JP2015043359A - Led light-emitting device - Google Patents

Led light-emitting device Download PDF

Info

Publication number
JP2015043359A
JP2015043359A JP2013174136A JP2013174136A JP2015043359A JP 2015043359 A JP2015043359 A JP 2015043359A JP 2013174136 A JP2013174136 A JP 2013174136A JP 2013174136 A JP2013174136 A JP 2013174136A JP 2015043359 A JP2015043359 A JP 2015043359A
Authority
JP
Japan
Prior art keywords
light
emitting device
film layer
led light
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013174136A
Other languages
Japanese (ja)
Other versions
JP6266923B2 (en
Inventor
新 下澤
Arata Shimozawa
新 下澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2013174136A priority Critical patent/JP6266923B2/en
Publication of JP2015043359A publication Critical patent/JP2015043359A/en
Application granted granted Critical
Publication of JP6266923B2 publication Critical patent/JP6266923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED light-emitting device including means for effectively suppressing ring-shaped color unevenness occurring due to an optical path length difference in a wavelength conversion member.SOLUTION: In an LED light-emitting device produced by mounting an LED element on a substrate and sealing an upper surface side of the LED element with a wavelength conversion member that absorbs emitted light and performs wavelength conversion, an optical film layer for controlling an optical characteristic of outgoing light is provided for an upper surface of the wavelength conversion member, with the optical film layer being made of a dielectric multilayer film and being formed in a ring shape. The optical film layer formed in the ring shape is constructed to selectively reflect excitation light that is a cause of color unevenness. Thus, application to LED light-emitting devices having various structures of cup type, pancake type, and the like is possible and effective suppression of color unevenness is possible.

Description

本発明は、照明用等に用いられるLED発光装置に関し、特に出射光の色ムラを制御する手段を備えたLED発光装置に関する。   The present invention relates to an LED light-emitting device used for illumination or the like, and more particularly to an LED light-emitting device provided with means for controlling color unevenness of emitted light.

近年、省電力、高効率、及び長寿命という特徴を持つ白色LEDが従来の白熱灯や蛍光灯のような従来型光源に置き換わり急速に普及し始めている。この白色LEDの発光装置にはいくつかの方式があるが、LED素子に蛍光粒子を含有する透光性樹脂を被覆する構成とし、LED光と蛍光粒子による波長変換光との混光により白色光を得る形態の発光装置がよく知られている。   In recent years, white LEDs having features such as power saving, high efficiency, and long life have been replaced by conventional light sources such as conventional incandescent lamps and fluorescent lamps, and have begun to spread rapidly. There are several types of light emitting devices for white LEDs, but the LED element is coated with a translucent resin containing fluorescent particles, and white light is mixed by the mixed light of LED light and wavelength converted light by fluorescent particles. A light-emitting device that obtains the above is well known.

このようなLED発光装置において、放射光が外部に放射され、発光観測面側からこの放射光を見たとき、中心部と外側部とで色調の異なるリング状の色ムラが観測されることがある。これらの多くの原因は、LED素子から直上方向へ放射される光と、斜め方向に放射される光とでは、透光性樹脂内での光路長に違いがあり、透光性樹脂内に分散する蛍光粒子との遭遇機会の差により斜め方向の光は変換光成分が多くなることが原因として考えられている。   In such an LED light emitting device, the emitted light is radiated to the outside, and when the emitted light is viewed from the light emission observation surface side, ring-shaped color unevenness having different color tones is observed at the central portion and the outer portion. is there. The cause of many of these is that there is a difference in the optical path length in the translucent resin between the light emitted from the LED element in the upward direction and the light emitted in the oblique direction, and the light is dispersed in the translucent resin. It is considered that light in an oblique direction has a large amount of converted light components due to a difference in encounter opportunities with fluorescent particles.

このような色ムラを抑制する手段を備えるLED発光装置として、各種の提案がされているが、ここでは、反射枠体を有しない略半球型(以下、パンケーキ型と呼ぶ)の透光性樹脂を第1の蛍光体層と第2の蛍光体層とから構成することで色ムラを抑制したLED発光装置の特許文献1と、反射枠体を備え(以下、カップ型と呼ぶ)、内部に封入層及び断熱層を介して板状の蛍光体層を配設することで色ムラを抑制したLED発光装置の特許文献2とを従来例として説明する。   Various proposals have been made as LED light emitting devices having such means for suppressing color unevenness, but here, a semi-spherical type (hereinafter referred to as pancake type) translucency having no reflective frame. Patent Document 1 of an LED light emitting device in which color unevenness is suppressed by forming a resin from a first phosphor layer and a second phosphor layer, and a reflective frame (hereinafter referred to as a cup type), and the interior Patent Document 2 of an LED light-emitting device in which color unevenness is suppressed by disposing a plate-like phosphor layer via an encapsulating layer and a heat insulating layer will be described as a conventional example.

ここで、特許文献1の図1に開示されているパンケーキ型のLED発光装置を図14に示し、特許文献2の図5に開示されているカップ型のLED発光装置を図15に示し、以下に、それらの従来例について説明する。尚、理解しやすいように発明の主旨を外さない範囲において部品名称を本願にそろえ、図面も簡略化している。   Here, the pancake-type LED light-emitting device disclosed in FIG. 1 of Patent Document 1 is shown in FIG. 14, the cup-type LED light-emitting device disclosed in FIG. 5 of Patent Document 2 is shown in FIG. Hereinafter, those conventional examples will be described. For ease of understanding, the names of parts are aligned with the present application within a range not departing from the spirit of the invention, and the drawings are also simplified.

まず、図14を用いて特許文献1のパンケーキ型のLED発光措置200について説明する。図14(a)はLED発光装置200の放射光の照射面201における色ムラ状況を示し、(b)はLED発光装置200の断面構成を示す。まず、図14(b)において、LED素子102は配線基板103に実装され、ボンディングワイヤ131によって素子上面の電極と、配線基板103に設けられた配線パターンとが電気的に接続されている。蛍光体層104は、LED素子102の上面と略同一の高さとなるようにその周囲を被覆する第1の蛍光体層141と、LED素子102と第1の蛍光体層141とを被覆するパンケーキ型の蛍光体層142とから構成されている。ここで、第2の蛍光体層142の蛍光体の濃度は第1の蛍光体層141の蛍光体の濃度より高くなるように構成されている。これにより、LED素子102の放射光は、第1の蛍光体層141の側方方向へ出射する変換成分の少ない光と、第2の蛍光体層142から側方方向へ出射する変換成分の多い光とが適度に混光するため(Cの領域光)、側方方向での色ムラが生じ難い構成になっている。   First, the pancake-type LED light emission measure 200 of Patent Document 1 will be described with reference to FIG. FIG. 14A shows the state of color unevenness on the irradiated surface 201 of the emitted light of the LED light emitting device 200, and FIG. First, in FIG. 14B, the LED element 102 is mounted on the wiring board 103, and the electrodes on the upper surface of the element are electrically connected to the wiring pattern provided on the wiring board 103 by bonding wires 131. The phosphor layer 104 is a pan that covers the first phosphor layer 141 covering the periphery of the LED element 102 and the LED element 102 and the first phosphor layer 141 so as to be substantially the same height as the upper surface of the LED element 102. And a cake-type phosphor layer 142. Here, the phosphor concentration of the second phosphor layer 142 is configured to be higher than the phosphor concentration of the first phosphor layer 141. Thereby, the emitted light of the LED element 102 has a small amount of conversion component emitted in the lateral direction of the first phosphor layer 141 and a large amount of conversion component emitted in the lateral direction from the second phosphor layer 142. Since light is mixed appropriately (C region light), color unevenness in the lateral direction is unlikely to occur.

次に、図15を用いて特許文献2のカップ型のLED発光装置300について説明する。図15(a)はLED発光装置300の放射光の照射面301における色ムラ状況を示し、(b)はLED発光装置300の断面構成を示す。まず、図15(b)において、LED素子312は反射枠体318を設けた配線基板311上の配線パターン311−1にフリップチップ等により実装されて、素子の電極と配線パターンとが電気的に接続されている。LED素子312は反射枠体318の内部に透光性樹脂(封入層)315によって封止されている。また、その上面に配設された断熱層(空気層)316を介して、蛍光体層313が配設されている。また、蛍光体層313の上面には放熱層314が配設されている。これにより、LED素子312の放射光により蛍光体層313に混入された蛍光体313−2が励起される際に発生する励起熱313−2hは、放熱層314を介して空気中に熱314hとなって放熱される。また、LED素子312からの放射熱を断熱層316によって低減するので蛍光体層313の劣化を低減できる。また、蛍光体層313が薄い板状になっている効果により、真上方向の光(Aの領域光)と斜め方向の光(Bの領域光)の光路長の差が小さく色ムラが抑制される。   Next, the cup-type LED light emitting device 300 of Patent Document 2 will be described with reference to FIG. FIG. 15A shows the state of color unevenness on the irradiation surface 301 of the emitted light of the LED light emitting device 300, and FIG. 15B shows the cross-sectional configuration of the LED light emitting device 300. FIG. First, in FIG. 15B, the LED element 312 is mounted on the wiring pattern 311-1 on the wiring board 311 provided with the reflection frame body 318 by flip chip or the like, and the electrode of the element and the wiring pattern are electrically connected. It is connected. The LED element 312 is sealed inside the reflective frame 318 by a translucent resin (encapsulation layer) 315. A phosphor layer 313 is disposed via a heat insulating layer (air layer) 316 disposed on the upper surface thereof. A heat dissipation layer 314 is disposed on the upper surface of the phosphor layer 313. Thereby, the excitation heat 313-2h generated when the phosphor 313-2 mixed in the phosphor layer 313 is excited by the emitted light of the LED element 312 is converted into the heat 314h in the air via the heat dissipation layer 314. It becomes heat dissipation. Further, since the radiant heat from the LED element 312 is reduced by the heat insulating layer 316, deterioration of the phosphor layer 313 can be reduced. In addition, due to the thin plate-like effect of the phosphor layer 313, the difference in optical path length between light in the upward direction (A area light) and oblique light (B area light) is small, and color unevenness is suppressed. Is done.

