JP2004107680A - セラミック上への炭素薄膜の形成方法 - Google Patents

セラミック上への炭素薄膜の形成方法 Download PDF

Info

Publication number
JP2004107680A
JP2004107680A JP2002267800A JP2002267800A JP2004107680A JP 2004107680 A JP2004107680 A JP 2004107680A JP 2002267800 A JP2002267800 A JP 2002267800A JP 2002267800 A JP2002267800 A JP 2002267800A JP 2004107680 A JP2004107680 A JP 2004107680A
Authority
JP
Japan
Prior art keywords
ceramic
carbon
thin film
conductive material
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002267800A
Other languages
English (en)
Inventor
Makoto Kawase
河瀬 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2002267800A priority Critical patent/JP2004107680A/ja
Publication of JP2004107680A publication Critical patent/JP2004107680A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】複雑な形状のセラミックであっても、その表面に炭素薄膜を安価に形成する。
【解決手段】溶融炭酸塩より成る電解液1と、導電性物質2にセラミック3を接触させて構成される陰極電極4と、陽極電極5とを用いて、電気分解を行い、導電性物質2に炭素を析出させると共に、セラミック3の表面に炭素を析出させる。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック上への炭素薄膜の形成方法に関する。さらに詳述すると、本発明は、電気分解による析出を利用してセラミック表面に炭素薄膜を形成する方法に関する。
【0002】
【従来の技術】
セラミック表面を炭素で被覆した複合材料は、優れた耐食性と耐熱性を有し、また電子導電層と絶縁層を有していることから、その開発が期待されている。従来一般に、セラミックを炭素で被覆する方法としては、真空蒸着法(特許文献1参照)、CVD法(特許文献2参照)によるものがある。
【0003】
【特許文献1】
特開2002−30413号公報
【特許文献2】
特開平5−186287号公報
【0004】
【発明が解決しようとする課題】
しかしながら、真空蒸着法やCVD法によるものは、炭素の沸点が高いために装置構成が複雑化し、大量生産規模となる。また、真空蒸着法やCVD法では、凹凸などの有る複雑な形状のセラミックス上への炭素薄膜の形成は、平滑性、均一性の面から非常に困難である。
【0005】
そこで本発明は、セラミック表面を炭素で被覆した複合材料を安価に大量生産でき、密着性、平滑性、均一性に優れたセラミック上への炭素薄膜の形成方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するため、本発明者等が種々実験検討した結果、炭素または炭素化合物またはこれらのイオンを組成に有する一定の電解液と、導電性物質にセラミックを接触させて構成される陰極電極と、陽極電極とを用いて、電気分解を行うと、導電性物質に炭素が析出すると共に、セラミック表面にも炭素が析出することを知見するに至った。
【0007】
請求項1記載のセラミック上への炭素薄膜の形成方法は、かかる知見に基づくものであり、溶融炭酸塩より成る電解液または溶融炭酸塩を少なくとも含む電解液と、導電性物質にセラミックを接触させて構成される陰極電極と、陽極電極とを用いて、電気分解を行い、導電性物質に炭素を析出させると共に、セラミック表面に炭素を析出させるものである。
【0008】
また、請求項2記載のセラミック上への炭素薄膜の形成方法は、炭酸イオンを少なくとも含んだ溶融塩より成る電解液と、導電性物質にセラミックを接触させて構成される陰極電極と、陽極電極とを用いて、電気分解を行い、導電性物質に炭素を析出させると共に、セラミック表面に炭素を析出させるものである。
【0009】
したがって、電気分解を行うと、陰極電極となる導電性物質に炭素が析出すると共にセラミック表面に炭素が析出する。炭素被膜は、導電性物質とセラミックの接触部分からセラミック上へ二次元的に成長していく。これにより、セラミック表面に炭素薄膜が電解被覆される。
【0010】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。
【0011】
先ず、本発明のセラミック上への炭素薄膜の形成方法の第1の実施形態について説明する。この方法では、溶融炭酸塩より成る電解液1または溶融炭酸塩を少なくとも含む電解液1(電解浴1とも呼ぶ。)と、導電性物質2にセラミック3を接触させて構成される陰極電極4と、陽極電極5とを用いて、電気分解を行い、導電性物質2に炭素を析出させると共に、セラミック3の表面に炭素を析出させるようにしている。
【0012】
例えば本実施形態では、溶融炭酸塩より成る電解液1として、LiCOを53mol%およびNaCOを47mol%混合して成る溶液を用いている。但し、電解液1の組成が本実施形態の例に限定されるものではない。また、電解液1には、溶融炭酸塩以外の物質が含まれていても良い。
【0013】
導電性物質2の好適な素材としては、例えば、Zr(ジルコニウム)、Ti(チタン)、Fe(鉄)、Ni(ニッケル)、Al(アルミニウム)等の金属が挙げられる。但し、上記例示に必ずしも限定されるものではなく、他の金属または合金もしくは金属以外の導電性物質(例えば炭素)を用いても良い。ここで、導電性物質2に金属材料を用いる場合、無垢の金属塊をセラミック3に接触させる必要は必ずしもない。例えば、金属材料を用いてセラミック3の一部の表面にめっき又は溶射などを施して、セラミック3上に金属部分(導電性物質2)を形成するようにしても良い。
【0014】
セラミック3は、仕様や設計等において要求される任意の形状(例えば、凹凸などを有する複雑な形状であっても良い。)を採用して良い。尚、セラミック3の組成は、特に限定されない。一方、導電性物質2の形状は、セラミック3と接触し得る形状であれば特に限定されないが、セラミック3と同一表面を成すように(いわゆる面一となるように)接触する形状であることが好ましい。
【0015】
導電性物質2とセラミック3との接触の態様は、電気分解時において当該接触状態を保持し得るのであれば、特に限定されるものではない。例えば、導電性物質2とセラミック3とを着脱可能に構成しても良く、或いは導電性物質2とセラミック3と一体に固定しても良く、電気分解時において接触状態を保持し得るのであれば、導電性物質2とセラミック3の一方を他方に単に載置するだけでも良い。例えば、導電性物質2とセラミック3の一方に雄ねじを設け、他方に当該雄ねじに螺合する雌ねじを設けて、ねじ止めにより導電性物質2とセラミック3とを結合して、導電性物質2とセラミック3とが接触するようにしても良い。或いは、導電性物質2とセラミック3の一方に凸部を設け、他方に当該凸部に嵌合する凹部を設けて、嵌め合わせにより導電性物質2とセラミック3とを結合して、導電性物質2とセラミック3とが接触するようにしても良い。また或いは、接着剤や両面テープ等を用いて導電性物質2とセラミック3とを結合して、導電性物質2とセラミック3とが接触するようにしても良い。若しくは、金属材料を用いてセラミック3の一部の表面にめっき又は溶射などを施して、セラミック3上に金属部分(導電性物質2)を形成するようにしても良い。導電性物質2とセラミック3との接触の態様は、セラミック3の用途等に応じて適宜選択される。
【0016】
陽極電極5の材質は、特に限定されるものではなく、例えば炭素より成る可溶性陽極、Ni(ニッケル)等より成る不溶性陽極等を採用して良い。
【0017】
陽極電極5および陰極電極4へ通電する方法は特に限定されないが、例えば本実施形態では、電源6と導電性物質2とを導線(リード線)7により電気的に接続し、当該電源6と陽極電極5とを導線(リード線)7により電気的に接続している。ここで、リード線から洩れる電流を遮蔽する手段や、リード線7をできる限り電解液1にさらさないための手段を用いることが好ましい。例えば本実施形態では、これらの手段として、リード線7を被覆するアルミナチューブ8を用いている。電解槽9には電解液1が入れられて、電源6に電気的に接続された陽極電極5と陰極電極4とが電解液1にひたされる(図1参照)。
【0018】
炭素薄膜を良好に形成するために、電気分解時の浴温(即ち電解液の温度)は500〜700℃程度とすることが好ましい。また、電源6は、導電性物質2においてチューブ状の炭素繊維または微粒子状の炭素が析出するように、電流および電位を制御することが好ましい。具体的には、電流については、直流電流またパルス電流にて、電流密度9[mA/cm]以上で、電気分解を行うことが好ましい。電流密度が8[mA/cm]以下であると、導電性物質2への炭素の析出は起こるが、セラミック3上への炭素の析出が起こり難くなることが、本発明者等が種々実験した結果、知見されたからである。また、電位については、定電位またパルス電位にて、−1.9〜−1.75V(O/CO Au基準)で、電気分解を行うことが好ましい。電位が−1.9Vより低いと、密着性の良い均一な炭素薄膜が得られ難く、−1.75Vより高いと、セラミック3上への炭素の析出が起こり難いことが、本発明者等が種々実験した結果、知見されたからである。尚、「O/CO Au基準」とは、Au(金)電極上での数式1に示す反応の平衡電位をゼロとして、電極の電位を測定するものである。
