JP2004137991A - エンジンの制御装置 - Google Patents
エンジンの制御装置 Download PDFInfo
- Publication number
- JP2004137991A JP2004137991A JP2002304364A JP2002304364A JP2004137991A JP 2004137991 A JP2004137991 A JP 2004137991A JP 2002304364 A JP2002304364 A JP 2002304364A JP 2002304364 A JP2002304364 A JP 2002304364A JP 2004137991 A JP2004137991 A JP 2004137991A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder group
- fuel
- fuel supply
- passage
- satisfied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
【課題】燃料供給再開直後で燃焼不安定な状態にあるエンジンの燃焼悪化を防止する。
【解決手段】第1気筒群の排気のみが流れる第1気筒群排気通路(23A)と吸気通路(13)とを連通する排気還流通路(25)と、排気還流制御弁(26)と、燃料カット条件が成立したとき総ての気筒の燃料供給を停止する燃料カット手段(31)と、同じく燃料カット条件が成立したとき排気還流制御弁(26)に対して開弁を指令する開弁指令手段(31)と、この総ての気筒の燃料供給の停止後に、燃料供給を再開する条件が成立したとき排気還流制御弁(26)に対して閉弁を指令する閉弁指令手段(31)と、同じく燃料供給を再開する条件が成立したとき第2気筒群の燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて第1気筒群の燃料供給を再開する気筒群別燃料供給再開手段(31)とを備える。
【選択図】 図1
【解決手段】第1気筒群の排気のみが流れる第1気筒群排気通路(23A)と吸気通路(13)とを連通する排気還流通路(25)と、排気還流制御弁(26)と、燃料カット条件が成立したとき総ての気筒の燃料供給を停止する燃料カット手段(31)と、同じく燃料カット条件が成立したとき排気還流制御弁(26)に対して開弁を指令する開弁指令手段(31)と、この総ての気筒の燃料供給の停止後に、燃料供給を再開する条件が成立したとき排気還流制御弁(26)に対して閉弁を指令する閉弁指令手段(31)と、同じく燃料供給を再開する条件が成立したとき第2気筒群の燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて第1気筒群の燃料供給を再開する気筒群別燃料供給再開手段(31)とを備える。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明はエンジンの制御装置、特に排気の一部を吸気通路に戻す、いわゆる排気還流装置を備え、アクセルペダルを離す減速時に燃料カット条件が成立すると燃料供給を停止する、いわゆるカットを行い、その後に車速とエンジンの回転速度とが低下して燃料リカバー条件が成立すると燃料カットを停止させて燃料供給を再開するものに関する。
【0002】
【従来の技術】
減速時に燃料カットを行う場合に排気還流制御弁を全開まで開くようにしたものがある(特許文献1参照)。
【0003】
【特許文献1】
特開2001−271673号公報
【0004】
【発明が解決しようとする課題】
ところで、トルクコンバータ付きの自動変速機を備えるエンジンを搭載した車両において、トルクコンバータの入力軸と出力軸を直結するためのロックアップクラッチを締結している場合に、燃料カットしている状態ではエンジンブレーキが作用する。この場合に、エンジンと駆動軸とが直結状態にあるためエンジンブレーキが効きすぎても車両の運転性が悪くなるのであるが、従来装置のように減速燃料カット時に排気還流制御弁を全開位置まで開くとポンピングロスが低下し、これによりエンジンブレーキの効きすぎを抑制することができる。
【0005】
しかしながら、従来装置では燃料カット後の燃料供給の再開直後に燃焼が悪化しがちであり、改善の余地が残っている。これについて多気筒エンジンで具体的に説明すると、燃料供給の再開直後には燃焼が不安定な状態にある。この燃焼が不安定な状態を改善するには、燃料供給の再開直後に、全開位置にある排気還流制御弁を即座に全閉にして不活性ガスである排気を吸気通路に導入しないことであるが、実際には排気還流制御弁が全開位置から全閉位置へと動くのに即座というわけにいかず応答時間を要する。
【0006】
このため、全気筒分の排気が合流した部位の下流で排気を取り出して吸気通路へと還流させていると、燃料カットからの復帰直後の燃料供給の再開により燃焼したガス、つまり不活性ガスが、応答遅れにより開いている排気還流制御弁を介して直ちに吸気通路へと導入され、これによって燃料供給再開直後で燃焼不安定な状態にあるエンジンの燃焼が悪化してしまうのである。
【0007】
そこで本発明は、多気筒エンジンを2つの気筒群に分け、このうちいずれかの気筒群ついてのみまとめた排気通路から排気の一部を取り出して吸気通路に導くと共に、燃料供給の再開に際して、排気の一部を取り出している側の気筒群の燃料供給は再開することなく、まず排気の一部を取り出していない側の気筒群の燃料供給を再開し、そのごに時間遅れをもって排気の一部を取り出している側の気筒群の燃料供給を再開することにより、燃料供給の再開で燃焼したガス(不活性ガス)が直ちに吸気通路へと導入されることを阻止し、これによって燃料供給再開直後で燃焼不安定な状態にあるエンジンの燃焼悪化を防止することを目的とする。
【0008】
【課題を解決するための手段】
本発明では、一または複数の気筒からなる第1気筒群と、一または複数の気筒からなる第2気筒群とを備え、第1気筒群の排気のみが流れる第1気筒群排気通路と、と吸気通路とを連通する排気還流通路を設け、この排気還流通路に排気還流制御弁を介装する。
【0009】
この場合において、減速時に燃料カット条件が成立したとき総ての気筒の燃料供給を停止する燃料カット手段と、同じく減速時に燃料カット条件が成立したとき排気還流制御弁に対して開弁を指令する開弁指令手段と、この総ての気筒の燃料供給の停止後に、燃料供給を再開する条件が成立したとき排気還流制御弁に対して閉弁を指令する閉弁指令手段と、同じく燃料供給を再開する条件が成立したとき第2気筒群の燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて第1気筒群の燃料供給を再開する気筒群別燃料供給再開手段とを備える。
【0010】
【発明の効果】
本発明によれば、燃料カット条件が成立したとき排気還流制御弁を開くことでポンピングロスを低減して、エンジンブレーキの効きすぎを抑制することができる。
【0011】
また、多気筒エンジンを第1気筒群と第2気筒群の2つの気筒群に分け、第1気筒群の排気のみが流れる第1気筒群排気通路より排気を取り出して吸気通路に導入するように構成する一方で、燃料カットの途中で燃料供給を再開する条件が成立したとき排気の一部を取り出していない側の気筒群である第2気筒群の燃料供給が再開され燃焼ガスが発生するが、この燃焼ガスは吸気通路に導かれることがない。また、排気の一部を取り出す側の気筒群である第1気筒群では燃料供給が再開されていないので、応答遅れにより開いている排気還流制御弁を介して吸気通路へと導かれるのは新気であり、従ってこれが燃料供給を再開している第2気筒群に流入しても第2気筒群の燃焼を悪化させることがない。すなわち、燃料供給の再開で燃焼したガス(不活性ガス)が、応答遅れにより開いている排気還流制御弁を介して直ちに吸気通路へと導入される従来装置と比較して、第2気筒群の燃焼状態が良好になる分、気筒全体として燃料供給再開直後の燃焼状態が良好になる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
【0013】
図1は本発明の第1実施形態で、自動車のパワートレーンの制御システム図を示す。
【0014】
図において、2はエンジン、3は無段自動変速機であり、エンジン2の回転が無段変速機3からファイナルギヤ8を介して駆動輪9に伝達される。
【0015】
