ja) 内燃機関の蒸発燃料処理装置
JP3849584B2 (ja) 蒸発燃料処理装置
JP4107053B2 (ja) 内燃機関の蒸発燃料処理装置
JP4483523B2 (ja) 内燃機関の蒸発燃料処理装置
JP6749291B2 (ja) 蒸発燃料処理装置の漏れ検出装置
US6973924B1 (en) Evaporative fuel control system for internal combustion engine
JP5500182B2 (ja) 燃料蒸発ガス排出抑止装置
JP2004156496A (ja) 内燃機関の蒸発燃料処理装置
JP4497293B2 (ja) 内燃機関の蒸発燃料制御装置
JP4432615B2 (ja) 内燃機関の蒸発燃料制御装置
JPH10103169A (ja) エバポパージシステムの故障診断装置
JP4082263B2 (ja) 内燃機関の蒸発燃料処理装置
US20210270213A1 (en) Leakage Diagnosis Device for Fuel Vapor Processing Apparatus
JP2006183526A (ja) 蒸発燃料処理装置のリーク診断装置
JP4352945B2 (ja) 内燃機関の蒸発燃料処理装置
JP5804289B2 (ja) 燃料蒸発ガス排出抑止装置
JP2004156497A (ja) 内燃機関の蒸発燃料処理装置
JP2011169274A (ja) 制御バルブの故障検知方法
JP2004308493A (ja) 内燃機関の蒸発燃料処理装置
JPH06235354A (ja) 内燃機関の蒸発燃料蒸散防止装置の故障診断装置及び蒸発燃料供給系の保護装置
JP2004245112A (ja) 内燃機関の蒸発燃料制御装置
JPH0626408A (ja) エバポパージシステムの故障診断装置
JP7274994B2 (ja) 蒸発燃料処理装置の漏れ検出装置
JP2007177653A (ja) 蒸発燃料処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees