JP2004085674A - オートフォーカスシステム - Google Patents

オートフォーカスシステム Download PDF

Info

Publication number
JP2004085674A
JP2004085674A JP2002243358A JP2002243358A JP2004085674A JP 2004085674 A JP2004085674 A JP 2004085674A JP 2002243358 A JP2002243358 A JP 2002243358A JP 2002243358 A JP2002243358 A JP 2002243358A JP 2004085674 A JP2004085674 A JP 2004085674A
Authority
JP
Japan
Prior art keywords
focus
lens
evaluation value
value
focus evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243358A
Other languages
English (en)
Inventor
Tokuji Kanayama
金山 篤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2002243358A priority Critical patent/JP2004085674A/ja
Publication of JP2004085674A publication Critical patent/JP2004085674A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

【課題】画像の鮮鋭度を示す焦点評価値に基づくコントラスト方式のオートフォーカスにおいて、撮影レンズのフォーカスを移動させる際の移動速度を撮影レンズの焦点距離又は絞り値に基づいて設定又は制限することにより、焦点距離や絞り値に応じた焦点評価値特性に適切に対応した移動速度でフォーカスを移動させることができ、フォーカスを迅速且つ安定した動作で確実に合焦位置に移動させることができるオートフォーカスシステムを提供する。
【解決手段】AF制御時においてレンズ装置10のCPU40は、ピント状態検出用撮像素子32A、32Bから得られる焦点評価値に基づいて、フォーカスレンズ16を合焦位置に移動させる。このとき、ズームレンズ18やアイリス20の位置を検出し、それらの位置に基づいてフォーカスレンズ16の移動速度を制御する。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明はオートフォーカスシステムに係り、特にコントラスト方式によって撮影レンズのフォーカスを制御するオートフォーカスシステムに関する。
【0002】
【従来の技術】
ビデオカメラなどのオートフォーカスは、コントラスト方式によるものが一般的である。このコントラスト方式は、撮像素子から得られた映像信号のうちある範囲(フォーカスエリア)内の映像信号の高域周波数成分を積算して焦点評価値とし、その焦点評価値が最大(極大)となるようにピント調整を自動で行うものである。これによって、撮像素子で撮像された画像の鮮鋭度(コントラスト)が最大となる最良ピント(合焦)が得られる。
【0003】
また、合焦位置(焦点評価値の極大点)にフォーカスを設定する方法として、山登り方式と呼ばれるものが広く知られている。この方法は、フォーカスを動かしたときの異なる2点での焦点評価値の比較により焦点評価値が増加する方向を検出すると共に、その方向にフォーカスを動かし、焦点評価値が増加から減少に変わると、焦点評価値が減少する前の位置にフォーカスを戻してフォーカスを焦点評価値の極大点に設定するというものである。
【0004】
また、上述の山登り方式の場合、フォーカスを実際に動かさないと焦点評価値の増加方向や合焦を判断することができないという欠点があるため、光路長の異なる位置に複数の撮像素子を配置してフォーカスを動かさなくても撮影レンズのピント状態(前ピン、後ピン、合焦)を検出できるようにしたピント状態検出方法が提案されている(特願2001−168246号、特願2001−168247号、特願2001−168248号、特願2001−168249号等)。このピント状態検出方法によれば、各撮像素子から得られる現時点の焦点評価値の大小関係により現時点のピント状態を即座に知ることができるため、フォーカスの移動方向や合焦をフォーカスを動かすことなく判断することができる。したがって、この方法を用いたオートフォーカスでは、フォーカスを合焦位置に迅速に設定することができる等の利点がある。
【0005】
【発明が解決しようとする課題】
ところで、同一被写体を撮影している場合であっても、撮影レンズの焦点距離や絞り値を変更すると、被写界深度や焦点深度が変化するため、焦点評価値の特性も変化する。しかしながら、従来は、このような事情を考慮することなくフォーカスを合焦位置に移動させるための制御を行っていたため、フォーカスの移動速度が遅く、合焦までに不要に長い時間を要する場合があった。一方、単にフォーカスを高速で移動させるようにした場合には、合焦位置を確実に検出することができず、オートフォーカスの動作が不安定になるというおそれがある。
【0006】
本発明は、このような事情に鑑みてなされたもので、撮影レンズのフォーカスを迅速に且つ安定した動作で確実に合焦位置に移動させることができるオートフォーカスシステムを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するために、請求項1に記載の発明は、撮影レンズに入射した被写体光を撮像して映像信号を生成し、該映像信号から被写体像の鮮鋭度を示す焦点評価値を生成する焦点評価値生成手段と、該焦点評価値生成手段により生成される焦点評価値が合焦を示す状態となるように前記撮影レンズのフォーカスを制御するフォーカス制御手段と、を備えたオートフォーカスシステムにおいて、前記フォーカス制御手段は、前記撮影レンズのフォーカスを移動させる際の移動速度を前記撮影レンズの焦点距離又は絞り値に基づいて設定することを特徴としている。
【0008】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記フォーカス制御手段は、前記焦点評価値生成手段により生成された焦点評価値に基づいて前記フォーカスを設定すると共に、前記撮影レンズの焦点距離又は絞り値に基づいて前記フォーカスの制限速度を設定し、前記設定したフォーカスの移動速度が前記制限速度を超えている場合には、前記フォーカスの移動速度を前記制限速度に制限することを特徴としている。
【0009】