無段自動変速機3は例えばトルクコンバータ4と、図示しない前後進切換機構と、可変プーリ5、6間に掛け回した金属ベルト7とから構成され、可変プーリ5、6のプーリ比を変えることにより、金属ベルト7を介して伝達される速度比が変化する。無段自動変速機3の目標変速比が運転状態に応じて設定され、これが実際の入力回転速度と出力回転速度の比である変速比と一致するように、可変プーリ5、6を駆動するためのプライマリ油圧とセカンダリ油圧とが制御される。
【0016】
無段自動変速機3には燃費向上のためトルクコンバータ4の入力軸と出力軸を機械的に直結するロックアップクラッチ(図示しない)が設けられ、車速とアクセル開度(アクセルペダルの踏み込み量)に応じて定まるロックアップ領域になるとロックアップクラッチが締結される。
【0017】
図示のエンジン2は直列4気筒エンジンの場合を示し、1気筒当たり2つの吸気弁と排気弁(図示しない)を備え、吸気ポート14A〜14Dはいわゆるサイアミーズドポートである。
【0018】
エンジン2に流入する空気は、スロットル弁11で調量されて吸気コレクタ部13に蓄えられた後、吸気弁が開いたときに吸気ポート14A〜14Dを介して各気筒のシリンダ15A〜15Dに流入する。
【0019】
ここで、スロットル弁11は例えばDCモータ等からなるスロットルアクチュエータ12により駆動される。
【0020】
各気筒の吸気ポート14A〜14D(あるいは燃焼室)に臨んで燃料噴射弁16A〜16Dが、また燃焼室の天井より燃焼室に臨んで点火プラグ17A〜17Dが設けられ、各気筒の燃焼室に流入する空気に対して、エンジンコントローラ31からの噴射信号により運転条件に応じて所定の空燃比となるように燃料噴射弁16A〜16Dが燃料を噴射供給し、この噴射燃料と吸入空気とから形成される混合気に対して点火プラグ17A〜17Dが火花を飛ばして着火し、この着火により燃焼するガスがピストンを押し下げる仕事をする。燃焼した後のガスは排気弁が開いたとき各気筒の排気ポート21A〜21Dより排気通路へと排出される。
【0021】
この場合、排気通路は2つずつの気筒群毎に束ねられている。すなわち、直列エンジンに対して左よりNo.1〜No.4の気筒番号を振ると、点火順序はNo.1−No.3−No.4−No.2の順であるため、No.1気筒およびNo.4気筒を気筒群A(第1気筒群)、残りのNo.2気筒およびNo.3気筒を気筒群B(第2気筒群)とすると、No.1気筒の排気通路22AとNo.4気筒の排気通路22Dを束ねて一つの排気通路23Aとし、同様にしてNo.2気筒の排気通路22BとNo.3気筒の排気通路22Cを束ねて一つの排気通路23Bとし、これら2つの排気通路23Aおよび23Bをさらに束ねて1つの排気通路24とする。各部の排気通路を区別する必要があるので、以下では22A、22B、22C、22Dを「上流側排気通路」、23A、23Bを「下流側排気通路」、24を「集合排気通路」という。
【0022】
エンジン2から排出されるガスにはNOxを含むので、このNOxを低減させるため、排気還流装置(以下、排気還流を「EGR」という。)を備える。すなわち、気筒群Aの排気のみが流れる下流側排気通路23A(第1気筒群排気通路)とコレクタ13とを連通するEGR通路25が設けられ、下流側排気通路23Aを流れる気筒群Aの排気の一部がこのEGR通路25を通してコレクタ13へと導入される。
【0023】
EGR通路25のコレクタ13近傍にはEGR弁26が設けられ、このEGR弁26によりEGR通路25の開閉が、またEGR弁26の開度によりEGR流量が制御される。
【0024】
エンジンコントローラ31にはクランク角センサ32からの基準位置信号と単位角度信号、エアフローメータ33からの吸入空気流量の信号、アクセルセンサ34からのアクセル開度の信号、さらには水温センサ(図示しない)からのエンジン冷却水温の信号、トランスミッションのギア位置センサ(図示しない)からのギア位置の信号、車速センサ35からの車速の信号等が入力し、これらに基づいて運転状態を判断しながら、所定の空燃比が得られるように燃料噴射弁16A〜16Dからの燃料噴射量を制御し、所定の運転域では目標EGR率が得られるようにEGR弁26の開度を制御する。
【0025】
一方、エンジンコントローラ31では高速走行時などでアクセルペダルを離す減速時に燃料カット条件が成立すると、燃費向上のため総ての燃料噴射弁16A〜16Dからの燃料供給を停止する燃料カットを行うと共に、EGR弁26を開く。
【0026】
また、燃料カット中に、例えばエンジンの回転速度が所定の回転速度まで低下することにより燃料リカバー条件が成立すると、燃料カットを停止して燃料噴射弁16A〜16Dからの燃料供給を再開するのであるが、その際にまず排気の一部を取り出していない側の気筒群である気筒群Bの燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて排気の一部を取り出している側の気筒群である気筒群Aの燃料供給を再開する。
【0027】
本実施形態によるこれら燃料カットより燃料供給再開まで一連の制御を図2を参照して概説すると、図2は当該制御における車速、ロックアップクラッチ状態、エンジン回転速度、アクセル開度、EGR弁開度、燃料噴射量、加速度(値が負のときは減速度)の変化をモデル的に示したものである。
【0028】
車両は時刻t1までは一定車速で走っておりロックアップクラッチは締結され、アクセルペダルはある開度踏ん込まれている。そのときの運転条件はEGR領域にあるためEGR弁26はある開度まで開いており、燃料噴射弁16A〜16Dもアクセル開度に見合った燃料噴射量を噴いている。またこのときの加速度は一定車速なのでほぼゼロである。
【0029】
時刻t1にアクセルペダルを戻して減速し始め、アクセルセンサ34のアイドル接点がOFFよりONとなった時刻t1′のとき、エンジン回転速度が所定回転速度以上でかつ車速が所定の範囲にあることより燃料カット条件が成立し、その直後の時刻t2で全気筒の燃料カットに入る。
【0030】
燃料カットを開始する時刻t2より燃料カットに伴なう減速度が発生するが、本実施形態では、従来装置と同様にこの時刻t2でEGR弁26を開き始めるのでポンピングロスが減り、減速度が緩和される。
【0031】
その後、燃料リカバー条件が成立する時刻t3に向けて変速比がロー側に移ることによる減速度が大きくなるが、絶対値では燃料カット時にEGR弁26を全閉とする場合に比べれば大きく減速度が緩和される。
【0032】
車速が低下して所定値以下となるかまたはエンジン回転速度が低下して所定値以下となることにより燃料リカバー条件が成立する時刻t3ではロックアップクラッチの締結を解除して切断し、かつEGR弁26を全開位置より閉じてゆき、かつ燃料供給を再開する。
【0033】
この燃料供給の再開に際して、本実施形態では時刻t3で排気の一部を取り出していない側の気筒群である気筒群B(No.2気筒とNo.3気筒)の燃料供給をまず再開する。これにより気筒群Bの燃焼ガス(不活性ガス)が、EGR通路25を介して、燃料供給を再開したばかりで燃焼の不安定な気筒群Bの燃焼室へと導かれることがないので、気筒群Bでは燃焼が良好に行われる。しかも、燃料供給の再開は半分の気筒でしかないため、加速度の大きさが全気筒の燃料供給を再開する場合に比べて低い。
【0034】
その後、EGR弁26の閉動作に伴ないポンピングロスが増えるために加速度が減少し、やがてEGR弁開度がしきい値に達した時刻t4で排気の一部を取り出している側の気筒群である気筒群A(No.1気筒とNo.4気筒)の燃料供給を再開する。
【0035】
本実施形態との比較のため、参照例を図10に示す。第1実施形態では図1に示したようにEGRガスの取り出しを下流側排気通路23Aから行っているのに対して、参照例は集合排気通路24からEGRガスを取り出した場合のものである。
【0036】
また、第1実施形態では図2に示したように燃料カットの開始時刻であるt2よりEGR弁26を開き、燃料リカバー条件が成立したt3の時刻でまず半分の気筒である気筒群Bの燃料供給を再開すると共に、EGR弁26を閉じてゆき、EGR弁開度がしきい値に達するt4の時刻で残り半分の気筒である気筒群Aの燃料供給を再開するのに対して、参照例は図10に示したように燃料カットの開始時刻であるt2よりEGR弁を閉じ、燃料リカバー条件が成立したt3の時刻で全気筒の燃料噴射を再開するようにしたものである。
【0037】