【0019】
【数1】
Figure 2004107680
【0020】
但し、上記に挙げた数値は、本実施形態における条件下で、炭素薄膜を良好に形成するための一例であり、必ずしも上記数値に限定されるものではない。尚、より均一な電解析出を行うために、電解液1(電解浴)を撹拌することが好ましい。
【0021】
以上の構成の下で電気分解を行うと、導電性物質2に炭素が析出すると共に、セラミック3の表面にも炭素が析出する。炭素被膜は、導電性物質2とセラミック3の接触部分からセラミック3上へ二次元的に成長していく。即ち、セラミック3の表面に炭素薄膜が電解被覆(電気めっき)される。
【0022】
本発明によれば、凹凸などの有る複雑な形状のセラミック3であっても、その表面に、密着性、平滑性、均一性に優れた炭素薄膜を形成することができる。また、真空蒸着法やCVD法を用いた場合と比較して安価に、セラミック3の表面を炭素で被覆した複合材料を大量生産することができる。
【0023】
【実施例1】
本実施例では、Alを主成分とするセラミック3の板状試験片を用いた実験を行った。セラミック3(板状試験片)の大きさは、2mm厚×20mm長×10mm巾とした。導電性物質2の材質には、Zr,Ti,Fe,Niの4種類を用い、各導電性物質2の大きさは、2mm厚×9mm長×10mm巾とした。
【0024】
セラミック3の表面をアセトンで脱脂し、水90質量%と硝酸10質量%との混合溶液で酸洗し、その後水洗処理し、乾燥させた後、導電性物質2に接するように取り付けて陰極電極4を作製した。具体的には、セラミック3にアルミナチューブ8を東亞合成社製のアロンセラミック(アルミナが主成分のセラミック用接着剤)で接着し、導電性物質2にはんだ付けしたリード線7をアルミナチューブ8に通して、セラミック3と導電性物質2とを接触させた。この際、セラミック3と導電性物質2とが面一となるようにした。このセラミック3付き陰極電極4を乾燥させた後、表1に示す条件で、電気分解を施した。
【0025】
【表1】
Figure 2004107680
【0026】
即ち、電解液1(電解浴)の組成は、LiCOを53mol%、NaCOを47mol%とした。浴温は、650℃とした。雰囲気は、Hが64mol%およびCOが16mol%およびHOが20mol%より成る混合ガスと、CO100%のガスと、N100%のガスとの3種類について行った。電流密度は、10[mA/cm]とした。陽極電極5の素材には、Niを用いた。電気分解は6時間行った。
【0027】
上記電気分解の結果、Zr,Ti,Fe,Niの何れの導電性物質2及び何れの雰囲気においても、セラミック3の表面が黒色を呈し、均一で密着性の良い炭素薄膜がセラミック3上に形成されることが確認された。尚、図2は、導電性物質2にNiを用い且つN100%の雰囲気において、セラミック3上に形成された炭素薄膜の表面を示す走査電子顕微鏡での画像である。図3は、同条件におけるセラミック3上に形成された炭素薄膜の断面を示す走査電子顕微鏡での画像である。
【0028】
次に、本発明のセラミック上への炭素薄膜の形成方法の第2の実施形態について説明する。この方法では、炭酸イオンを少なくとも含んだ溶融塩より成る電解液1’(電解浴とも呼ぶ。)と、導電性物質2にセラミック3を接触させて構成される陰極電極4と、陽極電極5とを用いて、電気分解を行い、導電性物質2に炭素を析出させると共に、セラミック3の表面に炭素を析出させるようにしている。
【0029】
例えば本実施形態では、炭酸イオンを少なくとも含んだ溶融塩より成る電解液1’として、LiCl−KCl系の溶融塩に、KCOを添加して成る溶液を用いている。より具体的には、LiClを58.5mol%およびKClを41.5mol%混合して成る溶融塩に、KCOを溶融塩100mol%に対して5.0mol%添加した溶液を、電解液1’として用いている。炭素薄膜を良好に形成するために、電解液1’における炭酸イオンの濃度は、2.0mol%以上であることが好ましい。但し、電解液1’の組成が本実施形態の例に限定されるものではない。例えば、LiCl−KCl系以外の溶融塩を用いても良く、炭酸イオンを得るためにKCO以外の物質を添加しても良い。また、電解液1’には、炭酸イオンや溶融塩以外の物質が含まれていても良い。
【0030】
陽極電極5は、必ずしも限定されるものではないが、炭酸イオン濃度のバランスを保つために、例えば炭素より成る可溶性陽極を用いて、炭素の陽極溶解を行うことが好ましい。
【0031】