また、請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記焦点評価値生成手段は、光路長が異なる位置に配置された複数の撮像面において前記撮影レンズに入射した被写体光を撮像して各撮像面に対する複数の焦点評価値を生成し、前記フォーカス制御手段は、前記焦点評価値生成手段によって生成された複数の焦点評価値に基づいて前記フォーカスを合焦位置に移動させることを特徴としている。
【0010】
本発明によれば、画像の鮮鋭度を示す焦点評価値に基づくコントラスト方式のオートフォーカスにおいて、撮影レンズのフォーカスを移動させる際の移動速度を撮影レンズの焦点距離又は絞り値に基づいて設定又は制限するようにしたため、焦点距離や絞り値に応じた焦点評価値特性に適切に対応した移動速度でフォーカスを移動させることができ、フォーカスを迅速且つ安定した動作で確実に合焦位置に移動させることができるようになる。
【0011】
【発明の実施の形態】
以下、添付図面に従って本発明に係るオートフォーカスシステムの好ましい実施の形態について詳説する。
【0012】
図1は、本発明に係るオートフォーカスシステムが適用されたテレビカメラシステムのブロック図である。同図に示すように、このテレビカメラシステムは、レンズ装置10とカメラ本体12等から構成されており、カメラ本体12には、放映用の映像を撮影し、所定形式の映像信号を出力又は記録媒体に記録するための撮像素子(以下、映像用撮像素子という)や所要の回路等が搭載されている。
【0013】
レンズ装置10は、カメラ本体12に着脱可能に装着され、主に光学系(撮影レンズ)と制御系とから構成されている。まず、撮影レンズの構成について説明すると、撮影レンズには、フォーカスレンズ(群)16、ズームレンズ(群)18、アイリス20、前側リレーレンズ22Aと後側リレーレンズ22Bとからなるリレーレンズ(リレー光学系)等が配置されている。そして、リレー光学系の前側リレーレンズ22Aと後側リレーレンズ22Bとの間には、撮影レンズに入射した被写体光からピント状態検出用の被写体光を分岐するためのハーフミラー24が配置されている。
【0014】
ハーフミラー24は、撮影レンズの光軸Oに対して略45度傾斜して設置されており、前側リレーレンズ22Aを通過した被写体光の一部(例えば1/3の光量)がピント状態検出用の被写体光として直角に反射するようになっている。
【0015】
ハーフミラー24を透過した被写体光は、映像用の被写体光として撮影レンズの後端側から射出されたのち、カメラ本体12の撮像部14に入射する。撮像部14の構成については省略するが、撮像部14に入射した被写体光は、例えば色分解光学系により、赤色光、緑色光、青色光の3色に分解され、各色ごとの映像用撮像素子の撮像面に入射する。これによって放映用のカラー映像が撮影される。なお、図中のピント面Pは、各映像用撮像素子の撮像面に対して光学的に等価な位置を撮影レンズの光軸O上に示したものである。
【0016】
一方、ハーフミラー24で反射された被写体光は、ピント状態検出用の被写体光として光軸Oに対して垂直な光軸O′に沿って進行し、リレーレンズ26に入射する。そして、このリレーレンズ26で集光されてピント状態検出部28に入射する。
【0017】
ピント状態検出部28は、光分割光学系を構成する2つのプリズム30A、30Bと、ピント状態検出用の一対の撮像素子32A、32B(以下、ピント状態検出用撮像素子32A、32Bという)とで構成されている。
【0018】
上述したようにハーフミラー24で反射した被写体光は、光軸O′に沿って進行し、まず、第1プリズム30Aに入射する。そして、第1プリズム30Aのハーフミラー面Mで反射光と透過光に等分割される。このうち反射光は一方のピント状態検出用撮像素子32Aの撮像面に入射し、透過光は他方のピント状態検出用撮像素子32Bに入射する。尚、各ピント状態検出用撮像素子32A、32Bのそれぞれの撮像面には、例えば、撮影レンズに入射した全被写体光のうちの1/6の光量が入射する。
【0019】
図2は、カメラ本体12の映像用撮像素子に入射する被写体光の光軸と一対のピント状態検出用撮像素子32A、32Bに入射する被写体光の光軸を同一直線上に表示したものである。同図に示すように、一方のピント状態検出用撮像素子32Aに入射する被写体光の光路長は、他方のピント状態検出用撮像素子32Bに入射する被写体光の光路長よりも短く設定され、映像用撮像素子の撮像面(ピント面P)に入射する被写体光の光路長は、その中間の長さとなるように設定されている。すなわち、一対のピント状態検出用撮像素子32A、32B(の撮像面)は、それぞれ映像用撮像素子の撮像面(ピント面P)に対して前後等距離(d)の位置に配置されている。
【0020】
従って、ハーフミラー24で分岐されたピント形態検出用の被写体光は、一対のピント状態検出用撮像素子32A、32Bにより、映像用撮像素子の撮像面(ピント面P)に対して前後等距離の位置で撮像される。尚、ピント状態検出用撮像素子32A、32Bは後述のようにピント状態検出(オートフォーカス制御)のための映像信号を取得するものであり、カラー映像を撮像するものである必要はなく、本実施の形態では白黒画像を撮像するCCDであるものとする。
【0021】
続いて、レンズ装置10の制御系について説明すると、上記フォーカスレンズ16、ズームレンズ18、アイリス20は、それぞれ図1に示すフォーカスモータ42、ズームモータ46、アイリスモータ50と図示しない動力伝達機構を介して連結されており、フォーカスモータ42を駆動すると、フォーカスレンズ16が光軸方向に移動して撮影レンズの焦点位置(撮影距離)が変更され、ズームモータ46を駆動すると、ズームレンズ18が光軸方向に移動して撮影レンズのズーム倍率が変更され、アイリスモータ50を駆動すると、アイリス20の絞り羽根が開閉動作して絞り径(絞り値)が変更されるようになっている。
【0022】
各モータ42、46、50には、それぞれフォーカスモータ駆動回路44、ズームモータ駆動回路48、アイリスモータ駆動回路52から駆動電圧が与えられ、各駆動回路44、48、52には、D/A変換器54を介してレンズ装置10に搭載されたCPU40から出力された制御信号が与えられるようになっている。
【0023】
CPU40から出力される上記制御信号は、例えば、駆動するモータの回転速度、即ち、駆動する対象(フォーカスレンズ16、ズームレンズ18、アイリス20)の動作速度に対応する電圧値を示しており、その電圧値がD/A変換器54によってアナログ信号に変換されて対応する駆動回路44、48、52に与えられると、各駆動回路44、48、52によって電圧増幅され、その増幅された電圧が駆動電圧として対応するモータ42、46、50に印加される。これによって、各モータ42、46、50の回転速度がCPU40によって制御される。
【0024】
また、フォーカスレンズ16、ズームレンズ18、アイリス20の現在位置がそれぞれポテンショメータ等のフォーカスレンズ位置検出器56、ズームレンズ位置検出器58、アイリス位置検出器60によって検出されており、それらの位置検出器56、58、60から出力された検出信号がA/D変換器68を介してCPU40に与えられるようになっている。
【0025】
従って、CPU40の処理において、上述のように各モータ42、46、50の回転速度を制御することにより、フォーカスレンズ16、ズームレンズ18、アイリス20の動作速度を所望の速度に制御することができると共に、各位置検出器56、58、60からの検出信号によりフォーカスレンズ16、ズームレンズ18、アイリス20の現在位置を読み取りながら、各モータ42、46、50の回転速度を制御することにより、フォーカスレンズ16、ズームレンズ18、アイリス20の設定位置を所望の位置に制御することができる。
【0026】
撮影レンズのフォーカスやズームは、一般にフォーカスデマンド62やズームデマンド64等のコントローラをレンズ装置10に接続することによって操作者がマニュアル操作することができるようになっており、例えば、フォーカスデマンド62からは、マニュアル操作部材(フォーカスリング)の回動位置に対応した電圧のフォーカス指令信号(フォーカスデマンドデータ)が出力され、A/D変換器68を介してCPU40に与えられる。CPU40は、例えば、そのフォーカスデマンドデータの値をフォーカスレンズ16の移動目標位置を示す値として、その移動目標位置と、フォーカスレンズ位置検出器56から取得される現在位置(フォーカス位置データ)との差に応じた移動速度での移動を指令する制御信号を上述のようにD/A変換器54を介してフォーカスモータ駆動回路44に出力する。これによりフォーカスレンズ16がフォーカスデマンド62によって指令された移動目標位置に移動し、停止する。
【0027】
尚、ズームデマンド64からは、一般に、操作部材(サムリング)の回動位置に対応した電圧がズームレンズ18の移動目標速度を示す値としてCPU40に与えられ、CPU40は、その移動目標速度での移動を指令する制御信号をズームモータ駆動回路48に出力し、ズームレンズ18をズームデマンド64によって指令された移動目標速度で移動させる。また、アイリス20については、一般にカメラ本体12からアイリス20の動作目標位置を指令する指令信号がCPU40に与えられ、その動作目標位置となるようにアイリス20の位置がCPU40によって制御される。
【0028】
また、撮影レンズのフォーカスの制御には、上記フォーカスデマンド62を用いたマニュアルフォーカス(MF)制御と、上記ピント状態検出用撮像素子32A、32Bからの映像信号に基づくオートフォーカス(AF)制御とがあり、このようなMF制御とAF制御を切り替えるAFスイッチ66がレンズ装置10又はフォーカスデマンド62等に設けられている。AFスイッチ66のオン/オフ状態は、CPU40によって検出され、AFスイッチ66がオフの場合にはMF制御が行われ、上述のようにフォーカスデマンド62からのフォーカス指令信号(フォーカスデマンドデータ)に基づいてフォーカスレンズ16が制御される。
【0029】
一方、AFスイッチ66がオンされた場合には、AF制御が行われる。即ち、上記一対のピント状態検出用撮像素子32A、32Bで撮像された画像(映像)は、その各画素値を1画面を構成する複数の走査線(水平ライン)にそって順次伝送する映像信号として出力され、焦点評価値生成部70に入力される。焦点評価値生成部70の構成、処理については後述するが、焦点評価値生成部70において、その入力された映像信号から、各ピント状態検出用撮像素子32A、32Bで撮像された各画像のコントラスト(鮮鋭度)の高低を示す焦点評価値が生成され、それらの生成された焦点評価値がCPU40に与えられるようになっている。尚、ピント状態検出用撮像素子32Aからの映像信号に基づいて生成された焦点評価値を、チャンネルA(chA)の焦点評価値といい、ピント状態検出用撮像素子32Bからの映像信号に基づいて生成された焦点評価値を、チャンネルB(chB)の焦点評価値という。CPU40では、詳細を後述するように、焦点評価値生成部70から取得したchAとchBの焦点評価値を取得し、その取得した焦点評価値に基づいて、撮影レンズのピント状態(前ピン、後ピン、合焦)を検出すると共に、撮影レンズのピント状態が合焦となるようにフォーカスレンズ16の位置を制御する。
【0030】
以上の如く構成されたカメラシステムにおけるAFの制御について以下詳説する。まず、焦点評価値生成部70の構成及び処理について説明する。図3に示すように、各ピント状態検出用撮像素子32A、32Bから出力された映像信号は、焦点評価値生成部70のハイパスフィルタ(HPF)80A、80Bに入力される。ここでピント状態検出用撮像素子32A、32Bは、いずれも白黒画像を撮影するCCDであることから、各ピント状態検出用撮像素子32A、32Bから出力される映像信号は、それぞれの画面を構成する各画素の輝度値を示す輝度信号である
HPF80A、80Bに入力された映像信号は、それぞれHPF80A、80Bによってその高域周波数成分が抽出され、その高域周波数成分の信号は、続いてA/D変換器82A、82Bによってデジタル信号に変換される。そして、ピント状態検出用撮像素子32A、32Bにより撮像された画像の1画面分(1フィールド分)のデジタル信号のうち所定のフォーカスエリア内(例えば、画面中央部分)の画素に対応するデジタル信号のみがゲート回路84A、84Bによって抽出され、抽出された範囲のデジタル信号の値が加算器86A、86Bによって加算される。これにより、フォーカスエリア内における映像信号の高域周波数成分の値の総和が求められる。加算器86A、86Bによって得られた値は、フォーカスエリア内における画像の鮮鋭度の高低を示す焦点評価値であり、加算器86Aで得られた焦点評価値はチャンネルA(chA)の焦点評価値として、加算器86Bで得られた焦点評価値はチャンネルB(chB)の焦点評価値としてCPU40に与えられる。
【0031】
尚、同図に示す同期信号発生回路88からは、各種同期信号が各ピント状態検出用撮像素子32A、32Bやゲート回路84A、84B等の各回路に与えられており、各回路の処理の同期が図られている。また、同期信号発生回路88からCPU40には、映像信号の1フィールドごとの垂直同期信号(V信号)が与えられている。
【0032】
次に、上記焦点評価値に基づくピント状態の検出及びフォーカス(フォーカスレンズ16)の制御について説明する。上記のように焦点評価値生成部70から取得されるchAとchBの焦点評価値により映像用撮像素子の撮像面(ピント面P)に対する撮影レンズの現在のピント状態を検出することができる。
【0033】