特開2012−248553号公報 (図1)JP 2012-248553 A (FIG. 1) 特許第5100744号公報 (図5)Japanese Patent No. 5100744 (FIG. 5)

ここで、図14(b)において、従来のLED発光装置200の放射光Aの領域では、真上方向の放射光P1が蛍光体層142を透過する距離s1を想定して蛍光体の濃度を設定し青色光と黄色光が適度に混光して白色光を得られるようになっている。これにより、蛍光体による変換成分光が適度な密度の放射光(矢印Pyの密度が適度)となっている。また、Cの領域は、濃度の低い蛍光体層141を通過する変換成分の少ない光と、濃度の高い蛍光体層142を通過する変換成分の多い光が適度に混光し変換成分が適度な密度の放射光(矢印Pyの密度が適度)となっている。   Here, in FIG. 14B, in the region of the radiated light A of the conventional LED light emitting device 200, the concentration of the phosphor is assumed assuming the distance s1 through which the radiant light P1 in the upward direction passes through the phosphor layer 142. It is set so that white light can be obtained by appropriately mixing blue light and yellow light. Thereby, the conversion component light by a fluorescent substance is the radiation light of moderate density (the density of arrow Py is moderate). In the region C, light having a small amount of conversion component passing through the phosphor layer 141 having a low concentration and light having a large amount of conversion component passing through the phosphor layer 142 having a high concentration are appropriately mixed so that the conversion component is moderate. The density radiation light (the density of the arrow Py is moderate).

しかしながら、Bの領域では、斜め方向の放射光P2が濃度の高い蛍光体層142を透過するがその距離s2は、放射光P1の透過距離s1よりも長い。そのため、変換成分が多い放射光(矢印Pyの密度が高い)となっている。この結果、図14(a)の照射面201に示す如くAとCに挟まれたBの領域では変換成分光Pyの密度が高くなり色ムラが解消できない懸念がある。また、製造上、第1の蛍光体層となる樹脂の高さをLED素子の上面と略同一の高さに制御して製造することは工程の管理が難しい。また、2つの蛍光体層の異なる濃度の管理はバラツキが発生しやすい。この結果、工数が増大して製造コストが増大する懸念がある。   However, in the region B, the obliquely emitted light P2 is transmitted through the phosphor layer 142 having a high concentration, but the distance s2 is longer than the transmission distance s1 of the emitted light P1. Therefore, it is radiant light (the density of arrow Py is high) with many conversion components. As a result, there is a concern that the density of the converted component light Py becomes high in the region B sandwiched between A and C as shown by the irradiation surface 201 in FIG. In addition, in manufacturing, it is difficult to manage the process if the height of the resin serving as the first phosphor layer is controlled to be substantially the same as the upper surface of the LED element. Also, the management of different concentrations of the two phosphor layers tends to vary. As a result, there is a concern that the man-hour increases and the manufacturing cost increases.

次に、図15(b)において、従来のLED発光装置300の蛍光体層313は、薄い板状になっていて、LED素子から離れた位置に配設されているので蛍光体層313を通過する真上方向への放射光P1の透過距離s1と、斜め方向への放射光P2の透過距離s2とでは光路長の差はかなり低減される。しかしながら、光路長の差(s2−s1)は完全には解消されないので、Bの領域では、Aの領域よりも変換成分光Pyが多くなる(矢印Pyの密度が高い)傾向にあり、図15(a)に示すようにAの領域とBの領域とに色ムラが発生する懸念がある。また、蛍光体層313の下方には、断熱層316が設けられているため、蛍光体層313で発生する励起熱313−2hを封入層315から直接基板側に放熱することは困難である。その結果、蛍光体層313の上面側に放熱層314を設けて放熱せざるを得ない。このため、蛍光体層313の励起熱の放熱が十分に行えない懸念がある。   Next, in FIG.15 (b), the fluorescent substance layer 313 of the conventional LED light-emitting device 300 is thin plate shape, and since it is arrange | positioned in the position away from the LED element, it passes through the fluorescent substance layer 313. The difference in optical path length is considerably reduced between the transmission distance s1 of the radiation light P1 in the upward direction and the transmission distance s2 of the radiation light P2 in the oblique direction. However, since the optical path length difference (s2−s1) is not completely eliminated, the B component tends to have more converted component light Py (the density of the arrow Py is higher) than the A region. As shown in (a), there is a concern that color unevenness occurs in the area A and the area B. In addition, since the heat insulating layer 316 is provided below the phosphor layer 313, it is difficult to radiate the excitation heat 313-2h generated in the phosphor layer 313 directly from the encapsulating layer 315 to the substrate side. As a result, it is necessary to dissipate heat by providing the heat dissipation layer 314 on the upper surface side of the phosphor layer 313. For this reason, there is a concern that the heat radiation of the excitation heat of the phosphor layer 313 cannot be sufficiently performed.

(発明の目的)
そこで本発明の目的は、上記問題点を解決しようとするものであり、パンケーキ型やカップ型など、構造が異なるLED発光装置に応用ができて、放熱が良好で、生産性が高く、かつ、色ムラを効果的に抑制する手段を備えたLED発光装置を提供することである。
(Object of invention)
Therefore, an object of the present invention is to solve the above-mentioned problems, and can be applied to LED light-emitting devices having different structures such as pancake type and cup type, have good heat dissipation, high productivity, and Another object of the present invention is to provide an LED light emitting device provided with means for effectively suppressing color unevenness.

上記目的を達成するため、本発明におけるLED発光装置の構成は下記の通りである。
基板上にLED素子を実装し、LED素子の上面側を、発光された光を吸収し波長変換する波長変換部材で封止してなるLED発光装置において、
波長変換部材の上面に、出射光の光学特性を制御するための光学膜層を備え、光学膜層は誘電体多層膜がリング状に形成されていることを特徴とする。
In order to achieve the above object, the configuration of the LED light emitting device in the present invention is as follows.
In the LED light emitting device formed by mounting the LED element on the substrate and sealing the upper surface side of the LED element with a wavelength conversion member that absorbs emitted light and converts the wavelength,
An optical film layer for controlling the optical characteristics of the emitted light is provided on the upper surface of the wavelength conversion member, and the optical film layer is characterized in that a dielectric multilayer film is formed in a ring shape.

上記構成によれば、真上方向へ向かう発光と側面方向へ向かう発光の波長変換部材内での光路長差に起因して発生するリング状の色ムラに対応して、リング状の誘電体多層膜からなる光学膜層を設けて出射光の制御を行うようにしたので、色ムラの抑制が効果的かつ容易にできる。また、基板上にLED素子を波長変換部材で封止するのでLED素子の放熱と波長変換部材の励起熱の放熱が容易である。また、複数の濃度の波長変換部材を必要としないので、製造が容易である。   According to the above-described configuration, the ring-shaped dielectric multi-layer corresponding to the ring-shaped color unevenness generated due to the optical path length difference in the wavelength conversion member of the light emission directed directly upward and the light emission directed toward the side surface. Since the optical film layer made of a film is provided to control the emitted light, color unevenness can be effectively and easily suppressed. Further, since the LED element is sealed on the substrate with the wavelength conversion member, it is easy to radiate the LED element and the excitation heat of the wavelength conversion member. Moreover, since the wavelength conversion member of several density | concentration is not required, manufacture is easy.

また、リング状に形成された光学膜層は、光学特性の異なる誘電体多層膜が同心状に複数形成されているとよい。   Further, the optical film layer formed in a ring shape may be formed by concentrically forming a plurality of dielectric multilayer films having different optical characteristics.

これにより、発生するリング状の色ムラの色度差に対応して、光学特性の異なる複数のリング状の誘電体多層膜からなる光学膜層を設ける構成としたので、段階的な色ムラの抑制が可能となり色ムラをより効果的に抑制できる。   Accordingly, since the optical film layer composed of a plurality of ring-shaped dielectric multilayer films having different optical characteristics is provided in response to the chromaticity difference of the ring-shaped color unevenness that occurs, the stepwise color unevenness It becomes possible to suppress color unevenness more effectively.

LED素子は青色LED素子であり、波長変換部材は黄色蛍光粒子を含有する蛍光樹脂であり、誘電体多層膜は、出射光の色ムラに対応して黄色光を反射する光学特性を有するとよい。これにより、青色LEDと黄色蛍光樹脂から構成されるLED発光装置において、発生する色ムラに対応した反射率または反射波長域を設定して効果的に色ムラを抑制することができる。   The LED element is a blue LED element, the wavelength conversion member is a fluorescent resin containing yellow fluorescent particles, and the dielectric multilayer film preferably has an optical characteristic of reflecting yellow light corresponding to the color unevenness of the emitted light. . Thereby, in the LED light emitting device composed of the blue LED and the yellow fluorescent resin, the reflectance or the reflection wavelength range corresponding to the generated color unevenness can be set and the color unevenness can be effectively suppressed.

LED素子は青色LED素子であり、波長変換部材は黄色蛍光粒子と赤色蛍光粒子を含有する蛍光樹脂であり、誘電体多層膜は出射光の色ムラに対応して黄色光と赤色光を反射する光学特性を有するとよい。これにより、黄色蛍光粒子と赤色蛍光粒子とを含有する演色性を高めたLED発光装置の構成において、発生する色ムラに対応した反射率または反射波長域を設定して効果的に色ムラを抑制することができる。   The LED element is a blue LED element, the wavelength conversion member is a fluorescent resin containing yellow fluorescent particles and red fluorescent particles, and the dielectric multilayer film reflects yellow light and red light corresponding to the color unevenness of the emitted light. It may have optical properties. This effectively suppresses color unevenness by setting a reflectance or a reflection wavelength range corresponding to the color unevenness that occurs in the configuration of an LED light emitting device that includes yellow fluorescent particles and red fluorescent particles and has improved color rendering. can do.

LED素子は青色LED素子であり、波長変換部材は緑色蛍光粒子と赤色蛍光粒子を含有する蛍光樹脂であり、誘電体多層膜は出射光の色ムラに対応して緑色光と赤色光を反射する光学特性を有するとよい。これにより、緑色蛍光粒子と赤色蛍光粒子とを含有する演色性を高めたLED発光装置の構成において、発生する色ムラに対応した反射率または反射波長域を設定して効果的に色ムラを抑制することができる。   The LED element is a blue LED element, the wavelength conversion member is a fluorescent resin containing green fluorescent particles and red fluorescent particles, and the dielectric multilayer film reflects green light and red light corresponding to the color unevenness of the emitted light. It may have optical properties. This effectively suppresses color unevenness by setting a reflectance or a reflection wavelength range corresponding to the color unevenness that occurs in the configuration of an LED light emitting device that includes green fluorescent particles and red fluorescent particles and has improved color rendering. can do.

基板の上面に反射性枠体を設け、蛍光樹脂は、反射性枠体の内部に充填されているとよい。これにより、基板上に反射枠体が設けられ内部に実装されたLED素子を蛍光樹脂により充填封止するカップ型のLED発光装置において、発生する色ムラに対応した反射率または反射波長域を設定して効果的に色ムラを抑制することができる。また、反射枠体からの放熱が加わりLED素子の放熱と波長変換部材の励起熱の放熱が容易になる。   A reflective frame is provided on the upper surface of the substrate, and the fluorescent resin is preferably filled in the reflective frame. As a result, in the cup-type LED light emitting device in which the LED frame mounted on the substrate is filled and sealed with the fluorescent resin, the reflectance or the reflection wavelength range corresponding to the generated color unevenness is set. Thus, color unevenness can be effectively suppressed. Further, heat radiation from the reflection frame is added, and heat radiation from the LED element and excitation heat from the wavelength conversion member are facilitated.

本発明の構成によれば、発生するリング状の色ムラに対応して、リング状の誘電体多層膜からなる光学膜層を設け、色度差に応じて光学膜層の反射率または反射波長域を設定できるようにしたので色ムラを効果的に抑制することができる。また、光学膜層は平面や曲面にも形成できるのでパンケーキ型、カップ型のどちらのLED発光装置に応用できる。また、1つの濃度の蛍光樹脂でLED素子を基板上に封止できるので製造が容易である。また、蛍光樹脂を通して蛍光体の励起熱の放熱が容易である。この結果、放熱が良好で、生産性が高く、構造への応用範囲が広く、色ムラを効果的に抑制できる手段を備えたLED発光装置を提供できる。   According to the configuration of the present invention, an optical film layer composed of a ring-shaped dielectric multilayer film is provided in response to the ring-shaped color unevenness that occurs, and the reflectance or reflection wavelength of the optical film layer depends on the chromaticity difference. Since the area can be set, color unevenness can be effectively suppressed. Further, since the optical film layer can be formed on a flat surface or a curved surface, it can be applied to both pancake type and cup type LED light emitting devices. Further, since the LED element can be sealed on the substrate with one concentration of fluorescent resin, the manufacturing is easy. Moreover, it is easy to release the excitation heat of the phosphor through the fluorescent resin. As a result, it is possible to provide an LED light emitting device having good heat dissipation, high productivity, a wide range of application to structures, and means capable of effectively suppressing color unevenness.

実施例1の第1の実施形態のLED発光装置の断面図及び照射図である。It is sectional drawing and irradiation figure of the LED light-emitting device of 1st Embodiment of Example 1. FIG. 実施例1の第1の実施形態の誘電体多層膜の反射特性を示す図である。It is a figure which shows the reflective characteristic of the dielectric multilayer film of 1st Embodiment of Example 1. FIG. 実施例1の第1の実施形態の誘電体多層膜の原理図である。1 is a principle diagram of a dielectric multilayer film according to a first embodiment of Example 1. FIG. 実施例1の第1の実施形態の膜層を示す斜視図である。3 is a perspective view showing a film layer of the first embodiment of Example 1. FIG. 実施例1の第2の実施形態のLED発光装置の断面図及び照射図である。It is sectional drawing and irradiation figure of the LED light-emitting device of 2nd Embodiment of Example 1. FIG. 実施例1の第2の実施形態の誘電体多層膜の反射特性を示す図である。It is a figure which shows the reflective characteristic of the dielectric multilayer film of 2nd Embodiment of Example 1. FIG. 実施例1の第2の実施形態の膜層を示す斜視図である。It is a perspective view which shows the film | membrane layer of 2nd Embodiment of Example 1. FIG. 実施例1の第3の実施形態の誘電体多層膜の反射特性を示す図である。It is a figure which shows the reflective characteristic of the dielectric multilayer film of 3rd Embodiment of Example 1. FIG. 実施例1の第4の実施形態の誘電体多層膜の反射特性を示す図である。It is a figure which shows the reflective characteristic of the dielectric multilayer film of 4th Embodiment of Example 1. FIG. 実施例2の第1の実施形態のLED発光装置の断面図及び照射図である。It is sectional drawing and irradiation figure of the LED light-emitting device of 1st Embodiment of Example 2. FIG. 実施例2の第1の実施形態の膜層を示す斜視図である。6 is a perspective view showing a film layer according to a first embodiment of Example 2. FIG. 実施例2の第2の実施形態のLED発光装置の断面図及び照射図である。It is sectional drawing and irradiation figure of the LED light-emitting device of 2nd Embodiment of Example 2. FIG. 実施例2の第2の実施形態の膜層を示す斜視図である。6 is a perspective view showing a film layer according to a second embodiment of Example 2. FIG. 従来のLED発光装置200を示す断面図及び照射図である。It is sectional drawing and irradiation figure which show the conventional LED light-emitting device 200. 従来のLED発光装置300を示す断面図及び照射図である。It is sectional drawing and irradiation figure which show the conventional LED light-emitting device 300.

以下、図面に基づいて本発明の実施形態を詳述する。ただし、以下に示す実施の形態は、本発明の思想を具体化するためのLED発光装置を例示するものであって、本発明は以下の構成に特定しない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは本発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。また、各図面が示す部材の大きさや位置関係、光路等は説明を明確にするために誇張していることがあり、特に、LEDの発光や蛍光粒子の励起光の説明については矢印などで簡略化して説明している。また、以下の説明においては同一部品、同一構成要素には同一の名称、符号を付し詳細説明を適宜省略することがある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the embodiment described below exemplifies an LED light emitting device for embodying the idea of the present invention, and the present invention is not limited to the following configuration. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent. In addition, the size, positional relationship, optical path, and the like of the members shown in each drawing may be exaggerated for clarity of explanation, and in particular, explanation of light emission of LED and excitation light of fluorescent particles is simplified with arrows and the like. Is explained. In the following description, the same parts and the same components are denoted by the same names and reference numerals, and detailed description may be omitted as appropriate.

〔各実施例の特徴〕
本発明のLED発光装置は、基板部に実装されたLED素子とそれを封止する蛍光粒子を含有する波長変換部材(以下、蛍光樹脂と呼ぶ)からなり、蛍光樹脂の上面に誘電体多層膜からなる光学膜層を設けることにより、その照射光に発生する色ムラの抑制の改良に関するものである。本発明の光学膜層を用いる構造によれば、真上方向へ向かう発光と側面方向へ向かう発光の蛍光樹脂内での光路長差に起因して発生するリング状の色ムラを効果的に抑制することができる。ここで、実施例1は、基板上に反射枠体を備え、内部にLED素子を実装しLED素子を蛍光樹脂で封止するカップ型のLED発光装置の改良に関するものであり、実施例2は反射枠体を備えず、内部にLED素子を蛍光樹脂で封止したパンケーキ型のLED発光装置の改良に関するものである。以下、実施例1は図1〜図9を用いて説明し、実施例2は図10〜図13を用いて説明する。
[Features of each embodiment]
The LED light-emitting device of the present invention comprises an LED element mounted on a substrate part and a wavelength conversion member (hereinafter referred to as a fluorescent resin) containing fluorescent particles for sealing the LED element, and a dielectric multilayer film on the upper surface of the fluorescent resin. The present invention relates to an improvement in suppression of color unevenness generated in the irradiated light by providing an optical film layer made of According to the structure using the optical film layer of the present invention, ring-shaped color unevenness caused by the difference in the optical path length in the fluorescent resin between the light emission directed upward and the light emission directed toward the side surface is effectively suppressed. can do. Here, Example 1 relates to an improvement of a cup-type LED light emitting device that includes a reflective frame on a substrate, mounts the LED element therein, and seals the LED element with a fluorescent resin. The present invention relates to an improvement of a pancake-type LED light emitting device which is not provided with a reflection frame and in which an LED element is sealed with a fluorescent resin. Hereinafter, Example 1 is demonstrated using FIGS. 1-9, and Example 2 is demonstrated using FIGS. 10-13.

以下、本発明による実施例1のカップ型のLED発光装置について説明する。ここで、実施例1には4つの実施形態があり、第1の実施形態を図1〜図4に示し、第2の実施形態を図5〜図7に示し、第3の実施形態を図8に示し、第4の実施形態を図9に示す。   Hereinafter, a cup-type LED light-emitting device of Example 1 according to the present invention will be described. Here, there are four embodiments in Example 1, the first embodiment is shown in FIGS. 1 to 4, the second embodiment is shown in FIGS. 5 to 7, and the third embodiment is shown in FIG. 8 and FIG. 9 shows a fourth embodiment.