炭素薄膜を良好に形成するために、電気分解時の浴温は450〜560℃程度とすることが好ましい。また、電源6は、導電性物質2においてチューブ状の炭素繊維または微粒子状の炭素が析出するように、電流(例えば直流電流またはパルス電流)および電位(例えば定電位またはパルス電位)を制御することが好ましい。具体的には、電位は0.6V(Li/Li基準)以上であることが好ましい。電位が0.6V(Li/Li基準)より低いと、導電性物質2に炭素の析出は起こるが、Liも析出するため、セラミック3上への炭素の析出が起こり難くなることが、本発明者等が種々実験した結果、知見されたからである。尚、「Li/Li基準」とは、Li(リチウム)金属電極上での数式2に示す反応の平衡電位をゼロとして、電極の電位を測定するものである。
【0032】
【数2】
Figure 2004107680
【0033】
但し、上記に挙げた数値は、本実施形態における条件下で、炭素薄膜を良好に形成するための一例であり、必ずしも上記数値に限定されるものではない。尚、より均一な電解析出を行うために、電解液1’(電解浴)を撹拌することが好ましい。
【0034】
その他、導電性物質2およびセラミック3の材質、大きさ、形状、接触の態様等、陽極電極5および陰極電極4へ通電する方法等は、例えば第1の実施形態と同様であり(図1参照)、詳細な説明は省略する。
【0035】
以上の構成の下で電気分解を行うと、導電性物質2に炭素が析出すると共に、セラミック3の表面に炭素が析出する。炭素被膜は、導電性物質2とセラミック3の接触部分からセラミック3上へ二次元的に成長していく。即ち、セラミック3の表面に炭素薄膜が電解被覆(電気めっき)される。
【0036】
本発明によれば、凹凸などの有る複雑な形状のセラミック3であっても、その表面に、密着性、平滑性、均一性に優れた炭素薄膜を形成することができる。また、真空蒸着法やCVD法等を用いた場合と比較して安価に、セラミック3の表面を炭素で被覆した複合材料を大量生産することができる。
【0037】
【実施例2】
実施例1と同じ組成および形状および大きさのセラミック3の板状試験片を用い、当該セラミック3の表面をアセトンで脱脂し、水90質量%と硝酸10質量%との混合溶液で酸洗し、その後水洗処理し、乾燥させた後、実施例1と同じ形状でありAl(アルミニウム)より成る導電性物質2に、実施例1と同様の方法で取り付けて、陰極電極4を作製した。このセラミック3付き陰極電極4を乾燥させた後、表2に示す条件で、電気分解を施した。
【0038】
【表2】
Figure 2004107680
【0039】
即ち、電解液1’(電解浴)は、LiClを58.5mol%およびKClを41.5mol%混合して成る溶融塩に、KCOを溶融塩100mol%に対して5.0mol%添加して作製した。浴温は、500℃とした。雰囲気は、Ar(アルゴン)100%のガスと、N100%のガスとの2種類について行った。電位は、0.85V(Li/Li基準)とした。陽極電極5には、炭素より成る可溶性陽極を用いた。電気分解は6時間行った。
【0040】
上記電気分解の結果、何れの雰囲気においても、セラミック3の表面が黒色を呈し、均一で密着性の良い炭素薄膜がセラミック3上に形成されることが確認された。
【0041】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば電解液は、上述の実施形態での例示に必ずしも限定されるものではない。上記に例示した電解液以外でも、炭素または炭素化合物またはこれらのイオンを組成に有する電解液のうち、セラミック上への炭素被膜の形成が可能である電解液もあると考えられる。例えば、炭酸水素イオン(HCO )、炭酸イオン(CO 2−)、カルボン酸イオン(HCOO,CHCOO,(CHCCOO等)、ジフルオロ酢酸イオン(CFHCOO)、トリフルオロ酢酸イオン(CFCOO)の少なくとも1つを組成に有する電解液、またはこれらのイオンの少なくとも1つを含んだ溶融塩より成る電解液のうち、セラミック上への炭素被膜の形成が可能である電解液もあると考えられる。
【0042】
【発明の効果】
以上の説明から明らかなように、請求項1および2記載のセラミック上への炭素薄膜の形成方法によれば、凹凸などの有る複雑な形状のセラミックス上であっても、密着性、平滑性、均一性に優れた炭素薄膜を形成することができる。また、真空蒸着法やCVD法等を用いた場合と比較してずっと安価に、セラミック表面を炭素で被覆した複合材料を大量生産できる。
【図面の簡単な説明】
【図1】本発明のセラミック上への炭素薄膜の形成方法を実施するための装置の一例を示す概略構成図である。
【図2】セラミック上に形成された炭素薄膜の表面を示す走査電子顕微鏡での画像の一例である。
【図3】セラミック上に形成された炭素薄膜の断面を示す走査電子顕微鏡での画像の一例である。
【符号の説明】
1,1’ 電解液
2 導電性物質
3 セラミック
4 陰極電極
5 陽極電極