図4は、横軸に撮影レンズのフォーカスレンズ16の位置(フォーカス位置)、縦軸に焦点評価値をとり、ある被写体を撮影した際のフォーカス位置に対する焦点評価値の様子を示した図である。図中点線で示す曲線Cは、映像用撮像素子(又は映像用撮像素子と共役の位置に配置された撮像素子)からの映像信号により焦点評価値を求めたと仮定した場合にその焦点評価値をフォーカス位置に対して示したものであり、図中実線で示す曲線A、Bは、それぞれピント状態検出用撮像素子32A、32Bから得られるchAとchBの焦点評価値をフォーカス位置に対して示したものである。同図において、曲線Cの焦点評価値が最大(極大)となる位置F3が合焦位置である。
【0034】
撮影レンズのフォーカス位置が同図のF1に設定された場合、chAの焦点評価値VA1は、曲線Aの位置F1に対応する値となり、chBの焦点評価値VB1は、曲線Bの位置F1に対応する値となる。そして、この場合、chAの焦点評価値VA1の方が、chBの焦点評価値VB1よりも大きくなり、このことから、フォーカス位置が合焦位置(F3)よりも至近側に設定された状態、すなわち、前ピンの状態であることが分かる。
【0035】
一方、撮影レンズのフォーカス位置が同図のF2に設定された場合、chAの焦点評価値VA2は、曲線Aの位置F2に対応する値となり、chBの焦点評価値VB2は、曲線Bの位置F2に対応する値となる。そして、この場合、chAの焦点評価値VA2の方が、chBの焦点評価値VB2よりも小さくなり、このことから、フォーカス位置が合焦位置(F3)よりも無限遠側に設定された状態、すなわち、後ピンの状態であることが分かる。
【0036】
これに対して、撮影レンズのフォーカス位置がF3、すなわち合焦位置に設定された場合、chAの焦点評価値VA3は、曲線Aの位置F3に対応する値となり、chBの焦点評価値VB3は、曲線Bの位置F3に対応する値となる。このとき、chAの焦点評価値VA3とchBの焦点評価値VB3は等しくなり、このことから、フォーカス位置が合焦位置(F3)に設定された状態であることが分かる。
【0037】
このように、焦点評価値生成部70から得られるchAとchBの焦点評価値により、撮影レンズの現在のピント状態が前ピン、後ピン、合焦のいずれの状態であるかを検出することができる。
【0038】
従って、焦点評価値生成部70から得られるchAとchBの焦点評価値に基づいてフォーカスレンズ16の位置を制御することにより、フォーカスレンズ16を合焦位置に移動させることができる。即ち、chAとchBの焦点評価値が、前ピンであると判断される状態の場合には、フォーカスレンズ16を無限遠方向に移動させ、後ピンであると判断される状態の場合には、フォーカスレンズ16を至近方向に移動させ、合焦であると判断される状態となった場合には、フォーカスレンズ16をその位置で停止させることによって、フォーカスレンズ16を合焦位置に移動させることができる。
【0039】
上記説明に対応するCPU40の処理について具体的に説明すると、焦点評価値生成部70から取得されるchAの焦点評価値をAFV_A、chBの焦点評価値をAFV_Bとすると、AFV_A>AFV_Bの場合には前ピンの状態であることからCPU40は、現在設定されているフォーカスレンズ16の移動目標位置を無限遠側に後述する移動量分(正の値)だけ変化させ、その新たな移動目標位置にフォーカスレンズ16を移動させる制御信号を上記D/A変換器54を介してフォーカスモータ駆動回路44に出力する。反対にAFV_A<AFV_Bの場合には後ピンの状態であることから、現在設定されているフォーカスレンズ16の移動目標位置を至近側に後述する移動量分(負の値)だけ変化させ、その新たな移動目標位置にフォーカスレンズ16を移動させる制御信号を上記D/A変換器54を介してフォーカスモータ駆動回路44に出力する。このような処理を繰り返し、AFV_A=AFV_Bとなった場合にはフォーカスレンズ16の移動を停止させる。これによってフォーカスレンズ16が合焦位置に移動する。
【0040】
ここで、フォーカスレンズ位置検出器56から取得されるフォーカスレンズ16の現在位置を示す検出信号の値(フォーカス位置データ)をF_POSIとし、上述のように設定されるフォーカスレンズ16の移動目標位置をAF_CTRLとすると、CPU40は移動目標位置AF_CTRLから現在位置F_POSIを引いた値、即ち、AF_CTRL−F_POSIをフォーカスモータ駆動回路44に出力する制御信号の値F_SPEEDとする。フォーカスモータ駆動回路44に出力される制御信号は、フォーカスモータ駆動回路44に指令するフォーカスモータ42の回転速度(フォーカスレンズ16の移動速度)に対応した値であり、上述のように設定した制御信号の値F_SPEEDをフォーカスモータ駆動回路44に出力することで、移動目標位置AF_CTRLと現在位置F_POSIとの差(AF_CTRL−F_POSI)に対応した速度でフォーカスレンズ16が移動することになる。
【0041】
次に、上述のようにフォーカスレンズ16を合焦位置に移動させる際のフォーカスレンズ16の移動速度について説明する。上述のようにフォーカスレンズ16の現在位置F_POSIと移動目標位置AF_CTRLとの差は、フォーカスレンズ16の移動速度に対応しており、新たな移動目標位置AF_CTRLを設定する際に現在の移動目標位置に加算する上記移動量が大きいほど、フォーカスレンズ16の移動速度が速くなる。
【0042】
CPU40は、上記chAとchBの焦点評価値の差ΔAFV(=AFV_A−AFV_B)に所定のAFゲインAFGをかけた値ΔAFV*AFGを上記移動量として設定しており、焦点評価値の差ΔAFVが0(AFV_A=AFV_B)、即ち、フォーカスレンズ16が合焦位置に到達した場合には、上記移動量ΔAFV*AFGが0となり、フォーカスレンズ16が合焦位置で停止するようになっている。従って、AFゲインAFGの値を変更することによって焦点評価値の差ΔAFVが同一値の場合における移動量ΔAFV*AFGの大きさを変更することができ、移動量を変更することによってフォーカスレンズ16の移動速度を変更することができる。
【0043】
そこで、CPU40は、AFゲインAFGを、撮影レンズの焦点距離や絞り値(F値)に基づいて設定する。即ち、撮影レンズの焦点距離や絞り値(F値)が変化すると、被写界深度や焦点深度が変化し、同一の被写体であっても焦点評価値の特性(形状等)が変化するため、撮影レンズの焦点距離や絞り値(F値)を考慮してAFゲインAFGの値を設定し、フォーカスレンズ16の移動速度を変更する。
【0044】
例えば、撮影レンズの焦点距離が長い場合(ズームレンズ18がワイド側にある場合)と、焦点距離が短い場合(ズームレンズ18がテレ側にある場合)とを比較すると、焦点距離が短い場合の方が被写界深度が短く、焦点評価値のピーク幅が小さくなるため、焦点距離が長い場合に比べてフォーカスレンズ16を低速で移動させることが適切である。
【0045】