〔実施例1の第1の実施形態の説明:図1〜図4〕
以下、図1〜図4を用いて実施例1の第1の実施形態のLED発光装置50について説明する。図1(a)はLED発光装置50の放射光の照射面における色ムラ状況を示す照射図であり、(b)はLED発光装置50の断面構成を示す。また、図2は光学膜層の反射特性を示し、LED発光装置50の発光のスペクトルを重ねて表示している。尚、グラフの横軸は波長(nm)を示し、左の縦軸は光学膜層の反射率(%)を示し、右の縦軸は発光スペクトルの相対発光強度を示す。ここでグラフの見方は、後述する他の実施形態においても同様である。また、図3は誘電体多層膜の膜層構成及び反射に関する原理図であり後述する他の実施形態に共通である。また、図4はリング状に形成された光学膜層の斜視図である。
[Description of First Embodiment of Example 1: FIGS. 1 to 4]
Hereinafter, the LED light emitting device 50 according to the first embodiment of Example 1 will be described with reference to FIGS. FIG. 1A is an irradiation diagram showing the color unevenness state on the irradiated surface of the LED light emitting device 50, and FIG. 1B shows a cross-sectional configuration of the LED light emitting device 50. FIG. 2 shows the reflection characteristics of the optical film layer, and the light emission spectrum of the LED light emitting device 50 is superimposed and displayed. The horizontal axis of the graph indicates the wavelength (nm), the left vertical axis indicates the reflectance (%) of the optical film layer, and the right vertical axis indicates the relative emission intensity of the emission spectrum. Here, how to read the graph is the same in other embodiments described later. FIG. 3 is a principle diagram concerning the film layer configuration and reflection of the dielectric multilayer film, and is common to other embodiments described later. FIG. 4 is a perspective view of an optical film layer formed in a ring shape.

[構成の説明:図1]
まず、図1(b)を用いて、LED発光装置50の構成について説明する。図1(b)において、青色LED素子1は一方の面に電極が設けられており2つのバンプ3により、基板4上に設けられた配線電極5及び配線電極6にそれぞれフリップチップ実装されて、電気的に接続している。配線電極5及び配線電極6は基板4の表面に形成されており、一方の面は青色LED素子1を実装するための配線パターンを形成し、他方の面はLED発光装置を照明装置等(図示なし)に実装するための配線パターンを形成している。
[Description of configuration: FIG. 1]
First, the configuration of the LED light emitting device 50 will be described with reference to FIG. In FIG. 1B, the blue LED element 1 is provided with an electrode on one surface, and is flip-chip mounted on the wiring electrode 5 and the wiring electrode 6 provided on the substrate 4 by two bumps 3, respectively. Electrically connected. The wiring electrode 5 and the wiring electrode 6 are formed on the surface of the substrate 4, and one surface forms a wiring pattern for mounting the blue LED element 1, and the other surface is an LED light emitting device or the like (illustrated). None) is formed as a wiring pattern.

尚、実施例ではLED素子の実装構造をフリップチップ接合としているが、LED素子の電極形成面側を主光取出し面とする、ワイヤー接続による実装方法も採用でき、適宜、素子の構造に合わせた接続手段を採用することができる。また、基板4は少なくともLED素子の電極と接続される配線パターンを形成したものであって、基板の材料としては放熱特性の良いアルミナなどのセラミック等が望ましく、LED素子からの発光を光取出し方向へ有効に反射できるように、少なくともその表面が高反射材料で構成されることが好ましい。   In addition, although the mounting structure of the LED element is flip-chip bonding in the embodiment, a mounting method by wire connection in which the electrode forming surface side of the LED element is the main light extraction surface can be adopted, and is appropriately adjusted to the structure of the element. Connection means can be employed. Further, the substrate 4 is formed with a wiring pattern connected to at least the electrode of the LED element, and the substrate material is preferably ceramic such as alumina with good heat dissipation characteristics, and the light emission from the LED element is in the light extraction direction. It is preferable that at least the surface thereof is made of a highly reflective material so that it can be effectively reflected.

次に、反射枠体7は基板4上に固定されていて、内部には、蛍光粒子を含有する蛍光樹脂8が充填されていて、実装された青色LED素子1を封止している。尚、反射性枠体7は構成する材料としては光を反射する材料を含有する樹脂からなり、成形機により基板4上に成形される。また、内側面はテ―パが付けられていて青色LED素子1の発光を取出し方向へ反射できるように構成されている。   Next, the reflection frame 7 is fixed on the substrate 4 and filled with a fluorescent resin 8 containing fluorescent particles to seal the mounted blue LED element 1. The reflective frame 7 is made of a resin containing a material that reflects light as a constituent material, and is formed on the substrate 4 by a molding machine. Further, the inner surface is provided with a taper so that the emitted light of the blue LED element 1 can be reflected in the extraction direction.

ここで、蛍光樹脂8は青色LED素子1の発光波長を変換して黄色光Pyを放射する黄色蛍光粒子を分散含有している。蛍光樹脂8が反射枠体7内に満たされることにより、LED素子1から発光される青色光は各方向へ放射され、蛍光樹脂8内を透過し蛍光粒子に遭遇しないで空気中に放射されるものと、蛍光粒子に遭遇して波長変換して黄色光Pyとなって空気中に放射されるものがある。   Here, the fluorescent resin 8 contains dispersed yellow fluorescent particles that convert the emission wavelength of the blue LED element 1 and emit yellow light Py. When the fluorescent resin 8 is filled in the reflection frame 7, the blue light emitted from the LED element 1 is radiated in each direction, passes through the fluorescent resin 8, and is emitted into the air without encountering the fluorescent particles. Some of them encounter fluorescent particles and wavelength-convert them to become yellow light Py, which is emitted into the air.

次に、蛍光樹脂8の上面にはリング状の誘電体多層膜からなる光学膜層10が設けられている。このリング状の光学膜層10は、図4に示すように反射枠体7の外形及び蛍光樹脂8の充填形状に合わせて蛍光樹脂8の上面を、幅t1で覆うように形成されている。尚、光学膜層10の光学特性及び詳細形状については後述する。   Next, an optical film layer 10 made of a ring-shaped dielectric multilayer film is provided on the upper surface of the fluorescent resin 8. As shown in FIG. 4, the ring-shaped optical film layer 10 is formed so as to cover the upper surface of the fluorescent resin 8 with a width t <b> 1 according to the outer shape of the reflection frame 7 and the filling shape of the fluorescent resin 8. The optical characteristics and detailed shape of the optical film layer 10 will be described later.

[発光スペクトルの説明:図2]
次に、図2を用いて、LED発光装置50の発光スペクトル21について説明する。図2に示す発光スペクトル21(破線で示す)は青色LED素子1から発光される青色光B(ピークは約450nm)と、黄色蛍光粒子により励起される黄色光Y(ピークは約560nm)の2つのピークを有する光から構成される。これにより、青色光Bと黄色光Yとが適度に混光し白色光が得られる。
[Explanation of emission spectrum: FIG. 2]
Next, the emission spectrum 21 of the LED light emitting device 50 will be described with reference to FIG. The emission spectrum 21 (shown by a broken line) shown in FIG. 2 is 2 of blue light B (peak is about 450 nm) emitted from the blue LED element 1 and yellow light Y (peak is about 560 nm) excited by yellow fluorescent particles. It consists of light with two peaks. Thereby, the blue light B and the yellow light Y are mixed appropriately and white light is obtained.

[光学膜層の説明:図1、図2、図3、図4]
次に、図3を用いて誘電体多層膜からなる光学膜層10の詳細について説明する。図3は、図1(b)に示すLED発光装置50において、蛍光樹脂8の上面部のE−E断面図である。図3において、蛍光樹脂8の上面に誘電体からなる1/4波長厚の低屈折率材料13の膜がコーティングされ、さらにその上に誘電体からなる1/4波長厚の高屈折率材料14の膜がコーティングされている。この2層の膜をペアとして複数積層することにより、入射光に対して各層の境界面からの反射波面が相加的に重なって得られる反射特性を有する光学膜層10を構成することができる。
[Description of Optical Film Layer: FIGS. 1, 2, 3, and 4]
Next, details of the optical film layer 10 made of a dielectric multilayer film will be described with reference to FIG. FIG. 3 is an EE cross-sectional view of the upper surface portion of the fluorescent resin 8 in the LED light emitting device 50 shown in FIG. In FIG. 3, a film of a quarter wavelength thick low refractive index material 13 made of a dielectric is coated on the upper surface of the fluorescent resin 8, and a quarter wavelength thick high refractive index material 14 made of a dielectric is further formed thereon. The film is coated. By laminating a plurality of these two layers as a pair, an optical film layer 10 having a reflection characteristic obtained by additively overlapping the reflected wavefront from the boundary surface of each layer with respect to the incident light can be configured. .

また、この光学膜層10は、屈折率の低い誘電体膜13と屈折率の高い誘電体膜14との屈折率比を変化させたり、または、屈折率の低い誘電体膜13と屈折率の高い誘電体膜14の膜厚を変化させたりすることにより、その反射率を変化させることができる。また、特定の波長域の光に対して反射率を変化させることができる。   Further, the optical film layer 10 changes the refractive index ratio between the dielectric film 13 having a low refractive index and the dielectric film 14 having a high refractive index, or has a refractive index that is the same as that of the dielectric film 13 having a low refractive index. By changing the film thickness of the high dielectric film 14, the reflectance can be changed. In addition, the reflectance can be changed for light in a specific wavelength range.

