JP2004080046A - Led lamp and lamp unit - Google Patents

Led lamp and lamp unit Download PDF

Info

Publication number
JP2004080046A
JP2004080046A JP2003316714A JP2003316714A JP2004080046A JP 2004080046 A JP2004080046 A JP 2004080046A JP 2003316714 A JP2003316714 A JP 2003316714A JP 2003316714 A JP2003316714 A JP 2003316714A JP 2004080046 A JP2004080046 A JP 2004080046A
Authority
JP
Japan
Prior art keywords
light
led
light emitting
red
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003316714A
Other languages
Japanese (ja)
Other versions
JP4386693B2 (en
Inventor
Masanori Shimizu
清水 正則
Yoko Shimomura
下村 容子
Hideo Nagai
永井 秀男
Nobuyuki Matsui
松井 伸幸
Tetsushi Tamura
田村 哲志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003316714A priority Critical patent/JP4386693B2/en
Publication of JP2004080046A publication Critical patent/JP2004080046A/en
Application granted granted Critical
Publication of JP4386693B2 publication Critical patent/JP4386693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED (light emitting diode) lamp whose color rendering properties are excellent and has high emission efficiency. <P>SOLUTION: The LED lamp 100 is excited by a blue light emitting LED element 11 and a red light emitting element 12, and is equipped with a phosphor 13 which emits emitting spectra compensating the emission strength of the light wavelength band between the blue wavelength band emitted by the blue emitting LED element 11 and the red wavelength band emitted by the red emitting LED element 12. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、LEDランプおよびランプユニットに関し、特に、白色発光LEDランプに関する。 The present invention relates to an LED lamp and a lamp unit, and particularly to a white light emitting LED lamp.

 発光ダイオード素子(以下、「LED素子」と称する。)は、小型で効率が良く鮮やかな色の発光を示す半導体素子であり、優れた単色性ピークを有している。LED素子を用いて白色発光をさせる場合、例えば赤色LED素子と緑色LED素子と青色LED素子とを近接して配置させて拡散混色を行わせる必要があるが、各LED素子が優れた単色性ピークを有するがゆえに、色むらが生じやすい。すなわち、各LED素子からの発光が不均一で混色がうまくいかないと、色むらが生じた白色発光となってしまう。このような色むらの問題を解消するために、青色LED素子と黄色蛍光体とを組み合わせて白色発光を得る技術が開発されている(例えば、特許文献1参照。)。 (4) A light-emitting diode element (hereinafter, referred to as an “LED element”) is a semiconductor element that is small, efficient, and emits bright colors, and has an excellent monochromatic peak. In the case of emitting white light using LED elements, for example, it is necessary to arrange a red LED element, a green LED element, and a blue LED element in close proximity to perform diffusion color mixing, but each LED element has an excellent monochromatic peak. , Color unevenness is likely to occur. That is, if the light emission from each LED element is not uniform and color mixing is not successful, white light emission with uneven color occurs. In order to solve such a problem of color unevenness, a technique for obtaining white light emission by combining a blue LED element and a yellow phosphor has been developed (for example, see Patent Document 1).

 この公報に開示されている技術によれば、青色LED素子からの発光と、その発光で励起され黄色を発光する黄色蛍光体からの発光とによって白色発光を得ている。この技術では、1種類のLED素子だけを用いて白色発光を得るので、複数種類のLED素子を近接させて白色発光を得る場合に生じる色むらの問題を解消することができる。
特開平10−242513号公報
According to the technique disclosed in this publication, white light emission is obtained by light emission from a blue LED element and light emission from a yellow phosphor that emits yellow when excited by the light emission. According to this technique, white light emission is obtained by using only one type of LED element, so that the problem of color unevenness that occurs when a plurality of types of LED elements are brought close to each other to obtain white light emission can be solved.
JP-A-10-242513

 従来、LED素子は主に表示素子としての応用展開がなされてきたために、LED素子を照明用ランプとして用いる場合の研究開発というのはあまりなされていない。LED素子を表示素子として用いる場合、LED素子から発光される自発光が有している発光色の特性を問題にすればよいが、ランプとして用いる場合には、物を照らす際の演色性も問題とする必要がある。この演色性の最適化まで検討したLEDランプというのは未だ開発されていないのが実情である。 Conventionally, LED elements have been applied mainly as display elements, and there has been little research and development when LED elements are used as illumination lamps. When an LED element is used as a display element, the characteristics of the luminescent color of the self-emission emitted from the LED element may be a problem, but when used as a lamp, the color rendering property when illuminating an object is also a problem. It is necessary to The fact is that an LED lamp that has been studied up to the optimization of color rendering properties has not yet been developed.

 上記公報に開示されたLED素子は、確かに白色発光を行うことができるが、そのLED素子をランプとして用いる場合には、次のような問題があることを本願発明者は見出した。上記従来のLED素子は、青色LED素子の発光と黄色蛍光体の発光とによって白色系の発光色を作り出しているので、赤色成分となる600nm以上の発光スペクトルが不足している。600nm以上の発光スペクトル(赤色成分)が不足していると、照明やバックライトに適用する場合に赤色の再現が低くなるという問題が生じる。さらに、赤色成分が不足しているので、相関色温度が比較的低い白色発光LED素子を構成することも難しい。本願発明者が調べた結果によると、従来の白色LEDの平均演色評価数Raは、赤の発光スペクトル成分が少なくてもすむ相関色温度が高い光色の場合でも、赤色の再現性の悪さが影響して約85の値を超えることは難しい。赤の色の見えを示す特殊演色評価数R9の値で評価した場合、赤色の再現性の悪さが如実に現れ、従来の白色LEDのR9は、約50近傍の低い値しか示さない。 LED The LED element disclosed in the above-mentioned publication can certainly emit white light, but when the LED element is used as a lamp, the present inventor has found that there are the following problems. In the above-mentioned conventional LED element, a white light emission color is created by the light emission of the blue LED element and the light emission of the yellow phosphor, so that the emission spectrum of 600 nm or more, which is a red component, is insufficient. If the emission spectrum (red component) of 600 nm or more is insufficient, there arises a problem that when applied to illumination and backlight, the reproduction of red is reduced. Further, since the red component is insufficient, it is difficult to configure a white light emitting LED element having a relatively low correlated color temperature. According to the results examined by the inventor of the present application, the average color rendering index Ra of the conventional white LED is such that poor red reproducibility can be obtained even in the case of a light color having a high correlated color temperature that requires a small amount of red emission spectrum component. It is difficult to exceed the value of about 85 due to the influence. When evaluated by the value of the special color rendering index R9 indicating the appearance of red color, poor red reproducibility clearly appears, and R9 of the conventional white LED shows only a low value of about 50.

 また、本願発明者は、上記公報に開示されたLED素子の構成にさらに赤色蛍光体を設けて600nm以上の発光スペクトルを補うようにした構成も検討した。しかし、この構成では、青色LEDの発光によって赤色蛍光体を励起して赤色を発光させることになるため、エネルギー変換効率が非常に悪くなる。すなわち、青色を用いて赤色にすることは変換波長が大きいことを意味しているため、ストークスの法則に従ってエネルギー変換効率が非常に低下する。それゆえ、LEDランプの発光効率が極めて低くなってしまうので、赤色蛍光体を用いる構成は実用的ではない。 発 明 Further, the inventors of the present application have studied a configuration in which a red phosphor is further provided in the configuration of the LED element disclosed in the above publication to supplement the emission spectrum of 600 nm or more. However, in this configuration, since the red phosphor is excited by the emission of the blue LED to emit red light, the energy conversion efficiency is extremely deteriorated. That is, the conversion from blue to red means that the conversion wavelength is large, so that the energy conversion efficiency is greatly reduced according to Stokes' law. Therefore, since the luminous efficiency of the LED lamp becomes extremely low, the configuration using the red phosphor is not practical.

 本発明はかかる諸点に鑑みてなされたものであり、その主な目的は、色再現性が良く発光効率も高いLEDランプを提供することにある。 The present invention has been made in view of the above points, and a main object of the present invention is to provide an LED lamp having high color reproducibility and high luminous efficiency.

 本発明による第1のLEDランプは、青色発光LED素子と、赤色発光LED素子と、前記青色発光LED素子によって励起される蛍光体であって、前記青色発光LED素子が発光する青色の波長帯域と前記赤色発光LED素子が発光する赤色の波長帯域との間の波長帯域の発光強度を補う発光スペクトルを発光する蛍光体とを備えるLEDランプであって、前記LEDランプの相関色温度が5000K以上であって、演色性評価の基準光源が合成昼光の場合において、前記青色発光LED素子のピーク波長は、450nmから460nmの範囲にあり、前記赤色発光LED素子のピーク波長は、600nm以上であり、かつ、前記蛍光体の発光ピーク波長は、520nmから545nmの範囲にある。 A first LED lamp according to the present invention is a blue light emitting LED element, a red light emitting LED element, and a phosphor excited by the blue light emitting LED element, wherein a blue wavelength band in which the blue light emitting LED element emits light. A phosphor that emits an emission spectrum that compensates for the emission intensity of the wavelength band between the red wavelength band in which the red light-emitting LED element emits light, and a correlated color temperature of the LED lamp of 5000 K or more. In the case where the reference light source for color rendering evaluation is synthetic daylight, the peak wavelength of the blue light emitting LED element is in a range of 450 nm to 460 nm, and the peak wavelength of the red light emitting LED element is 600 nm or more, In addition, the emission peak wavelength of the phosphor ranges from 520 nm to 545 nm.

 本発明による第2のLEDランプは、青色発光LED素子と、赤色発光LED素子と、前記青色発光LED素子によって励起される蛍光体であって、前記青色発光LED素子が発光する青色の波長帯域と前記赤色発光LED素子が発光する赤色の波長帯域との間の波長帯域の発光強度を補う発光スペクトルを発光する蛍光体とを備えるLEDランプであって、前記LEDランプの相関色温度が5000K未満であって、演色性評価の基準光源が黒体放射の場合において前記青色発光LED素子のピーク波長は450nmから460nmの範囲にあり、前記赤色発光LED素子のピーク波長は、615nmから650nmの範囲にあり、かつ、前記蛍光体の発光ピーク波長は、545nmから560nmの範囲にある。 A second LED lamp according to the present invention is a blue light-emitting LED element, a red light-emitting LED element, and a phosphor excited by the blue light-emitting LED element, wherein the blue light-emitting LED element emits blue light. A phosphor that emits an emission spectrum that supplements the emission intensity of the wavelength band between the red wavelength band that the red light-emitting LED element emits, and a correlated color temperature of the LED lamp is less than 5000K. The peak wavelength of the blue light emitting LED element is in a range of 450 nm to 460 nm when the reference light source for color rendering evaluation is black body radiation, and the peak wavelength of the red light emitting LED element is in a range of 615 nm to 650 nm. In addition, the emission peak wavelength of the phosphor ranges from 545 nm to 560 nm.

 ある実施形態において、前記蛍光体は、前記青色発光LED素子によって励起されて黄色を発光する黄色発光蛍光体である。 In one embodiment, the phosphor is a yellow light-emitting phosphor that emits yellow light when excited by the blue light-emitting LED element.

 ある実施形態において前記黄色発光蛍光体は、YAG蛍光体、またはMn発光中心を有する蛍光体である。 In one embodiment, the yellow light-emitting phosphor is a YAG phosphor or a phosphor having a Mn emission center.

 ある実施形態において、前記赤色発光LED素子のピーク波長は、610nmから630nmの範囲内であって、平均演色評価数であるR1からR8までで構成される色域面積比Gaよりも、特殊演色評価数であるR9からR12までで構成される色域面積比Ga4が高い。 In one embodiment, the peak wavelength of the red light-emitting LED element is in the range of 610 nm to 630 nm, and is smaller than the color gamut area ratio Ga constituted by the average color rendering index R1 to R8. The color gamut area ratio Ga4 composed of the numbers R9 to R12 is high.

 ある実施形態において、前記赤色発光LED素子の発光強度を調節する発光強度調節手段をさらに備えている。 In one embodiment, the light emitting device further includes a light emission intensity adjusting means for adjusting the light emission intensity of the red light emitting LED element.

 ある実施形態において、前記発光強度調節手段は可変抵抗器である。 In one embodiment, the emission intensity adjusting means is a variable resistor.

 ある実施形態において、前記青色発光LED素子と、前記赤色発光LED素子と、前記蛍光体とが一体素子構成されている。 In one embodiment, the blue light emitting LED element, the red light emitting LED element, and the phosphor are integrally formed.

 ある実施形態において、前記青色発光LED素子の発光部位と、前記赤色発光LED素子の発光部位とが、一つのチップ内に設けられている。 In one embodiment, the light emitting portion of the blue light emitting LED element and the light emitting portion of the red light emitting LED element are provided in one chip.

 ある実施形態において、前記青色発光LED素子および前記蛍光体を含むLED素子と、前記赤色発光LED素子とがクラスタ構成されている。 In one embodiment, the blue light-emitting LED element and the LED element including the phosphor and the red light-emitting LED element are configured in a cluster.

 本発明のランプユニットは、上記のの何れか一つに記載のLEDランプと、前記LEDランプに電力を供給する電力供給器とを備えている。 ラ ン プ A lamp unit according to the present invention includes the LED lamp according to any one of the above, and a power supply that supplies power to the LED lamp.

 ある実施形態において、前記LEDランプから発する光を反射する反射板をさらに備えている。 In one embodiment, the light emitting device further includes a reflector that reflects light emitted from the LED lamp.

 本発明のLEDランプによると、赤色発光LED素子が設けられているので、従来のLED素子による白色発光において不足していた600nm以上の発光スペクトルを、ランプの発光効率を落とすことなく導入することができる。このため、色再現性が良く且つ発光効率も高い白色発光可能なLEDランプを提供することができる。 According to the LED lamp of the present invention, since the red light emitting LED element is provided, it is possible to introduce an emission spectrum of 600 nm or more, which was insufficient in white light emission by the conventional LED element, without lowering the light emission efficiency of the lamp. it can. Therefore, it is possible to provide an LED lamp capable of emitting white light with good color reproducibility and high luminous efficiency.

 また、青色発光LED素子のピーク波長が450nmから470nmの範囲にあり、赤色発光LED素子のピーク波長が610nmから630nmの範囲にあり、かつ、蛍光体の発光ピーク波長が520nmから560nmの範囲にある場合、優れた色再現性を有するLEDランプを実現することができる。さらに、赤色発光LED素子の発光強度を調整する発光強度調整手段がさらに備えられている場合には、赤色発光LED素子の発光強度を調整することができるため、光色可変LEDランプを提供することができる。 Further, the peak wavelength of the blue light emitting LED element is in the range of 450 nm to 470 nm, the peak wavelength of the red light emitting LED element is in the range of 610 nm to 630 nm, and the emission peak wavelength of the phosphor is in the range of 520 nm to 560 nm. In this case, an LED lamp having excellent color reproducibility can be realized. Further, when a light emitting intensity adjusting means for adjusting the light emitting intensity of the red light emitting LED element is further provided, it is possible to adjust the light emitting intensity of the red light emitting LED element. Can be.

 本発明のLEDランプによると、赤色発光LED素子が設けられているので、色再現性が良く且つ発光効率も高い白色発光可能なLEDランプを提供することができる。また、赤色発光LED素子の発光強度を調整する発光強度調整手段がさらに備えられている場合には、赤色発光LED素子の発光強度を調整することができるため、光色可変LEDランプを提供することができる。 According to the LED lamp of the present invention, since the red light emitting LED element is provided, it is possible to provide an LED lamp capable of emitting white light with good color reproducibility and high luminous efficiency. Further, in the case where light emission intensity adjusting means for adjusting the light emission intensity of the red light emitting LED element is further provided, it is possible to adjust the light emission intensity of the red light emitting LED element. Can be.

 以下、図面を参照しながら本発明の実施形態を説明する。以下の図面においては、説明を簡明にするために、実質的に同一の機能を有する構成要素を同一の参照符号で示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, components having substantially the same function are denoted by the same reference numeral for the sake of simplicity.

(実施形態1)
 図1は、本実施形態にかかるLEDランプ100の構成を模式的に示している。LEDランプ100は、青色発光LED素子11と、赤色発光LED素子12と、青色発光LED素子11によって励起され発光する蛍光体13とを備えている。 青色発光LED素子11は、例えば、GaN系青色LEDチップであり、そして赤色発光LED素子12は、例えば、AlInGaP系、GaAsP系、または、GaAlAs系の赤色LEDチップである。本実施形態におけるGaN系青色LEDチップは、GaN系材料の発光層を有する青色発光LEDベアチップであり、赤色LEDチップは、AlInGaP系、GaAsP系、または、GaAlAs系材料の発光層を有する赤色発光LEDベアチップである。そのような材料からなる発光層が、LEDの発光部位となる。
(Embodiment 1)
FIG. 1 schematically shows a configuration of an LED lamp 100 according to the present embodiment. The LED lamp 100 includes a blue light emitting LED element 11, a red light emitting LED element 12, and a phosphor 13 that is excited by the blue light emitting LED element 11 to emit light. The blue light-emitting LED element 11 is, for example, a GaN-based blue LED chip, and the red light-emitting LED element 12 is, for example, an AlInGaP-based, GaAsP-based, or GaAlAs-based red LED chip. The GaN blue LED chip in this embodiment is a blue light emitting LED bare chip having a light emitting layer of a GaN material, and the red LED chip is a red light emitting LED having a light emitting layer of an AlInGaP, GaAsP, or GaAlAs material. It is a bare chip. A light emitting layer made of such a material becomes a light emitting portion of the LED.

 蛍光体13は、青色発光LED素子(青色LEDチップ)11が発光する青色の波長帯域と赤色発光LED素子(赤色LEDチップ)12が発光する赤色の波長帯域との間の波長帯域の発光強度を補う発光スペクトルを発光する。蛍光体13は、例えば、青色LEDチップ11によって励起されて緑色から黄色の範囲のいずれかの色を発光する蛍光体であり、好ましくは、黄色発光蛍光体または緑色発光蛍光体である。なお、蛍光体13の発光は、蛍光だけに限らず、燐光であってもよい。 The phosphor 13 emits light in a wavelength band between a blue wavelength band in which the blue light emitting LED element (blue LED chip) 11 emits light and a red wavelength band in which the red light emitting LED element (red LED chip) 12 emits light. Emit the emission spectrum that makes up. The phosphor 13 is, for example, a phosphor that is excited by the blue LED chip 11 and emits any color in a range from green to yellow, and is preferably a yellow light-emitting phosphor or a green light-emitting phosphor. The light emission of the phosphor 13 is not limited to fluorescent light, but may be phosphorescence.

 図2は、LEDランプ100の分光分布(発光スペクトル分布)を模式的に示しており、波長を横軸とし、発光強度を縦軸としている。図2に示すように、LED100の発光スペクトル分布は、青色LEDチップ11から発光された青色発光スペクトル(B)21と、青色LEDチップ11によって励起されて発光される蛍光体13の緑色から橙色の範囲のいずれかの色(例えば、黄色)の発光スペクトル(G−Y)22と、赤色LEDチップ12から発光される赤色発光スペクトル(R)23とを含んでいる。 FIG. 2 schematically shows the spectral distribution (emission spectrum distribution) of the LED lamp 100, where the horizontal axis represents the wavelength and the vertical axis represents the emission intensity. As shown in FIG. 2, the emission spectrum distribution of the LED 100 includes a blue emission spectrum (B) 21 emitted from the blue LED chip 11 and a green to orange color of the phosphor 13 excited and emitted by the blue LED chip 11. An emission spectrum (G-Y) 22 of any color (for example, yellow) in the range and a red emission spectrum (R) 23 emitted from the red LED chip 12 are included.