同様に、撮影レンズの絞り径が小さく、F値が大きい場合と、絞り径が大きく、F値が小さい場合とを比較すると、F値が小さい場合の方が被写界深度が短いため、F値が大きい場合に比べてフォーカスレンズ16を低速で移動させることが適切である。
【0046】
従って、焦点距離が短くなる程、又、F値が小さくなる程、フォーカスレンズ16の移動速度が遅くなるようにAFゲインAFGを小さい値に設定する。
【0047】
尚、実際の処理においてCPU40は、撮影レンズの焦点距離やF値を求めてAFゲインAFGを設定するのではなく、撮影レンズの焦点距離やF値に関係する値、即ち、上記ズームレンズ位置検出器58から取得されるズームレンズ18の現在位置を示す値(ズーム位置データ)Z_POSI、アイリス位置検出器60から取得されるアイリスの現在位置を示す値(アイリス位置データ)I_POSIに基づいてAFゲインAFGを設定する。
【0048】
尚、上記説明では、chAとchBの焦点評価値の差ΔAFVを上記移動量を設定する際の要素としたが、これに限らずchAの焦点評価値AFV_AとchBの焦点評価値AFV_Bの比ΔAFV=AFV_A/AFV_Bをその要素とすることができる。尚、この場合の具体的な処理内容については後述する。
【0049】
次に、CPU40におけるAF制御の処理手順について説明する。まず、CPU40における処理全体の流れについて図5のフローチャートで説明すると、CPU40は、所要の初期設定を行った後(ステップS10)、カメラ本体12から与えられるアイリス指令信号に基づいてアイリス制御を行う(ステップS12)。次いで、ズームデマンド64からのズーム指令信号に基づいてズーム制御を行う(ステップS14)。
【0050】
次に、CPU40はAFスイッチ66がONになっているか否かを判定し(ステップS16)、YESと判定した場合には、AFスタートフラグをONにした後(ステップS18)、フォーカス制御の処理を実行する(ステップS20)。一方、ステップS16においてNOと判定した場合にはAFスタートフラグをONにすることなく、フォーカス制御の処理を実行する(ステップS20)。ステップS20のフォーカス制御の処理が終了すると、ステップS12の処理に戻り、ステップS12からステップS20までの処理を繰り返し実行する。
【0051】
図6は、上記ステップS20におけるフォーカス制御の処理を示したフローチャートである。フォーカス制御の処理を実行する場合、まず、CPU40は、焦点評価値生成部70からピント状態検出用撮像素子32A(chA)の焦点評価値AFV_Aを取得する(ステップS30)と共に、ピント状態検出用撮像素子32B(chB)の焦点評価値AFV_Bを取得する(ステップS32)。
【0052】
次に、CPU40は、AFスタートフラグがONに設定されているか否かを判定する(ステップS34)。NOと判定した場合はMFの処理を実行する。
【0053】
MFの処理の場合、CPU40は、フォーカスレンズ位置検出器56からフォーカスレンズ16の現在位置を示すフォーカス位置データF_POSIを取得するとともに(ステップS36)、フォーカスデマンド62からフォーカスレンズ16の移動目標位置を示すフォーカスデマンドデータF_CTRLを取得する(ステップS38)。そして、取得したフォーカス位置データF_POSIとフォーカスデマンドデータF_CTRLとの差F_POSI−F_CTRLを求め、その値を、フォーカスデマンド62により指令された移動目標位置にフォーカスレンズ16を移動させるための移動速度F_SPEEDとして設定する(ステップS40)。そして、その移動速度F_SPEEDを制御信号としてD/A変換器54を介してフォーカスモータ駆動回路44に出力する。(ステップS44)。
【0054】
一方、ステップS34においてYES、即ち、AFスタートフラグがONと判定された場合には、CPU40はAFの処理を実行する(ステップS42)。
【0055】
図7は、ステップS42におけるAFの処理手順を示したフローチャートである。まず、CPU40は、パラメータF_MEMO_FLGが1に設定されているか否かを判断する(ステップS50)。MF制御からAF制御に移行した最初の処理では、NOと判定され、その場合、フォーカスデマンド62から現在の移動目標位置を示すフォーカスデマンドデータを取得し、そのデータ値を初期(現在)の移動目標位置F_CTRLとして設定する(ステップS52)。次に、上記パラメータF_MEMO_FLGを1に設定する(ステップS54)。上記ステップS50においてYESと判定した場合には、これらのステップS52、ステップS54の処理は行わない。
【0056】
次に、CPU40は、ズームレンズ位置検出器58からズームレンズ18の現在位置を示すズーム位置データZ_POSIを読み込むと共に(ステップS56)、アイリス位置検出器60からアイリス20の現在位置を示すアイリス位置データI_POSIを読み込む(ステップS58)。そして、ステップS56及びステップS58で読み込んだズーム位置データZ_POSI及びアイリス位置データI_POSIに基づいて、即ち、撮影レンズの焦点距離及びF値に基づいてAFゲインAFGを設定する(ステップS60)。尚、上述のように焦点距離が短い程、AFゲインAFGを小さく、F値が小さい程、AFゲインAFGを小さくする。
【0057】
続いて、CPU40は、上記図6のステップS30及びステップS32で取得したchAの焦点評価値AFV_AとchBの焦点評価値AFV_Bとの差ΔAFV=AFV_A−AFV_Bを求める(ステップS62)。
【0058】
そして、上記ΔAFVにAFゲインAFGをかけた値(移動量)ΔAFV*AFGを現在の移動目標位置AF_CTRLに加算し、その値を新たな移動目標位置AF_CTRLとする(ステップS64)。即ち、AF_CTRL=AF_CTRL+ΔAFV*AFGとする。
【0059】
次にCPU40は、フォーカスレンズ位置検出器56からフォーカスレンズ16の現在位置を示すフォーカス位置データF_POSIを読み込み(ステップS66)、そのフォーカス位置データF_POSIと、ステップS64で設定した移動目標位置AF_CTRLとの差AF_CTRL−F_POSIを、フォーカスレンズ16を移動させるための移動速度F_SPEEDとして設定する(ステップS68)。そして、図6のフローチャートに戻り、その移動速度F_SPEEDを制御信号としてD/A変換器54を介してフォーカスモータ駆動回路44に出力する(ステップS44)。
【0060】
以上の処理により撮影レンズの焦点距離及びF値に応じた移動速度でフォーカスレンズ16が合焦位置に移動する。
【0061】
次に、図7に示したAF処理のようにchAの焦点評価値AFV_AとchBの焦点評価値AFV_Bとの差ΔAFV=AFV_A−AFV_Bを上記移動量を設定する際の要素とするのではなく、上述のようにchAの焦点評価値AFV_AとchBの焦点評価値AFV_Bの比ΔAFV=AFV_A/AFV_Bを上記移動量を設定する際の要素とする場合のAF処理を図8のフローチャートで説明する。尚、図8のフローチャートにおけるステップS80〜ステップS90の処理は図7のステップS50〜ステップS60の処理と全く同じであるため図8のステップS92の処理から説明する。