次に、図2を用いて、本実施形態で採用した光学膜層10の光学特性について説明する。図2に示す光学膜層10の反射特性22(実線で示す)は、約500nm〜640nmの範囲の黄色光に対してra%の反射率を有し、他の波長域では反射率がゼロになるような特性になっている。また、上述の如く誘電体の膜層構成を変化させて、反射率と、反射波長域を変化させることができ、また、膜層幅t1(図1)も変えることができる。この結果、光学膜層10の反射率、反射波長域及び膜層幅を、色ムラの色度差と色ムラのリング幅に対応して合わせ込むことにより、色ムラの原因となる余分な黄色光Pyを反射により蛍光樹脂8内へ戻すことが可能となり、図1(b)に示す如く斜め方向の黄色光Pyの密度を、真上方向の黄色光Pyの密度と同等にすることができ、図1(a)の照射面51では色ムラが抑制される構成になっている。   Next, the optical characteristics of the optical film layer 10 employed in the present embodiment will be described with reference to FIG. The reflection characteristic 22 (shown by a solid line) of the optical film layer 10 shown in FIG. 2 has a ra% reflectance for yellow light in the range of about 500 nm to 640 nm, and the reflectance is zero in other wavelength regions. The characteristics are as follows. In addition, the reflectance and the reflection wavelength region can be changed by changing the dielectric film layer configuration as described above, and the film layer width t1 (FIG. 1) can also be changed. As a result, by adjusting the reflectance, the reflection wavelength region, and the film layer width of the optical film layer 10 in accordance with the chromaticity difference of color unevenness and the ring width of color unevenness, an extra yellow color that causes color unevenness It becomes possible to return the light Py into the fluorescent resin 8 by reflection, and the density of the yellow light Py in the oblique direction can be made equal to the density of the yellow light Py in the upward direction as shown in FIG. In the irradiation surface 51 of FIG. 1A, color unevenness is suppressed.

次に、図4を用いて光学膜層の形状について説明する。LED発光装置50において、反射枠体7の形状に合わせて光学膜層10の形状を変えることができる。例えば、図4(a)に示すように、反射枠体7の内側壁が丸型のカップ形状の場合は、丸形の蛍光樹脂8に合わせて内径が丸形の光学膜層10a(LED発光装置50A)とすることができる。また、図4(b)に示すように、反射枠体7の内側壁が角形のカップ形状の場合は角形の蛍光樹脂8に合わせて内側が角形の光学膜層10b(LED発光装置50B)としてもよい。   Next, the shape of the optical film layer will be described with reference to FIG. In the LED light emitting device 50, the shape of the optical film layer 10 can be changed according to the shape of the reflection frame 7. For example, as shown in FIG. 4A, when the inner wall of the reflection frame 7 has a round cup shape, an optical film layer 10a having a round inner diameter in accordance with the round fluorescent resin 8 (LED light emission). Apparatus 50A). As shown in FIG. 4B, when the inner wall of the reflection frame 7 has a square cup shape, an optical film layer 10b (LED light emitting device 50B) having a square inner side in accordance with the square fluorescent resin 8 is used. Also good.

尚、これらの誘電体からなる光学膜層は真空蒸着やスパッタリングなどの方法により形成可能であり、所定の材質を用いて所定の膜厚を積層生成することにより所定の特性を有する光学膜層を形成することができる。また、マスキング技術を用いて所定の形状や幅に形成することができる。また、図2、図3、図4において説明した光学膜層の反射特性、誘電体多層膜の原理及び光学膜層の形状については、後述する他の実施形態においても同様であり、重複する図または説明は一部省略する。   The optical film layer made of these dielectrics can be formed by a method such as vacuum vapor deposition or sputtering, and an optical film layer having predetermined characteristics is formed by laminating a predetermined film thickness using a predetermined material. Can be formed. Moreover, it can form in a predetermined shape and width | variety using a masking technique. Further, the reflection characteristics of the optical film layer, the principle of the dielectric multilayer film, and the shape of the optical film layer described in FIGS. 2, 3, and 4 are the same in other embodiments described later, and are duplicated figures. Or some explanation is omitted.

[発光動作の説明:図1、図2]
次に、図1、図2を用いて、LED発光装置50の発光動作について説明する。まず、図1(b)において、LED発光装置50の基板4に配設された配線電極5及び配線電極6に対して、外部から電圧が印加(図示なし)されると、青色LED素子1の電極に電圧が印加され青色光を発光する。このLED光の内で、真上方向へ向かう青色光P1は蛍光樹脂8内を距離s1で透過して真上方向へ放射される。一方、斜め方向に向かう青色光P2は蛍光樹脂8内を通過する距離がs2で透過して斜め方向に放射される。
[Description of light emission operation: FIGS. 1 and 2]
Next, the light emission operation of the LED light emitting device 50 will be described with reference to FIGS. 1 and 2. First, in FIG. 1B, when a voltage is applied from the outside to the wiring electrode 5 and the wiring electrode 6 disposed on the substrate 4 of the LED light emitting device 50 (not shown), the blue LED element 1 A voltage is applied to the electrode to emit blue light. Of this LED light, the blue light P1 heading upward is transmitted through the fluorescent resin 8 at a distance s1 and radiated upward. On the other hand, the blue light P2 traveling in the oblique direction is transmitted through the fluorescent resin 8 at a distance s2, and is emitted in the oblique direction.

ここで、蛍光樹脂8は黄色蛍光粒子が均一に分散しているので、透過距離の差s2−s1は、黄色蛍光粒子と遭遇する機会の差となり、斜め方向へ向かう青色光P2は黄色蛍光粒子と遭遇する機会が多くなる。このため、青色光P1が励起する黄色光Pyの密度が高くなる。その結果、LED発光装置50の照射範囲で青色光と黄色光Pyが混光された場合、真上方向に比べて斜め方向では黄色光Pyの密度が高い白色光となり、その結果、光学膜層10がない状態では、照射面において黄色味が強いリング状の色ムラが生じる。(前述した、従来のLED発光装置300から発光される黄色光Pyの密度を示す矢印のように、斜め方向のBの領域の密度が高くなる。図15(b)参照))   Here, since the yellow fluorescent particles are uniformly dispersed in the fluorescent resin 8, the transmission distance difference s2-s1 is a difference in the chance of encountering the yellow fluorescent particles, and the blue light P2 traveling in the oblique direction is the yellow fluorescent particles. And more opportunities to encounter. For this reason, the density of the yellow light Py excited by the blue light P1 is increased. As a result, when blue light and yellow light Py are mixed in the irradiation range of the LED light emitting device 50, white light having a high density of yellow light Py is obtained in the oblique direction as compared with the directly upward direction, and as a result, the optical film layer In the state where there is no 10, there is a ring-shaped color unevenness with a strong yellowishness on the irradiated surface. (As described above, the density of the region B in the oblique direction increases as indicated by the arrow indicating the density of the yellow light Py emitted from the conventional LED light emitting device 300. See FIG. 15B).

ここで、本実施形態では、蛍光樹脂8の上面に、斜め方向の放射光が出射する部分にリング状の光学膜層10を配設し、黄色光Pyの一部を蛍光樹脂8内へ反射させるようにしたので、黄色光Pyの密度を低減することができる。また、光学膜層10の反射率、反射波長領域、膜層幅を合わせ込むことができるので、斜め方向の放射光に対して黄色光Pyの密度を調整することができる。   Here, in the present embodiment, the ring-shaped optical film layer 10 is disposed on the upper surface of the fluorescent resin 8 at a portion where the emitted light in the oblique direction is emitted, and a part of the yellow light Py is reflected into the fluorescent resin 8. As a result, the density of yellow light Py can be reduced. In addition, since the reflectance, reflection wavelength region, and film layer width of the optical film layer 10 can be adjusted, the density of the yellow light Py can be adjusted with respect to the radiation light in the oblique direction.

次に、図2を用いて、蛍光樹脂8の上面に配設した光学膜層10の動作について説明する。光学膜層10は、前述の誘電体多層膜からなる光学膜層の原理にもとづいて、所定の構成に形成されていて、黄色光(約500nm〜640nmの範囲の黄色光)のra%を反射する特性になっている。これにより、光学膜層10を透過しようとする黄色光Pyのうち、ra%は反射され蛍光樹脂8内へ戻される。また、残りの(100−ra)%の黄色光Pyは光学膜層10を透過し外部へ放射される。また、光学膜層10の青色光に対する反射率はゼロ%であるため、すべての青色光は透過することができる。この結果、斜め方向の放射光は、黄色光Pyの密度が低くなり、真上方向に放射される黄色光Pyの密度と同じレベルにすることができる。これにより、全放射領域において黄色光Pyの密度がそろい、照射面51(図1(a))において色ムラは抑制され、均一な白色光を得られる。   Next, the operation of the optical film layer 10 disposed on the upper surface of the fluorescent resin 8 will be described with reference to FIG. The optical film layer 10 is formed in a predetermined configuration based on the principle of the optical film layer composed of the above-described dielectric multilayer film, and reflects ra% of yellow light (yellow light in the range of about 500 nm to 640 nm). It is a characteristic to do. As a result, ra% of the yellow light Py that is about to pass through the optical film layer 10 is reflected and returned to the fluorescent resin 8. The remaining (100-ra)% yellow light Py passes through the optical film layer 10 and is emitted to the outside. Further, since the reflectance of the optical film layer 10 with respect to blue light is zero%, all blue light can be transmitted. As a result, the obliquely emitted light has a lower density of the yellow light Py and can be at the same level as the density of the yellow light Py emitted in the upward direction. As a result, the density of the yellow light Py is uniform in the entire radiation region, color unevenness is suppressed on the irradiated surface 51 (FIG. 1A), and uniform white light can be obtained.