 図2に示したように、LEDランプ100の分光分布は、発光スペクトル21および22に加えて、赤色成分の発光スペクトル23も含んでいるので、従来のLED素子による白色発光において不足していた600nm以上の発光スペクトルが補われた白色発光を行うことができる。赤色発光スペクトル23は、青色LEDチップ11によって励起されて蛍光体から発光される成分ではなく、赤色LEDチップ12から発光される成分であるため、ランプの発光効率が低下することもない。すなわち、青色LEDチップ11の発光を用いて赤色の発光スペクトルを生成する場合には、青色から赤色への変換波長が大きいためにストークスの法則にしたがってランプの発光効率が著しく低下してしまう。これに対し、ランプ100では、赤色の発光スペクトル23を赤色LEDチップ12から直接生成させているため、ランプの発光効率の低下を起こすことなく、赤色成分を補った色再現性の良い白色系の発光をすることができる。 As shown in FIG. 2, the spectral distribution of the LED lamp 100 includes a red component emission spectrum 23 in addition to the emission spectra 21 and 22, so that 600 nm which is insufficient in the white light emission by the conventional LED element. White light emission in which the above emission spectrum is supplemented can be performed. The red emission spectrum 23 is not a component that is excited by the blue LED chip 11 and emits light from the phosphor, but is a component that emits light from the red LED chip 12, so that the luminous efficiency of the lamp does not decrease. That is, when a red emission spectrum is generated using the emission of the blue LED chip 11, the luminous efficiency of the lamp is significantly reduced according to Stokes' law because the conversion wavelength from blue to red is large. On the other hand, in the lamp 100, since the red light emission spectrum 23 is directly generated from the red LED chip 12, the white light of good color reproducibility supplemented with the red component can be obtained without lowering the light emission efficiency of the lamp. It can emit light.

 また、図2に示した発光スペクトル21、22および23を、それぞれLEDチップから直接生成させるようにした場合、各LEDチップは単色性ピークを有しているため、均一な白色系の発光となるように拡散混色を行わせることが難しく、それゆえに色むらが生じることとなる。本実施形態のLEDランプ100では、青色LEDチップ11の青色発光スペクトル21と、赤色LEDチップ12の赤色発光スペクトル23との間に位置する発光スペクトルの発光強度を補うために、青色LEDチップ11によって励起される蛍光体13からの発光スペクトル22を使用している。このため、発光スペクトル21、22および23のそれぞれを各LEDチップから直接生成させる場合よりも、拡散混色を行わせることが容易であり、その結果、色むらを防止・抑制した白色発光を行うことが可能となる。 When the emission spectra 21, 22, and 23 shown in FIG. 2 are each directly generated from an LED chip, each LED chip has a monochromatic peak, so that uniform white light is emitted. Thus, it is difficult to carry out diffusion color mixing, and therefore, color unevenness occurs. In the LED lamp 100 of the present embodiment, in order to supplement the emission intensity of the emission spectrum located between the blue emission spectrum 21 of the blue LED chip 11 and the red emission spectrum 23 of the red LED chip 12, the blue LED chip 11 The emission spectrum 22 from the excited phosphor 13 is used. For this reason, it is easier to perform diffuse color mixing than in the case where each of the emission spectra 21, 22, and 23 is directly generated from each LED chip, and as a result, it is possible to perform white light emission in which color unevenness is prevented or suppressed. Becomes possible.

 青色LEDチップ11、蛍光体13、および赤色LEDチップ12は、それぞれ発光する発光スペクトル21、22および23の発光ピーク波長によって特徴づけることが可能である。青色LEDチップ11は、例えば500nm以下の発光ピーク波長を有しており、赤色LEDチップ12は、例えば600nm以上の発光ピーク波長を有している。なお、青色LEDチップ11として、例えば540nm以下の発光ピーク波長を有する青緑LEDチップを用いることも可能である。本明細書において「青色LEDチップ(青色発光LED素子)」は、「青緑LEDチップ(青緑発光LED素子)」を包含するものとする。青緑LEDチップを使用する場合には、青緑LEDチップによって励起されて発光する蛍光体を使用する構成にすればよい。 The blue LED chip 11, the phosphor 13, and the red LED chip 12 can be characterized by emission peak wavelengths of emission spectra 21, 22, and 23, respectively, which emit light. The blue LED chip 11 has, for example, an emission peak wavelength of 500 nm or less, and the red LED chip 12 has, for example, an emission peak wavelength of 600 nm or more. In addition, as the blue LED chip 11, for example, a blue-green LED chip having an emission peak wavelength of 540 nm or less can be used. In this specification, the “blue LED chip (blue light emitting LED element)” includes the “blue green LED chip (blue light emitting LED element)”. When a blue-green LED chip is used, a configuration may be adopted in which a phosphor that emits light when excited by the blue-green LED chip is used.

 蛍光体13は、青色LEDチップ11の発光ピーク波長と赤色LEDチップ12の発光ピーク波長との間に、蛍光体の発光ピーク波長を有している。蛍光体13が黄色発光蛍光体の場合、蛍光体13は、例えば540〜590nmの間、好ましくは550〜590nmの間に発光ピーク波長を有している。なお、蛍光体13が緑色発光蛍光体の場合には、例えば480〜560nmの間、好ましくは500から560nmの間に発光ピーク波長を有している。 The phosphor 13 has the emission peak wavelength of the phosphor between the emission peak wavelength of the blue LED chip 11 and the emission peak wavelength of the red LED chip 12. When the phosphor 13 is a yellow light-emitting phosphor, the phosphor 13 has an emission peak wavelength, for example, between 540 and 590 nm, preferably between 550 and 590 nm. When the phosphor 13 is a green light-emitting phosphor, the phosphor 13 has an emission peak wavelength between 480 and 560 nm, preferably between 500 and 560 nm.

 図3に示すように、発光スペクトル22が例えばブロードとなる場合、必ずしも発光スペクトル21(B)と23(R)との間に明確な発光ピークが存在しなくてもよい。蛍光体13に明確な発光ピーク波長が存在しない場合には、発光スペクトル21(B)と23(R)との間に位置する領域において仮想的な発光ピーク波長を想定して蛍光体13の発光スペクトルを特徴づけるようにしてもよい。その場合、仮想的な発光ピーク波長は、例えば、発光スペクトル21(B)および23(R)のそれぞれの発光ピーク波長の間(例えば、中間点)とすることができる。 (3) As shown in FIG. 3, when the emission spectrum 22 is broad, for example, a clear emission peak does not always need to exist between the emission spectra 21 (B) and 23 (R). When a clear emission peak wavelength does not exist in the phosphor 13, the light emission of the phosphor 13 assumes a virtual emission peak wavelength in a region located between the emission spectra 21 (B) and 23 (R). The spectrum may be characterized. In this case, the virtual emission peak wavelength can be, for example, between the emission peak wavelengths of the emission spectra 21 (B) and 23 (R) (for example, the midpoint).

 再び図1を参照する。図1に示した白色発光LEDランプ100は、青色LEDチップ11と、赤色LEDチップ12と、蛍光体13とが一体素子構成されている。詳細に説明すると、青色LEDチップ11と赤色LEDチップ12とは共に、リードフレーム14の一部として形成された例えば皿状(またはカップ状)の台座17上に配置されており、青色LEDチップ11および赤色LEDチップ12を覆うようにして台(台座)17上に蛍光体13が形成されている。なお、青色LEDチップ11によって蛍光体13が発光するように構成されていればよいため、蛍光体13が青色LEDチップ11および赤色LEDチップ12の一部を覆う構成であってもよいし両者を覆わない構成であってもよい。 Refer to FIG. 1 again. The white light emitting LED lamp 100 shown in FIG. 1 includes a blue LED chip 11, a red LED chip 12, and a phosphor 13 as an integrated element. More specifically, the blue LED chip 11 and the red LED chip 12 are both arranged on a dish-shaped (or cup-shaped) pedestal 17 formed as a part of the lead frame 14. A phosphor 13 is formed on a pedestal (pedestal) 17 so as to cover the red LED chip 12. In addition, since it is sufficient that the phosphor 13 emits light by the blue LED chip 11, the phosphor 13 may cover a part of the blue LED chip 11 and the red LED chip 12. The structure which does not cover may be sufficient.

 青色LEDチップ11の下端(下部端子)は、台17に接触するように配置されてリード14aに電気的に接続されており、青色LEDチップ11の上端(上部端子)は、ボンディングワイヤ15を介してリード14bに電気的に接続されている。一方、赤色LEDチップ12の下端もまた台17上に接触するように配置されてリード14aに電気的に接続されており、その上端は、ボンディングワイヤ15を介してリード14cに電気的に接続されている。 The lower end (lower terminal) of the blue LED chip 11 is disposed so as to be in contact with the base 17 and is electrically connected to the lead 14 a. The upper end (upper terminal) of the blue LED chip 11 is connected via a bonding wire 15. And is electrically connected to the lead 14b. On the other hand, the lower end of the red LED chip 12 is also arranged so as to be in contact with the base 17 and is electrically connected to the lead 14a, and the upper end thereof is electrically connected to the lead 14c via the bonding wire 15. ing.

 本実施形態では、LEDベアチップの上下に、LEDの電極となるアノードとカソードとを設けた例を示したが、これに限定されず、アノードとカソードをLEDベアチップの片面に設けた構成にしてもよい。LEDベアチップは、公知の方法によって作製することができ、例えば、基板上にLEDの発光層を成長させることによって得ることができる。また、本実施形態では、LEDチップをワイヤーボンディングして電気的接続を行っているが、これに限らず、LEDチップをフリップチップ実装してもよい。この場合には、ボンデイングワイヤ15が存在しない構成にすることができる。 In the present embodiment, an example in which an anode and a cathode serving as electrodes of the LED are provided above and below the LED bare chip is not limited to this, and the anode and the cathode may be provided on one surface of the LED bare chip. Good. The LED bare chip can be manufactured by a known method, for example, by growing a light emitting layer of an LED on a substrate. In this embodiment, the LED chips are electrically connected by wire bonding. However, the present invention is not limited to this, and the LED chips may be flip-chip mounted. In this case, a configuration in which the bonding wire 15 does not exist can be adopted.

 リードフレーム14は、不図示の外部回路(例えば点灯回路)に電気的に接続されており、リードフレーム14に電力を供給して、青色LEDチップ11および赤色LEDチップ12を動作させると、赤色成分が補われた白色光がランプ100から発光することになる。また、リードフレーム14に供給する電力を調節することによって、ランプ100の明るさを制御することができる。 The lead frame 14 is electrically connected to an unillustrated external circuit (for example, a lighting circuit). When power is supplied to the lead frame 14 to operate the blue LED chip 11 and the red LED chip 12, a red component is generated. Will be emitted from the lamp 100. Further, the brightness of the lamp 100 can be controlled by adjusting the power supplied to the lead frame 14.

 青色LEDチップ11および赤色LEDチップ12が配置された台17と、ボンディングワイヤ15と、リードフレーム14の一部は、砲弾状の透明樹脂部16によって封入されており、透明樹脂部16は、例えば、エポキシ樹脂やシリコーン樹脂から構成されている。なお、透明樹脂部16の形状は、砲弾状に限定されず、例えば、SMD(サーフェイス・マウント・デバイス)のチップ型(直方体型など)のような形状にしてもよい。 The base 17 on which the blue LED chip 11 and the red LED chip 12 are arranged, the bonding wire 15 and a part of the lead frame 14 are sealed by a shell-shaped transparent resin portion 16. , Made of epoxy resin or silicone resin. The shape of the transparent resin portion 16 is not limited to a shell shape, and may be, for example, an SMD (Surface Mount Device) chip type (such as a rectangular parallelepiped type).

 図1に示した一体素子型(一素子型)のLEDランプ100では、青色LEDチップ11および赤色LEDチップ12に対して共用のリード14aを使用し、青色LEDチップ11および赤色LEDチップ12を共通の台17上に配置しているので、青色LEDチップ11と赤色LEDチップ12とを熱的に結合することができる。両者(11および12)を熱的に結合させると、ほぼ同一温度で使用することができるので、素子温度特性の制御を簡素化することが可能となる。すなわち、共用のリード14aを用いずに、4本のリードを用いて、青色LEDチップ11と赤色LEDチップ12とをそれぞれ個別の台の上に配置して動作させた場合には、半導体素子であるLEDチップ11および12はその動作において温度依存性を有しているので、青色LEDチップ11および赤色LEDチップ12のそれぞれについて素子温度特性の制御をする必要があるが、青色LEDチップ11と赤色LEDチップ12とを共通の台17の上で熱的に結合させることによって簡便に動作の温度補償を行うことができる。また、4本のリードを用いる構成よりも、図1に示した構成の方がリード(引き出しリード)の数を減らすことができるため、ランプの製造コストを減らすこともできる。 In the integrated element type (one-element type) LED lamp 100 shown in FIG. 1, a common lead 14a is used for the blue LED chip 11 and the red LED chip 12, and the blue LED chip 11 and the red LED chip 12 are shared. The blue LED chip 11 and the red LED chip 12 can be thermally coupled. When both of them (11 and 12) are thermally coupled, they can be used at almost the same temperature, so that control of element temperature characteristics can be simplified. That is, when the blue LED chip 11 and the red LED chip 12 are respectively arranged and operated on separate tables using four leads without using the common lead 14a, the semiconductor element Since certain LED chips 11 and 12 have temperature dependence in their operation, it is necessary to control the element temperature characteristics of each of the blue LED chip 11 and the red LED chip 12. By thermally coupling the LED chip 12 and the common table 17 to each other, temperature compensation for operation can be easily performed. The configuration shown in FIG. 1 can reduce the number of leads (leads) than the configuration using four leads, so that the manufacturing cost of the lamp can be reduced.

 なお、リードフレーム14のリードの数は、1本を共用のリード14aとした場合の3本に限定されず、勿論、共用のリード14aを用いない構成の4本にしてもよい。また、青色LEDチップ11と赤色LEDチップ12とのそれぞれの順電流方向を同一にした上で、両者を直列に電気的に接続すれば、リードの数を最小の2つにすることも可能である。 The number of leads of the lead frame 14 is not limited to three when one is used as the common lead 14a, but may be four without using the common lead 14a. Further, if the blue LED chip 11 and the red LED chip 12 have the same forward current direction and are electrically connected in series, the number of leads can be reduced to a minimum of two. is there.

 また、LEDランプ100は、一体素子型であるので、ランプの寸法を比較的小さくすることが可能である。さらに、台17の上に青色LEDチップ11と赤色LEDチップ12とを共に載置し、その上に蛍光体13を形成しているので、青色LEDチップ11および赤色LEDチップ12からの発光を蛍光体13が散乱拡散することができる。このため、混光照明時の混光ムラをより効果的に低減させることができる。すなわち、青色LEDチップ11の発光と赤色LEDチップ12の発光とを混色させる場合にもある程度の混色ムラが生じることになるが、LEDランプ100では、各LEDチップからの発光は蛍光体13を通過する際に散乱拡散して混色されるため、混色ムラが低減された白色光となる。また、混色ムラを低減させる目的で、例えば透明樹脂部16の表面に凹凸を施して、さらに散乱拡散をさせるようにすることも可能である。 Further, since the LED lamp 100 is an integral element type, the dimensions of the lamp can be made relatively small. Further, the blue LED chip 11 and the red LED chip 12 are both mounted on the base 17 and the phosphor 13 is formed thereon, so that the light emitted from the blue LED chip 11 and the red LED chip 12 is The body 13 can scatter and diffuse. For this reason, it is possible to more effectively reduce the light mixing unevenness during the light mixing illumination. That is, even when the light emission of the blue LED chip 11 and the light emission of the red LED chip 12 are mixed, a certain degree of color mixture unevenness occurs. In the LED lamp 100, the light emission from each LED chip passes through the phosphor 13. In this case, the light is scattered, diffused, and mixed, so that white light with reduced mixed color unevenness is obtained. Further, for the purpose of reducing uneven color mixture, for example, the surface of the transparent resin portion 16 may be made uneven to further diffuse and diffuse.

 図4に、LEDランプ100における実際の発光スペクトル分布の一例を示す。図4からわかるように、青色LEDチップ11の発光スペクトル21(発光ピーク波長:460nm、ピーク発光強度:約40)および黄色発光蛍光体13の発光スペクトル22(発光ピーク波長:570nm、ピーク発光強度:約20)に加えて、赤色LEDチップ12の発光スペクトル23(発光ピーク波長:610nm、ピーク発光強度:約100)が含まれている。このため、LEDランプ100によれば、従来技術における青色LEDチップで蛍光体を励起したときに不足する赤色発光のスペクトルパワーを補うことができる。 FIG. 4 shows an example of the actual emission spectrum distribution of the LED lamp 100. As can be seen from FIG. 4, the emission spectrum 21 of the blue LED chip 11 (emission peak wavelength: 460 nm, peak emission intensity: about 40) and the emission spectrum 22 of the yellow phosphor 13 (emission peak wavelength: 570 nm, peak emission intensity: In addition to about 20), an emission spectrum 23 of the red LED chip 12 (emission peak wavelength: 610 nm, peak emission intensity: about 100) is included. For this reason, according to the LED lamp 100, the insufficient spectral power of red light emission when the phosphor is excited by the blue LED chip in the related art can be compensated.

 また、この赤色発光のスペクトルパワーは、赤色LEDチップ12の発光によって補われているので、仮に赤色発光蛍光体で同様の赤色発光のスペクトルパワーを補った場合よりも、高い発光効率を有するLEDランプを提供することが可能となる。赤色LEDチップ12の発光ピーク波長は、上述したように580nm以上であればよいが、色を鮮やかに見せる色再現上の特性(色再現性)は、赤色LEDチップ12の発光波長ピークが600nm以上になると、視細胞のL錐体(赤に相当する刺激に反応する視細胞)に対する刺激純度が高まるため、特に優れるようになる。このため、発光ピーク波長は600nm以上に設定することが好ましい。 Further, since the spectral power of the red light emission is supplemented by the light emission of the red LED chip 12, an LED lamp having a higher luminous efficiency than a case where the same red light emitting spectral power is supplemented by a red light emitting phosphor. Can be provided. As described above, the emission peak wavelength of the red LED chip 12 may be 580 nm or more, but the color reproduction characteristic (color reproducibility) for vividly displaying colors is such that the emission wavelength peak of the red LED chip 12 is 600 nm or more. , The stimulus purity of the photoreceptor cells against the L-cone (receptor cells that respond to the stimulus corresponding to red) is increased, so that the photoreceptors are particularly excellent. Therefore, the emission peak wavelength is preferably set to 600 nm or more.

 なお、今日において、600nmを超えた発光スペクトルを高効率で発光するLED素子用蛍光体(赤色発光蛍光体)が存在していないのが現状であり、比較的安価な赤色LEDチップ12(GaAsP系またはGaAlAs系の赤色LEDチップ)によって赤色成分を補うようにすることは利点が大きい。勿論、比較的高価であるがより高い発光効率を有するAlInGaP系LEDチップを用いてもよい。また、蛍光体の発光スペクトルと異なり、赤色LEDチップ12の発光スペクトルは狭いため、従来の構成において不足していた赤色成分だけを簡便に導入することができる。 At present, at present, there is no LED element phosphor (red light-emitting phosphor) that emits an emission spectrum exceeding 600 nm with high efficiency, and a relatively inexpensive red LED chip 12 (GaAsP-based) is used. It is advantageous to supplement the red component with a GaAlAs-based red LED chip. Of course, an AlInGaP-based LED chip which is relatively expensive but has higher luminous efficiency may be used. Further, unlike the emission spectrum of the phosphor, the emission spectrum of the red LED chip 12 is narrow, so that only the red component which is insufficient in the conventional configuration can be easily introduced.

 本実施形態のLEDランプ100では、赤色発光スペクトルパワーを赤色LEDチップ12の発光によって与えるようにしているので、赤色発光スペクトルパワーを電気的にコントロールすることができる。従って、赤色発光スペクトルの強度を簡単に調節することができ、その結果、簡便な構成によって色温度可変光源を提供することが可能となる。すなわち、黄色発光蛍光体13の発光強度は基本的にその励起源である青色LEDチップ11の発光強度に相関するため、青色LEDチップ11の発光強度と赤色LEDチップ12の発光強度とを設定することによって、任意の光色を得ることができるようになる。 In the LED lamp 100 of the present embodiment, the red light emission spectral power is provided by the light emission of the red LED chip 12, so that the red light emission spectral power can be electrically controlled. Therefore, the intensity of the red emission spectrum can be easily adjusted, and as a result, a variable color temperature light source can be provided with a simple configuration. That is, since the emission intensity of the yellow light-emitting phosphor 13 basically correlates with the emission intensity of the blue LED chip 11, which is the excitation source, the emission intensity of the blue LED chip 11 and the emission intensity of the red LED chip 12 are set. As a result, an arbitrary light color can be obtained.

 図5(a)から(d)は、光色可変を説明するためのLEDランプ100の分光分布の変化を示している。図5(a)から(d)に向かうほど、赤色発光スペクトル23の強度が高くなっている。赤色発光スペクトル23の強度が高くなるに従って、LEDランプ100の相関色温度は低下することになる。すなわち、赤色発光スペクトル23の強度を調節することによって、LEDランプ100の光色を任意に変えることが可能になる。従って、例えば、昼光色、昼白色、白色、温白色、電球色などの各種相関色温度を有する光色を得ることができる。 FIGS. 5A to 5D show changes in the spectral distribution of the LED lamp 100 for explaining light color variation. 5 (a) to (d), the intensity of the red emission spectrum 23 increases. As the intensity of the red emission spectrum 23 increases, the correlated color temperature of the LED lamp 100 decreases. That is, by adjusting the intensity of the red light emission spectrum 23, the light color of the LED lamp 100 can be arbitrarily changed. Therefore, for example, light colors having various correlated color temperatures such as daylight, daylight white, white, warm white, and bulb color can be obtained.

 光色可変LEDランプは、例えば、本実施形態のLEDランプ100を図6に示す回路構成にすることよって実現することが可能である。図6に示した回路200は、青色LEDチップ11と、青色LEDチップ11の発光強度を調節する発光強度調節手段(発光強度調節器)11aと、赤色LEDチップ12と、赤色LEDチップ12の発光強度を調節する発光強度調節手段(発光強度調節器)12aとを備えている。図6に示した構成では、発光強度調節手段として可変抵抗を用いている。この構成によれば、青色LEDチップ11および赤色LEDチップ12の発光強度比を調節することができるため、任意の光色を発光させることができる。さらに、ランプの明るさも簡便に調節することができる。 The variable light color LED lamp can be realized, for example, by configuring the LED lamp 100 of the present embodiment with the circuit configuration shown in FIG. The circuit 200 shown in FIG. 6 includes a blue LED chip 11, a light emission intensity adjusting unit (light emission intensity controller) 11 a for adjusting the light emission intensity of the blue LED chip 11, a red LED chip 12, and light emission of the red LED chip 12. A light intensity adjusting means (light intensity adjuster) 12a for adjusting the intensity. In the configuration shown in FIG. 6, a variable resistor is used as the light emission intensity adjusting means. According to this configuration, the light emission intensity ratio between the blue LED chip 11 and the red LED chip 12 can be adjusted, so that an arbitrary light color can be emitted. Further, the brightness of the lamp can be easily adjusted.

 なお、青色LEDチップ11および赤色LEDチップ12の発光強度比を変えることによって発光色の相関色温度を変えることが可能であるので、青色LEDチップ11に連結される発光強度調節手段11aには単に固定抵抗を用いて、赤色LEDチップ12に連結される発光強度調節手段12aにだけ可変抵抗を用いるようにしても、光色可変LEDランプを実現することができる。発光強度調節手段としては、可変抵抗に限定されず、固定抵抗を切り替える手段、ラダー抵抗を使用する手段、周波数制御による手段、時分周点灯による手段、負荷となるLED素子の連結個数を変える手段、または、結線法を切り替える手段などを用いることができる。なお、青色LEDチップ11および赤色LEDチップ12の発光強度比を変えれば、光色可変LEDランプを実現することができるので、赤色LEDチップ12の発光強度を固定して、青色LEDチップ11の発光強度を変えるような構成にしてもよい。 Since the correlated color temperature of the emission color can be changed by changing the emission intensity ratio between the blue LED chip 11 and the red LED chip 12, the emission intensity adjusting means 11a connected to the blue LED chip 11 simply has Even if a variable resistor is used only for the light emission intensity adjusting means 12a connected to the red LED chip 12 using a fixed resistor, a light color variable LED lamp can be realized. The light emission intensity adjusting means is not limited to a variable resistor, but means for switching a fixed resistance, means for using a ladder resistor, means for frequency control, means for time division lighting, means for changing the number of connected LED elements as a load. Alternatively, means for switching the connection method can be used. If the light emission intensity ratio between the blue LED chip 11 and the red LED chip 12 is changed, a light color variable LED lamp can be realized. Therefore, the light emission intensity of the red LED chip 12 is fixed and the light emission of the blue LED chip 11 is changed. You may make it the structure which changes intensity | strength.

 図7は、本実施形態のLEDランプ100の色度を示している。図7を参照しながら、蛍光体13として黄色発光蛍光体を用いた場合における本実施形態のLEDランプ100の光色可変が可能な範囲について説明する。黄色発光蛍光体13は、例えば、YAG蛍光体、またはMn発光中心を有する蛍光体である。上述したように、黄色発光蛍光体13として、YAG蛍光体を用いるときには、下式のaが少なくbが多い場合の方が緑みが強い蛍光体となり、発光効率を高めるという観点から好ましい。
 YAG=(Y1-a,Gda3(Al1-b,Gab512:Ce
FIG. 7 shows the chromaticity of the LED lamp 100 of the present embodiment. The range in which the light color of the LED lamp 100 of the present embodiment can be varied when a yellow light-emitting phosphor is used as the phosphor 13 will be described with reference to FIG. The yellow light emitting phosphor 13 is, for example, a YAG phosphor or a phosphor having a Mn emission center. As described above, when a YAG phosphor is used as the yellow light-emitting phosphor 13, it is preferable that the following formula, when a is small and b is large, becomes a phosphor having a strong green tint and enhances luminous efficiency.
YAG = (Y 1-a, Gd a) 3 (Al 1-b, Ga b) 5 O 12: Ce

 図7中の領域41は、青色LEDチップ11の色度であり、青色LEDチップ11は、440から480nm近傍に発光ピークを有している。曲線42は、黄色発光蛍光体(YAG蛍光体)13の色度である。YAG蛍光体13の組成中のaが少なくbが大きいほど、図7中の色度座標上でyが大きくxが小さくなる。YAG蛍光体13は、440から480nm近傍に励起スペクトルピークを有するため、領域41に発光光色の範囲がある青色LEDチップ11によって高効率で励起される。 領域 An area 41 in FIG. 7 is the chromaticity of the blue LED chip 11, and the blue LED chip 11 has a light emission peak near 440 to 480 nm. Curve 42 is the chromaticity of the yellow light emitting phosphor (YAG phosphor) 13. As the a in the composition of the YAG phosphor 13 decreases and the b increases, y increases on the chromaticity coordinates in FIG. 7 and x decreases. Since the YAG phosphor 13 has an excitation spectrum peak near 440 to 480 nm, the YAG phosphor 13 is excited with high efficiency by the blue LED chip 11 having a range of emitted light colors in the region 41.

 領域41と曲線42とによって囲まれる範囲45の色度が、青色LEDチップ11と黄色発光蛍光体(YAG蛍光体)13によって実現しうる理論的な色度範囲となる。しかし、範囲45内であっても発光光色が曲線42に近づけば近づくほど、励起源である青色LEDチップ11自身の出力が減るわけであるから、実際上は、LEDランプから高効率な発光を得るようとすると、範囲45内における領域41と曲線42との中間に位置する色度範囲に色温度可変可能な範囲を設定することが好ましい。このような範囲の白色発光の色度と混色されることとなる赤色LEDチップ12の色度の範囲44は、演色という観点から600nm近傍にある。このため、混光された光が広い相関色温度の範囲において黒体放射軌跡30から離れないようにするには、青色LEDチップ11と黄色発光蛍光体13による白色発光の色度は、黒体放射軌跡30より上方に位置し、高い相関色温度を持つような範囲43内にあることが望ましい。 The chromaticity of the range 45 surrounded by the region 41 and the curve 42 is a theoretical chromaticity range that can be realized by the blue LED chip 11 and the yellow light emitting phosphor (YAG phosphor) 13. However, even within the range 45, the closer to the curve 42 the emitted light color is, the lower the output of the blue LED chip 11 itself, which is the excitation source, is. In order to obtain the range, it is preferable to set a color temperature variable range in a chromaticity range located between the area 41 and the curve 42 in the range 45. The chromaticity range 44 of the red LED chip 12 to be mixed with the chromaticity of white light emission in such a range is near 600 nm from the viewpoint of color rendering. Therefore, in order to prevent the mixed light from leaving the black body radiation locus 30 in a wide correlated color temperature range, the chromaticity of white light emitted by the blue LED chip 11 and the yellow light emitting phosphor 13 is It is desirable to be located above the radiation trajectory 30 and within a range 43 having a high correlated color temperature.

 その結果として、範囲43内の白色発光の色度と、範囲44内の赤色LEDチップ12の色度とによって囲まれる色度範囲(すなわち、図中の線31と線32の間の領域)で相関色温度を可変できるLEDランプを実現することができる。言い換えると、JISやCIE(国際照明委員会)で規定される蛍光ランプの光源色の色度範囲に準ずる発光色(JIS;昼光色、昼白色、白色、温白色、電球色。CIE;Daylight、Cool white、White、Warm white)を得ることができ、加えて、それらの発光色の色度範囲を結んだ領域の色度にすることもできる光色可変なLEDランプを実現することができる。図中の線33は、本実施形態のLEDランプ100の色度を変化させた例を示している。すなわち、より黒体放射軌跡30に近い状態で、相関色温度を大きく変化させることができる例を示している。 As a result, in the chromaticity range surrounded by the chromaticity of white light emission in the range 43 and the chromaticity of the red LED chip 12 in the range 44 (that is, the area between the lines 31 and 32 in the drawing). An LED lamp that can change the correlated color temperature can be realized. In other words, the emission color (JIS; daylight, daylight white, white, warm white, light bulb color, CIE; Daylight, Cool) conforming to the chromaticity range of the light source color of the fluorescent lamp specified by JIS or CIE (International Commission on Illumination). white, White, and Warm @ white), and in addition, it is possible to realize an LED lamp with a variable light color that can make the chromaticity of a region connecting the chromaticity ranges of the emission colors. A line 33 in the figure shows an example in which the chromaticity of the LED lamp 100 of the present embodiment is changed. That is, an example is shown in which the correlated color temperature can be greatly changed in a state closer to the black body radiation locus 30.

 図7に示した例において、赤色LEDチップ12の発光ピーク波長を630nm以下に設定すると、その光色変化の軌跡が黒体放射軌跡に沿うため、比較的広い相関色温度の範囲で、黒体放射軌跡30近傍における光色可変を可能とすることができる。その結果、平均演色評価数を高めることが可能となる。 In the example shown in FIG. 7, when the emission peak wavelength of the red LED chip 12 is set to 630 nm or less, the trajectory of the light color change follows the blackbody radiation trajectory. The light color can be changed in the vicinity of the radiation trajectory 30. As a result, it is possible to increase the average color rendering index.

 なお、広い範囲での相関色温度可変を目的とせずに、低色温度光源としての使用を意図するのであれば、青色LEDチップ11と黄色発光蛍光体13による範囲43内の白色発光の色度と赤色LEDチップ44の色度に囲まれる範囲は、線31と線32の間の領域に限定されず、範囲45内において適宜決定すればよい。 In addition, if it is intended to be used as a low color temperature light source without aiming to vary the correlated color temperature in a wide range, the chromaticity of white light emission within the range 43 by the blue LED chip 11 and the yellow light emitting phosphor 13 The range surrounded by the chromaticity of the red LED chip 44 and the chromaticity of the red LED chip 44 is not limited to the region between the line 31 and the line 32, and may be appropriately determined within the range 45.

 上記実施形態では、蛍光体13として黄色発光蛍光体を用いた場合の説明をしてきたが、黄色発光蛍光体に代えて、青色LEDチップ11によって励起され緑色を発光する緑色発光蛍光体を用いることも可能である。緑色発光蛍光体は、例えば480から560nmの発光ピーク波長を有しており、緑色発光蛍光体としては、例えば、YAG蛍光体、または、Tb、Ce、Eu、およびMnの内の少なくとも1つを発光中心としてドープした蛍光体を用いることができる。なお、照明光としての演色性の改善のために、発光ピーク波長の異なる蛍光体を複数種類用いることも可能である。現在、最も視感効率の高い555nmの近傍で高効率に発光するLED素子が存在しないため、この近傍の発光を蛍光体による発光で補うことは大きな意義を有している。また、上記実施形態においては、無機蛍光体を用いた場合を示したが、無機蛍光体に代えて、同様な発光ピークを有する有機蛍光体を用いてもよい。有機ELの開発に伴って、近年、実用可能な有機蛍光体が研究・開発されているため、無機蛍光体のみならず、有機蛍光体も使用可能な状況になりつつあるからである。 In the above embodiment, the case where the yellow light-emitting phosphor is used as the phosphor 13 has been described. However, instead of the yellow light-emitting phosphor, a green light-emitting phosphor that emits green light when excited by the blue LED chip 11 is used. Is also possible. The green light-emitting phosphor has an emission peak wavelength of, for example, 480 to 560 nm, and the green light-emitting phosphor is, for example, a YAG phosphor, or at least one of Tb, Ce, Eu, and Mn. A doped phosphor can be used as the emission center. Note that a plurality of types of phosphors having different emission peak wavelengths can be used in order to improve color rendering properties as illumination light. At present, there is no LED element that emits light with high efficiency in the vicinity of 555 nm, which has the highest luminous efficiency. Therefore, supplementing the light emitted in the vicinity with the light emitted by the phosphor has great significance. Further, in the above embodiment, the case where the inorganic phosphor is used is described, but an organic phosphor having a similar emission peak may be used instead of the inorganic phosphor. This is because practical organic phosphors have been researched and developed in recent years along with the development of the organic EL, so that not only inorganic phosphors but also organic phosphors can be used.

 黄色発光蛍光体と同様に、緑色発光蛍光体の発光強度も、基本的にその励起源である青色LEDチップ11の発光強度に相関するので、青色LEDチップ11の発光強度と赤色LEDチップ12の発光強度とを設定するだけで、任意の光色を得ることができる。従って、緑色発光蛍光体を用いる場合でも、簡便な構成での光色可変LED照明光源を実現することができる。 Similarly to the yellow light-emitting phosphor, the light-emitting intensity of the green light-emitting phosphor is basically correlated with the light-emitting intensity of the blue LED chip 11, which is its excitation source. An arbitrary light color can be obtained only by setting the light emission intensity. Therefore, even when a green light-emitting phosphor is used, a light-color-variable LED illumination light source with a simple configuration can be realized.

 今日において、人間の比視感度の最も高い555nm近傍の帯域に発光スペクトルを有する高効率な緑色発光LED素子が、工業的に実用レベルで存在しないのが実情であるので、この帯域の発光を蛍光体の発光によって高効率に実現することは利点が大きい。 At present, there is no industrially practical, high-efficiency green light-emitting LED element having an emission spectrum in the band near 555 nm, which is the highest in human relative luminous efficiency. The realization of high efficiency by light emission of the body has a great advantage.

 さらに、緑色発光蛍光体を用いた構成の場合には、青色LEDチップ11、緑色発光蛍光体13、赤色LEDチップ12の各発光スペクトルを、R・G・Bの比較的狭帯域な範囲に集中させることが可能となる。このため、例えば3波長域発光形光源のように色域面積比の大きい色鮮やかな色再現特性を示す光源を構成することができる。つまり、この構成によれば、バックライトに用いる場合においても、高輝度で、且つ、色再現の色域面積が広い表示を行うことが可能となる。本構成においても、赤色発光LEDの発光ピーク波長を600nm以上にすると、黄色発光蛍光体の場合と同様に赤に対する刺激純度が高まるため、より良好な色再現性を得ることができる。 Further, in the case of the configuration using the green light emitting phosphor, the respective emission spectra of the blue LED chip 11, the green light emitting phosphor 13, and the red LED chip 12 are concentrated in a relatively narrow band of RGB. It is possible to do. Therefore, for example, a light source having a large color gamut area ratio and exhibiting vivid color reproduction characteristics, such as a three-wavelength band light source, can be configured. That is, according to this configuration, even when used for a backlight, it is possible to perform display with high luminance and a wide color gamut area for color reproduction. Also in this configuration, when the emission peak wavelength of the red light emitting LED is set to 600 nm or more, the stimulus purity for red is increased as in the case of the yellow light emitting phosphor, so that better color reproducibility can be obtained.

 なお、緑色発光蛍光体を用いた構成の場合、照明光の演色性の観点から、青色LEDチップ11の発光ピーク波長が440から470nmであり、緑色発光蛍光体の発光ピーク波長が520から560nmであり、そして赤色LEDチップ12の発光ピーク波長が600から650nmであることが望ましい。また、バックライトとしての色再現の観点からは、青色LEDチップ11の発光ピーク波長が440nm以下であり、緑色発光蛍光体の発光ピーク波長が510から550nmであり、そして赤色LEDチップ12の発光ピーク波長が610nm以上、望ましくは630nm以上であることが好ましい。 In the case of using a green light-emitting phosphor, the emission peak wavelength of the blue LED chip 11 is 440 to 470 nm, and the emission peak wavelength of the green light-emitting phosphor is 520 to 560 nm from the viewpoint of the color rendering of the illumination light. And the peak emission wavelength of the red LED chip 12 is desirably 600 to 650 nm. From the viewpoint of color reproduction as a backlight, the emission peak wavelength of the blue LED chip 11 is 440 nm or less, the emission peak wavelength of the green light-emitting phosphor is 510 to 550 nm, and the emission peak wavelength of the red LED chip 12 is The wavelength is preferably 610 nm or more, more preferably 630 nm or more.

(実施形態2)
 本実施形態では、青色LEDチップ11と、赤色LEDチップ12と、蛍光体13との好適な組み合わせについて説明する。上記実施形態1のLEDランプ100によれば、上述したように、赤色LEDチップ12により、従来のLED素子による白色発光において不足していた赤色発光スペクトルを導入できるため、色再現性の良いLEDランプを提供することができる。このLEDランプの色再現性を評価する上で問題となるのは、色再現性の評価方法である。以下、この問題を説明する。
(Embodiment 2)
In the present embodiment, a preferred combination of the blue LED chip 11, the red LED chip 12, and the phosphor 13 will be described. According to the LED lamp 100 of the first embodiment, as described above, the red LED chip 12 can introduce a red light emission spectrum which was insufficient in white light emission by the conventional LED element. Can be provided. A problem in evaluating the color reproducibility of the LED lamp is a method for evaluating the color reproducibility. Hereinafter, this problem will be described.

 実施形態1のLEDランプ100では、従来不足していた赤色発光スペクトルが導入されているので、赤色の見えを示す特殊演色評価数R9および平均演色評価数Raが、従来の白色LEDランプよりも向上することは容易に理解できる。しかし、LEDランプの色再現性は、これらの評価数による評価方法だけで判断するのは適切でない。すなわち、従来から照明用光源として使用されている蛍光ランプ、電球、およびHID光源の発光に比べて、LEDの発光は、色を非常に鮮やかに見せるという傾向を有しているが、従来の平均演色評価数や特殊演色評価数だけの評価は、LEDを光源としたときの演色性の特徴を十分捉えきれない。LEDの発光が色を非常に鮮やかに見せるのは、LEDを照明に用いる際に特徴的な事象であり、半値幅の狭い狭帯域で、かつ、副発光波長のない高色純度の分光分布を有するというLEDの特徴に起因するものである。 In the LED lamp 100 of the first embodiment, since the red light emission spectrum, which has been lacking conventionally, is introduced, the special color rendering index R9 and the average color rendering index Ra indicating the appearance of red are improved as compared with the conventional white LED lamp. It is easy to understand. However, it is not appropriate to determine the color reproducibility of the LED lamp only by the evaluation method based on these evaluation numbers. That is, compared to the fluorescent lamps, light bulbs, and HID light sources that have conventionally been used as illumination light sources, the LED light emission has a tendency to show colors very vividly. The evaluation using only the color rendering index and the special color rendering index does not sufficiently capture the characteristics of the color rendering properties when an LED is used as a light source. It is a characteristic phenomenon when LEDs are used for lighting that the emission of the LEDs makes the colors look very vivid, and the spectral distribution of high color purity in a narrow band with a narrow half-value width and no side emission wavelength is obtained. This is due to the characteristic of the LED having the LED.

 実施形態1のLEDランプ100では、可視発光帯域における短波長側の青および長波長側の赤にLEDの半値幅の狭い発光を有している(図4参照)。それゆえ、蛍光ランプなどの光源と比べて、色を非常に鮮やかに見せることが可能である。本願発明者は、多数の実験・検討の下、LEDランプ100にとって好適な分光分布を導きだすことに成功した。以下、本願発明者が行ったLEDランプ100についての色再現性の最適化手法をまず説明し、その後、LEDランプ100が優れた色再現性を示す好適な分光分布の例を説明する。 The LED lamp 100 of the first embodiment emits light with a narrow half-width of the LED in blue on the short wavelength side and red in the long wavelength side in the visible light emission band (see FIG. 4). Therefore, compared to a light source such as a fluorescent lamp, it is possible to show colors very vividly. The inventor of the present application has succeeded in deriving a spectral distribution suitable for the LED lamp 100 under many experiments and studies. Hereinafter, a method of optimizing the color reproducibility of the LED lamp 100 performed by the inventor of the present application will be described first, and then, an example of a suitable spectral distribution in which the LED lamp 100 exhibits excellent color reproducibility will be described.

 まず、従来の演色性評価数による評価の問題を説明する。従来の演色性評価数は、評価する光源と同等の相関色温度を有する合成昼光や黒体放射などの基準光源での各種演色評価色票の色再現を100とおいた場合に、評価したい評価光源での各種演色評価色票の色再現が、当該基準光源での色再現とどれだけずれているかを評価し指標化するものである。それゆえ、評価光源での演色と基準光源での演色が一致した場合が最も評価が高くなる。評価色票が基準光源での演色よりもくすんで見え、その結果、好ましくなく見える場合は当然演色評価は低くなるが、逆に、評価色票が基準光源での演色よりも鮮やかに見え、その結果、好ましく見える場合もまた演色評価は低くなってしまう。つまり、より鮮やかに見えたり、色が目立って見えたりする場合にも、演色評価が低くなるという問題を有している。 First, the problem of evaluation using the conventional color rendering property evaluation number will be described. The conventional color rendering property evaluation number is an evaluation to be evaluated when the color reproduction of various color rendering evaluation color chips with a reference light source such as synthetic daylight or black body radiation having a correlated color temperature equivalent to the light source to be evaluated is set to 100. It evaluates how much the color reproduction of various color rendering evaluation color chips at the light source deviates from the color reproduction at the reference light source and makes it an index. Therefore, the highest evaluation is obtained when the color rendering at the evaluation light source matches the color rendering at the reference light source. When the evaluation color chip looks duller than the color rendering with the reference light source, as a result, if it looks unfavorable, the color rendering evaluation is naturally lower, but conversely, the evaluation color patch looks more vivid than the color rendering with the reference light source, As a result, the color rendering evaluation is low even when it looks favorable. In other words, there is a problem that the color rendering evaluation is low even when the image looks more vivid or the color is more conspicuous.

 今日、日常生活において人間を取りまく物は、木や石などの中彩度の自然物ばかりでなく、鮮やかな青や黄色等のような人工的に鮮やかな着色がなされた色を持った工業製品で満ちあふれている。このため、評価色票が基準光源での演色よりも鮮やかに見える場合に、その光源に対して、低い評価を与えることは必ずしも適切な評価とはいえない。そこで、本願発明者は、LED光源の特徴を生かすべく、LEDランプの分光分布の最適化を行った。以下、本願発明者が行った最適化手法を説明する。 In today's daily life, objects surrounding humans are not only natural objects of medium saturation such as trees and stones, but also industrial products with artificially vivid colors such as vivid blue and yellow. Overflowing. For this reason, if the evaluation color chip looks more vivid than the color rendering with the reference light source, giving a low evaluation to the light source is not necessarily an appropriate evaluation. Therefore, the inventor of the present application has optimized the spectral distribution of the LED lamp in order to take advantage of the characteristics of the LED light source. Hereinafter, an optimization method performed by the present inventors will be described.

 光源の演色性評価手法は、国際的な整合を持っており、日本ではJIS Z8726に開示されている。この中で、国際規格では規定されていないものの、「演色評価数による以外の演色性の評価法」として色域面積比による方法が、一般にオーソライズされた方法として示されている。この方法は、平均演色評価数計算用の試験色(R1〜R8)で構成される色域面積の比で評価する方法である。より詳細に説明すると、平均演色評価数の算出に用いられるR1からR8までの色度座標を用いるものであり、基準光源によって演色される色度座標上の8点を結んだときの色度座標上の面積と、評価光源によって演色される色度座標上の8点を結んだときの色度座標上の面積との比を求め、それを色域面積比Gaとする評価手法である。 The method of evaluating the color rendering properties of light sources has international consistency and is disclosed in Japan in JIS Z8726. Among them, although not specified in the international standard, a method based on a color gamut area ratio is generally shown as an authorized method as "a method for evaluating color rendering properties other than the color rendering index". This method is a method in which the evaluation is made based on the ratio of the color gamut areas composed of test colors (R1 to R8) for calculating the average color rendering index. More specifically, the chromaticity coordinates from R1 to R8 used for calculating the average color rendering index are used, and the chromaticity coordinates obtained by connecting eight points on the chromaticity coordinates rendered by the reference light source. This is an evaluation method in which a ratio between an upper area and an area on chromaticity coordinates when eight points on chromaticity coordinates rendered by an evaluation light source are connected is determined, and the obtained ratio is defined as a color gamut area ratio Ga.

 この評価手法によれば、Gaが100より小さいときには、彩度が減った色の見えとなるため、くすんで見える傾向にあり、一方、Gaが100より大きいときには、彩度が増した色の見えとなるため、鮮やかに見える傾向にある。このように、基準光源との色再現のずれによる評価でなく、色域面積比による評価を用いると、鮮やかに見える場合において、Raが低くなっても、好ましく見える傾向を示す評価を得ることができる。この評価手法は、LEDの特徴である鮮やかな演色を評価する上で、有効な評価指標であるように思える。しかし、この指標のみを使用した場合、Gaを高めると良い評価になるものの、同様の評価試験色を用いて評価したRaは低下してしまい、基準光源との色再現のずれによる違和感が大きくなってしまう。つまり、Gaの指標のみを使用した場合、Raの指標との整合性がとれなくなってしまう。 According to this evaluation method, when Ga is smaller than 100, the color has a reduced color appearance, so that it tends to look dull. On the other hand, when Ga is larger than 100, the color has a higher color appearance. And tend to look vivid. As described above, when the evaluation based on the color gamut area ratio is used instead of the evaluation based on the color reproduction deviation from the reference light source, it is possible to obtain an evaluation that shows a favorable viewing tendency even when Ra is low when the image is vivid. it can. This evaluation method seems to be an effective evaluation index for evaluating the vivid color rendering characteristic of the LED. However, when only this index is used, Ra increases when Ga is increased, but Ra evaluated using a similar evaluation test color decreases, and discomfort due to a shift in color reproduction from the reference light source increases. Would. That is, when only the Ga index is used, consistency with the Ra index cannot be obtained.

 そこで、本願発明者は、鮮やかな赤・黄・緑・青についての特殊演色評価数であるR9からR12を用いた色域面積比を、新たな評価指標として導入した。この評価指標による評価方法を説明すると、上述したR1からR8の評価試験色を用いたGaと同様のJISZ8726に示される計算手法に乗っ取って、R1からR8の評価試験色の代わりにR9からR12を用いて色域面積比を求める方法である。以下、本明細書において、特殊演色評価数R9〜R12による色域面積比を「Ga4」と呼ぶこととする。 Therefore, the inventor of the present application introduced a color gamut area ratio using R9 to R12, which are special color rendering indexes for vivid red, yellow, green, and blue, as a new evaluation index. Explaining the evaluation method using this evaluation index, the calculation method shown in JISZ8726 similar to Ga using the above-described evaluation test colors R1 to R8 is hijacked, and R9 to R12 are substituted for the evaluation test colors R1 to R8. This is a method of obtaining a color gamut area ratio using the above. Hereinafter, in this specification, the color gamut area ratio based on the special color rendering indexes R9 to R12 is referred to as “Ga4”.

 本来、R1からR8は、自然な物の微妙な見えの違いを評価するために選定されたものであり、中彩度の試験色である。これに対して、R9からR12は、本来鮮やかなものの見えを評価するために選定された評価色票である。このため、Ga4を使用することによって、鮮やかに見せたい物が鮮やかに見えているかということを抽出して正確に評価することが可能になる。つまり、中彩度の微妙で正確な色の見えが要求される物に対する見えについては、GaとRaが100に近くなるような自然の物の色に忠実な色再現を行い、かつ、鮮やかな色再現を行いたい物に対する見えについては、Ga4が高くなるような色鮮やかな色再現を行うことが、色再現の最適化となる。このような最適化を行うと、色の彩度のコントラストが高くメリハリを利かせつつ、より自然な色再現を行わせることができる。 R1 to R8 were originally selected to evaluate subtle differences in the appearance of natural objects, and are medium-saturation test colors. On the other hand, R9 to R12 are evaluation color chips that are originally selected to evaluate the appearance of vivid objects. For this reason, by using Ga4, it is possible to extract and accurately evaluate whether an object that one wishes to show vividly is clearly visible. In other words, with respect to the appearance of an object requiring a delicate and accurate color appearance of medium saturation, color reproduction faithful to the color of a natural object such that Ga and Ra are close to 100 is performed, and at the same time, With regard to the appearance of an object for which color reproduction is to be performed, performing colorful color reproduction such that Ga4 is high is optimization of color reproduction. When such optimization is performed, more natural color reproduction can be performed while enhancing the contrast of color saturation and enhancing sharpness.

 本願発明者は、上記実施形態1のLEDランプ100に対して、最適化処理を行い、次のような知見を得た。 発 明 The inventor of the present application performed optimization processing on the LED lamp 100 of Embodiment 1 and obtained the following knowledge.

 (1)赤色LEDチップ12の発光ピーク波長が600nm以上であると、平均演色評価数Raを高めることができる。そして、610nmから630nmの範囲内にすると、Raを高めながらGa4を高め、かつ、GaよりもGa4を高くすることができる。つまり、この範囲であれば、微妙で厳密な色再現が望まれる中彩度の色については忠実に色再現することができ、高彩度の色については、鮮やかに色再現を行うことができる。 (1) When the emission peak wavelength of the red LED chip 12 is 600 nm or more, the average color rendering index Ra can be increased. When the thickness is in the range from 610 nm to 630 nm, Ga4 can be increased while Ra is increased, and Ga4 can be made higher than Ga. In other words, within this range, it is possible to faithfully reproduce the color of medium saturation where subtle and strict color reproduction is desired, and vividly reproduce the color of high saturation.

 青色LEDチップ11の発光ピーク波長が470nm以下であると、Raを高めることができる。そして、450nmから470nmの範囲内にすると、Raを高めながらGa4を高め、かつ、GaよりもGa4を高くすることができる。 (4) When the emission peak wavelength of the blue LED chip 11 is 470 nm or less, Ra can be increased. When the thickness is in the range of 450 nm to 470 nm, Ga4 can be increased while Ra is increased, and Ga4 can be made higher than Ga.

 そのようなLEDチップと組み合わされる蛍光体13の発光ピーク波長は、520nmから560nmの範囲内にあることが好ましい。545nmから560nmの範囲内にすると、Raを高くできることが多いため、より好ましい。 (4) The emission peak wavelength of the phosphor 13 combined with such an LED chip is preferably in the range of 520 nm to 560 nm. Ra within the range of 545 nm to 560 nm is more preferable because Ra can often be increased.

 (2)LEDランプ100の相関色温度が5000K以上であって、演色性評価の基準光源が合成昼光の場合においては、青色LEDチップ11の発光ピーク波長は、450nmから460nmの範囲にあり、赤色LEDチップ12の発光ピーク波長は、600nm以上であり、かつ、蛍光体13の発光ピーク波長は、520nmから560nmの範囲にあることがさらに好ましい。 (2) When the correlated color temperature of the LED lamp 100 is 5000K or more and the reference light source for color rendering evaluation is synthetic daylight, the emission peak wavelength of the blue LED chip 11 is in the range of 450 nm to 460 nm. More preferably, the emission peak wavelength of the red LED chip 12 is 600 nm or more, and the emission peak wavelength of the phosphor 13 is in the range of 520 nm to 560 nm.

 (3)LEDランプ100の相関色温度が5000K未満であって、演色性評価の基準光源が黒体放射の場合においては、赤色LEDチップ12の発光ピーク波長は、615nmから650nmの範囲にあり、かつ、蛍光体13の発光ピーク波長は、545nmから560nmの範囲にあることがさらに好ましい。 (3) When the correlated color temperature of the LED lamp 100 is less than 5000 K and the reference light source for color rendering evaluation is blackbody radiation, the emission peak wavelength of the red LED chip 12 is in the range of 615 nm to 650 nm; Further, the emission peak wavelength of the phosphor 13 is more preferably in the range of 545 nm to 560 nm.

 (4)LEDランプ100の相関色温度を低いときから高いときまで可変させる場合においては、青色LEDチップ11の発光ピーク波長は、455nmから465nmの範囲にあり、赤色LEDチップ12の発光ピーク波長は、620nmから630nmの範囲にあり、かつ、蛍光体13の発光ピーク波長は、540nmから550nmの範囲にあることがより好ましい。 (4) When the correlated color temperature of the LED lamp 100 is varied from low to high, the emission peak wavelength of the blue LED chip 11 is in the range of 455 nm to 465 nm, and the emission peak wavelength of the red LED chip 12 is , 620 nm to 630 nm, and the emission peak wavelength of the phosphor 13 is more preferably in the range of 540 nm to 550 nm.

 色再現の最適化が行われたLEDランプ100の例を、図8から図10ならびに表1から表3に示す。 FIGS. 8 to 10 and Tables 1 to 3 show examples of the LED lamp 100 in which the color reproduction has been optimized.

 図8(a)は、相関色温度が低いものの代表として3000Kの場合について最適化を行ったLEDランプ100の分光分布の一例を示している。3000Kは、常用される照明光源において相関色温度の下限に近いレベルである。3000Kの場合、Raの計算時においては比較する基準光源は黒体放射である。この例における青色LEDチップ11の発光ピーク波長は460nmであり、赤色LEDチップ12の発光ピーク波長は625nmであり、そして、蛍光体13の発光ピーク波長は545nmである。 FIG. 8A shows an example of the spectral distribution of the LED lamp 100 that has been optimized for 3000 K as a representative of those having a low correlated color temperature. 3000K is a level close to the lower limit of the correlated color temperature in a commonly used illumination light source. In the case of 3000K, the reference light source to be compared when calculating Ra is black body radiation. In this example, the emission peak wavelength of the blue LED chip 11 is 460 nm, the emission peak wavelength of the red LED chip 12 is 625 nm, and the emission peak wavelength of the phosphor 13 is 545 nm.

 図8(b)は、図8(a)に示した分光分布を持つLEDランプ100についてのGaによる色域面積比を示すグラフであり、そして、図8(c)は、Ga4による色域面積比を示すグラフである。下記表1には、上記条件に加えて、図8についてのLEDランプ100の光色の色度値(x,y)、Duv、演色性(Ra、R1〜R15)、色域面積比もあわせて示している。 FIG. 8B is a graph showing a color gamut area ratio by Ga for the LED lamp 100 having the spectral distribution shown in FIG. 8A, and FIG. 8C is a color gamut area by Ga4. It is a graph which shows a ratio. In Table 1 below, in addition to the above conditions, the chromaticity values (x, y), Duv, color rendering (Ra, R1 to R15), and color gamut area ratio of the light color of the LED lamp 100 in FIG. Is shown.

Figure 2004080046
Figure 2004080046

 図8(a)と同様に、図9(a)は、相関色温度が中位のものの代表として5000Kの場合について最適化を行ったLEDランプ100の分光分布の一例を示している。5000Kは、Raの計算時においては比較する基準光源が黒体放射から、合成昼光に切り替わるポイントである。この例における青色LEDチップ11の発光ピーク波長は460nmであり、赤色LEDチップ12の発光ピーク波長は640nmであり、そして、蛍光体13の発光ピーク波長は545nmである。図9(b)および(c)は、それぞれ、GaおよびGa4の色域面積比を示すグラフである。表1と同様に、下記表2には、上記条件に加えて、図9についてのLEDランプ100の光色の色度値(x,y)、Duv、演色性(Ra、R1〜R15)、色域面積比もあわせて示している。 同 様 Similar to FIG. 8A, FIG. 9A shows an example of the spectral distribution of the LED lamp 100 optimized for 5000 K as a representative of the medium having a correlated color temperature. 5000K is a point at which the reference light source to be compared switches from blackbody radiation to synthetic daylight when calculating Ra. In this example, the emission peak wavelength of the blue LED chip 11 is 460 nm, the emission peak wavelength of the red LED chip 12 is 640 nm, and the emission peak wavelength of the phosphor 13 is 545 nm. FIGS. 9B and 9C are graphs showing the color gamut area ratios of Ga and Ga4, respectively. Similarly to Table 1, in addition to the above conditions, Table 2 below shows the chromaticity values (x, y), Duv, color rendering (Ra, R1 to R15) of the light color of the LED lamp 100 in FIG. The gamut area ratio is also shown.

Figure 2004080046
Figure 2004080046

 また、図10(a)は、相関色温度が6700Kの場合について最適化を行ったLEDランプ100の分光分布の一例を示している。6700Kは、常用される照明光源において相関色温度の上限に近いレベルである。6700Kの場合、Raの計算時においては比較する基準光源は合成昼光である。この例における青色LEDチップ11の発光ピーク波長は460nmであり、赤色LEDチップ12の発光ピーク波長は640nmであり、そして、蛍光体13の発光ピーク波長は545nmである。図10(b)および(c)は、それぞれ、GaおよびGa4の色域面積比を示すグラフである。表1と同様に、下記表3には、上記条件に加えて、図10についてのLEDランプ100の光色の色度値(x,y)、Duv、演色性(Ra、R1〜R15)、色域面積比もあわせて示している。 FIG. 10A shows an example of the spectral distribution of the LED lamp 100 optimized for the case where the correlated color temperature is 6700K. 6700K is a level close to the upper limit of the correlated color temperature in a commonly used illumination light source. In the case of 6700K, when calculating Ra, the reference light source to be compared is synthetic daylight. In this example, the emission peak wavelength of the blue LED chip 11 is 460 nm, the emission peak wavelength of the red LED chip 12 is 640 nm, and the emission peak wavelength of the phosphor 13 is 545 nm. FIGS. 10B and 10C are graphs showing the color gamut area ratios of Ga and Ga4, respectively. Similarly to Table 1, Table 3 below includes, in addition to the above conditions, the chromaticity values (x, y), Duv, color rendering properties (Ra, R1 to R15) of the light color of the LED lamp 100 in FIG. The gamut area ratio is also shown.

Figure 2004080046
Figure 2004080046

 青色LEDチップ11と、赤色LEDチップ12と、蛍光体13との組み合わせについて、本願発明者が最適化に際して検討したパターンの代表例を図11から図13に示す。図中の縦軸には、LEDランプ100のRaをとり、横軸には、赤色LEDチップ12の発光ピーク波長(nm)をとっている。LEDランプ100のRaは、実測またはシミュレーション結果に基づいている。図中の各ポイント(丸印、三角印、四角印)においては、各々、図8(a)〜(c)および表1のような検討が行われている。 代表 Representative examples of patterns examined by the present inventor in optimizing the combination of the blue LED chip 11, the red LED chip 12, and the phosphor 13 are shown in FIGS. In the figure, the vertical axis represents Ra of the LED lamp 100, and the horizontal axis represents the emission peak wavelength (nm) of the red LED chip 12. Ra of the LED lamp 100 is based on an actual measurement or a simulation result. At each point (circle, triangle, square) in the figure, a study is performed as shown in FIGS. 8A to 8C and Table 1.

 図11(a)から(c)は、それぞれ、相関色温度3000K、5000K、6700Kの例である。青色LEDチップ11の発光ピーク波長は450nmに固定しており、蛍光体13の発光ピーク波長は、520nmの緑から560nmの黄色まで変化させている(560nm(丸印)、545nm(三角印)、520nm(四角印))。赤色LEDチップ12の発光ピーク波長(nm)は、595nmから670nmまで変化させている。 11 (a) to 11 (c) are examples of correlated color temperatures of 3000K, 5000K and 6700K, respectively. The emission peak wavelength of the blue LED chip 11 is fixed at 450 nm, and the emission peak wavelength of the phosphor 13 is changed from green at 520 nm to yellow at 560 nm (560 nm (circle), 545 nm (triangle), 520 nm (square mark)). The emission peak wavelength (nm) of the red LED chip 12 is changed from 595 nm to 670 nm.

 同様に、図12(a)から(c)は、それぞれ、相関色温度3000K、5000K、6700Kの例であり、青色LEDチップ11の発光ピーク波長は460nmに固定している。一方、図13(a)から(c)は、それぞれ、相関色温度3000K、5000K、6700Kの例であり、青色LEDチップ11の発光ピーク波長は470nmに固定している。 Similarly, FIGS. 12A to 12C are examples of correlated color temperatures of 3000 K, 5000 K, and 6700 K, respectively, and the emission peak wavelength of the blue LED chip 11 is fixed at 460 nm. On the other hand, FIGS. 13A to 13C show examples of correlated color temperatures of 3000 K, 5000 K, and 6700 K, respectively, and the emission peak wavelength of the blue LED chip 11 is fixed at 470 nm.

 図8から図13および表1から表3の結果をふまえて、上述した本願発明者による知見をさらに詳述する。 知 見 Based on the results of FIGS. 8 to 13 and Tables 1 to 3, the above-described findings by the present inventors will be described in more detail.

 JISにおいては、高演色な3波長域発光型蛍光ランプは、Ra80以上と規定されている。Ra80以上の高演色性を目指してLEDランプ100を設計する場合、上記結果を総合してみると、平均演色評価数を高める範囲は、赤色LEDチップ12の発光ピークを600nm以上にした範囲であった。このような範囲にすれば、Ra80以上のLEDランプ100が実現可能となる。特に、平均演色評価数が高い点、または平均演色評価数が飽和する傾向が見られる好適な範囲は、赤色LEDチップ12の発光ピークが610nmから630nmの範囲にある場合であった。このような範囲にした場合、微妙で厳密な色再現が望まれる中彩度な色に対しては忠実な演色を行うことができ、それに加えて、LEDランプ100は、可視発光帯域の短波長側と長波長側の両方に半値幅が狭く純度の高いLEDのスペクトルを持っているので、高彩度な色に対しては鮮やかに色再現を行うことができる。つまり、Raの高さに加えて、彩度に関してコントラストがついた、すなわち、色のめりはりのある好ましい視環境を実現することができるようになる。 In JIS, a high color rendering three-wavelength band fluorescent lamp is specified as Ra80 or more. When designing the LED lamp 100 with the aim of high color rendering of Ra 80 or more, considering the above results, the range in which the average color rendering index is increased is the range where the emission peak of the red LED chip 12 is 600 nm or more. Was. With such a range, the LED lamp 100 having Ra of 80 or more can be realized. In particular, a point where the average color rendering index is high or a preferable range where the average color rendering index tends to be saturated is a case where the emission peak of the red LED chip 12 is in the range of 610 nm to 630 nm. In such a range, it is possible to perform faithful color rendering for medium-saturated colors for which subtle and strict color reproduction is desired. In addition, the LED lamp 100 has a short wavelength in the visible light emission band. Since the half-width is narrow and the spectrum of the LED having high purity is provided on both the side and the long wavelength side, a vivid color reproduction can be performed for a high chroma color. That is, in addition to the height of Ra, a contrast is provided with respect to the saturation, that is, it is possible to realize a preferable visual environment having a sharp color.

 平均演色評価数を高める範囲は、青色LEDチップ11の発光ピーク波長については、470nm以下であった。これよりも発光ピーク波長が長くなった場合、特に相関色温度が高いLEDランプ100の実現が困難となり、かつ、Raが80を越すことが難しくなることを本願発明者は実験により確認した。加えて、470nmを越えると、相関色温度が低いLEDランプ100を実現しようとしても、Raを高めることができる赤色LEDチップ12の発光ピークの組み合わせ範囲が狭く制限されることがわかった。一方、青色LEDチップ11の発光ピーク波長の下限は、450nm以上にすることが望ましい。450nmを下回ると、Raが90を越すことが困難になり、かつ、特に相関色温度が高いLEDランプ100を実現するときに、組み合わせ可能な蛍光体13の発光波長の帯域がより制限されるためである。 範 囲 The range for increasing the average color rendering index was 470 nm or less for the emission peak wavelength of the blue LED chip 11. The inventor of the present application has confirmed by experiment that if the emission peak wavelength is longer than this, it becomes difficult to realize the LED lamp 100 having a particularly high correlated color temperature, and it becomes difficult for Ra to exceed 80. In addition, when it exceeds 470 nm, it was found that the combination range of the emission peaks of the red LED chip 12 that can increase Ra is narrowed even if the LED lamp 100 having a low correlated color temperature is to be realized. On the other hand, the lower limit of the emission peak wavelength of the blue LED chip 11 is desirably 450 nm or more. If the wavelength is less than 450 nm, it becomes difficult for Ra to exceed 90, and in particular, when the LED lamp 100 having a high correlated color temperature is realized, the band of the emission wavelength of the phosphor 13 that can be combined is further restricted. It is.

 発光効率の面から検討すると、次のようなことが言える。赤色LEDチップ12の発光ピーク波長が610nmから630nmの範囲から外れると、発光効率(lm/W)は低下するため、発光効率の観点からも、610nmから630nmの範囲内にすることが好ましい。また、青色LEDチップ11の発光ピーク波長も450nmを下回ると、発光効率(lm/W)は低下するので、赤色LEDランプ12と同様に、青色LEDランプ11についても、450nm以上にすることが好ましい。 検 討 Considering the luminous efficiency, the following can be said. If the emission peak wavelength of the red LED chip 12 is out of the range of 610 nm to 630 nm, the luminous efficiency (lm / W) decreases. Therefore, from the viewpoint of the luminous efficiency, it is preferable that the luminous efficiency be in the range of 610 nm to 630 nm. Further, if the emission peak wavelength of the blue LED chip 11 is also less than 450 nm, the luminous efficiency (lm / W) is reduced. Therefore, similarly to the red LED lamp 12, the blue LED lamp 11 is preferably 450 nm or more. .

 また、LEDチップ(特に、青色LEDランプ11)と組み合わされる蛍光体13の発光ピークの範囲は、520nmから560nmが好ましいことがわかった。各種LEDチップとの組み合わせにおいて、総合的にみて、Raの高い傾向が得られる545nmから560nmの範囲にすることがより好ましい。 Also, it was found that the range of the emission peak of the phosphor 13 combined with the LED chip (particularly, the blue LED lamp 11) is preferably from 520 nm to 560 nm. In a combination with various LED chips, it is more preferable to set the range of 545 nm to 560 nm, which gives a high tendency of Ra, as a whole.

 さらに、次のようなこともわかった。低色温度から高色温度まで広い相関色温度の範囲で、同一のLEDチップと同一の蛍光体を用いて、同一のピーク波長を有しながら、そのパワー比のみを変化させるLEDランプ100の場合において、平均演色評価数を高めるには、青色LEDチップ11の発光ピークの範囲を455nmから465nmにし、赤色LEDチップ12の発光ピークを620nmから630nmにし、蛍光体13の発光ピークの範囲を540nmから550nmにすることが好ましい。 Furthermore, the following was also found. In the case of the LED lamp 100 in which the same LED chip and the same phosphor are used in the wide correlated color temperature range from the low color temperature to the high color temperature, and only the power ratio is changed while having the same peak wavelength. In order to increase the average color rendering index, the range of the emission peak of the blue LED chip 11 is changed from 455 nm to 465 nm, the emission peak of the red LED chip 12 is changed from 620 nm to 630 nm, and the range of the emission peak of the phosphor 13 is changed from 540 nm. Preferably it is 550 nm.

 光色を大きく変化できる光源に特化せず、各種相関色温度でRa90以上の高演色の実現に特化した場合を考えると、次のようなことが言える。なお、Ra90以上の高演色は、CIEの演色性区分で言う演色性グループ1A(Ra≧90)であり、厳密な演色性が必要な用途(例えば、美術館用)に十分使用可能なレベルのものである。相関色温度が比較的高く、演色性評価の基準光源が合成昼光の場合(すなわち、5000K以上の場合)、赤色LEDチップ12の発光ピークは600nm以上、かつ、青色LEDチップ11の発光ピークの範囲は450nmから460nmであり、さらに望ましくは、組み合わされる蛍光体のピーク波長は520nmから545nmにあればよい。一方、相関色温度が比較的低く、演色性評価の基準光源が黒体放射の場合は、赤色LEDチップ12の発光ピークは615nmから650nm、かつ、組み合わされる蛍光体のピーク波長は545nmから560nmにあればよい。 場合 Considering the case where the light source capable of greatly changing the light color is not specialized but the realization of high color rendering of Ra90 or more at various correlated color temperatures is considered, the following can be said. The high color rendering of Ra 90 or higher is color rendering group 1A (Ra ≧ 90) in the CIE color rendering category, and is of a level that can be sufficiently used for applications requiring strict color rendering (for example, for museums). It is. When the correlated color temperature is relatively high and the reference light source for color rendering evaluation is synthetic daylight (that is, 5000 K or more), the emission peak of the red LED chip 12 is 600 nm or more and the emission peak of the blue LED chip 11 is The range is from 450 nm to 460 nm, and more desirably, the peak wavelength of the combined phosphor should be from 520 nm to 545 nm. On the other hand, when the correlated color temperature is relatively low and the reference light source for color rendering evaluation is blackbody radiation, the emission peak of the red LED chip 12 is from 615 nm to 650 nm, and the peak wavelength of the combined phosphor is from 545 nm to 560 nm. I just need.

 さらに、RaおよびGaが高く、かつ、Ga4が高い範囲の特に優れた例は、図8から図10に示した組み合わせ例である。なお、当該組み合わせの各発光ピーク波長を僅かにずらした場合(例えば、±5〜10nm程度)においても、RaおよびGaが高く、かつ、Ga4が高いLEDランプ100を実現できることは当業者であれば容易に理解可能である。 Furthermore, particularly excellent examples in the range where Ra and Ga are high and Ga4 is high are the combination examples shown in FIGS. It should be noted that even if each emission peak wavelength of the combination is slightly shifted (for example, about ± 5 to 10 nm), those skilled in the art can realize an LED lamp 100 with high Ra and Ga and high Ga4. Easily understandable.

 相関色温度が比較的低い場合(例えば、3000K)には、青色LEDチップ11の発光ピーク波長が460nmであり、赤色LEDチップ12の発光ピーク波長が625nmであり、そして、蛍光体13の発光ピーク波長が545nmである範囲である。この範囲において、Ra=92.4、Ga=103.3、およびGa4=109.3のLEDランプ100を実現することができる。 When the correlated color temperature is relatively low (for example, 3000K), the emission peak wavelength of the blue LED chip 11 is 460 nm, the emission peak wavelength of the red LED chip 12 is 625 nm, and the emission peak of the phosphor 13 is The wavelength is in the range of 545 nm. Within this range, the LED lamp 100 with Ra = 92.4, Ga = 103.3, and Ga4 = 109.3 can be realized.

 相関色温度が中位の場合(例えば、5000K)には、青色LEDチップ11の発光ピーク波長が460nmであり、赤色LEDチップ12の発光ピーク波長が640nmであり、そして、蛍光体13の発光ピーク波長が545nmである範囲である。この範囲において、Ra=94.3、Ga=101.6、およびGa4=112.9のLEDランプ100を実現することができる。 When the correlated color temperature is medium (for example, 5000K), the emission peak wavelength of the blue LED chip 11 is 460 nm, the emission peak wavelength of the red LED chip 12 is 640 nm, and the emission peak of the phosphor 13 is The wavelength is in the range of 545 nm. Within this range, the LED lamp 100 having Ra = 94.3, Ga = 101.6, and Ga4 = 1112.9 can be realized.

 相関色温度が比較的高い場合(例えば、6700K)には、青色LEDチップ11の発光ピーク波長が460nmであり、赤色LEDチップ12の発光ピーク波長が640nmであり、そして、蛍光体13の発光ピーク波長が545nmである範囲である。この範囲において、Ra=92.2、Ga=96.6、およびGa4=107.5のLEDランプ100を実現することができる。 When the correlated color temperature is relatively high (for example, 6700K), the emission peak wavelength of the blue LED chip 11 is 460 nm, the emission peak wavelength of the red LED chip 12 is 640 nm, and the emission peak of the phosphor 13 is The wavelength is in the range of 545 nm. Within this range, the LED lamp 100 with Ra = 92.2, Ga = 96.6, and Ga4 = 107.5 can be realized.

 本実施形態のLEDランプは、Raが高い範囲に対して、GaおよびGa4による最適化の検討がなされているため、各試験色の色再現の分布に歪みが少なく、かつ、より色彩が鮮やかに見える光源となる。つまり、特殊演色評価数に用いられるR9からR12の鮮やかな赤・黄・緑・青の試験色は、人工的な鮮やかな色味を代表する試験色票であるため、Ra(およびGa)が高い条件下で、この試験色票によって構成されるGa4を最大化させることは、自然な色はより自然に見せながら、鮮やかな色のみをより鮮やかに演色する光源を実現することができる。これら鮮やかな色の物体の分光反射率は、一般に特定の波長を境に急峻な分光分布の変化を示すので、分光分布の半値幅の狭い発光ダイオードを好適に利用することができる。その結果、自然物をより自然に色再現し、かつ、人工的に鮮やかな色を有する物体はより鮮やかに色再現する色彩のコントラストのはっきりした、従来にない、高品位な照明光源が実現可能となる。 In the LED lamp of the present embodiment, the optimization of Ga and Ga4 has been studied for the range where Ra is high, so that the distribution of the color reproduction of each test color has little distortion and the colors are more vivid. It becomes a visible light source. That is, since the vivid red / yellow / green / blue test colors R9 to R12 used for the special color rendering index are test color chips representing artificial vivid colors, Ra (and Ga) are Under high conditions, maximizing Ga4 constituted by this test color chart can realize a light source that renders only vivid colors more vividly while natural colors look more natural. Since the spectral reflectance of these brightly colored objects generally shows a sharp change in spectral distribution at a specific wavelength, a light-emitting diode having a narrow half-value width of the spectral distribution can be suitably used. As a result, natural objects can be reproduced more naturally, and objects with artificially vivid colors can be reproduced more vividly. Become.

 なお、より色彩が鮮やかに見せることに主眼をおく場合には、Raを必要以上に高くしなくてもよいため、そのようなLEDランプを実現できる範囲は上述した範囲よりもさらに広がることになる。 If the focus is on making the colors look more vivid, the range in which such an LED lamp can be realized is even wider than the range described above because Ra does not have to be made higher than necessary. .

(実施形態3)
 図14から図18を参照しながら、本発明による実施形態3にかかるLEDランプの説明をする。上記実施形態1では、一つの青色LEDベアチップ11および一つの赤色LEDベアチップ12、合計2つのLEDベアチップから、LEDランプ100を構成したが、本実施形態では、青色LEDの発光部位と、赤色LEDの発光部位との両方を含む一つのLEDベアチップから、LEDランプを構成している。この点が、上記実施形態1のLEDランプ100と異なる。他の点においては、上記実施形態1と同様であるので、説明の簡略化のため実施形態1と同様の点の説明は省略または簡略化する。なお、LEDランプ100の最適化を図った上記実施形態2の構成は、本実施形態のLEDランプにも適用可能できることは言うまでもない。
(Embodiment 3)
An LED lamp according to Embodiment 3 of the present invention will be described with reference to FIGS. In the first embodiment, the LED lamp 100 is configured by one blue LED bare chip 11 and one red LED bare chip 12, that is, a total of two LED bare chips. However, in the present embodiment, the light emitting portion of the blue LED and the red LED An LED lamp is composed of one LED bare chip including both a light emitting portion. This is different from the LED lamp 100 of the first embodiment. The other points are the same as in the first embodiment, and therefore, the description of the same points as in the first embodiment will be omitted or simplified for simplification of the description. It is needless to say that the configuration of the second embodiment in which the LED lamp 100 is optimized can also be applied to the LED lamp of the present embodiment.

本実施形態では、2つの発光色を発する1つのLEDベアチップを用いるため、2つの発光色のベアチップを並べて配置する必要があった実施形態1のものと比べて、次の利点が得られる。すなわち、1つのLEDベアチップしか使わないため、赤色および青色の両者の発光位置が一つのLEDベアチップ上で限りなく同一に近づく。その結果、より混色に有利なLEDランプが実現できる。さらに、赤色発光部位と青色発光部位との両者がより熱的に接合されているため、両発光部位間の温度が均一化される。その結果、両者を熱的に同一と見なせるため、光出力に対する熱の影響のフィードバックコントロールを容易にすることができる。   In the present embodiment, since one LED bare chip that emits two luminescent colors is used, the following advantages are obtained as compared with the first embodiment in which the bare chips of two luminescent colors have to be arranged side by side. That is, since only one LED bare chip is used, the light emission positions of both red and blue are almost the same on one LED bare chip. As a result, an LED lamp that is more advantageous for color mixing can be realized. Further, since both the red light emitting portion and the blue light emitting portion are more thermally bonded, the temperature between the two light emitting portions is made uniform. As a result, since both can be regarded as being thermally the same, feedback control of the influence of heat on the light output can be facilitated.

 最初に、図14(a)〜(c)を参照しながら、赤色および青色を発する1つのLEDベアチップを作製するプロセスを説明する。 First, a process for manufacturing one LED bare chip that emits red and blue light will be described with reference to FIGS.

 まず、図14(a)に示すように、発光ダイオード成膜用の基板115上に、少なくともP型半導体層とN型半導体層と活性層とを含む第1の発光ダイオード発光層(以下、「発光ダイオード発光層」を「LED発光層」と呼ぶ。)111を形成する。 First, as shown in FIG. 14A, a first light emitting diode light emitting layer including at least a P-type semiconductor layer, an N-type semiconductor layer, and an active layer (hereinafter, referred to as a “light emitting diode”) on a substrate 115 for forming a light emitting diode. The “light emitting diode light emitting layer” is called “LED light emitting layer”.) 111 is formed.

 次に、図14(b)に示すように、基板115を剥離して、第1のLED発光層111を得る。基板115の剥離は、基板115およびLED発光層の種類によって適宜選択すればよく、例えば、基板115の研磨、メカニカルな剥離、エッチングによる基板115の除去、熱ストレスによる剥離などの手法が採用され得る。 Next, as shown in FIG. 14B, the substrate 115 is peeled to obtain the first LED light emitting layer 111. The separation of the substrate 115 may be appropriately selected depending on the types of the substrate 115 and the LED light-emitting layer. For example, a method such as polishing of the substrate 115, mechanical separation, removal of the substrate 115 by etching, separation by thermal stress, or the like may be employed. .

 次に、図14(c)に示すように、第2のLED発光層112が形成されている基板115’に、第1のLED発光層111を張り付けると、2つの発光色を発するLEDベアチップが得られる。このように、青色LEDの発光層および赤色LEDの各々またはいずれかを剥離した後、張り合わせて、一つのLEDベアチップにする。 Next, as shown in FIG. 14C, when the first LED light-emitting layer 111 is attached to the substrate 115 ′ on which the second LED light-emitting layer 112 is formed, an LED bare chip that emits two emission colors is provided. Is obtained. As described above, after the light emitting layer of the blue LED and / or the red LED are peeled off, they are laminated to form one LED bare chip.