【0062】
CPU40は、ステップS80〜ステップS90までの処理を行った後、次に上記図6のステップS30及びステップS32で取得したchAの焦点評価値AFV_AとchBの焦点評価値AFV_Bとの比ΔAFV=AFV_A/AFV_Bを求める(ステップS92)。
【0063】
そして、CPU40は、焦点評価値の比ΔAFVが1.0より大きいか否かを判定する(ステップS94)。YESと判定した場合には、ΔAFV=(ΔAFV−1.0)*AFGとする(ステップS96)。一方、NOと判定した場合には、−ΔAFV=(1/ΔAFV−1.0)*AFGとする(ステップS98)。そして、CPU40は、上記求めた値(移動量)ΔAFVを現在の移動目標位置AF_CTRLに加算し、その値を新たな移動目標位置AF_CTRLとする(ステップS100)。即ち、AF_CTRL=AF_CTRL+ΔAFVとする。
【0064】
次にCPU40は、フォーカスレンズ位置検出器56からフォーカスレンズ16の現在位置を示すフォーカス位置データF_POSIを読み込み(ステップS102)、そのフォーカス位置データF_POSIと、ステップS100で設定した移動目標位置AF_CTRLとの差AF_CTRL−F_POSIを、フォーカスレンズ16を移動させるための移動速度F_SPEEDとして設定する(ステップS104)。そして、図6のフローチャートに戻り、その移動速度F_SPEEDを制御信号としてD/A変換器54を介してフォーカスモータ駆動回路44に出力する(ステップS44)。
【0065】
以上、上記実施の形態では、2つのピント検出用撮像素子32A、32Bから2つの焦点評価値を取得してAF制御を行う場合について説明したが、これに限らず、光路長が異なる位置に配置された3つ以上の撮像素子から得られる3つ以上の焦点評価値に基づいてAF制御を行う場合でもいずれか2つの焦点評価値を上記chA、chBの焦点評価値として扱うことにより本発明を適用することができる。また、1つの撮像素子から得られる1つの焦点評価値に基づいてAF制御を行う場合においても、上述のように撮影レンズの焦点距離やF値を考慮してフォーカスレンズの移動速度を設定するようにして本発明を適用することができる。
【0066】
また、上記実施の形態では、AF制御において、撮影レンズの焦点距離やF値に基づいてフォーカスレンズ16の移動目標位置を設定し、その移動目標位置と現在位置との差に対応した移動速度でフォーカスレンズ16を移動させるようにしたが、これに限らず、撮影レンズの焦点距離やF値に基づいて直接移動速度を設定し、その移動速度でフォーカスレンズ16を移動させるようにしてもよい。
【0067】
また、上記実施の形態では、撮影レンズの焦点距離やF値に基づいてAFゲインAFGを設定することによって、撮影レンズの焦点距離やF値に適応したフォーカスレンズ16の移動速度を設定するようにしたが、撮影レンズの焦点距離やF値に適応したフォーカスレンズ16の移動速度を設定する方法はこれに限らない。例えば、上記AFゲインAFGの値は、撮影レンズの焦点距離やF値を考慮することなく、フォーカスレンズ16を最高速度で移動させる場合に対応する値とすることを前提とし、そのときのフォーカスレンズ16の移動速度(最高速度)が、撮影レンズの焦点距離やF値を考慮した場合に適切なフォーカスレンズ16の移動速度(制限速度)を越えた場合に、フォーカスレンズ16の移動速度をその制限速度に制限するようにしてもよい。制限速度に制限する方法としては、撮影レンズの焦点距離やF値を考慮せずに予め決められたAFゲインAFGの値が、フォーカスレンズ16の移動速度が上記制限速度を越えないように撮影レンズの焦点距離やF値に基づいて決められた制限値を超えた場合には、AFゲインAFGの値をその制限値に制限(設定)する方法や、また、撮影レンズの焦点距離やF値を考慮せずに予め決められたAFゲインAFGに基づいて上記制御信号の値(移動速度)F_SPEEDを求めた場合に、その移動速度F_SPEEDが、撮影レンズの焦点距離やF値に基づいて決められた上記制限速度を超えた場合には、移動速度F_SPEEDをその制限速度に制限(設定)する方法等を用いることができる。
【0068】
また、上記実施の形態では、本発明をテレビカメラシステムに適用した場合を例に説明したが、本発明はこれに限らず、ビデオカメラや静止画を撮影するスチルカメラにも適用することができる。
【0069】
【発明の効果】
以上説明したように、本発明に係るオートフォーカスシステムによれば、画像の鮮鋭度を示す焦点評価値に基づくコントラスト方式のオートフォーカスにおいて、撮影レンズのフォーカスを移動させる際の移動速度を撮影レンズの焦点距離又は絞り値に基づいて設定又は制限するようにしたため、焦点距離や絞り値に応じた焦点評価値特性に適切に対応した移動速度でフォーカスを移動させることができ、フォーカスを迅速且つ安定した動作で確実に合焦位置に移動させることができるようになる。
【図面の簡単な説明】
【図1】図1は、本発明に係るオートフォーカスシステムが適用されたテレビカメラシステムのブロック図である。
【図2】図2は、映像用撮像素子に入射する被写体光の光軸と一対のピント状態検出用撮像素子に入射する被写体光の光軸を同一直線上に表示した図である。
【図3】図3は、焦点評価値生成部の構成を示したブロック図である。
【図4】図4は、横軸に撮影レンズのフォーカス位置、縦軸に焦点評価値をとり、ある被写体を撮影した際のフォーカス位置に対する焦点評価値の様子を示した図である。
【図5】図5は、CPUにおける処理全体の流れを示したフローチャートである。
【図6】図6は、図5におけるフォーカス制御の処理手順を示したフローチャートである。
【図7】図7は、図6におけるAF処理の処理手順を示したフローチャートである。
【図8】図8は、AF処理の他の形態における処理手順を示したフローチャートである。
【符号の説明】
10…レンズ装置、12…カメラ本体、14…撮像部、16…フォーカスレンズ(群)、18…ズームレンズ(群)、20…アイリス、22A…前側リレーレンズ、22B…後側リレーレンズ、24…ハーフミラー、26…リレーレンズ、28…ピント状態検出部、30A…第1プリズム、30B…第2プリズム、32A、32B…ピント状態検出用撮像素子、40…CPU、42…フォーカスモータ、44…フォーカスモータ駆動回路、56…フォーカスレンズ位置検出器、62…フォーカスデマンド、66…AFスイッチ、70…焦点評価値生成部、80A、80B…ハイパスフィルタ(HPF)、82A、82B…A/D変換器、84A、84B…ゲート回路、86A、86B…加算器