[実施例1の第1の実施形態の効果]
以上説明した、実施例1の第1の実施形態によれば、次に示す効果が得られる。
[効果1]
反射枠体を備え、指向性を有するカップ型のLED発光装置において、蛍光樹脂の上面に誘電体多層膜からなるリング状の光学膜層を設け、その反射特性と形状を、色ムラ状況に対応して合わせ込むことにより効果的に色ムラを抑制することができる。
[効果2]
反射枠体内にLED素子を封止する波長変換部材は、一つの濃度の蛍光樹脂を用いることにより、含有する蛍光粒子の濃度管理が容易であるため、生産性が高い。
[効果3]
基板上に設けた反射枠体内に、LED素子を蛍光樹脂によって充填封止する構成(カップ型)とすることにより、蛍光粒子から発生する励起熱を蛍光樹脂または反射枠体を通して効率よく基板側に放熱することができる。
これにより、カップ型のLED発光装置において、励起熱の放熱効果に優れ、生産性が高く、色ムラを効果的に抑制する手段を備えたLED発光装置を提供することができる。
[Effects of First Embodiment of Example 1]
According to 1st Embodiment of Example 1 demonstrated above, the effect shown next is acquired.
[Effect 1]
In a cup-type LED light-emitting device with a reflective frame and directivity, a ring-shaped optical film layer consisting of a dielectric multilayer film is provided on the top surface of the fluorescent resin, and its reflection characteristics and shape are compatible with color unevenness situations Therefore, color unevenness can be effectively suppressed by combining them.
[Effect 2]
The wavelength conversion member that seals the LED element in the reflection frame has high productivity because the concentration of the fluorescent particles contained therein can be easily controlled by using a single concentration of fluorescent resin.
[Effect 3]
By adopting a configuration (cup type) in which the LED element is filled and sealed with a fluorescent resin in the reflective frame provided on the substrate, excitation heat generated from the fluorescent particles can be efficiently transferred to the substrate side through the fluorescent resin or the reflective frame. It can dissipate heat.
Thereby, in a cup-type LED light-emitting device, it is possible to provide an LED light-emitting device that is excellent in the heat dissipation effect of excitation heat, has high productivity, and includes means for effectively suppressing color unevenness.

尚、反射枠体の形状は、深さ、面積、斜面の形状など実施形態に限定されるものではなく、例えば、蛍光樹脂の充填部が丸型でも良く、または、角型であっても良い。また、本実施形態ではLED素子が1つの場合について説明したが、これに限定されるものではなく、アレイ状の複数のLED素子をパッケージにした発光装置にも適用できる。   The shape of the reflection frame is not limited to the embodiment such as the depth, area, and shape of the slope. For example, the fluorescent resin filling portion may be round or square. . Moreover, although this embodiment demonstrated the case where there was one LED element, it is not limited to this, It can apply also to the light-emitting device which packaged the some LED element of the array form.

〔実施例1の第2の実施形態:図5〜図7〕
次に、図5〜図7を用いて実施例1の第2の実施形態のLED発光装置55について説明する。図5(a)はLED発光装置55の放射光の照射面における色ムラ状況を示す照射図であり、(b)はLED発光装置55の断面構成を示す。図6は光学膜層の反射特性を示し、図7は光学膜層の斜視図を示す。LED発光装置55が第1の実施形態と異なるところは、第1の光学膜層10に加えて第2の光学膜層11を同心状に設けた点であり、基本的な構成及び動作は第1の実施形態と同様であるので同一要素には同一番号または同一符号を付し、重複する説明は一部省略する。
[Second Embodiment of Example 1: FIGS. 5 to 7]
Next, the LED light emitting device 55 according to the second embodiment of Example 1 will be described with reference to FIGS. FIG. 5A is an irradiation diagram showing the color unevenness state on the irradiated surface of the LED light emitting device 55, and FIG. 5B shows a cross-sectional configuration of the LED light emitting device 55. FIG. 6 shows the reflection characteristics of the optical film layer, and FIG. 7 shows a perspective view of the optical film layer. The LED light emitting device 55 is different from the first embodiment in that the second optical film layer 11 is provided concentrically in addition to the first optical film layer 10. Since it is the same as that of 1 embodiment, the same number is attached | subjected to the same element and the overlapping description is partially abbreviate | omitted.

[構成の説明:図5]
まず、図5(b)を用いて、第2の実施形態のLED発光装置55の構成について説明する。図5(b)において、LED発光装置55は、光学膜層を除く基本構成はLED発光装置50と同様であり、第2の光学膜層11は第1の光学膜層10の内側に同心状に設けられている。そして第1の光学膜層10及び第2の光学膜層11は、それぞれ反射特性と膜層幅が異なり、段階的に色ムラを抑制できる構成になっている。ここで、第1の光学膜層10の膜層幅はt2、第2の光学膜層11の膜層幅はt3となっている。
[Description of configuration: FIG. 5]
First, the structure of the LED light-emitting device 55 of 2nd Embodiment is demonstrated using FIG.5 (b). In FIG. 5B, the LED light emitting device 55 has the same basic configuration as the LED light emitting device 50 except for the optical film layer, and the second optical film layer 11 is concentrically inside the first optical film layer 10. Is provided. The first optical film layer 10 and the second optical film layer 11 have different reflection characteristics and film layer widths, respectively, so that color unevenness can be suppressed in stages. Here, the film layer width of the first optical film layer 10 is t2, and the film layer width of the second optical film layer 11 is t3.

[光学膜層の説明:図6、図7]
次に、図6を用いて光学膜層10及び光学膜層11の反射特性について説明する。図6において、光学膜層10の反射特性22は反射率をrb%とし、光学膜層11の反射特性23は反射率をrc%としている。また、反射波長域は前述の第1の実施形態と同様に黄色光Yをほぼカバーする波長域となっている。これにより、2つの光学膜層の反射率と反射波長域及び膜層幅を変えて色ムラに対応して合わせ込むことができる。
[Description of Optical Film Layer: FIGS. 6 and 7]
Next, the reflection characteristics of the optical film layer 10 and the optical film layer 11 will be described with reference to FIG. In FIG. 6, the reflection characteristic 22 of the optical film layer 10 has a reflectance of rb%, and the reflection characteristic 23 of the optical film layer 11 has a reflectance of rc%. The reflection wavelength range is a wavelength range that substantially covers the yellow light Y as in the first embodiment. Thereby, the reflectance of the two optical film layers, the reflection wavelength region, and the film layer width can be changed to match the color unevenness.

また、LED発光装置55において、反射枠体7の形状に合わせて光学膜層10及び光学膜層11の形状を変えることができる。例えば、図7(a)に示すように、反射枠体7の内側壁が円形のカップ形状の場合は、外側が角形で内側が円形の光学膜層10a、及び、外側と内側ともに円形の光学膜層11aの組合せによる構成(LED発光装置55A)とすることができる。また、図7(b)に示すように、反射枠体7の内側壁が角形のカップ形状の場合は、角形形状の光学膜層10b及び角形形状の光学膜層11bの組合せによる構成(LED発光装置55A)とすることができる。   Further, in the LED light emitting device 55, the shapes of the optical film layer 10 and the optical film layer 11 can be changed according to the shape of the reflection frame 7. For example, as shown in FIG. 7A, when the inner wall of the reflection frame 7 has a circular cup shape, the optical film layer 10a is rectangular on the outside and circular on the inside, and the optical film is circular on both the outside and the inside. It can be set as the structure (LED light-emitting device 55A) by the combination of the film layer 11a. Further, as shown in FIG. 7B, when the inner wall of the reflection frame 7 has a square cup shape, a configuration (LED light emission) by a combination of the rectangular optical film layer 10b and the rectangular optical film layer 11b. Device 55A).

[発光動作の説明:図5、図6]
次に、図5、図6を用いて、LED発光装置55の動作について説明する。まず、図5(b)において、蛍光樹脂8内を透過し、真上方向へ向かう青色光P1は蛍光樹脂8内を距離s1で透過して真上方向へ放射される。一方、斜め方向に放射される青色光P2は蛍光樹脂8内を通過する距離がs2となり、真上方向の通過距離s1に対して、s1<s2となり、黄色蛍光粒子と遭遇する機会が多くなり励起する黄色光Pyの密度が高くなる。
[Description of light emitting operation: FIGS. 5 and 6]
Next, the operation of the LED light emitting device 55 will be described with reference to FIGS. 5 and 6. First, in FIG. 5B, the blue light P1 that passes through the fluorescent resin 8 and goes directly upward is transmitted through the fluorescent resin 8 at a distance s1 and is emitted directly upward. On the other hand, the blue light P2 radiated in the oblique direction has a distance of passing through the fluorescent resin 8 as s2, and s1 <s2 with respect to the passing distance s1 in the directly upward direction, so that there are many opportunities to encounter yellow fluorescent particles. The density of the excited yellow light Py is increased.

また、真上方向と斜め方向の中間に向かう青色光P3は、蛍光樹脂8内を通過する距離はs3となり、それぞれの距離はs1<s2<s3の関係になる。その結果、黄色光Pyの密度はs1<s2<s3の順に高くなり、照射面において外側で黄色味が強く、その内側でやや黄色味があり中央部は白色というような色ムラが生じる。ここで、本実施形態では、蛍光樹脂8の上面に、斜め方向の放射光s2、s3に出射する部分に、それぞれリング状の光学特性の異なる光学膜層10及び光学膜層11を配設し、黄色光Pyの一部を蛍光樹脂8内へ反射させるようにしたので、黄色光Pyの密度を段階的に低減することができる。また、光学膜層10及び光学膜層11のそれぞれの反射率、反射波長領域、膜層幅を合わせ込むことができるので、斜め方向の放射光に対して段階的に黄色光Pyの密度を調整することができる。これにより、全放射領域において黄色光Pyの密度がそろい、照射面56(図5(a))において色ムラは抑制され、均一な白色光を得られる。   Further, the blue light P3 traveling in the middle between the directly upward direction and the diagonal direction has a distance of passing through the fluorescent resin 8 as s3, and each distance has a relationship of s1 <s2 <s3. As a result, the density of the yellow light Py becomes higher in the order of s1 <s2 <s3, and color unevenness such as a strong yellowishness on the outer side on the irradiation surface, a slight yellowishness on the inner side, and white in the central portion occurs. Here, in the present embodiment, the optical film layer 10 and the optical film layer 11 having different ring-shaped optical characteristics are disposed on the upper surface of the fluorescent resin 8 in the portions that emit the obliquely emitted radiation light s2 and s3, respectively. Since part of the yellow light Py is reflected into the fluorescent resin 8, the density of the yellow light Py can be reduced stepwise. Further, since the reflectance, reflection wavelength region, and film layer width of the optical film layer 10 and the optical film layer 11 can be adjusted, the density of the yellow light Py is adjusted stepwise with respect to the obliquely radiated light. can do. As a result, the density of the yellow light Py is uniform in the entire radiation region, color unevenness is suppressed on the irradiation surface 56 (FIG. 5A), and uniform white light can be obtained.