 以下、図15から図18を参照しながら、張り合わせの組み合わせパターンを例示する。この張り合わせのバリエーションは多数存在するが、以下では、主なパターンを示す。なお、便宜上、第1のLED発光層を、青色LED発光層111とし、第2のLED発光層を、赤色LED発光層112とする。これらのLED発光層の周囲には、蛍光体13が形成されている。 組 み 合 わ せ Hereinafter, a combination pattern of bonding will be exemplified with reference to FIGS. Although there are many variations of this bonding, main patterns are shown below. Note that, for convenience, the first LED light emitting layer is referred to as a blue LED light emitting layer 111, and the second LED light emitting layer is referred to as a red LED light emitting layer 112. A phosphor 13 is formed around these LED light emitting layers.

 図15(a)は、基板115が導電性である場合の両面電極構造の例を示している。この構造の場合、基板115を挟んで、上側の青色LED発光層111の上面に1つの電極を設け、下側の赤色LED発光層112の下面に1つの電極を設ければよい。 FIG. 15A shows an example of a double-sided electrode structure when the substrate 115 is conductive. In this structure, one electrode may be provided on the upper surface of the upper blue LED light emitting layer 111 with the substrate 115 interposed, and one electrode may be provided on the lower surface of the lower red LED light emitting layer 112.

 図15(b)は、発光ダイオード基板が非導電性である場合の片面電極構造の例を示している。この構造の場合、基板115を挟んで、上側の青色LED発光層111の上面に2つ、下側の赤色LED発光層112の下面に2つの電極を設ければよい。 FIG. 15B shows an example of a single-sided electrode structure when the light emitting diode substrate is non-conductive. In this structure, two electrodes may be provided on the upper surface of the upper blue LED light emitting layer 111 and two electrodes on the lower surface of the lower red LED light emitting layer 112 with the substrate 115 interposed therebetween.

 図15(c)は、基板115が導電性である場合において、片面電極構造と両面電極構造とをの組み合わせた例である。この構造の場合、基板115を挟んで、上側の青色LED発光層111の上面に1つ、下側の赤色LED発光層112の下面に2つの電極を設ければよい。 FIG. 15C shows an example in which the single-sided electrode structure and the double-sided electrode structure are combined when the substrate 115 is conductive. In this structure, one electrode may be provided on the upper surface of the upper blue LED light emitting layer 111 and two electrodes may be provided on the lower surface of the lower red LED light emitting layer 112 with the substrate 115 interposed therebetween.

 図16(a)は、基板115が導電性である場合において、基板115片側にLED発光層を積み上げた例である。この構造の場合、上側の赤色LED発光層112の上面に1つ、基板115の下面に1つの電極を設ければよい。 FIG. 16A shows an example in which an LED light emitting layer is stacked on one side of the substrate 115 when the substrate 115 is conductive. In this structure, one electrode may be provided on the upper surface of the upper red LED light emitting layer 112 and one electrode may be provided on the lower surface of the substrate 115.

 図16(b)は、基板115が導電性である場合において、基板115片側に、両面電極および片面電極のLED発光層を積み上げた例である。この構造の場合、基板115の上面に1つ、下側の赤色LED発光層112の下面に2つの電極を設ければよい。 FIG. 16B shows an example in which, when the substrate 115 is conductive, LED light emitting layers of a double-sided electrode and a single-sided electrode are stacked on one side of the substrate 115. In this structure, one electrode may be provided on the upper surface of the substrate 115, and two electrodes may be provided on the lower surface of the lower red LED light emitting layer 112.

 図16(c)は、基板115を挟んで、下側に短波長の発光を行うLED発光層(青色LED発光層)111を配し、当該短波長の発光を行うLED発光層111からの光で励起発光されるLED活性層(赤色LED活性層)112’を上側に配した構造を示している。この構造の場合、LED発光層111の下面に2つの電極を設ければよい。 FIG. 16C shows an LED light-emitting layer (blue LED light-emitting layer) 111 that emits light of a short wavelength disposed below the substrate 115, and light from the LED light-emitting layer 111 that emits light of the short wavelength. 1 shows a structure in which an LED active layer (red LED active layer) 112 ′ that is excited and emits light is disposed on the upper side. In the case of this structure, two electrodes may be provided on the lower surface of the LED light emitting layer 111.

 図15および図16に示した構造は、多数の考えられる組み合わせの一例であり、各発光色のLED発光層の組み替えのバリエーションはもとより、図15(c)、図16(a)〜(c)に示した構造では、上下関係についての反転パターンもある。 The structure shown in FIGS. 15 and 16 is an example of a number of possible combinations. In addition to the variations of the LED light emitting layer for each emission color, FIGS. 15 (c) and 16 (a) to (c) In the structure shown in (1), there is also an inverted pattern for the vertical relationship.

 また、各々のLED発光層(111、112)を同一基板115の片側または両側に積層するのではなく、同一基板115上に空間的に並置させた構造にすることも可能である。そのような構造の例を、図17および図18に示す。 (4) Instead of laminating the LED light emitting layers (111, 112) on one or both sides of the same substrate 115, a structure in which the LED light emitting layers (111, 112) are spatially juxtaposed on the same substrate 115 is also possible. FIGS. 17 and 18 show examples of such a structure.

 図17(a)は、各色のLED発光層(111、112)を、1つの導電性基板115に形成した構造を示している。この構造の場合、基板115の下側に共通した一つの電極を設け、かつ、各LED発光層の上面に1つずつ電極を設ければよい。 FIG. 17A shows a structure in which the LED light emitting layers (111, 112) of each color are formed on one conductive substrate 115. In this structure, one common electrode may be provided below the substrate 115, and one electrode may be provided on the upper surface of each LED light emitting layer.

 図17(b)は、各色のLED発光層(111、112)を、1つの非導電性基板115に形成した構造を示している。この構造の場合、各LED発光層の上面に2つずつ電極を設ければよい。 FIG. 17B shows a structure in which the LED light emitting layers (111, 112) of each color are formed on one non-conductive substrate 115. In the case of this structure, two electrodes may be provided on the upper surface of each LED light emitting layer.

 図17(c)は、図17(b)に示した構造の上下関係を反転させたパターンを示している。 FIG. 17C shows a pattern in which the vertical relationship of the structure shown in FIG. 17B is inverted.

 図18(a)は、各色のLED発光層(111、112)を、1つの導電性基板115に形成した構造を示している。この構造の場合、基板115の下側に共通した一つの電極を設け、かつ、各LED発光層の上面に1つずつ電極を設けたものと、各LED発光層の上面に2つずつ電極を設けたものとを混在させている。 FIG. 18A shows a structure in which the LED light emitting layers (111, 112) of each color are formed on one conductive substrate 115. In the case of this structure, one common electrode is provided under the substrate 115, and one electrode is provided on the upper surface of each LED light emitting layer, and two electrodes are provided on the upper surface of each LED light emitting layer. Provided and mixed.

 図18(b)は、LED発光層をそのまま並置した構造を示している。この構造の場合、基板115が不要となるとともに、図14(c)に示した張り合わせプロセスを行わなくてもよい。 FIG. 18B shows a structure in which LED light emitting layers are juxtaposed as they are. In the case of this structure, the substrate 115 becomes unnecessary, and the bonding process shown in FIG.

 図18(c)は、両面電極のLED発光層を2つそのまま積層した構造を示している。この構造の場合でも、基板115は不要となる。また、このコンセプトの場合、片面電極および両面電極のLED発光層を積層するバリエーションや、4つのLED発光層を積層するバリエーションもあり得る。 FIG. 18 (c) shows a structure in which two LED light emitting layers of the double-sided electrode are directly laminated. Even in the case of this structure, the substrate 115 becomes unnecessary. In addition, in the case of this concept, there may be a variation in which the LED light emitting layers of the single-sided electrode and the double-sided electrode are stacked, and a variation in which four LED light-emitting layers are stacked.

 図17および図18に示した構造も、多数の考えられる組み合わせの一例であり、各発光色のLED発光層の組み替えのバリエーションはもとより、図17(a)、図18(a)および(b)に示した構造の上下関係の反転パターンもある。 The structure shown in FIGS. 17 and 18 is also an example of many possible combinations, and includes not only the variations of the LED light emitting layer of each emission color but also FIGS. 17 (a), 18 (a) and (b). There is also an inverted pattern of the vertical relationship of the structure shown in FIG.

 本実施形態では、青色発光LED素子11の発光層111と、赤色発光LED素子12の発光層112とを、一つのLEDチップとして一体構成した構造となるので、両者の発光位置が限りなく同一に近づき、より混色に有利になる。さらに、両者がより熱的に接合されているため、両発光層間の温度が均一化され、両者を熱的に同一と見なせる。その結果、光出力に対する熱の影響のフィードバックコントロールを容易にすることができる。 In the present embodiment, the light emitting layer 111 of the blue light emitting LED element 11 and the light emitting layer 112 of the red light emitting LED element 12 have a structure integrally formed as one LED chip. As it approaches, it becomes more advantageous for color mixing. Furthermore, since both are more thermally joined, the temperature between both light emitting layers is made uniform, and both can be regarded as being thermally the same. As a result, feedback control of the influence of heat on the light output can be facilitated.

(実施形態4)
 図19を参照しながら、本発明による実施形態4にかかるLEDランプ500を説明する。図19は、LEDランプ500の構成を模式的に示している。上記実施形態1のLEDランプ100では一体素子構成されていたのに対して、本実施形態のLEDランプ500では、一体素子構成ではなくクラスタ構成されている点が異なる。以下においては説明を簡明にするため、実施形態1と異なる点を主に説明し、実施形態1と同様の点の説明は省略または簡略化する。
(Embodiment 4)
Embodiment 4 An LED lamp 500 according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 19 schematically shows a configuration of the LED lamp 500. The LED lamp 100 according to the first embodiment has an integrated element configuration, whereas the LED lamp 500 according to the present embodiment has a cluster configuration instead of an integrated element configuration. In the following, for the sake of simplicity, different points from the first embodiment will be mainly described, and description of the same points as the first embodiment will be omitted or simplified.

 図19に示すように、本実施形態のLEDランプ500は、青色LEDチップ11と青色LEDチップ11によって励起され発光する黄色発光蛍光体13とから構成された白色発光LED素子52と、赤色LEDチップ12を含む赤色発光LED素子54とが平面的にクラスタ構成されている。すなわち、白色発光LED素子52と赤色発光LED素子54とが平面的に配列されている。 As shown in FIG. 19, the LED lamp 500 of the present embodiment includes a white light emitting LED element 52 including a blue LED chip 11 and a yellow light emitting phosphor 13 that emits light when excited by the blue LED chip 11, and a red LED chip. The red light-emitting LED elements 54 including the light-emitting elements 12 are clustered in a plane. That is, the white light emitting LED elements 52 and the red light emitting LED elements 54 are arranged in a plane.

 本実施形態では、白色発光LED素子52は、リードフレーム14の台17上に配置された青色LEDチップ11とそれを覆う黄色発光蛍光体13とを封止する砲弾型の透明樹脂部16とを含んでおり、赤色発光LED素子54は、リードフレーム14の台17上に配置された赤色LEDチップ12とそれを封止する砲弾型の透明樹脂部16とを含んでいる。白色発光LED素子52と赤色発光LED素子54とは例えば交互に配列されている。 In the present embodiment, the white light emitting LED element 52 includes a bullet-shaped transparent resin portion 16 that seals the blue LED chip 11 disposed on the base 17 of the lead frame 14 and the yellow light emitting phosphor 13 that covers the blue LED chip 11. The red light-emitting LED element 54 includes the red LED chip 12 disposed on the base 17 of the lead frame 14 and a bullet-shaped transparent resin portion 16 that seals the red LED chip 12. The white light emitting LED elements 52 and the red light emitting LED elements 54 are arranged, for example, alternately.

 本実施形態のLEDランプ500では、それぞれ構成材料が異なる白色発光LED素子52および赤色発光LED素子54を個別に作製した後に、1つのランプユニットにクラスタすることができるため、各々のLED素子設計を個別に最適設計することができる。また、各々のLED素子の良品を選別して1つのランプユニットにクラスタすることができるために、工業的な歩留まりを向上させることが可能となる。さらには、放熱設計が容易となるという利点もある。 In the LED lamp 500 of the present embodiment, since the white light-emitting LED element 52 and the red light-emitting LED element 54 having different constituent materials can be individually formed and then clustered into one lamp unit, the design of each LED element is It can be individually and optimally designed. In addition, since good LED elements can be selected and clustered into one lamp unit, it is possible to improve the industrial yield. Further, there is an advantage that the heat radiation design becomes easy.

 また、青色LEDチップ11の出力光束と赤色LEDチップ12の出力光束とが異なる場合であっても、各々のLEDチップは個別の素子として構成されているので、そのクラスタ数の比率を任意に設定することが可能であり、その結果、ランプ設計の自由度を高くすることができる。すなわち、1つの素子内に青色LEDチップ11と赤色LEDチップ12とが一定の比率で予め組み込まれている素子をクラスタするよりも、本実施形態の構成の方がランプ設計の自由度を上げることができる。 Further, even when the output light flux of the blue LED chip 11 and the output light flux of the red LED chip 12 are different, since each LED chip is configured as an individual element, the ratio of the number of clusters is arbitrarily set. As a result, the degree of freedom in lamp design can be increased. That is, the configuration of the present embodiment increases the degree of freedom in lamp design, as compared to clustering elements in which the blue LED chip 11 and the red LED chip 12 are pre-installed at a fixed ratio in one element. Can be.

 なお、LEDランプ500の場合、発光源となる各々の光色のLEDチップ52および54は、個別の素子として空間的に離れた箇所で発光することとなるため、上記実施形態1のLEDランプ100のように一体素子構成されている場合と比較して、混光ムラが大きくなる傾向ある。このような混色ムラを低減させる目的で、図20のように、立体的にクラスタ構成したLEDランプ600にしてもよい。 In the case of the LED lamp 500, the LED chips 52 and 54 of the respective light colors serving as light emission sources emit light at spatially separated locations as individual elements. As compared with the case where an integrated element is formed as described above, the uneven light mixing tends to be large. For the purpose of reducing such color mixture unevenness, an LED lamp 600 having a three-dimensional cluster configuration as shown in FIG. 20 may be used.

 LEDランプ600は、青色LEDチップ11と青色LEDチップ11によって励起され発光する黄色発光蛍光体13とから構成された白色発光LED素子62と、赤色LEDチップ12を含む赤色発光LED素子64とを有しており、白色発光LED素子62と赤色発光LED素子64とがそれぞれ異なる高さになるように配列されている。LEDランプ600によると、個別の素子62および64がそれぞれ立体的に配列されているので、LED素子62および64から出力された光を相互に反射屈折させることができ、その結果、混光ムラを低減することが可能となる。なお、LEDランプ600では、配光特性の比較的狭い砲弾型形状のLED素子62と、配光特性の比較的広い角形形状のLED素子64とを組み合わせてさらに混光特性を改善するように構成している。 The LED lamp 600 has a white light emitting LED element 62 composed of a blue LED chip 11 and a yellow light emitting phosphor 13 excited by the blue LED chip 11 to emit light, and a red light emitting LED element 64 including a red LED chip 12. The white light emitting LED elements 62 and the red light emitting LED elements 64 are arranged at different heights. According to the LED lamp 600, since the individual elements 62 and 64 are three-dimensionally arranged, the light output from the LED elements 62 and 64 can be reflected and refracted from each other. It becomes possible to reduce. Note that the LED lamp 600 is configured such that a bullet-shaped LED element 62 having a relatively narrow light distribution characteristic and a rectangular LED element 64 having a relatively wide light distribution characteristic are combined to further improve the light mixing characteristic. are doing.

 LEDランプ500および600は、上記実施形態1で説明したように、白色発光LEDチップ52(または62)と赤色発光LED素子54(または64)との発光強度比を変えることができるように構成して、光色可変LEDランプにすることも可能である。また、黄色発光蛍光体13に代えて緑色発光蛍光体を用いることも可能である。この場合、青色LEDチップ11と青色LEDチップ11によって励起され発光する緑色発光蛍光体とを組み合わせた青緑発光LED素子52(または62)と、赤色LEDチップ12を有する赤色発光LED素子54(または64)とをクラスタ構成させて、LEDランプ500(または600)とすればよい。 As described in the first embodiment, the LED lamps 500 and 600 are configured so that the emission intensity ratio between the white light emitting LED chip 52 (or 62) and the red light emitting LED element 54 (or 64) can be changed. Thus, it is also possible to make a light color variable LED lamp. It is also possible to use a green light emitting phosphor instead of the yellow light emitting phosphor 13. In this case, a blue-green light emitting LED element 52 (or 62) combining a blue LED chip 11 and a green light emitting phosphor excited by the blue LED chip 11 to emit light, and a red light emitting LED element 54 having a red LED chip 12 (or 64) may be configured as a cluster to form the LED lamp 500 (or 600).

 なお、上記実施形態においては、青色発光LED素子(青色LEDチップ)11として、GaN系青色LEDチップ(GaN系は、GaNだけでなく、AlInGaN、InGaNも含む。)を用いてこれと黄色発光蛍光体と組み合わせて用いたが、これに限定されず、ZnSe系青色発光LED素子(ZnSe系青色LEDチップ)を用いても良く、ZnSe系青色発光LED素子(ZnSe系青色LEDチップ)によってZnSe基板を黄色蛍光発光させて白色発光LED素子とする構成も採用することができる。この場合、ZnSe基板が蛍光体となる。 In the above embodiment, a GaN-based blue LED chip (a GaN-based LED includes not only GaN but also AlInGaN and InGaN) is used as the blue light-emitting LED element (blue LED chip) 11 and yellow light-emitting fluorescent light is used. Although it was used in combination with a body, the present invention is not limited to this, and a ZnSe-based blue light-emitting LED element (ZnSe-based blue LED chip) may be used. A configuration in which yellow fluorescent light is emitted to form a white light emitting LED element can also be adopted. In this case, the ZnSe substrate becomes the phosphor.

(実施形態5)
 上記実施形態におけるLEDランプは、LEDランプに電力を供給する電力供給器と組み合わせてランプユニットにすることができる。図21は、本実施形態におけるランプユニット1000の構成を模式的に示している。
(Embodiment 5)
The LED lamp in the above embodiment can be used as a lamp unit in combination with a power supply that supplies power to the LED lamp. FIG. 21 schematically shows a configuration of the lamp unit 1000 in the present embodiment.

 本実施形態のランプユニット1000は、上記実施形態1のLEDランプ100と、LEDランプ100から発する光を反射する反射板110と、LEDランプ100に電力を供給する電力供給器120と、電力供給器120に連結されている口金130とを備えている。反射板110の底面には複数のLEDランプ100を配置することができ、例えば10個〜200個くらい配置することができる。さらに、反射板110がLEDランプ100と熱的に結合されていると、反射板110がヒートシンクの役割を果たすため、LEDランプ100の放熱性の向上に寄与することが可能となる。その結果、LEDランプ100をより長寿命化させて使用することができる。反射板110としては、拡散反射板(例えば、白色反射板)や鏡面反射板(反射鏡)を使用することができ
る。
The lamp unit 1000 according to the present embodiment includes the LED lamp 100 according to the first embodiment, a reflector 110 that reflects light emitted from the LED lamp 100, a power supply 120 that supplies power to the LED lamp 100, and a power supply. And a base 130 connected to the base 120. A plurality of LED lamps 100 can be arranged on the bottom surface of the reflection plate 110, and for example, about 10 to 200 LEDs can be arranged. Further, when the reflection plate 110 is thermally coupled to the LED lamp 100, the reflection plate 110 plays a role of a heat sink, so that it is possible to contribute to the improvement of the heat radiation of the LED lamp 100. As a result, the LED lamp 100 can be used with a longer life. As the reflector 110, a diffuse reflector (for example, a white reflector) or a specular reflector (reflector) can be used.