Claims (2)

  1. 溶融炭酸塩より成る電解液または溶融炭酸塩を少なくとも含む電解液と、導電性物質にセラミックを接触させて構成される陰極電極と、陽極電極とを用いて、電気分解を行い、前記導電性物質に炭素を析出させると共に、前記セラミック表面に炭素を析出させることを特徴とするセラミック上への炭素薄膜の形成方法。
  2. 炭酸イオンを少なくとも含んだ溶融塩より成る電解液と、導電性物質にセラミックを接触させて構成される陰極電極と、陽極電極とを用いて、電気分解を行い、前記導電性物質に炭素を析出させると共に、前記セラミック表面に炭素を析出させることを特徴とするセラミック上への炭素薄膜の形成方法。
JP2002267800A 2002-09-13 2002-09-13 セラミック上への炭素薄膜の形成方法 Pending JP2004107680A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267800A JP2004107680A (ja) 2002-09-13 2002-09-13 セラミック上への炭素薄膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267800A JP2004107680A (ja) 2002-09-13 2002-09-13 セラミック上への炭素薄膜の形成方法

Publications (1)

Publication Number Publication Date
JP2004107680A true JP2004107680A (ja) 2004-04-08

Family

ID=32266205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267800A Pending JP2004107680A (ja) 2002-09-13 2002-09-13 セラミック上への炭素薄膜の形成方法

Country Status (1)