参照例によれば、時刻t2で燃料カットに入りかつEGR弁を閉じるため減速度が第1実施形態より強くなる。また、車速が落ちるに従い、自動変速機がロー側に移るのでさらに減速度がきつくなっている。また、時刻t3でロックアップクラッチの締結を解除し、ほぼ同時に全気筒の燃料供給を再開するため、加速度のピークが高くなり、燃料供給の再開前の減速度と燃料供給の再開後の加速度との段差が非常に大きくなってしまっている。
【0038】
エンジンコントローラ31で実行されるこの制御を図3のフローチャートに従って詳述すると、図3はEGR弁26の目標開度を演算すると共に、タイミングよく燃料カット指令、燃料噴射再開指令を出すためのもので、一定時間毎(例えば10msec毎)に実行する。
【0039】
ステップ1、2では今回の燃料カットフラグの状態と、前回の燃料カットフラグの状態とをみる。燃料カットフラグは、燃料カット条件の非成立時にゼロであり、燃料カット条件が成立したとき1となるフラグである。燃料カットを行う条件はアクセルペダルの状態、エンジン回転速度、車速、ロックアップクラッチの締結状態等によって決まっている。
【0040】
今回に燃料カットフラグ=1でありかつ前回に燃料カットフラグ=0であるとき、つまり今回初めて燃料カットフラグ=1となったときにはステップ3に進んでベース目標EGR弁開度tθbを読み込み、このベース目標EGR弁開度tθbをステップ4でメモリであるtθA(前回)に移した後、ステップ6に進む。メモリであるtθA(前回)はEGR弁26の目標開度tθAの前回値を表す。
【0041】
ここで、ベース目標EGR弁開度tθbは、例えばエンジン回転速度とエンジン負荷をパラメータとするマップを検索することにより演算される値である。エンジン回転速度とエンジン負荷に応じてどのくらいのベース目標EGR弁開度とするかは、排気対策や出カトルク、燃焼安定性等から予め決まっている。
【0042】
前回、今回とも燃料カットフラグ=1であるときにはステップ1、2よりステップ5に進み、燃料リカバーフラグをみる。燃料リカバーフラグは、燃料リカバー条件の非成立時はゼロであり、燃料リカバー条件が成立したとき1となるフラグである。燃料リカバーを行う条件もアクセルペダルの状態、エンジン回転速度、車速、ロックアップクラッチの締結状態等によって決まっている。
【0043】
前回、今回とも燃料カットフラグ=1でありかつ燃料リカバーフラグ=0であるときには燃料カットを継続するためステップ6に進む。
【0044】
ステップ6では、
tθA=tθA(前回)+α…(1)
ただし、α:正の一定値、
の式によりEGR弁26の目標開度tθAを算出する。(1)式はEGR弁26の目標開度tθAを図3の演算周期(制御周期)当たり一定値αずつ漸増させる式である。
【0045】
ステップ7ではEGR弁26の目標開度tθAと全開値(全開時のEGR弁開度)を比較する。燃料カットの開始時や燃料カットを開始して(1)式によりを漸増を始めた当初はEGR弁26の目標開度tθAが全開値以下に収まっているのでステップ8を飛ばしてステップ9に進む。(1)式の処理を繰り返すとEGR弁26の目標開度tθAがやがて全開値を超えるので、このときにはステップ8に進んでEGR弁26の目標弁開度tθAを全開値に制限した後、ステップ9に進む。
【0046】
ステップ9では全気筒に対して燃料カット指令を出す。この燃料カット指令を受けて総ての燃料噴射弁16A〜16Dからの燃料噴射が停止される。
【0047】
ステップ10では次回制御のためtθAをメモリであるtθA(前回)に移す。
【0048】
一方、燃料カットの途中で燃料リカバーフラグ=1になるとステップ5よりステップ11以降の燃料供給再開処理に進む。
【0049】
まずステップ11では、
tθA=tθA(前回)−β…(2)
ただし、β:正の一定値、
の式によりEGR弁26の目標開度tθAを算出する。(2)式はEGR弁26の目標開度tθAを図3の演算周期当たり一定値βずつ漸減させる式である。
【0050】
ステップ12ではEGR弁26の目標開度tθAとしきい値とを比較する。
【0051】
ここで、しきい値はそのときの運転条件に応じたベース目標EGR弁開度tθbに所定値γ(一定値)を加えた値である。しきい値はこれに限らず、例えばエンジン回転速度に応じて燃焼限界となるEGR弁開度を予めテーブルにしておき、このテーブルを検索することにより求めてもよい。
【0052】
上記の(2)式によりEGR弁26の目標開度tθAの漸減を開始した当初は目標開度tθAは全開値に近く、従ってしきい値より大きいので、ステップ13に進み、まず排気の一部を取り出していない側の気筒群である気筒群Bの燃料噴射を再開するため気筒群Bの燃料噴射を指令する。
【0053】
(2)式によるEGR弁26の目標開度tθAの漸減を繰り返すとやがて目標開度tθAがしきい値以下となるので、このときにはステップ16に進み排気の一部を取り出している側の気筒群である気筒群Aについても燃料噴射を再開するため気筒群Bの燃料噴射を指令する。このときにはステップ13により、気筒群Bに対しても燃料噴射を指令する。
【0054】
ステップ14ではEGR弁26の目標開度tθAと全閉値(全閉時のEGR弁開度)とを比較する。EGR弁26の目標開度tθAが全閉値以上であるときにはステップ15を飛ばし、ステップ10の操作を実行する。
【0055】
EGR弁26の目標開度tθAが全閉値未満であるときにはステップ15に進んでEGR弁26の目標開度tθAを全閉値に制限した後、ステップ10の操作を実行する。
【0056】
ここで、本実施形態の作用を説明する。
【0057】
本実施形態(請求項1に記載の発明)によれば、燃料カット条件が成立したとき、全気筒の燃料供給を停止すると共に、EGR弁26を開くので、ポンピングロスが低減し、これによってロックアップクラッチが締結されている状態における、エンジンブレーキの効きすぎを抑制することができる。
【0058】
また、本実施形態(請求項1に記載の発明)によれば、気筒群Aの排気のみが流れる下流側排気通路23Aとコレクタ13とをEGR通路25により連通し、このEGR通路25を開閉するEGR弁26を設ける一方で、燃料カットの途中で燃料供給を再開する条件が成立したとき排気の一部を取り出していない側の気筒群である気筒群Bの燃料供給が再開され燃焼ガスが発生するが、この燃焼ガスはコレクタ13に導かれることがない。また、この時点では排気の一部を取り出す側の気筒群である気筒群Aでは燃料供給が再開されないので、応答遅れにより開いているEGR弁26を介してコレクタ13へと導かれるのは新気であり、従ってこれが気筒群Bの燃焼室に流入しても気筒群Bの燃焼状態を悪化させることがない。すなわち、燃料供給の再開で燃焼したガス(不活性ガス)が、応答遅れに伴って開いているEGR弁26を介して直ちに吸気通路へと導入される従来装置と比較して、気筒群Bの燃焼状態が良好になる分、気筒全体として燃料供給再開直後の燃焼状態が良好なる。
【0059】
また、燃料供給を再開する条件が成立したときEGR弁26を閉じるが、この場合のEGR弁26の閉速度(図2第5段目の時刻t3からの直線の傾き)を比較的緩やかにしてやればポンピングロス増加速度が緩慢となり、かつ燃料供給の再開も半気筒ずつなので、トルク増を段階的にできる。これにより、燃料供給再開時のトルク変動が緩やかとなるように制御可能となり、運転性の悪化を防ぐことができる。
【0060】
ところで、EGR弁26の応答速度はアクチュエータ12の素質によって決まる。従って、気筒群Aについて燃料供給を再開する条件が成立したか否かを、従来装置と同様に、エンジン回転速度に基づいて判定するとEGRガス流量が多いまま燃料供給を再開する条件が成立したと判定され気筒群Aの燃料供給が再開される可能性があり、このとき燃焼状態が悪化する。また、気筒群Bが先に燃料供給を再開しているので、エンジン回転速度の下降はその時点で止まり、気筒郡Aについて燃料供給を再開する条件が成立するに至らない場合もあり得る。
【0061】
一方、例えば気筒群Bの燃料供給を再開してから、タイマを用い一定時間が経過した後に気筒群Aの燃料供給を再開することも考えられるが、この場合でも、EGR弁26の応答性が経時劣化等で変化したり制御速度を状況に応じて変えるようなことを考えた場合には上記と同様の弊害が起き得る。
【0062】
これに対して本実施形態(請求項3に記載の発明)によれば、燃料供給を再開する条件が成立したときとはEGR弁26の開度がしきい値以下となったときである。すなわち、しきい値をEGRガスによる燃焼悪化が回避されるように定めておけばよく、これにより上記の弊害を防ぎつつEGRガスによる燃焼悪化も回避できる。
【0063】
次に、図4は第2実施形態の自動車のパワートレーンの制御システム図である。図1と同一部分には同一の符号を付けている。
【0064】
第1実施形態では、燃料カット中における燃料供給の再開に際して、気筒群Aのみの排気が流れる下流側排気通路23Aより排気の一部を取り出してコレクタ13に導入するため大きな排気脈動の影響を吸気が受けることになっている。こんため、集合排気通路24より排気の一部を取り出して吸気通路に導入する場合よりも吸気の圧力変動が大きくなることが懸念される。
【0065】
そこで、第2実施形態ではEGR通路とEGR弁とからなるEGR装置を2系統に分け、片方は気筒群Aをまとめた下流側排気通路23Aより、もう片方は気筒群Bをまとめた下流側排気通路23Bよりそれぞれ排気の一部を吸気通路に導入し、
(1)通常の走行時にEGRをかけたい場合には両方を同時に同程度に作動させることにより、集合排気通路24より排気の一部を取り出して吸気通路に導入する場合と同じEGR性能を確保し、
(2)減速燃料カット時にポンピングロスを低減するための通路として作用させる場合には、気筒群Bをまとめた下流側排気通路23Bから排気の一部を取り出して吸気通路に導入するほうの通路(後述するEGR通路41)は閉じ、気筒群Aをまとめた下流側排気通路23Aから排気の一部を取り出して吸気通路に導入するほうの通路(EGR通路25)を第1実施形態と同様に用いるようにしたものである。
【0066】
図1と異なる部分を具体的に説明すると、第2実施形態では、図1に示す第1実施形態に対し、EGR装置を1個増やして、EGR通路41とEGR弁42とからなる2個目のEGR装置を設けている。すなわち気筒群Bの排気のみが流れる下流側排気通路23B(第2気筒群排気通路)とコレクタ13とを連通するEGR通路41が設けられ、気筒群Bの排気の一部がこのEGR通路41を通してコレクタ13へと導入される。
【0067】
EGR通路41のコレクタ13近傍にはEGR弁42が設けられ、このEGR弁42によりバイパス通路41の開閉が、またEGR弁42の開度によりEGR通路41を流れるEGRガス流量が制御される。
【0068】
図5、図6は第2実施形態のフローチャートで、図3と置き換わるものである。図3と同一部分には同一のステップ番号を付けている。
【0069】
図3と異なる部分を主に説明すると、第2実施形態では追加したEGR弁42の目標開度を演算するため、ステップ21〜25を新たに設けている。すなわち、燃料カットフラグ=1となった直後には図5のステップ21でベース目標EGR弁開度tθbをメモリであるtθB(前回)に移し、前回、今回とも燃料カットフラグ=1でありかつ燃料リカバーフラグ=0であるときには図6のステップ22で、
tθB=tθB(前回)−α…(3)
ただし、α:正の一定値、
の式によりEGR弁42の目標開度tθBを算出する。
【0070】
(3)式によりEGR弁42の目標開度tθBの漸減を繰り返すと、EGR弁42の目標開度tθBが全閉値(全閉時のEGR弁開度)未満となるので、このときには図6のステップ23よりステップ24に進んでEGR弁42の目標開度tθBを全閉値に制限する。
【0071】
ここで、ステップ22、23、24の操作は、EGR弁42の目標開度tθBを(3)式により図5、図6の演算周期当たり一定値αずつ漸減させて最終的に全閉状態するもの、言い換えると燃料カット時にはEGR通路41がないのと同じにして第1実施形態と同様とするものである。
【0072】
なお、ステップ25はEGR弁42の目標開度tθBの前回値を保存する操作を行う部分である。
【0073】
実施形態では直列4気筒エンジンの場合で説明したが、これに限られるものでない。例えばV型6気筒エンジンの場合を図7、図8(第3、第4実施形態)に示す。図7、図8では片バンク毎に排気通路がまとめられ、図8ではさらにその片バンク毎にまとめた排気通路51、52がさらに1つの排気通路53にまとめられている。
【0074】
これらの場合には、一方の片バンクのみ排気が流れる排気通路51より排気を取り出して吸気通路に導入するEGR54通路を設け、このEGR通路54にEGR弁55を介装すればよい。
【0075】
また、実施形態では4気筒エンジンを2気筒ずつの気筒群A、Bに分割し、気筒群Aの排気のみが流れる下流側排気通路23Aより排気の一部を取り出しているが、これに限られるものでもない。例えば図9(第5実施形態)に示したように、No.1気筒の排気通路22Aより排気の一部を取り出してコレクタ13に導入するEGR通路61を設け、このEGR通路61にEGR弁62を介装するようにしてもかまわない。なお、図9において図1と同一部分には同一の符号を付している。
【0076】
図3において請求項1に記載の燃料カット条件判定手段の機能は図3のステップ1が、燃料カット手段の機能は図3のステップ9が、開弁指令手段の機能は図3のステップ6、7、8が、燃料供給再開条件判定手段の機能は図3のステップ5が、閉弁指令手段の機能は図3のステップ11、14、15が、気筒群別燃料供給再開手段の機能は図3のステップ12、16、13がそれぞれ果たしている。
【図面の簡単な説明】
【図1】第1実施形態の自動車のパワートレーンの制御システム図。
【図2】第1実施形態の作用を説明するための波形図。
【図3】第1実施形態のEGR弁の目標開度の演算を説明するためのフローチャート。
【図4】第2実施形態の自動車のパワートレーンの制御システム図。
【図5】第2実施形態のEGR弁の目標開度の演算を説明するためのフローチャート。
【図6】第2実施形態のEGR弁の目標開度の演算を説明するためのフローチャート。
【図7】第3実施形態のエンジンの制御システム図。
【図8】第4実施形態のエンジンの制御システム図。
【図9】第5実施形態のエンジンの制御システム図。
【図10】参照例の作用を説明するための波形図。
【符号の説明】
2 エンジン
3 自動変速機
16A〜16D 燃料噴射弁
23A 下流側排気通路(第1気筒群排気通路)
23B 下流側排気通路(第2気筒群排気通路)
25 EGR通路
26 EGR弁
31 エンジンコントローラ
32 クランク角センサ
34 アクセルセンサ
35 車速センサ
【発明の属する技術分野】
本発明はエンジンの制御装置、特に排気の一部を吸気通路に戻す、いわゆる排気還流装置を備え、アクセルペダルを離す減速時に燃料カット条件が成立すると燃料供給を停止する、いわゆるカットを行い、その後に車速とエンジンの回転速度とが低下して燃料リカバー条件が成立すると燃料カットを停止させて燃料供給を再開するものに関する。
【0002】
【従来の技術】
減速時に燃料カットを行う場合に排気還流制御弁を全開まで開くようにしたものがある(特許文献1参照)。
【0003】
【特許文献1】
特開2001−271673号公報
【0004】
【発明が解決しようとする課題】
ところで、トルクコンバータ付きの自動変速機を備えるエンジンを搭載した車両において、トルクコンバータの入力軸と出力軸を直結するためのロックアップクラッチを締結している場合に、燃料カットしている状態ではエンジンブレーキが作用する。この場合に、エンジンと駆動軸とが直結状態にあるためエンジンブレーキが効きすぎても車両の運転性が悪くなるのであるが、従来装置のように減速燃料カット時に排気還流制御弁を全開位置まで開くとポンピングロスが低下し、これによりエンジンブレーキの効きすぎを抑制することができる。
【0005】
しかしながら、従来装置では燃料カット後の燃料供給の再開直後に燃焼が悪化しがちであり、改善の余地が残っている。これについて多気筒エンジンで具体的に説明すると、燃料供給の再開直後には燃焼が不安定な状態にある。この燃焼が不安定な状態を改善するには、燃料供給の再開直後に、全開位置にある排気還流制御弁を即座に全閉にして不活性ガスである排気を吸気通路に導入しないことであるが、実際には排気還流制御弁が全開位置から全閉位置へと動くのに即座というわけにいかず応答時間を要する。
【0006】
このため、全気筒分の排気が合流した部位の下流で排気を取り出して吸気通路へと還流させていると、燃料カットからの復帰直後の燃料供給の再開により燃焼したガス、つまり不活性ガスが、応答遅れにより開いている排気還流制御弁を介して直ちに吸気通路へと導入され、これによって燃料供給再開直後で燃焼不安定な状態にあるエンジンの燃焼が悪化してしまうのである。