[実施例1の第2の実施形態の効果]
以上説明した、実施例1の第2の実施形態によれば、次に示す効果が得られる。
[効果1]
反射枠体を備え、指向性を有するカップ型のLED発光装置において、蛍光樹脂の上面に誘電体多層膜からなる二つのリング状の光学膜層を同心状に設け、それらの光学特性と形状を色ムラ状況に対応して段階的に合わせ込むことにより、より効果的に色ムラを抑制することができる。尚、本実施形態では2つの光学膜層を設けたがこれに限定されるものではなく、3つ以上の複数であっても良い。
[Effect of Second Embodiment of Example 1]
According to 2nd Embodiment of Example 1 demonstrated above, the effect shown next is acquired.
[Effect 1]
In a cup-type LED light-emitting device having a reflective frame and having directivity, two ring-shaped optical film layers made of a dielectric multilayer film are provided concentrically on the top surface of a fluorescent resin, and their optical characteristics and shape are determined. Color unevenness can be more effectively suppressed by adjusting in steps corresponding to the color unevenness situation. In the present embodiment, two optical film layers are provided, but the present invention is not limited to this, and may be three or more.

〔実施例1の第3の実施形態の説明:図8〕
次に、図8を用いて実施例1の第3の実施形態について説明する。ここで、第3の実施形態の構成を示す図は、第2の実施形態における図5と同様であるので構成図は省略し、LED発光装置57とする。第3の実施形態のLED発光装置57が第2の実施形態と異なるところは、演色性を向上するために、蛍光樹脂8は2種類の蛍光粒子を含有していて、二つの光学膜層がそれに対応している点である。その他の構成と動作は第2の実施形態と同様であるので同一要素には同一番号または同一符号を付し、重複する説明は一部省略する。
[Description of the third embodiment of the first embodiment: FIG. 8]
Next, a third embodiment of Example 1 will be described with reference to FIG. Here, since the figure which shows the structure of 3rd Embodiment is the same as that of FIG. 5 in 2nd Embodiment, a structure figure is abbreviate | omitted and it is set as the LED light-emitting device 57. FIG. The LED light emitting device 57 of the third embodiment is different from the second embodiment in that the fluorescent resin 8 contains two types of fluorescent particles and two optical film layers are provided in order to improve color rendering. It is a point corresponding to it. Since other configurations and operations are the same as those of the second embodiment, the same elements are denoted by the same reference numerals or symbols, and a part of overlapping description is omitted.

ここで、LED発光装置57は蛍光樹脂8に黄色蛍光粒子と赤色蛍光粒子を混入してあり、図8を用いてLED発光装置57の発光スペクトルについて説明する。図8において、発光スペクトル24(破線にて表示)は、青色LED素子1から発光される青色光B(ピークは約450nm)と黄色蛍光粒子により励起される黄色光Y(ピークは約560nm)と赤色蛍光粒子により励起される赤色光R(ピークは約650nm)の3つのピークを有する光から構成される。これにより、青色光Bと黄色光Yと赤色光Rが適度に混光し演色性が高い白色光が得られる。   Here, in the LED light emitting device 57, yellow fluorescent particles and red fluorescent particles are mixed in the fluorescent resin 8, and the emission spectrum of the LED light emitting device 57 will be described with reference to FIG. In FIG. 8, the emission spectrum 24 (indicated by a broken line) includes blue light B (peak is about 450 nm) emitted from the blue LED element 1 and yellow light Y (peak is about 560 nm) excited by yellow fluorescent particles. It is composed of light having three peaks of red light R (peak is about 650 nm) excited by red fluorescent particles. Thereby, the blue light B, the yellow light Y, and the red light R are mixed appropriately and white light with high color rendering properties is obtained.

次に、二つの光学膜層の反射特性について説明する。第1の光学膜層10の反射率はrd%とし、第2の光学膜層11の反射率はre%としている。また、反射波長域はともに黄色光Yと赤色光Rを含む領域になっている。以上の構成により、蛍光樹脂8に黄色蛍光粒子と赤色蛍光粒子を混入して演色性を高めたLED発光装置57において、色ムラに対応して、二つの異なる光学膜層を設けることによって段階的に反射特性及び膜層幅を合わせ込み、黄色光Yと、赤色光Rの一部を反射して色ムラを抑制できる。   Next, the reflection characteristics of the two optical film layers will be described. The reflectance of the first optical film layer 10 is rd%, and the reflectance of the second optical film layer 11 is re%. Further, both of the reflection wavelength regions are regions including yellow light Y and red light R. With the above configuration, in the LED light emitting device 57 in which yellow fluorescent particles and red fluorescent particles are mixed in the fluorescent resin 8 to improve color rendering, stepwise by providing two different optical film layers corresponding to color unevenness. The reflection characteristics and the film layer width are combined, and yellow light Y and part of red light R are reflected to suppress color unevenness.

[実施例1の第3の実施形態の効果]
以上説明した、実施例1の第3の実施形態によれば、次に示す効果が得られる。
[効果1]
黄色蛍光粒子と赤色蛍光粒子を含有する演色性を高めたカップ型のLED発光装置において、二つの光学膜層を設けることにより、より効果的に色ムラを抑制することができる。
尚、本実施形態では、二つの光学膜層を用いる構成としたが、一つの光学膜層を用いる構成としてもよい。
[Effects of Third Embodiment of Example 1]
According to 3rd Embodiment of Example 1 demonstrated above, the effect shown next is acquired.
[Effect 1]
In a cup-type LED light-emitting device having improved color rendering properties containing yellow fluorescent particles and red fluorescent particles, color unevenness can be more effectively suppressed by providing two optical film layers.
In this embodiment, two optical film layers are used. However, one optical film layer may be used.

〔実施例1の第4の実施形態の説明:図9〕
次に、図9を用いて実施例1の第4の発光装置58について説明する。ここで、第4の実施形態の構成を示す図は、第2の実施形態における図5と同様であるので構成図は省略しLED発光装置58とする。第4の実施形態のLED発光装置58が第2の実施形態と異なるところは、演色性を向上するために、蛍光樹脂8は2種類の蛍光粒子を含有していて、二つの光学膜層がそれに対応している点である。その他の構成と動作は第2の実施形態と同様であるので同一要素には同一番号または同一符号を付し、重複する説明は一部省略する。
[Description of Fourth Embodiment of Example 1: FIG. 9]
Next, the 4th light-emitting device 58 of Example 1 is demonstrated using FIG. Here, since the figure which shows the structure of 4th Embodiment is the same as that of FIG. 5 in 2nd Embodiment, a structure figure is abbreviate | omitted and it is set as the LED light-emitting device 58. FIG. The LED light emitting device 58 of the fourth embodiment is different from the second embodiment in that the fluorescent resin 8 contains two types of fluorescent particles in order to improve color rendering, and two optical film layers are provided. It is a point corresponding to it. Since other configurations and operations are the same as those of the second embodiment, the same elements are denoted by the same reference numerals or symbols, and a part of overlapping description is omitted.

ここで、LED発光装置58は蛍光樹脂8に緑色蛍光粒子と赤色蛍光粒子を混入してあり、図9を用いてLED発光装置58の発光スペクトルについて説明する。発光スペクトル27(破線にて表示)は、青色LED素子1から発光される青色光B(ピークは約450nm)と緑色蛍光粒子により励起される緑色光G(ピークは約520nm)と赤色蛍光粒子により励起される赤色光R(ピークは約650nm)の3つのピークを有する光から構成される。これにより、青色光Bと緑色光Gと赤色光Rが適度に混光し演色性が高い白色光が得られる。   Here, in the LED light-emitting device 58, green fluorescent particles and red fluorescent particles are mixed in the fluorescent resin 8, and the emission spectrum of the LED light-emitting device 58 will be described with reference to FIG. An emission spectrum 27 (indicated by a broken line) is generated by blue light B (peak is about 450 nm) emitted from the blue LED element 1, green light G (peak is about 520 nm) excited by green fluorescent particles, and red fluorescent particles. It is composed of light having three peaks of red light R to be excited (peak is about 650 nm). Thereby, the blue light B, the green light G, and the red light R are mixed appropriately, and white light with high color rendering properties is obtained.

次に、図9を用いて二つの光学膜層の反射特性について説明する。第1の光学膜層10の反射率はrf%とし、第2の光学膜層11の反射率はrg%となっている。また、反射波長域はともに緑色光Gと赤色光Rを含む領域になっている。以上の構成により、蛍光樹脂8に緑色蛍光粒子と赤色蛍光粒子を混入して演色性を高めたLED発光装置58において、色ムラに対応して、二つの異なる光学膜層を設けることによって段階的に反射特性及び膜層幅を合わせ込み、緑色光Gと赤色光Rの一部を反射して、色ムラを抑制することができる。
尚、上述の演色性を高めた第3、第4の実施形態における光学膜層の効果は、後述するパンケーキ型のLED発光装置においても有効である。
Next, the reflection characteristics of the two optical film layers will be described with reference to FIG. The reflectance of the first optical film layer 10 is rf%, and the reflectance of the second optical film layer 11 is rg%. Further, both of the reflection wavelength regions are regions including the green light G and the red light R. With the above configuration, in the LED light-emitting device 58 in which green fluorescent particles and red fluorescent particles are mixed in the fluorescent resin 8 to improve color rendering, by providing two different optical film layers corresponding to the color unevenness, stepwise. The reflection characteristics and the film layer width are combined with each other, and part of the green light G and the red light R is reflected to suppress color unevenness.
The effect of the optical film layer in the third and fourth embodiments with improved color rendering is also effective in a pancake-type LED light emitting device described later.