Country Link
JP (1) JP2004107680A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169554A (ja) * 2004-12-13 2006-06-29 Doshisha 炭素質皮膜及びその製造方法
JP2009120861A (ja) * 2007-11-12 2009-06-04 Doshisha 窒化炭素の製造方法
CN102888636A (zh) * 2011-07-19 2013-01-23 中国科学院金属研究所 一种石墨涂层的制备方法
CN104451809A (zh) * 2014-11-05 2015-03-25 镁联科技(芜湖)有限公司 表面陶瓷化装置和表面陶瓷化加工方法
JP2017048101A (ja) * 2015-09-04 2017-03-09 新日鐵住金株式会社 炭酸化物からの膜状遊離炭素製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169554A (ja) * 2004-12-13 2006-06-29 Doshisha 炭素質皮膜及びその製造方法
JP2009120861A (ja) * 2007-11-12 2009-06-04 Doshisha 窒化炭素の製造方法
CN102888636A (zh) * 2011-07-19 2013-01-23 中国科学院金属研究所 一种石墨涂层的制备方法
CN102888636B (zh) * 2011-07-19 2016-01-20 中国科学院金属研究所 一种石墨涂层的制备方法
CN104451809A (zh) * 2014-11-05 2015-03-25 镁联科技(芜湖)有限公司 表面陶瓷化装置和表面陶瓷化加工方法
CN104451809B (zh) * 2014-11-05 2017-10-20 镁联科技(芜湖)有限公司 表面陶瓷化装置和表面陶瓷化加工方法
JP2017048101A (ja) * 2015-09-04 2017-03-09 新日鐵住金株式会社 炭酸化物からの膜状遊離炭素製造方法

Similar Documents

Publication Publication Date Title
US20200036011A1 (en) Metal porous body and method for producing metal porous body
US6010610A (en) Method for electroplating metal coating(s) particulates at high coating speed with high current density
JPS58171591A (ja) アルミニウム電気渡金用電解質およびその使用法
WO2008001717A1 (fr) Depôt d'aluminium obtenu par placage, élément métallique et procédé de fabrication correspondant
US8951401B2 (en) Method for electrochemically depositing carbon film on a substrate
Loftis et al. Nanoscale electropolishing of high-purity nickel with an ionic liquid
EP3431635A1 (en) Conductive material and method for producing same
JP2006299338A (ja) 溶融塩めっき用平滑剤及び該平滑剤を用いた溶融塩めっき方法
Jiang Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt
KR101125035B1 (ko) 전해용 전극을 재활성화하는 방법
JP2004107680A (ja) セラミック上への炭素薄膜の形成方法
US4285784A (en) Process of electroplating a platinum-rhodium alloy coating
JP3261676B2 (ja) 電気ニッケルめっき浴。
Tsuda et al. Al-W alloy deposition from Lewis acidic room-temperature chloroaluminate ionic liquid
Jiang et al. Effect of direct current density on performance of tungsten coating electroplated from Na2WO4-WO3-B2O3 system
CN111108236A (zh) 用于在水溶液中电化学沉积富金属层的方法和组合物
JP5229563B2 (ja) 耐食導電性皮膜、耐食導電材、固体高分子型燃料電池とそのセパレータおよび耐食導電材の製造方法
JP2824267B2 (ja) 金属物質のアルミニウムメッキ方法
Feng et al. Effect of Magnetic Field on Corrosion Behaviors of Gold-Coated Titanium as Cathode Plates for Proton Exchange Membrane Fuel Cells
JP2010077464A (ja) 部分的電解めっき方法
JP2004265695A (ja) 燃料電池用セパレーター
JP4816839B2 (ja) 高分子電解質型燃料電池用セパレータの製造方法
Reid Some experimental and practical aspects of heavy Rhodium plating
JP6612373B2 (ja) 陽極酸化皮膜形成処理剤及び陽極酸化皮膜形成方法
Sauri et al. Self-Organization Phenomena During Electrodeposition of Ag-In Alloys

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20050713

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Effective date: 20080625

Free format text: JAPANESE INTERMEDIATE CODE: A02