 LEDランプ100を約60個設けたランプユニット1000の場合、ビーム光束(ビーム角内に含まれる光束)は60lm、ランプ寿命は10000時間、そして発光効率は約30〜50lm/Wとなることが本願発明者によって確認されている。この特性は、LEDランプではないハロゲン電球とダイクロイックミラーとを組み合わせた従来のランプユニットの特性(ビーム光束:約60lm、寿命:2000時間、発光効率:約15lm/W)と比較すると、非常に優れていることがわかる。また、ランプユニット1000に取り付けられるLEDランプ100は、半導体素子であるので、電球の球切れ等の問題もない。従って、取り扱いが容易であるという利点もある。 In the case of the lamp unit 1000 provided with about 60 LED lamps 100, the beam luminous flux (luminous flux included in the beam angle) is 60 lm, the lamp life is 10000 hours, and the luminous efficiency is about 30 to 50 lm / W. Confirmed by the inventor. This characteristic is very excellent as compared with the characteristics of a conventional lamp unit combining a halogen bulb, which is not an LED lamp, and a dichroic mirror (beam luminous flux: about 60 lm, life: 2,000 hours, luminous efficiency: about 15 lm / W). You can see that it is. In addition, since the LED lamp 100 attached to the lamp unit 1000 is a semiconductor element, there is no problem such as a bulb being burned out. Therefore, there is also an advantage that handling is easy.

 また、LEDランプ100を光色可変LEDランプにすることによって、光色可変可能なランプユニット1000を提供することもできる。この場合、図6に示した回路200を電力供給器120に設けるようにすればよい。電力供給器120には例えばAC/DC変換器などを設けるようにすることもできる。図21に示した例では、電力供給器120には、光色可変ダイヤル122と明るさ可変ダイヤル124とが取り付けられており、ダイヤル操作で照明の光色と明るさとのそれぞれを調節できるように構成している。 Also, by changing the LED lamp 100 to a variable light color LED lamp, the lamp unit 1000 capable of changing the light color can be provided. In this case, the circuit 200 shown in FIG. The power supply 120 may be provided with, for example, an AC / DC converter. In the example shown in FIG. 21, a variable light color dial 122 and a variable brightness dial 124 are attached to the power supply 120 so that the light color and brightness of the illumination can be adjusted by dial operation. Make up.

 本実施形態では、LEDランプ100を用いて説明したが、これに限定されず、実施形態2および実施形態3のLEDランプ、ならびに、実施形態4のLEDランプ500または600と電力供給器120とを組み合わせてランプユニットを構成してもよい。なお、ランプユニット1000の反射板110および口金130は各種用途に応じて設けたり、設けなかったりすることができる。また、60個程度のLEDランプ100を1ユニットとして、その1ユニットを1つの光源として使用する構成にすることも可能である。また、その1ユニットを複数用いる構成にしてもよい。 Although the present embodiment has been described using the LED lamp 100, the present invention is not limited to this. The LED lamps of the second and third embodiments, and the LED lamp 500 or 600 of the fourth embodiment and the power supply 120 are The lamp unit may be configured in combination. The reflector 110 and the base 130 of the lamp unit 1000 can be provided or not provided according to various uses. Further, it is also possible to adopt a configuration in which about 60 LED lamps 100 are used as one unit, and one unit is used as one light source. Also, a configuration using a plurality of the one unit may be adopted.

 以上説明したように、本発明に係るLEDランプは、色再現性が良く且つ発光効率も高い白色発光が可能であり、白色発光LEDランプ等として有用である。 As described above, the LED lamp according to the present invention can emit white light with good color reproducibility and high luminous efficiency, and is useful as a white light emitting LED lamp and the like.

実施形態1にかかるLEDランプ100の構成を模式的に示す図である。FIG. 2 is a diagram schematically illustrating a configuration of the LED lamp 100 according to the first embodiment. LEDランプ100の分光分布を模式的に説明するためのグラフである。5 is a graph for schematically explaining a spectral distribution of the LED lamp 100. LEDランプ100の分光分布を模式的に説明するためのグラフである。5 is a graph for schematically explaining a spectral distribution of the LED lamp 100. LEDランプ100の分光分布の一例を示すグラフである。4 is a graph showing an example of a spectral distribution of the LED lamp 100. (a)〜(d)は、LEDランプ100の分光分布を変化させた場合の一例を示すグラフである。(A)-(d) is a graph which shows an example when the spectral distribution of the LED lamp 100 is changed. 光色可変LEDランプを構成する回路200を模式的に示す回路図である。FIG. 3 is a circuit diagram schematically illustrating a circuit 200 that constitutes the variable light color LED lamp. LEDランプ100の色度を示すグラフである。5 is a graph showing the chromaticity of the LED lamp 100. (a)は、3000Kの場合において最適化を行ったLEDランプ100の分光分布を示すグラフである。(b)は、Gaによる色域面積比を示すグラフである。(c)は、Ga4による色域面積比を示すグラフである。(A) is a graph which shows the spectral distribution of the LED lamp 100 optimized at 3000K. (B) is a graph showing a color gamut area ratio by Ga. (C) is a graph showing a color gamut area ratio by Ga4. (a)は、5000Kの場合において最適化を行ったLEDランプ100の分光分布を示すグラフである。(b)は、Gaによる色域面積比を示すグラフである。(c)は、Ga4による色域面積比を示すグラフである。(A) is a graph which shows the spectral distribution of the LED lamp 100 optimized at 5000K. (B) is a graph showing a color gamut area ratio by Ga. (C) is a graph showing a color gamut area ratio by Ga4. (a)は、6700Kの場合において最適化を行ったLEDランプ100の分光分布を示すグラフである。(b)は、Gaによる色域面積比を示すグラフである。(c)は、Ga4による色域面積比を示すグラフである。(A) is a graph which shows the spectral distribution of the LED lamp 100 optimized at 6700K. (B) is a graph showing a color gamut area ratio by Ga. (C) is a graph showing a color gamut area ratio by Ga4. (a)〜(c)は、赤色LEDチップ12の発光ピーク波長(nm)とRaとの関係を示すグラフである。(A)-(c) are graphs showing the relationship between the emission peak wavelength (nm) of the red LED chip 12 and Ra. (a)〜(c)は、赤色LEDチップ12の発光ピーク波長(nm)とRaとの関係を示すグラフである。(A)-(c) are graphs showing the relationship between the emission peak wavelength (nm) of the red LED chip 12 and Ra. (a)〜(c)は、赤色LEDチップ12の発光ピーク波長(nm)とRaとの関係を示すグラフである。(A)-(c) are graphs showing the relationship between the emission peak wavelength (nm) of the red LED chip 12 and Ra. (a)〜(c)は、赤色および青色を発する1つのLEDベアチップの作製プロセスを説明するための工程断面図である。(A)-(c) is process sectional drawing for demonstrating the manufacturing process of one LED bare chip which emits red and blue. (a)〜(c)は、実施形態3におけるLEDベアチップの断面構成を模式的に示す図である。(A)-(c) is a figure which shows typically the cross-sectional structure of the LED bare chip in Embodiment 3. FIG. (a)〜(c)は、実施形態3におけるLEDベアチップの断面構成を模式的に示す図である。(A)-(c) is a figure which shows typically the cross-sectional structure of the LED bare chip in Embodiment 3. FIG. (a)〜(c)は、実施形態3におけるLEDベアチップの断面構成を模式的に示す図である。(A)-(c) is a figure which shows typically the cross-sectional structure of the LED bare chip in Embodiment 3. FIG. (a)〜(c)は、実施形態3におけるLEDベアチップの断面構成を模式的に示す図である。(A)-(c) is a figure which shows typically the cross-sectional structure of the LED bare chip in Embodiment 3. FIG. 実施形態4におけるLEDランプ500の構成を模式的に示す図である。FIG. 13 is a diagram schematically illustrating a configuration of an LED lamp according to a fourth embodiment. 実施形態4におけるLEDランプ600の構成を模式的に示す図である。It is a figure showing typically composition of LED lamp 600 in Embodiment 4. 実施形態5にかかるランプユニット1000の構成を模式的に示す図である。It is a figure which shows the structure of the lamp unit 1000 concerning Embodiment 5 typically.

符号の説明Explanation of reference numerals

 11 青色発光LED素子(青色LEDチップ)
 11a 発光強度調節手段(可変抵抗)
 12 赤色発光LED素子(赤色LEDランプ)
 12a 発光強度調節手段(可変抵抗)
 13 蛍光体(黄色発光蛍光体、緑色発光蛍光体)
 14 リードフレーム
 15 ボンディングワイヤ
 16 透明樹脂部
 17 台座
 21 青色発光LED素子の発光スペクトル
 22 黄色発光蛍光体の発光スペクトル
 23 赤色発光LED素子の発光スペクトル
 30 黒体放射軌跡
 41 青色LEDチップの色度
 42 黄色発光蛍光体の色度
 43 青色LEDチップと黄色発光蛍光体とによる白色発光の色度
 44 赤色LEDチップの色度
 52、62 白色発光LED素子
 54、64 赤色発光LED素子
 100 LEDランプ
 110 反射板
 120 電力供給器
 122 光色可変ダイヤル
 124 明るさ可変ダイヤル
 130 口金
 500 LEDランプ
 600 LEDランプ
 1000 ランプユニット
11 Blue light emitting LED element (blue LED chip)
11a Light emission intensity adjusting means (variable resistance)
12. Red light emitting LED element (red LED lamp)
12a Light emission intensity adjusting means (variable resistance)
13 phosphors (yellow light emitting phosphors, green light emitting phosphors)
Reference Signs List 14 lead frame 15 bonding wire 16 transparent resin part 17 pedestal 21 emission spectrum of blue light emitting LED element 22 emission spectrum of yellow light emitting phosphor 23 emission spectrum of red light emitting LED element 30 black body radiation locus 41 chromaticity of blue LED chip 42 yellow Chromaticity of light emitting phosphor 43 Chromaticity of white light emission by blue LED chip and yellow light emitting phosphor 44 Chromaticity of red LED chip 52, 62 White light emitting LED element 54, 64 Red light emitting LED element 100 LED lamp 110 Reflector 120 Power supply device 122 Variable light color dial 124 Variable brightness dial 130 Base 500 LED lamp 600 LED lamp 1000 Lamp unit

Claims (12)

 青色発光LED素子と、
 赤色発光LED素子と、
 前記青色発光LED素子によって励起される蛍光体であって、前記青色発光LED素子が発光する青色の波長帯域と前記赤色発光LED素子が発光する赤色の波長帯域との間の波長帯域の発光強度を補う発光スペクトルを発光する蛍光体と
 を備えるLEDランプであって、
 前記LEDランプの相関色温度が5000K以上であって、演色性評価の基準光源が合成昼光の場合において、前記青色発光LED素子のピーク波長は、450nmから460nmの範囲にあり、前記赤色発光LED素子のピーク波長は、600nm以上であり、かつ、前記蛍光体の発光ピーク波長は、520nmから545nmの範囲にあるLEDランプ。
A blue light emitting LED element,
A red light emitting LED element,
The phosphor excited by the blue light-emitting LED element, and emits light of a wavelength band between a blue wavelength band in which the blue light-emitting LED element emits and a red wavelength band in which the red light-emitting LED element emits light. And a phosphor that emits an emission spectrum that supplements the LED lamp.
When the correlated color temperature of the LED lamp is 5000K or more and the reference light source for color rendering evaluation is synthetic daylight, the peak wavelength of the blue light emitting LED element is in a range of 450 nm to 460 nm, and the red light emitting LED is An LED lamp, wherein a peak wavelength of the element is 600 nm or more, and a peak emission wavelength of the phosphor is in a range of 520 nm to 545 nm.
 青色発光LED素子と、
 赤色発光LED素子と、
 前記青色発光LED素子によって励起される蛍光体であって、前記青色発光LED素子が発光する青色の波長帯域と前記赤色発光LED素子が発光する赤色の波長帯域との間の波長帯域の発光強度を補う発光スペクトルを発光する蛍光体と
 を備えるLEDランプであって、
 前記LEDランプの相関色温度が5000K未満であって、演色性評価の基準光源が黒体放射の場合において前記青色発光LED素子のピーク波長は450nmから460nmの範囲にあり、前記赤色発光LED素子のピーク波長は、615nmから650nmの範囲にあり、かつ、前記蛍光体の発光ピーク波長は、545nmから560nmの範囲にある、LEDランプ。
A blue light emitting LED element,
A red light emitting LED element,
The phosphor excited by the blue light-emitting LED element, and emits light of a wavelength band between a blue wavelength band in which the blue light-emitting LED element emits and a red wavelength band in which the red light-emitting LED element emits light. And a phosphor that emits an emission spectrum that supplements the LED lamp.
When the correlated color temperature of the LED lamp is less than 5000 K and the reference light source for color rendering evaluation is blackbody radiation, the peak wavelength of the blue light emitting LED element is in a range of 450 nm to 460 nm, and the red light emitting LED element An LED lamp, wherein a peak wavelength is in a range of 615 nm to 650 nm, and an emission peak wavelength of the phosphor is in a range of 545 nm to 560 nm.
 前記蛍光体は、前記青色発光LED素子によって励起されて黄色を発光する黄色発光蛍光体である、請求項1または2に記載のLEDランプ。 The LED lamp according to claim 1, wherein the phosphor is a yellow light-emitting phosphor that emits yellow light when excited by the blue light-emitting LED element.  前記黄色発光蛍光体は、YAG蛍光体、またはMn発光中心を有する蛍光体である、請求項3に記載のLEDランプ。 The LED lamp according to claim 3, wherein the yellow light-emitting phosphor is a YAG phosphor or a phosphor having a Mn emission center.  前記赤色発光LED素子のピーク波長は、610nmから630nmの範囲内であって、
 平均演色評価数であるR1からR8までで構成される色域面積比Gaよりも、特殊演色評価数であるR9からR12までで構成される色域面積比Ga4が高い、請求項3または4に記載のLEDランプ。
The peak wavelength of the red light emitting LED element is in the range of 610 nm to 630 nm,
5. The color gamut area ratio Ga4 composed of R9 to R12, which is a special color rendering index, is higher than the color gamut area ratio Ga composed of R1 to R8, which is the average color rendering index. The LED lamp as described.
 前記赤色発光LED素子の発光強度を調節する発光強度調節手段をさらに備えた請求項1から5の何れか一つに記載のLEDランプ。 The LED lamp according to any one of claims 1 to 5, further comprising a light emission intensity adjusting means for adjusting the light emission intensity of the red light emitting LED element.  前記発光強度調節手段は可変抵抗器である、請求項6に記載のLEDランプ。 7. The LED lamp according to claim 6, wherein the light emission intensity adjusting means is a variable resistor.  前記青色発光LED素子と、前記赤色発光LED素子と、前記蛍光体とが一体素子構成されている、請求項1から7の何れか一つに記載のLEDランプ。 The LED lamp according to any one of claims 1 to 7, wherein the blue light emitting LED element, the red light emitting LED element, and the phosphor are integrally formed.  前記青色発光LED素子の発光部位と、前記赤色発光LED素子の発光部位とが、一つのチップ内に設けられている、請求項8に記載のLEDランプ。 9. The LED lamp according to claim 8, wherein the light emitting portion of the blue light emitting LED element and the light emitting portion of the red light emitting LED element are provided in one chip.  前記青色発光LED素子および前記蛍光体を含むLED素子と、前記赤色発光LED素子とがクラスタ構成されている、請求項1から9の何れか一つに記載のLEDランプ。 The LED lamp according to any one of claims 1 to 9, wherein the blue light emitting LED element and the LED element including the phosphor, and the red light emitting LED element are configured in a cluster.  請求項1から10の何れか一つに記載のLEDランプと、前記LEDランプに電力を供給する電力供給器とを備えたランプユニット。 A lamp unit comprising: the LED lamp according to any one of claims 1 to 10; and a power supply that supplies power to the LED lamp. 前記LEDランプから発する光を反射する反射板をさらに備えた請求項11に記載のランプユニット。 The lamp unit according to claim 11, further comprising a reflector that reflects light emitted from the LED lamp.
JP2003316714A 2000-05-31 2003-09-09 LED lamp and lamp unit Expired - Lifetime JP4386693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316714A JP4386693B2 (en) 2000-05-31 2003-09-09 LED lamp and lamp unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000161771 2000-05-31
JP2003316714A JP4386693B2 (en) 2000-05-31 2003-09-09 LED lamp and lamp unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001152783A Division JP2002057376A (en) 2000-05-31 2001-05-22 Led lamp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007140253A Division JP2007214603A (en) 2000-05-31 2007-05-28 Led lamp and lamp unit

Publications (2)

Publication Number Publication Date
JP2004080046A true JP2004080046A (en) 2004-03-11
JP4386693B2 JP4386693B2 (en) 2009-12-16

Family

ID=32032064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316714A Expired - Lifetime JP4386693B2 (en) 2000-05-31 2003-09-09 LED lamp and lamp unit

Country Status (1)

Country Link
JP (1) JP4386693B2 (en)