【0007】
そこで本発明は、多気筒エンジンを2つの気筒群に分け、このうちいずれかの気筒群ついてのみまとめた排気通路から排気の一部を取り出して吸気通路に導くと共に、燃料供給の再開に際して、排気の一部を取り出している側の気筒群の燃料供給は再開することなく、まず排気の一部を取り出していない側の気筒群の燃料供給を再開し、そのごに時間遅れをもって排気の一部を取り出している側の気筒群の燃料供給を再開することにより、燃料供給の再開で燃焼したガス(不活性ガス)が直ちに吸気通路へと導入されることを阻止し、これによって燃料供給再開直後で燃焼不安定な状態にあるエンジンの燃焼悪化を防止することを目的とする。
【0008】
【課題を解決するための手段】
本発明では、一または複数の気筒からなる第1気筒群と、一または複数の気筒からなる第2気筒群とを備え、第1気筒群の排気のみが流れる第1気筒群排気通路と、と吸気通路とを連通する排気還流通路を設け、この排気還流通路に排気還流制御弁を介装する。
【0009】
この場合において、減速時に燃料カット条件が成立したとき総ての気筒の燃料供給を停止する燃料カット手段と、同じく減速時に燃料カット条件が成立したとき排気還流制御弁に対して開弁を指令する開弁指令手段と、この総ての気筒の燃料供給の停止後に、燃料供給を再開する条件が成立したとき排気還流制御弁に対して閉弁を指令する閉弁指令手段と、同じく燃料供給を再開する条件が成立したとき第2気筒群の燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて第1気筒群の燃料供給を再開する気筒群別燃料供給再開手段とを備える。
【0010】
【発明の効果】
本発明によれば、燃料カット条件が成立したとき排気還流制御弁を開くことでポンピングロスを低減して、エンジンブレーキの効きすぎを抑制することができる。
【0011】
また、多気筒エンジンを第1気筒群と第2気筒群の2つの気筒群に分け、第1気筒群の排気のみが流れる第1気筒群排気通路より排気を取り出して吸気通路に導入するように構成する一方で、燃料カットの途中で燃料供給を再開する条件が成立したとき排気の一部を取り出していない側の気筒群である第2気筒群の燃料供給が再開され燃焼ガスが発生するが、この燃焼ガスは吸気通路に導かれることがない。また、排気の一部を取り出す側の気筒群である第1気筒群では燃料供給が再開されていないので、応答遅れにより開いている排気還流制御弁を介して吸気通路へと導かれるのは新気であり、従ってこれが燃料供給を再開している第2気筒群に流入しても第2気筒群の燃焼を悪化させることがない。すなわち、燃料供給の再開で燃焼したガス(不活性ガス)が、応答遅れにより開いている排気還流制御弁を介して直ちに吸気通路へと導入される従来装置と比較して、第2気筒群の燃焼状態が良好になる分、気筒全体として燃料供給再開直後の燃焼状態が良好になる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
【0013】
図1は本発明の第1実施形態で、自動車のパワートレーンの制御システム図を示す。
【0014】
図において、2はエンジン、3は無段自動変速機であり、エンジン2の回転が無段変速機3からファイナルギヤ8を介して駆動輪9に伝達される。
【0015】
無段自動変速機3は例えばトルクコンバータ4と、図示しない前後進切換機構と、可変プーリ5、6間に掛け回した金属ベルト7とから構成され、可変プーリ5、6のプーリ比を変えることにより、金属ベルト7を介して伝達される速度比が変化する。無段自動変速機3の目標変速比が運転状態に応じて設定され、これが実際の入力回転速度と出力回転速度の比である変速比と一致するように、可変プーリ5、6を駆動するためのプライマリ油圧とセカンダリ油圧とが制御される。
【0016】
無段自動変速機3には燃費向上のためトルクコンバータ4の入力軸と出力軸を機械的に直結するロックアップクラッチ(図示しない)が設けられ、車速とアクセル開度(アクセルペダルの踏み込み量)に応じて定まるロックアップ領域になるとロックアップクラッチが締結される。
【0017】
図示のエンジン2は直列4気筒エンジンの場合を示し、1気筒当たり2つの吸気弁と排気弁(図示しない)を備え、吸気ポート14A〜14Dはいわゆるサイアミーズドポートである。
【0018】
エンジン2に流入する空気は、スロットル弁11で調量されて吸気コレクタ部13に蓄えられた後、吸気弁が開いたときに吸気ポート14A〜14Dを介して各気筒のシリンダ15A〜15Dに流入する。
【0019】
ここで、スロットル弁11は例えばDCモータ等からなるスロットルアクチュエータ12により駆動される。
【0020】
各気筒の吸気ポート14A〜14D(あるいは燃焼室)に臨んで燃料噴射弁16A〜16Dが、また燃焼室の天井より燃焼室に臨んで点火プラグ17A〜17Dが設けられ、各気筒の燃焼室に流入する空気に対して、エンジンコントローラ31からの噴射信号により運転条件に応じて所定の空燃比となるように燃料噴射弁16A〜16Dが燃料を噴射供給し、この噴射燃料と吸入空気とから形成される混合気に対して点火プラグ17A〜17Dが火花を飛ばして着火し、この着火により燃焼するガスがピストンを押し下げる仕事をする。燃焼した後のガスは排気弁が開いたとき各気筒の排気ポート21A〜21Dより排気通路へと排出される。
【0021】
この場合、排気通路は2つずつの気筒群毎に束ねられている。すなわち、直列エンジンに対して左よりNo.1〜No.4の気筒番号を振ると、点火順序はNo.1−No.3−No.4−No.2の順であるため、No.1気筒およびNo.4気筒を気筒群A(第1気筒群)、残りのNo.2気筒およびNo.3気筒を気筒群B(第2気筒群)とすると、No.1気筒の排気通路22AとNo.4気筒の排気通路22Dを束ねて一つの排気通路23Aとし、同様にしてNo.2気筒の排気通路22BとNo.3気筒の排気通路22Cを束ねて一つの排気通路23Bとし、これら2つの排気通路23Aおよび23Bをさらに束ねて1つの排気通路24とする。各部の排気通路を区別する必要があるので、以下では22A、22B、22C、22Dを「上流側排気通路」、23A、23Bを「下流側排気通路」、24を「集合排気通路」という。
【0022】
エンジン2から排出されるガスにはNOxを含むので、このNOxを低減させるため、排気還流装置(以下、排気還流を「EGR」という。)を備える。すなわち、気筒群Aの排気のみが流れる下流側排気通路23A(第1気筒群排気通路)とコレクタ13とを連通するEGR通路25が設けられ、下流側排気通路23Aを流れる気筒群Aの排気の一部がこのEGR通路25を通してコレクタ13へと導入される。
【0023】
EGR通路25のコレクタ13近傍にはEGR弁26が設けられ、このEGR弁26によりEGR通路25の開閉が、またEGR弁26の開度によりEGR流量が制御される。
【0024】
エンジンコントローラ31にはクランク角センサ32からの基準位置信号と単位角度信号、エアフローメータ33からの吸入空気流量の信号、アクセルセンサ34からのアクセル開度の信号、さらには水温センサ(図示しない)からのエンジン冷却水温の信号、トランスミッションのギア位置センサ(図示しない)からのギア位置の信号、車速センサ35からの車速の信号等が入力し、これらに基づいて運転状態を判断しながら、所定の空燃比が得られるように燃料噴射弁16A〜16Dからの燃料噴射量を制御し、所定の運転域では目標EGR率が得られるようにEGR弁26の開度を制御する。
【0025】
一方、エンジンコントローラ31では高速走行時などでアクセルペダルを離す減速時に燃料カット条件が成立すると、燃費向上のため総ての燃料噴射弁16A〜16Dからの燃料供給を停止する燃料カットを行うと共に、EGR弁26を開く。
【0026】
また、燃料カット中に、例えばエンジンの回転速度が所定の回転速度まで低下することにより燃料リカバー条件が成立すると、燃料カットを停止して燃料噴射弁16A〜16Dからの燃料供給を再開するのであるが、その際にまず排気の一部を取り出していない側の気筒群である気筒群Bの燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて排気の一部を取り出している側の気筒群である気筒群Aの燃料供給を再開する。
【0027】