Claims (3)

  1. 撮影レンズに入射した被写体光を撮像して映像信号を生成し、該映像信号から被写体像の鮮鋭度を示す焦点評価値を生成する焦点評価値生成手段と、該焦点評価値生成手段により生成される焦点評価値が合焦を示す状態となるように前記撮影レンズのフォーカスを制御するフォーカス制御手段と、を備えたオートフォーカスシステムにおいて、
    前記フォーカス制御手段は、前記撮影レンズのフォーカスを移動させる際の移動速度を前記撮影レンズの焦点距離又は絞り値に基づいて設定することを特徴とするオートフォーカスシステム。
  2. 前記フォーカス制御手段は、前記焦点評価値生成手段により生成された焦点評価値に基づいて前記フォーカスを設定すると共に、前記撮影レンズの焦点距離又は絞り値に基づいて前記フォーカスの制限速度を設定し、前記設定したフォーカスの移動速度が前記制限速度を超えている場合には、前記フォーカスの移動速度を前記制限速度に制限することを特徴とする請求項1のオートフォーカスシステム。
  3. 前記焦点評価値生成手段は、光路長が異なる位置に配置された複数の撮像面において前記撮影レンズに入射した被写体光を撮像して各撮像面に対する複数の焦点評価値を生成し、
    前記フォーカス制御手段は、前記焦点評価値生成手段によって生成された複数の焦点評価値に基づいて前記フォーカスを合焦位置に移動させることを特徴とする請求項1又は2のオートフォーカスシステム。
JP2002243358A 2002-08-23 2002-08-23 オートフォーカスシステム Pending JP2004085674A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243358A JP2004085674A (ja) 2002-08-23 2002-08-23 オートフォーカスシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243358A JP2004085674A (ja) 2002-08-23 2002-08-23 オートフォーカスシステム