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135005A1 (en) * 2005-06-15 2006-12-21 Nichia Corporation Light emitting device
JP2007042307A (en) * 2005-06-28 2007-02-15 Seiko Instruments Inc Lighting device and display device including the same
JP2008071805A (en) * 2006-09-12 2008-03-27 Institute Of National Colleges Of Technology Japan Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors
JP2008091911A (en) * 2006-09-29 2008-04-17 Osram Opto Semiconductors Gmbh Optoelectronic element having luminescence conversion layer
CN100414726C (en) * 2005-05-19 2008-08-27 沈育浓 LED chip package and packaging method thereof
JP2008300124A (en) * 2007-05-30 2008-12-11 Mitsubishi Electric Corp Lighting device and lighting fixture
JP2008305992A (en) * 2007-06-07 2008-12-18 Sharp Corp Light emitting device and cellular phone with camera loaded with the same
JP2009521806A (en) * 2005-12-21 2009-06-04 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device and lighting method
JP2009147391A (en) * 2005-01-10 2009-07-02 Cree Inc Light-emitting device
US7569987B2 (en) 2004-08-31 2009-08-04 Nichia Corporation Light emitting apparatus
EP2135001A1 (en) * 2007-04-16 2009-12-23 Goodrich Lighting Systems GmbH Color-variable led light, particularly for lighting the interior of vehicles
JP2010509751A (en) * 2006-11-07 2010-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device for emitting mixed light
US7696522B2 (en) 2004-09-14 2010-04-13 Koito Manufacturing Co., Ltd. Light emitting device
JP2010511978A (en) * 2006-12-01 2010-04-15 クリー レッド ライティング ソリューションズ、インコーポレイテッド Lighting device and lighting method
JP2010512621A (en) * 2006-12-07 2010-04-22 クリー レッド ライティング ソリューションズ、インコーポレイテッド Lighting device and lighting method
JP2010519709A (en) * 2007-02-22 2010-06-03 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Illumination device, illumination method, optical filter, and light filtering method
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
JP2010147306A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Light emitting device, and lighting fixture and display instrument using the light emitting device
US7759682B2 (en) 2004-07-02 2010-07-20 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
JP2010527121A (en) * 2007-05-08 2010-08-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device and lighting method
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
JP2010534907A (en) * 2007-07-26 2010-11-11 レムニス・ライティング・パテント・ホールディング・ビー.・ブイ. Lighting device
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
US7901111B2 (en) 2006-11-30 2011-03-08 Cree, Inc. Lighting device and lighting method
US7906793B2 (en) 2004-10-25 2011-03-15 Cree, Inc. Solid metal block semiconductor light emitting device mounting substrates
JP2011066108A (en) * 2009-09-16 2011-03-31 Mitsubishi Electric Corp Light-emitting device and illuminator
JP2011512671A (en) * 2008-02-15 2011-04-21 クリー インコーポレイテッド Broadband light-emitting device lamps that produce white light output
US7969097B2 (en) 2006-05-31 2011-06-28 Cree, Inc. Lighting device with color control, and method of lighting
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US7993021B2 (en) 2005-11-18 2011-08-09 Cree, Inc. Multiple color lighting element cluster tiles for solid state lighting panels
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US8033692B2 (en) 2006-05-23 2011-10-11 Cree, Inc. Lighting device
JP2011216868A (en) * 2010-03-16 2011-10-27 Toshiba Lighting & Technology Corp Light emitting device, and illumination apparatus
CN102261588A (en) * 2011-07-14 2011-11-30 南京第壹有机光电有限公司 Organic light emitting diode (OLED) and LED compound lamp
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
JP2012022807A (en) * 2010-07-12 2012-02-02 Mitsubishi Electric Corp Light-emitting unit, and light-emitting device
JP2012504856A (en) * 2008-10-03 2012-02-23 ヴァーシテック・リミテッド Semiconductor color adjustable broadband light source and full color microdisplay
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8310143B2 (en) 2006-08-23 2012-11-13 Cree, Inc. Lighting device and lighting method
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8333631B2 (en) 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
JP2013058487A (en) * 2006-04-18 2013-03-28 Cree Inc Lighting device and lighting method
US8508117B2 (en) 2010-03-09 2013-08-13 Cree, Inc. High CRI lighting device with added long-wavelength blue color
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
JP2013201274A (en) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp Luminaire
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
CN103400928A (en) * 2013-07-30 2013-11-20 中山市川祺光电科技有限公司 High-cup type three-in-one direct-plug LED (light-emitting diode) lamp
CN103400931A (en) * 2013-08-01 2013-11-20 中山市川祺光电科技有限公司 Manufacturing method of direct-plug-in type LED (light emitting diode) lamp and high-cup three-in-one direct-plug-in type full color lamp
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8648546B2 (en) 2009-08-14 2014-02-11 Cree, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
US8664846B2 (en) 2011-04-11 2014-03-04 Cree, Inc. Solid state lighting device including green shifted red component
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
JP2014075186A (en) * 2012-10-02 2014-04-24 Panasonic Corp Illumination device
CN103822146A (en) * 2014-03-04 2014-05-28 深圳市聚作照明股份有限公司 LED (light emitting diode) lamp with quick-mounting function
US8820950B2 (en) 2010-03-12 2014-09-02 Toshiba Lighting & Technology Corporation Light emitting device and illumination apparatus
US8866410B2 (en) 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US8884508B2 (en) 2011-11-09 2014-11-11 Cree, Inc. Solid state lighting device including multiple wavelength conversion materials
US8896197B2 (en) 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
JP2014236002A (en) * 2013-05-31 2014-12-15 ライト−オン テクノロジー コーポレーション Lighting system
US8916890B2 (en) 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8941125B2 (en) 2003-03-10 2015-01-27 Cree, Inc. Light emitting devices for light conversion and semiconductor chips for fabricating the same
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
JP2015043359A (en) * 2013-08-26 2015-03-05 シチズン電子株式会社 Led light-emitting device
US8998444B2 (en) 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
US9030103B2 (en) 2013-02-08 2015-05-12 Cree, Inc. Solid state light emitting devices including adjustable scotopic / photopic ratio
US9039746B2 (en) 2013-02-08 2015-05-26 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
KR101562772B1 (en) 2008-03-31 2015-10-26 서울반도체 주식회사 Light emitting divece for white light of incandescent color
US9240528B2 (en) 2013-10-03 2016-01-19 Cree, Inc. Solid state lighting apparatus with high scotopic/photopic (S/P) ratio
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9335531B2 (en) 2011-12-30 2016-05-10 Cree, Inc. LED lighting using spectral notching
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US9857035B2 (en) 2014-01-20 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, light source for illumination, and illumination apparatus
US9921428B2 (en) 2006-04-18 2018-03-20 Cree, Inc. Light devices, display devices, backlighting devices, edge-lighting devices, combination backlighting and edge-lighting devices
US9960322B2 (en) 2014-04-23 2018-05-01 Cree, Inc. Solid state lighting devices incorporating notch filtering materials
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
JPWO2020080056A1 (en) * 2018-10-15 2021-09-30 ソニーグループ株式会社 Luminescent device and image display device
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19641980C1 (en) * 1996-10-11 1998-01-29 Wustlich Hans Dieter White light source used in opto-electronic devices
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH10144108A (en) * 1996-11-05 1998-05-29 Shizuoka Keisozai Kk Headlight device for vehicle
JPH10242513A (en) * 1996-07-29 1998-09-11 Nichia Chem Ind Ltd Light emitting diode and display device using the same
JPH10302514A (en) * 1997-04-25 1998-11-13 Pearl Musen:Kk Illumination lamp and lighting system
JPH10319911A (en) * 1997-05-15 1998-12-04 Matsushita Electric Ind Co Ltd Led display device and control method therefor
JPH1139917A (en) * 1997-07-22 1999-02-12 Hewlett Packard Co <Hp> High color rendering property light source
JPH1167148A (en) * 1997-08-08 1999-03-09 Iwasaki Electric Co Ltd Metal halide lamp
JPH1187770A (en) * 1997-09-01 1999-03-30 Toshiba Electron Eng Corp Lighting appliance, reader, projector, purifier and display device
JPH11135274A (en) * 1997-10-30 1999-05-21 Toshiba Tec Corp Led light system
JPH11162234A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Light source using light emitting diode
JPH11177143A (en) * 1997-12-16 1999-07-02 Toshiba Lighting & Technology Corp Light source for illumination employing led and illuminator
JPH11243232A (en) * 1998-11-25 1999-09-07 Nichia Chem Ind Ltd Led display device
JP2000021353A (en) * 1998-06-30 2000-01-21 Toshiba Lighting & Technology Corp Fluorescent lamp and luminaire
JP2000068555A (en) * 1998-08-19 2000-03-03 Hitachi Ltd Lighting system
DE19845229C1 (en) * 1998-10-01 2000-03-09 Wustlich Daniel White light background lighting system, especially for flat displays, comprises blue-emitting LED chips and a diffuser foil with a coating containing a blue-to-white light conversion powder
JP2000164935A (en) * 1998-11-26 2000-06-16 Sharp Corp Light emitting diode
JP2000223745A (en) * 1999-01-29 2000-08-11 Agilent Technol Inc Projector light source using solid-state green-color light source
JP2000243352A (en) * 1999-02-17 2000-09-08 Matsushita Electronics Industry Corp Fluorescent lamp
JP2000275636A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and illumination device as well as liquid crystal device using the illumination device
JP2001144331A (en) * 1999-09-02 2001-05-25 Toyoda Gosei Co Ltd Light-emitting device
WO2001041215A1 (en) * 1999-12-02 2001-06-07 Koninklijke Philips Electronics N.V. Hybrid white light source comprising led and phosphor-led

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005078A1 (en) * 1996-07-29 1998-02-05 Nichia Chemical Industries, Ltd. Light emitting device and display device
JPH10242513A (en) * 1996-07-29 1998-09-11 Nichia Chem Ind Ltd Light emitting diode and display device using the same
DE19641980C1 (en) * 1996-10-11 1998-01-29 Wustlich Hans Dieter White light source used in opto-electronic devices
JPH10144108A (en) * 1996-11-05 1998-05-29 Shizuoka Keisozai Kk Headlight device for vehicle
JPH10302514A (en) * 1997-04-25 1998-11-13 Pearl Musen:Kk Illumination lamp and lighting system
JPH10319911A (en) * 1997-05-15 1998-12-04 Matsushita Electric Ind Co Ltd Led display device and control method therefor
JPH1139917A (en) * 1997-07-22 1999-02-12 Hewlett Packard Co <Hp> High color rendering property light source
JPH1167148A (en) * 1997-08-08 1999-03-09 Iwasaki Electric Co Ltd Metal halide lamp
JPH1187770A (en) * 1997-09-01 1999-03-30 Toshiba Electron Eng Corp Lighting appliance, reader, projector, purifier and display device
JPH11135274A (en) * 1997-10-30 1999-05-21 Toshiba Tec Corp Led light system
JPH11162234A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Light source using light emitting diode
JPH11177143A (en) * 1997-12-16 1999-07-02 Toshiba Lighting & Technology Corp Light source for illumination employing led and illuminator
JP2000021353A (en) * 1998-06-30 2000-01-21 Toshiba Lighting & Technology Corp Fluorescent lamp and luminaire
JP2000068555A (en) * 1998-08-19 2000-03-03 Hitachi Ltd Lighting system
DE19845229C1 (en) * 1998-10-01 2000-03-09 Wustlich Daniel White light background lighting system, especially for flat displays, comprises blue-emitting LED chips and a diffuser foil with a coating containing a blue-to-white light conversion powder
JPH11243232A (en) * 1998-11-25 1999-09-07 Nichia Chem Ind Ltd Led display device
JP2000164935A (en) * 1998-11-26 2000-06-16 Sharp Corp Light emitting diode
JP2000223745A (en) * 1999-01-29 2000-08-11 Agilent Technol Inc Projector light source using solid-state green-color light source
JP2000243352A (en) * 1999-02-17 2000-09-08 Matsushita Electronics Industry Corp Fluorescent lamp
JP2000275636A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and illumination device as well as liquid crystal device using the illumination device
JP2001144331A (en) * 1999-09-02 2001-05-25 Toyoda Gosei Co Ltd Light-emitting device
WO2001041215A1 (en) * 1999-12-02 2001-06-07 Koninklijke Philips Electronics N.V. Hybrid white light source comprising led and phosphor-led

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941125B2 (en) 2003-03-10 2015-01-27 Cree, Inc. Light emitting devices for light conversion and semiconductor chips for fabricating the same
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US8034647B2 (en) 2004-07-02 2011-10-11 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7759682B2 (en) 2004-07-02 2010-07-20 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8617909B2 (en) 2004-07-02 2013-12-31 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7569987B2 (en) 2004-08-31 2009-08-04 Nichia Corporation Light emitting apparatus
US7696522B2 (en) 2004-09-14 2010-04-13 Koito Manufacturing Co., Ltd. Light emitting device
US7906793B2 (en) 2004-10-25 2011-03-15 Cree, Inc. Solid metal block semiconductor light emitting device mounting substrates
US8598606B2 (en) 2004-10-25 2013-12-03 Cree, Inc. Solid metal block semiconductor light emitting device mounting substrates and packages
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8410680B2 (en) 2005-01-10 2013-04-02 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8847478B2 (en) 2005-01-10 2014-09-30 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
JP2009147391A (en) * 2005-01-10 2009-07-02 Cree Inc Light-emitting device
US8513873B2 (en) 2005-01-10 2013-08-20 Cree, Inc. Light emission device
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
CN100414726C (en) * 2005-05-19 2008-08-27 沈育浓 LED chip package and packaging method thereof
US8044569B2 (en) 2005-06-15 2011-10-25 Nichia Corporation Light emitting device
JP2013033971A (en) * 2005-06-15 2013-02-14 Nichia Chem Ind Ltd Light-emitting device
JP5200537B2 (en) * 2005-06-15 2013-06-05 日亜化学工業株式会社 Light emitting device
TWI413276B (en) * 2005-06-15 2013-10-21 Nichia Corp Light emitting device
WO2006135005A1 (en) * 2005-06-15 2006-12-21 Nichia Corporation Light emitting device
JP2007042307A (en) * 2005-06-28 2007-02-15 Seiko Instruments Inc Lighting device and display device including the same
JP4588571B2 (en) * 2005-06-28 2010-12-01 セイコーインスツル株式会社 Illumination device and display device including the same
US7993021B2 (en) 2005-11-18 2011-08-09 Cree, Inc. Multiple color lighting element cluster tiles for solid state lighting panels
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US8878429B2 (en) 2005-12-21 2014-11-04 Cree, Inc. Lighting device and lighting method
US7768192B2 (en) 2005-12-21 2010-08-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
JP2009521806A (en) * 2005-12-21 2009-06-04 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device and lighting method
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
US10018346B2 (en) 2006-04-18 2018-07-10 Cree, Inc. Lighting device and lighting method
US8733968B2 (en) 2006-04-18 2014-05-27 Cree, Inc. Lighting device and lighting method
JP2013058487A (en) * 2006-04-18 2013-03-28 Cree Inc Lighting device and lighting method
US8123376B2 (en) 2006-04-18 2012-02-28 Cree, Inc. Lighting device and lighting method
US9297503B2 (en) 2006-04-18 2016-03-29 Cree, Inc. Lighting device and lighting method
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US9417478B2 (en) 2006-04-18 2016-08-16 Cree, Inc. Lighting device and lighting method
US8998444B2 (en) 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
US8212466B2 (en) 2006-04-18 2012-07-03 Cree, Inc. Solid state lighting devices including light mixtures
US9921428B2 (en) 2006-04-18 2018-03-20 Cree, Inc. Light devices, display devices, backlighting devices, edge-lighting devices, combination backlighting and edge-lighting devices
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8529104B2 (en) 2006-05-23 2013-09-10 Cree, Inc. Lighting device
US8033692B2 (en) 2006-05-23 2011-10-11 Cree, Inc. Lighting device
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8628214B2 (en) 2006-05-31 2014-01-14 Cree, Inc. Lighting device and lighting method
US7969097B2 (en) 2006-05-31 2011-06-28 Cree, Inc. Lighting device with color control, and method of lighting
US8310143B2 (en) 2006-08-23 2012-11-13 Cree, Inc. Lighting device and lighting method
JP2008071805A (en) * 2006-09-12 2008-03-27 Institute Of National Colleges Of Technology Japan Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors
JP2008091911A (en) * 2006-09-29 2008-04-17 Osram Opto Semiconductors Gmbh Optoelectronic element having luminescence conversion layer
JP2010509751A (en) * 2006-11-07 2010-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device for emitting mixed light
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US8382318B2 (en) 2006-11-07 2013-02-26 Cree, Inc. Lighting device and lighting method
US7901111B2 (en) 2006-11-30 2011-03-08 Cree, Inc. Lighting device and lighting method
JP2010511978A (en) * 2006-12-01 2010-04-15 クリー レッド ライティング ソリューションズ、インコーポレイテッド Lighting device and lighting method
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
JP2010512621A (en) * 2006-12-07 2010-04-22 クリー レッド ライティング ソリューションズ、インコーポレイテッド Lighting device and lighting method
US7918581B2 (en) 2006-12-07 2011-04-05 Cree, Inc. Lighting device and lighting method
JP2010519709A (en) * 2007-02-22 2010-06-03 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Illumination device, illumination method, optical filter, and light filtering method
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
KR101499269B1 (en) * 2007-02-22 2015-03-09 크리, 인코포레이티드 Lighting devices, methods of lighting, light filters and methods of filtering light
EP2135001A1 (en) * 2007-04-16 2009-12-23 Goodrich Lighting Systems GmbH Color-variable led light, particularly for lighting the interior of vehicles
JP2010527121A (en) * 2007-05-08 2010-08-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device and lighting method
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
TWI489648B (en) * 2007-05-08 2015-06-21 Cree Inc Lighting device and lighting method
US8038317B2 (en) 2007-05-08 2011-10-18 Cree, Inc. Lighting device and lighting method
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
JP2008300124A (en) * 2007-05-30 2008-12-11 Mitsubishi Electric Corp Lighting device and lighting fixture
JP2008305992A (en) * 2007-06-07 2008-12-18 Sharp Corp Light emitting device and cellular phone with camera loaded with the same
JP2010534907A (en) * 2007-07-26 2010-11-11 レムニス・ライティング・パテント・ホールディング・ビー.・ブイ. Lighting device
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US9054282B2 (en) 2007-08-07 2015-06-09 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials and methods for forming the same
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US10199360B2 (en) 2007-11-14 2019-02-05 Cree, Inc. Wire bond free wafer level LED
US9491828B2 (en) 2007-11-28 2016-11-08 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US8866410B2 (en) 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
JP2011512671A (en) * 2008-02-15 2011-04-21 クリー インコーポレイテッド Broadband light-emitting device lamps that produce white light output
US8598565B2 (en) 2008-02-15 2013-12-03 Cree, Inc. Broadband light emitting device lamps for providing white light output
US8916890B2 (en) 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
US8513871B2 (en) 2008-03-28 2013-08-20 Cree, Inc. Apparatus and methods for combining light emitters
KR101562772B1 (en) 2008-03-31 2015-10-26 서울반도체 주식회사 Light emitting divece for white light of incandescent color
JP2012504856A (en) * 2008-10-03 2012-02-23 ヴァーシテック・リミテッド Semiconductor color adjustable broadband light source and full color microdisplay
JP2010147306A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Light emitting device, and lighting fixture and display instrument using the light emitting device
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8333631B2 (en) 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8648546B2 (en) 2009-08-14 2014-02-11 Cree, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
JP2011066108A (en) * 2009-09-16 2011-03-31 Mitsubishi Electric Corp Light-emitting device and illuminator
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US8508117B2 (en) 2010-03-09 2013-08-13 Cree, Inc. High CRI lighting device with added long-wavelength blue color
US8508127B2 (en) 2010-03-09 2013-08-13 Cree, Inc. High CRI lighting device with added long-wavelength blue color
US8820950B2 (en) 2010-03-12 2014-09-02 Toshiba Lighting & Technology Corporation Light emitting device and illumination apparatus
JP2011216868A (en) * 2010-03-16 2011-10-27 Toshiba Lighting & Technology Corp Light emitting device, and illumination apparatus
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8896197B2 (en) 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
US9599291B2 (en) 2010-06-04 2017-03-21 Cree, Inc. Solid state light source emitting warm light with high CRI
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
JP2012022807A (en) * 2010-07-12 2012-02-02 Mitsubishi Electric Corp Light-emitting unit, and light-emitting device
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US8664846B2 (en) 2011-04-11 2014-03-04 Cree, Inc. Solid state lighting device including green shifted red component
CN102261588A (en) * 2011-07-14 2011-11-30 南京第壹有机光电有限公司 Organic light emitting diode (OLED) and LED compound lamp
US8884508B2 (en) 2011-11-09 2014-11-11 Cree, Inc. Solid state lighting device including multiple wavelength conversion materials
US9335531B2 (en) 2011-12-30 2016-05-10 Cree, Inc. LED lighting using spectral notching
JP2013201274A (en) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp Luminaire
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
JP2014075186A (en) * 2012-10-02 2014-04-24 Panasonic Corp Illumination device
US9030103B2 (en) 2013-02-08 2015-05-12 Cree, Inc. Solid state light emitting devices including adjustable scotopic / photopic ratio
US9661715B2 (en) 2013-02-08 2017-05-23 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
US9039746B2 (en) 2013-02-08 2015-05-26 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
JP2014236002A (en) * 2013-05-31 2014-12-15 ライト−オン テクノロジー コーポレーション Lighting system
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
CN103400928A (en) * 2013-07-30 2013-11-20 中山市川祺光电科技有限公司 High-cup type three-in-one direct-plug LED (light-emitting diode) lamp
CN103400931A (en) * 2013-08-01 2013-11-20 中山市川祺光电科技有限公司 Manufacturing method of direct-plug-in type LED (light emitting diode) lamp and high-cup three-in-one direct-plug-in type full color lamp
JP2015043359A (en) * 2013-08-26 2015-03-05 シチズン電子株式会社 Led light-emitting device
US9240528B2 (en) 2013-10-03 2016-01-19 Cree, Inc. Solid state lighting apparatus with high scotopic/photopic (S/P) ratio
US9857035B2 (en) 2014-01-20 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, light source for illumination, and illumination apparatus
CN103822146A (en) * 2014-03-04 2014-05-28 深圳市聚作照明股份有限公司 LED (light emitting diode) lamp with quick-mounting function
US9960322B2 (en) 2014-04-23 2018-05-01 Cree, Inc. Solid state lighting devices incorporating notch filtering materials
JPWO2020080056A1 (en) * 2018-10-15 2021-09-30 ソニーグループ株式会社 Luminescent device and image display device

Also Published As

Publication number Publication date
JP4386693B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4386693B2 (en) LED lamp and lamp unit
US6577073B2 (en) Led lamp
JP2002057376A (en) Led lamp
JP3940596B2 (en) Illumination light source
US8212466B2 (en) Solid state lighting devices including light mixtures
US9530944B2 (en) High color-saturation lighting devices with enhanced long wavelength illumination
JP3940750B2 (en) Illumination light source
US8884508B2 (en) Solid state lighting device including multiple wavelength conversion materials
US8957435B2 (en) Lighting device
US8508117B2 (en) High CRI lighting device with added long-wavelength blue color
US8178888B2 (en) Semiconductor light emitting devices with high color rendering
JP2007214603A (en) Led lamp and lamp unit
KR20110026490A (en) Solid state lighting devices including light mixtures
JP2008283155A (en) Light emitting device, lighting device, and liquid crystal display device
JP2010129583A (en) Lighting fixture
TWI595803B (en) White light illumination system
JP6846072B1 (en) Light emitting device and lighting device
CN114388678A (en) High-quality accurate controllable colour temperature light source
TW201028592A (en) LED white-light lamp with an easily adjustable color temperature

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

R150 Certificate of patent or registration of utility model

Ref document number: 4386693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term