本実施形態によるこれら燃料カットより燃料供給再開まで一連の制御を図2を参照して概説すると、図2は当該制御における車速、ロックアップクラッチ状態、エンジン回転速度、アクセル開度、EGR弁開度、燃料噴射量、加速度(値が負のときは減速度)の変化をモデル的に示したものである。
【0028】
車両は時刻t1までは一定車速で走っておりロックアップクラッチは締結され、アクセルペダルはある開度踏ん込まれている。そのときの運転条件はEGR領域にあるためEGR弁26はある開度まで開いており、燃料噴射弁16A〜16Dもアクセル開度に見合った燃料噴射量を噴いている。またこのときの加速度は一定車速なのでほぼゼロである。
【0029】
時刻t1にアクセルペダルを戻して減速し始め、アクセルセンサ34のアイドル接点がOFFよりONとなった時刻t1′のとき、エンジン回転速度が所定回転速度以上でかつ車速が所定の範囲にあることより燃料カット条件が成立し、その直後の時刻t2で全気筒の燃料カットに入る。
【0030】
燃料カットを開始する時刻t2より燃料カットに伴なう減速度が発生するが、本実施形態では、従来装置と同様にこの時刻t2でEGR弁26を開き始めるのでポンピングロスが減り、減速度が緩和される。
【0031】
その後、燃料リカバー条件が成立する時刻t3に向けて変速比がロー側に移ることによる減速度が大きくなるが、絶対値では燃料カット時にEGR弁26を全閉とする場合に比べれば大きく減速度が緩和される。
【0032】
車速が低下して所定値以下となるかまたはエンジン回転速度が低下して所定値以下となることにより燃料リカバー条件が成立する時刻t3ではロックアップクラッチの締結を解除して切断し、かつEGR弁26を全開位置より閉じてゆき、かつ燃料供給を再開する。
【0033】
この燃料供給の再開に際して、本実施形態では時刻t3で排気の一部を取り出していない側の気筒群である気筒群B(No.2気筒とNo.3気筒)の燃料供給をまず再開する。これにより気筒群Bの燃焼ガス(不活性ガス)が、EGR通路25を介して、燃料供給を再開したばかりで燃焼の不安定な気筒群Bの燃焼室へと導かれることがないので、気筒群Bでは燃焼が良好に行われる。しかも、燃料供給の再開は半分の気筒でしかないため、加速度の大きさが全気筒の燃料供給を再開する場合に比べて低い。
【0034】
その後、EGR弁26の閉動作に伴ないポンピングロスが増えるために加速度が減少し、やがてEGR弁開度がしきい値に達した時刻t4で排気の一部を取り出している側の気筒群である気筒群A(No.1気筒とNo.4気筒)の燃料供給を再開する。
【0035】
本実施形態との比較のため、参照例を図10に示す。第1実施形態では図1に示したようにEGRガスの取り出しを下流側排気通路23Aから行っているのに対して、参照例は集合排気通路24からEGRガスを取り出した場合のものである。
【0036】
また、第1実施形態では図2に示したように燃料カットの開始時刻であるt2よりEGR弁26を開き、燃料リカバー条件が成立したt3の時刻でまず半分の気筒である気筒群Bの燃料供給を再開すると共に、EGR弁26を閉じてゆき、EGR弁開度がしきい値に達するt4の時刻で残り半分の気筒である気筒群Aの燃料供給を再開するのに対して、参照例は図10に示したように燃料カットの開始時刻であるt2よりEGR弁を閉じ、燃料リカバー条件が成立したt3の時刻で全気筒の燃料噴射を再開するようにしたものである。
【0037】
参照例によれば、時刻t2で燃料カットに入りかつEGR弁を閉じるため減速度が第1実施形態より強くなる。また、車速が落ちるに従い、自動変速機がロー側に移るのでさらに減速度がきつくなっている。また、時刻t3でロックアップクラッチの締結を解除し、ほぼ同時に全気筒の燃料供給を再開するため、加速度のピークが高くなり、燃料供給の再開前の減速度と燃料供給の再開後の加速度との段差が非常に大きくなってしまっている。
【0038】
エンジンコントローラ31で実行されるこの制御を図3のフローチャートに従って詳述すると、図3はEGR弁26の目標開度を演算すると共に、タイミングよく燃料カット指令、燃料噴射再開指令を出すためのもので、一定時間毎(例えば10msec毎)に実行する。
【0039】
ステップ1、2では今回の燃料カットフラグの状態と、前回の燃料カットフラグの状態とをみる。燃料カットフラグは、燃料カット条件の非成立時にゼロであり、燃料カット条件が成立したとき1となるフラグである。燃料カットを行う条件はアクセルペダルの状態、エンジン回転速度、車速、ロックアップクラッチの締結状態等によって決まっている。
【0040】
今回に燃料カットフラグ=1でありかつ前回に燃料カットフラグ=0であるとき、つまり今回初めて燃料カットフラグ=1となったときにはステップ3に進んでベース目標EGR弁開度tθbを読み込み、このベース目標EGR弁開度tθbをステップ4でメモリであるtθA(前回)に移した後、ステップ6に進む。メモリであるtθA(前回)はEGR弁26の目標開度tθAの前回値を表す。
【0041】
ここで、ベース目標EGR弁開度tθbは、例えばエンジン回転速度とエンジン負荷をパラメータとするマップを検索することにより演算される値である。エンジン回転速度とエンジン負荷に応じてどのくらいのベース目標EGR弁開度とするかは、排気対策や出カトルク、燃焼安定性等から予め決まっている。
【0042】
前回、今回とも燃料カットフラグ=1であるときにはステップ1、2よりステップ5に進み、燃料リカバーフラグをみる。燃料リカバーフラグは、燃料リカバー条件の非成立時はゼロであり、燃料リカバー条件が成立したとき1となるフラグである。燃料リカバーを行う条件もアクセルペダルの状態、エンジン回転速度、車速、ロックアップクラッチの締結状態等によって決まっている。
【0043】
前回、今回とも燃料カットフラグ=1でありかつ燃料リカバーフラグ=0であるときには燃料カットを継続するためステップ6に進む。
【0044】
ステップ6では、
tθA=tθA(前回)+α…(1)
ただし、α:正の一定値、
の式によりEGR弁26の目標開度tθAを算出する。(1)式はEGR弁26の目標開度tθAを図3の演算周期(制御周期)当たり一定値αずつ漸増させる式である。
【0045】
ステップ7ではEGR弁26の目標開度tθAと全開値(全開時のEGR弁開度)を比較する。燃料カットの開始時や燃料カットを開始して(1)式によりを漸増を始めた当初はEGR弁26の目標開度tθAが全開値以下に収まっているのでステップ8を飛ばしてステップ9に進む。(1)式の処理を繰り返すとEGR弁26の目標開度tθAがやがて全開値を超えるので、このときにはステップ8に進んでEGR弁26の目標弁開度tθAを全開値に制限した後、ステップ9に進む。
【0046】
ステップ9では全気筒に対して燃料カット指令を出す。この燃料カット指令を受けて総ての燃料噴射弁16A〜16Dからの燃料噴射が停止される。
【0047】
ステップ10では次回制御のためtθAをメモリであるtθA(前回)に移す。
【0048】
一方、燃料カットの途中で燃料リカバーフラグ=1になるとステップ5よりステップ11以降の燃料供給再開処理に進む。
【0049】
まずステップ11では、
tθA=tθA(前回)−β…(2)
ただし、β:正の一定値、
の式によりEGR弁26の目標開度tθAを算出する。(2)式はEGR弁26の目標開度tθAを図3の演算周期当たり一定値βずつ漸減させる式である。
【0050】
ステップ12ではEGR弁26の目標開度tθAとしきい値とを比較する。
【0051】
ここで、しきい値はそのときの運転条件に応じたベース目標EGR弁開度tθbに所定値γ(一定値)を加えた値である。しきい値はこれに限らず、例えばエンジン回転速度に応じて燃焼限界となるEGR弁開度を予めテーブルにしておき、このテーブルを検索することにより求めてもよい。
【0052】
上記の(2)式によりEGR弁26の目標開度tθAの漸減を開始した当初は目標開度tθAは全開値に近く、従ってしきい値より大きいので、ステップ13に進み、まず排気の一部を取り出していない側の気筒群である気筒群Bの燃料噴射を再開するため気筒群Bの燃料噴射を指令する。
【0053】
(2)式によるEGR弁26の目標開度tθAの漸減を繰り返すとやがて目標開度tθAがしきい値以下となるので、このときにはステップ16に進み排気の一部を取り出している側の気筒群である気筒群Aについても燃料噴射を再開するため気筒群Bの燃料噴射を指令する。このときにはステップ13により、気筒群Bに対しても燃料噴射を指令する。