Publications (1)

Publication Number Publication Date
JP2004085674A true JP2004085674A (ja) 2004-03-18

Family

ID=32052138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243358A Pending JP2004085674A (ja) 2002-08-23 2002-08-23 オートフォーカスシステム

Country Status (1)

Country Link
JP (1) JP2004085674A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061938A1 (ja) * 2004-12-08 2006-06-15 Fujinon Corporation オートフォーカスシステム
EP1762874A2 (en) * 2005-09-13 2007-03-14 Canon Kabushiki Kaisha Lens apparatus comprising a focus-state detecting unit
CN104049437A (zh) * 2013-03-15 2014-09-17 佳能株式会社 透镜设备和照相机系统
CN113662505A (zh) * 2021-10-22 2021-11-19 北京茗视光眼科医院管理有限公司 一种近视屈光度的测量系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061938A1 (ja) * 2004-12-08 2006-06-15 Fujinon Corporation オートフォーカスシステム
US7880800B2 (en) 2004-12-08 2011-02-01 Fujifilm Corporation Auto focus system that controls focusing speeds and movements based on image conditions
EP1762874A2 (en) * 2005-09-13 2007-03-14 Canon Kabushiki Kaisha Lens apparatus comprising a focus-state detecting unit
EP1762874A3 (en) * 2005-09-13 2007-06-06 Canon Kabushiki Kaisha Lens apparatus comprising a focus-state detecting unit
EP2051120A1 (en) * 2005-09-13 2009-04-22 Canon Kabushiki Kaisha Lens apparatus comprising a focus-state detecting unit
US7532812B2 (en) 2005-09-13 2009-05-12 Canon Kabushiki Kaisha Lens apparatus
US7769283B2 (en) 2005-09-13 2010-08-03 Canon Kabushiki Kaisha Lens apparatus wherein focus detection precision is changed in accordance with insertion of an extender optical system into or removal of the extender optical system from the light path of an imaging optical system
US8218960B2 (en) 2005-09-13 2012-07-10 Canon Kabushiki Kaisha Lens apparatus performing focusing according to zoom position
CN104049437A (zh) * 2013-03-15 2014-09-17 佳能株式会社 透镜设备和照相机系统
US9509943B2 (en) 2013-03-15 2016-11-29 Canon Kabushiki Kaisha Lens apparatus and a camera system
CN113662505A (zh) * 2021-10-22 2021-11-19 北京茗视光眼科医院管理有限公司 一种近视屈光度的测量系统

Similar Documents

Publication Publication Date Title
JP3921069B2 (ja) 撮像装置
JP5089154B2 (ja) オートフォーカスシステム
JP2003337278A (ja) レンズシステム
JPH0933791A (ja) レンズ駆動装置及び撮像装置
US7633545B2 (en) Focus detecting system
JP2004085675A (ja) オートフォーカスシステム
JP2004085673A (ja) オートフォーカスシステム
JP2003270517A (ja) ピント状態検出装置
JP2004085674A (ja) オートフォーカスシステム
JP4189647B2 (ja) オートフォーカスシステム
JP4032877B2 (ja) オートフォーカスシステム
JP2007065593A (ja) オートフォーカスシステム
JP2006215285A (ja) オートフォーカスシステム
JP4066244B2 (ja) オートフォーカスシステム
JP2005156736A (ja) オートフォーカスシステム
JP2004212458A (ja) オートフォーカスシステム
JPH0614245A (ja) ビデオカメラ
JP2003270518A (ja) オートフォーカスシステム
JP2004151608A (ja) オートフォーカスシステム
JP2004258088A (ja) オートフォーカスシステム
JP2006064970A (ja) オートフォーカスシステム
JPH0698235A (ja) カメラ
JP2008225239A (ja) オートフォーカスシステム
JP2004117489A (ja) レンズシステム
JPH05336424A (ja) ビデオカメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070509

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070723

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070926

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080402

Free format text: JAPANESE INTERMEDIATE CODE: A02