【0054】
ステップ14ではEGR弁26の目標開度tθAと全閉値(全閉時のEGR弁開度)とを比較する。EGR弁26の目標開度tθAが全閉値以上であるときにはステップ15を飛ばし、ステップ10の操作を実行する。
【0055】
EGR弁26の目標開度tθAが全閉値未満であるときにはステップ15に進んでEGR弁26の目標開度tθAを全閉値に制限した後、ステップ10の操作を実行する。
【0056】
ここで、本実施形態の作用を説明する。
【0057】
本実施形態(請求項1に記載の発明)によれば、燃料カット条件が成立したとき、全気筒の燃料供給を停止すると共に、EGR弁26を開くので、ポンピングロスが低減し、これによってロックアップクラッチが締結されている状態における、エンジンブレーキの効きすぎを抑制することができる。
【0058】
また、本実施形態(請求項1に記載の発明)によれば、気筒群Aの排気のみが流れる下流側排気通路23Aとコレクタ13とをEGR通路25により連通し、このEGR通路25を開閉するEGR弁26を設ける一方で、燃料カットの途中で燃料供給を再開する条件が成立したとき排気の一部を取り出していない側の気筒群である気筒群Bの燃料供給が再開され燃焼ガスが発生するが、この燃焼ガスはコレクタ13に導かれることがない。また、この時点では排気の一部を取り出す側の気筒群である気筒群Aでは燃料供給が再開されないので、応答遅れにより開いているEGR弁26を介してコレクタ13へと導かれるのは新気であり、従ってこれが気筒群Bの燃焼室に流入しても気筒群Bの燃焼状態を悪化させることがない。すなわち、燃料供給の再開で燃焼したガス(不活性ガス)が、応答遅れに伴って開いているEGR弁26を介して直ちに吸気通路へと導入される従来装置と比較して、気筒群Bの燃焼状態が良好になる分、気筒全体として燃料供給再開直後の燃焼状態が良好なる。
【0059】
また、燃料供給を再開する条件が成立したときEGR弁26を閉じるが、この場合のEGR弁26の閉速度(図2第5段目の時刻t3からの直線の傾き)を比較的緩やかにしてやればポンピングロス増加速度が緩慢となり、かつ燃料供給の再開も半気筒ずつなので、トルク増を段階的にできる。これにより、燃料供給再開時のトルク変動が緩やかとなるように制御可能となり、運転性の悪化を防ぐことができる。
【0060】
ところで、EGR弁26の応答速度はアクチュエータ12の素質によって決まる。従って、気筒群Aについて燃料供給を再開する条件が成立したか否かを、従来装置と同様に、エンジン回転速度に基づいて判定するとEGRガス流量が多いまま燃料供給を再開する条件が成立したと判定され気筒群Aの燃料供給が再開される可能性があり、このとき燃焼状態が悪化する。また、気筒群Bが先に燃料供給を再開しているので、エンジン回転速度の下降はその時点で止まり、気筒郡Aについて燃料供給を再開する条件が成立するに至らない場合もあり得る。
【0061】
一方、例えば気筒群Bの燃料供給を再開してから、タイマを用い一定時間が経過した後に気筒群Aの燃料供給を再開することも考えられるが、この場合でも、EGR弁26の応答性が経時劣化等で変化したり制御速度を状況に応じて変えるようなことを考えた場合には上記と同様の弊害が起き得る。
【0062】
これに対して本実施形態(請求項3に記載の発明)によれば、燃料供給を再開する条件が成立したときとはEGR弁26の開度がしきい値以下となったときである。すなわち、しきい値をEGRガスによる燃焼悪化が回避されるように定めておけばよく、これにより上記の弊害を防ぎつつEGRガスによる燃焼悪化も回避できる。
【0063】
次に、図4は第2実施形態の自動車のパワートレーンの制御システム図である。図1と同一部分には同一の符号を付けている。
【0064】
第1実施形態では、燃料カット中における燃料供給の再開に際して、気筒群Aのみの排気が流れる下流側排気通路23Aより排気の一部を取り出してコレクタ13に導入するため大きな排気脈動の影響を吸気が受けることになっている。こんため、集合排気通路24より排気の一部を取り出して吸気通路に導入する場合よりも吸気の圧力変動が大きくなることが懸念される。
【0065】
そこで、第2実施形態ではEGR通路とEGR弁とからなるEGR装置を2系統に分け、片方は気筒群Aをまとめた下流側排気通路23Aより、もう片方は気筒群Bをまとめた下流側排気通路23Bよりそれぞれ排気の一部を吸気通路に導入し、
(1)通常の走行時にEGRをかけたい場合には両方を同時に同程度に作動させることにより、集合排気通路24より排気の一部を取り出して吸気通路に導入する場合と同じEGR性能を確保し、
(2)減速燃料カット時にポンピングロスを低減するための通路として作用させる場合には、気筒群Bをまとめた下流側排気通路23Bから排気の一部を取り出して吸気通路に導入するほうの通路(後述するEGR通路41)は閉じ、気筒群Aをまとめた下流側排気通路23Aから排気の一部を取り出して吸気通路に導入するほうの通路(EGR通路25)を第1実施形態と同様に用いるようにしたものである。
【0066】
図1と異なる部分を具体的に説明すると、第2実施形態では、図1に示す第1実施形態に対し、EGR装置を1個増やして、EGR通路41とEGR弁42とからなる2個目のEGR装置を設けている。すなわち気筒群Bの排気のみが流れる下流側排気通路23B(第2気筒群排気通路)とコレクタ13とを連通するEGR通路41が設けられ、気筒群Bの排気の一部がこのEGR通路41を通してコレクタ13へと導入される。
【0067】
EGR通路41のコレクタ13近傍にはEGR弁42が設けられ、このEGR弁42によりバイパス通路41の開閉が、またEGR弁42の開度によりEGR通路41を流れるEGRガス流量が制御される。
【0068】
図5、図6は第2実施形態のフローチャートで、図3と置き換わるものである。図3と同一部分には同一のステップ番号を付けている。
【0069】
図3と異なる部分を主に説明すると、第2実施形態では追加したEGR弁42の目標開度を演算するため、ステップ21〜25を新たに設けている。すなわち、燃料カットフラグ=1となった直後には図5のステップ21でベース目標EGR弁開度tθbをメモリであるtθB(前回)に移し、前回、今回とも燃料カットフラグ=1でありかつ燃料リカバーフラグ=0であるときには図6のステップ22で、
tθB=tθB(前回)−α…(3)
ただし、α:正の一定値、
の式によりEGR弁42の目標開度tθBを算出する。
【0070】
(3)式によりEGR弁42の目標開度tθBの漸減を繰り返すと、EGR弁42の目標開度tθBが全閉値(全閉時のEGR弁開度)未満となるので、このときには図6のステップ23よりステップ24に進んでEGR弁42の目標開度tθBを全閉値に制限する。
【0071】
ここで、ステップ22、23、24の操作は、EGR弁42の目標開度tθBを(3)式により図5、図6の演算周期当たり一定値αずつ漸減させて最終的に全閉状態するもの、言い換えると燃料カット時にはEGR通路41がないのと同じにして第1実施形態と同様とするものである。
【0072】
なお、ステップ25はEGR弁42の目標開度tθBの前回値を保存する操作を行う部分である。
【0073】
実施形態では直列4気筒エンジンの場合で説明したが、これに限られるものでない。例えばV型6気筒エンジンの場合を図7、図8(第3、第4実施形態)に示す。図7、図8では片バンク毎に排気通路がまとめられ、図8ではさらにその片バンク毎にまとめた排気通路51、52がさらに1つの排気通路53にまとめられている。
【0074】
これらの場合には、一方の片バンクのみ排気が流れる排気通路51より排気を取り出して吸気通路に導入するEGR54通路を設け、このEGR通路54にEGR弁55を介装すればよい。
【0075】
また、実施形態では4気筒エンジンを2気筒ずつの気筒群A、Bに分割し、気筒群Aの排気のみが流れる下流側排気通路23Aより排気の一部を取り出しているが、これに限られるものでもない。例えば図9(第5実施形態)に示したように、No.1気筒の排気通路22Aより排気の一部を取り出してコレクタ13に導入するEGR通路61を設け、このEGR通路61にEGR弁62を介装するようにしてもかまわない。なお、図9において図1と同一部分には同一の符号を付している。
【0076】
図3において請求項1に記載の燃料カット条件判定手段の機能は図3のステップ1が、燃料カット手段の機能は図3のステップ9が、開弁指令手段の機能は図3のステップ6、7、8が、燃料供給再開条件判定手段の機能は図3のステップ5が、閉弁指令手段の機能は図3のステップ11、14、15が、気筒群別燃料供給再開手段の機能は図3のステップ12、16、13がそれぞれ果たしている。
【図面の簡単な説明】
【図1】第1実施形態の自動車のパワートレーンの制御システム図。
【図2】第1実施形態の作用を説明するための波形図。
【図3】第1実施形態のEGR弁の目標開度の演算を説明するためのフローチャート。
【図4】第2実施形態の自動車のパワートレーンの制御システム図。
【図5】第2実施形態のEGR弁の目標開度の演算を説明するためのフローチャート。
【図6】第2実施形態のEGR弁の目標開度の演算を説明するためのフローチャート。
【図7】第3実施形態のエンジンの制御システム図。
【図8】第4実施形態のエンジンの制御システム図。
【図9】第5実施形態のエンジンの制御システム図。
【図10】参照例の作用を説明するための波形図。
【符号の説明】
2 エンジン
3 自動変速機
16A〜16D 燃料噴射弁
23A 下流側排気通路(第1気筒群排気通路)
23B 下流側排気通路(第2気筒群排気通路)
25 EGR通路
26 EGR弁
31 エンジンコントローラ
32 クランク角センサ
34 アクセルセンサ
35 車速センサ
Claims (3)
- 一または複数の気筒からなる第1気筒群と、
一または複数の気筒からなる第2気筒群と、
第1気筒群の排気のみが流れる第1気筒群排気通路と、
この第1気筒群排気通路と吸気通路とを連通する排気還流通路と、
この排気還流通路を開閉する排気還流制御弁と、
減速時に燃料カット条件が成立したか否かを判定する燃料カット条件判定手段と、
この判定結果より燃料カット条件が成立したとき総ての気筒の燃料供給を停止する燃料カット手段と、
同じく燃料カット条件が成立したとき排気還流制御弁に対して開弁を指令する開弁指令手段と、
この総ての気筒の燃料供給の停止後に、燃料供給を再開する条件が成立したか否かを判定する燃料供給再開条件判定手段と、
この判定結果より燃料供給を再開する条件が成立したとき排気還流制御弁に対して閉弁を指令する閉弁指令手段と、
同じく燃料供給を再開する条件が成立したとき第2気筒群の燃料供給を再開し、この燃料供給の再開より時間遅れを持たせて第1気筒群の燃料供給を再開する気筒群別燃料供給再開手段と
を備えることを特徴とするエンジンの制御装置。 - 第1気筒群と第2気筒群が同数であり、第2気筒群の排気のみが流れる第2気筒群排気通路と、この第2気筒群排気通路と第1気筒群排気通路とを合流させた集合排気通路とを備えることを特徴とする請求項1に記載のエンジンの制御装置。
- 燃料供給を再開する条件が成立したときとは排気還流制御弁の開度がしきい値以下となったときであることを特徴とする請求項1に記載のエンジンの制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002304364A JP2004137991A (ja) | 2002-10-18 | 2002-10-18 | エンジンの制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002304364A JP2004137991A (ja) | 2002-10-18 | 2002-10-18 | エンジンの制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004137991A true JP2004137991A (ja) | 2004-05-13 |
Family
ID=32451808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002304364A Pending JP2004137991A (ja) | 2002-10-18 | 2002-10-18 | エンジンの制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004137991A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009196526A (ja) * | 2008-02-22 | 2009-09-03 | Toyota Motor Corp | パワートレインの制御装置 |
JP4808719B2 (ja) * | 2004-09-21 | 2011-11-02 | ロータス カーズ リミテッド | 燃焼室動作停止システム |
JP2013241910A (ja) * | 2012-05-22 | 2013-12-05 | Aisan Industry Co Ltd | エンジンの制御装置 |
WO2014027505A1 (ja) * | 2012-08-13 | 2014-02-20 | 日産自動車株式会社 | 車両の制御装置及び制御方法 |
-
2002
- 2002-10-18 JP JP2002304364A patent/JP2004137991A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4808719B2 (ja) * | 2004-09-21 | 2011-11-02 | ロータス カーズ リミテッド | 燃焼室動作停止システム |
JP2009196526A (ja) * | 2008-02-22 | 2009-09-03 | Toyota Motor Corp | パワートレインの制御装置 |
JP2013241910A (ja) * | 2012-05-22 | 2013-12-05 | Aisan Industry Co Ltd | エンジンの制御装置 |
WO2014027505A1 (ja) * | 2012-08-13 | 2014-02-20 | 日産自動車株式会社 | 車両の制御装置及び制御方法 |
JP5915752B2 (ja) * | 2012-08-13 | 2016-05-11 | 日産自動車株式会社 | 車両の制御装置及び制御方法 |
JPWO2014027505A1 (ja) * | 2012-08-13 | 2016-07-25 | 日産自動車株式会社 | 車両の制御装置及び制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9889851B2 (en) | Control apparatus for vehicle | |
US10196065B2 (en) | Vehicle control system | |
CN111963325A (zh) | 用于发动机控制的方法和系统 | |
JP4466443B2 (ja) | 車両のエンジン始動装置 | |
WO2017163575A1 (ja) | 車両用制御装置 | |
JP2006144685A (ja) | 内燃機関の制御装置 | |
JP3841058B2 (ja) | エンジンの始動装置 | |
JP4466437B2 (ja) | 車両のエンジン始動装置 | |
JP2006283671A (ja) | 車両のエンジン始動装置 | |
JP5343627B2 (ja) | ハイブリッド車のエンジン制御装置 | |
JP3583324B2 (ja) | 内燃機関の制御装置 | |
JP2007270767A (ja) | エンジンの始動装置 | |
JP4239582B2 (ja) | エンジンの制御装置 | |
JP4341478B2 (ja) | エンジンの始動装置 | |
JP2007270792A (ja) | エンジンの始動装置 | |
JP2004137991A (ja) | エンジンの制御装置 | |
JP2001020793A (ja) | エンジンの制御装置 | |
JP2005282434A (ja) | エンジンの始動装置 | |
JP4296989B2 (ja) | エンジンの始動装置 | |
JP2006052695A (ja) | エンジンの始動装置 | |
JP2022013288A (ja) | 内燃機関の制御装置 | |
JP4182725B2 (ja) | エンジンの制御装置 | |
JP2007270768A (ja) | エンジンの始動装置 | |
JP4720581B2 (ja) | エンジンの始動装置 | |
JP4702143B2 (ja) | エンジンの始動装置 |