次に、本発明による実施例2のパンケーキ型のLED発光装置について説明する。ここで、実施例2には2つの実施形態があり、第1の実施形態を図10、図11に示し、第2の実施形態を図12、図13に示す。   Next, a pancake-type LED light emitting device of Example 2 according to the present invention will be described. Here, Example 2 has two embodiments. The first embodiment is shown in FIGS. 10 and 11, and the second embodiment is shown in FIGS. 12 and 13.

〔実施例2の第1の実施形態の説明:図10、図11〕
まず、図10、図11を用いて実施例2の第1の実施形態のLED発光装置60について説明する。図10(a)はLED発光装置60の放射光の照射面における色ムラ状況を示す照射図であり、(b)はLED発光装置60の断面構成を示す。また、図11は光学膜層のLED発光装置60の蛍光樹脂8の曲面に光学膜層を設けた状態の斜視図を示す。LED発光装置60が前述の実施例1の第1の実施形態と異なるところは、反射枠体を有しないパンケーキ型のLED発光装置である点のみが異なり、リング状の光学膜層を設ける基本的な構成は実施例1の第1の実施形態と同様であるので同一要素には同一番号または同一符号を付し、重複する説明は一部省略する。
[Description of First Embodiment of Example 2: FIGS. 10 and 11]
First, the LED light emitting device 60 according to the first embodiment of Example 2 will be described with reference to FIGS. 10 and 11. FIG. 10A is an irradiation diagram illustrating the color unevenness state on the irradiation surface of the emitted light of the LED light emitting device 60, and FIG. 10B illustrates a cross-sectional configuration of the LED light emitting device 60. FIG. 11 is a perspective view showing a state in which the optical film layer is provided on the curved surface of the fluorescent resin 8 of the LED light emitting device 60 of the optical film layer. The LED light emitting device 60 is different from the first embodiment of Example 1 described above only in that the LED light emitting device 60 is a pancake type LED light emitting device that does not have a reflecting frame, and a basic structure in which a ring-shaped optical film layer is provided. Since the general configuration is the same as that of the first embodiment of the first embodiment, the same elements are denoted by the same reference numerals or the same reference numerals, and a part of overlapping description is omitted.

[構成の説明:図10]
まず、図10において、パンケーキ型のLED発光装置60の構成は、実施例1のカップ型のLED発光装置に対して、反射枠体を備えず、蛍光樹脂8が略半球型になっていて横方向へも光を放射できる広角配光型になっている点が異なる。図10(b)に示す光学膜層10は、蛍光樹脂8の曲面に設けられており、斜視図で示すと図11に示すような立体的な光学膜層となる。しかしながら、これらの曲面への光学膜層の形成は、平面への形成と同様に真空蒸着やスパッタリングなどの方法によって容易に形成することができる。
[Description of Configuration: FIG. 10]
First, in FIG. 10, the configuration of the pancake type LED light emitting device 60 is not provided with a reflection frame body and the fluorescent resin 8 is substantially hemispherical as compared with the cup type LED light emitting device of Example 1. The difference is that it is a wide-angle light distribution type that can emit light in the lateral direction. The optical film layer 10 shown in FIG. 10B is provided on the curved surface of the fluorescent resin 8, and when shown in a perspective view, it becomes a three-dimensional optical film layer as shown in FIG. However, the optical film layer can be easily formed on these curved surfaces by a method such as vacuum vapor deposition or sputtering as in the case of forming on a flat surface.

[発光動作の説明:図10]
ここで、パンケーキ型のLED発光装置60においても、前述の各実施形態と同様の動作により色ムラを抑制することができる。
[Description of light emission operation: FIG. 10]
Here, also in the pancake-type LED light emitting device 60, the color unevenness can be suppressed by the same operation as in the above-described embodiments.

[実施例2の第1の実施形態の効果]
以上、説明した実施例2の第1の実施形態によれば、次に示す効果が得られる。
[効果1]
広角配光が可能なパンケーキ型のLED発光装置において、蛍光樹脂の曲面にリング状の光学膜層を設け、その反射特性と膜層幅を色ムラ状況に対応して合わせ込むことにより色ムラを抑制することができる。
[Effect of First Embodiment of Example 2]
As mentioned above, according to 1st Embodiment of Example 2 demonstrated, the effect shown next is acquired.
[Effect 1]
In a pancake-type LED light-emitting device capable of wide-angle light distribution, a ring-shaped optical film layer is provided on the curved surface of the fluorescent resin, and the reflection characteristics and film layer width are matched to correspond to the color unevenness situation, thereby causing uneven color. Can be suppressed.

〔実施例2の第2の実施形態の説明:図12、図13〕
次に、図12、図13を用いて実施例2の第2の実施形態のLED発光装置65について説明する。図12(a)はLED発光装置65の放射光の照射面における色ムラ状況を示す照射図であり、(b)はLED発光装置65の断面構成を示す。また、図13は光学膜層のLED発光装置65の蛍光樹脂8の曲面に光学膜層を設けた状態の斜視図を示す。LED発光装置65が前述の実施例2の第1の実施形態と異なるところは、パンケーキ型のLED発光装置の蛍光樹脂8の曲面に二つのリング状の光学膜層を設けた点であり、リング状の光学膜層を設ける基本的な構成は実施例1の第2の実施形態と同様であるので同一要素には同一番号または同一符号を付し、重複する説明は省略する。
[Explanation of Second Embodiment of Example 2: FIGS. 12 and 13]
Next, the LED light emitting device 65 according to the second embodiment of Example 2 will be described with reference to FIGS. FIG. 12A is an irradiation diagram showing the color unevenness state on the irradiated surface of the LED light emitting device 65, and FIG. 12B shows a cross-sectional configuration of the LED light emitting device 65. FIG. 13 is a perspective view showing a state in which the optical film layer is provided on the curved surface of the fluorescent resin 8 of the LED light emitting device 65 of the optical film layer. The LED light emitting device 65 is different from the first embodiment of Example 2 described above in that two ring-shaped optical film layers are provided on the curved surface of the fluorescent resin 8 of the pancake type LED light emitting device. Since the basic configuration for providing the ring-shaped optical film layer is the same as that of the second embodiment of the first embodiment, the same elements are denoted by the same reference numerals or the same reference numerals, and redundant description is omitted.

パンケーキ型のLED発光装置65は、広角配光型の構成において、実施例1の第2の実施形態と同様の効果が得られ、色ムラをより効果的に抑制できる。
尚、実施例2の第1実施形態または第2の実施形態は、パンケーキ型の発光装置における色ムラの抑制の改良について説明したが、これに限定されるものではなく、半球型や砲弾型のLED発光装置についても適用できる。
The pancake-type LED light-emitting device 65 can obtain the same effects as those of the second embodiment of Example 1 in a wide-angle light distribution type configuration, and can more effectively suppress color unevenness.
In addition, although 1st Embodiment or 2nd Embodiment of Example 2 demonstrated the improvement of suppression of the color nonuniformity in a pancake type light-emitting device, it is not limited to this, A hemispherical type or a shell type It is applicable also to this LED light-emitting device.

1 青色LED素子
3 バンプ
4 基板
5、6 配線電極
7 反射枠体
8 蛍光樹脂(波長変換部材)
10、11 光学膜層(誘電体多層膜)
21、24、27 発光スペクトル
22、23、25、26、28、29 光学膜層の反射特性
50、55、57、58、60、65 LED発光装置
DESCRIPTION OF SYMBOLS 1 Blue LED element 3 Bump 4 Substrate 5, 6 Wiring electrode 7 Reflection frame 8 Fluorescent resin (wavelength conversion member)
10, 11 Optical film layer (dielectric multilayer film)
21, 24, 27 Emission spectrum 22, 23, 25, 26, 28, 29 Reflective characteristics of optical film layer 50, 55, 57, 58, 60, 65 LED light emitting device

Claims (6)

基板上にLED素子を実装し、前記LED素子の上面側を、発光された光を吸収し波長変換する波長変換部材で封止してなるLED発光装置において、
前記波長変換部材の上面に、出射光の光学特性を制御するための光学膜層を備え、前記光学膜層は誘電体多層膜がリング状に形成されていることを特徴とするLED発光装置。
In an LED light-emitting device in which an LED element is mounted on a substrate and the upper surface side of the LED element is sealed with a wavelength conversion member that absorbs emitted light and converts the wavelength,
An LED light emitting device comprising an optical film layer for controlling optical characteristics of emitted light on an upper surface of the wavelength conversion member, wherein the optical film layer has a dielectric multilayer film formed in a ring shape.
前記リング状に形成された前記光学膜層は、光学特性の異なる誘電体多層膜が同心状に複数形成されていることを特徴とする請求項1に記載のLED発光装置。   2. The LED light emitting device according to claim 1, wherein the optical film layer formed in the ring shape includes a plurality of concentric dielectric multilayer films having different optical characteristics. 前記LED素子は青色LED素子であり、前記波長変換部材は黄色蛍光粒子を含有する蛍光樹脂であり、前記誘電体多層膜は、出射光の色ムラに対応して黄色光を反射する光学特性を有することを特徴とする請求項1または2に記載のLED発光装置。   The LED element is a blue LED element, the wavelength conversion member is a fluorescent resin containing yellow fluorescent particles, and the dielectric multilayer film has an optical characteristic of reflecting yellow light corresponding to color unevenness of emitted light. The LED light-emitting device according to claim 1, wherein the LED light-emitting device is provided. 前記LED素子は青色LED素子であり、前記波長変換部材は黄色蛍光粒子と赤色蛍光粒子を含有する蛍光樹脂であり、前記誘電体多層膜は出射光の色ムラに対応して黄色光と赤色光を反射する光学特性を有することを特徴とする請求項1または2に記載のLED発光装置。   The LED element is a blue LED element, the wavelength conversion member is a fluorescent resin containing yellow fluorescent particles and red fluorescent particles, and the dielectric multilayer film has yellow light and red light corresponding to the color unevenness of the emitted light. The LED light-emitting device according to claim 1, wherein the LED light-emitting device has an optical characteristic of reflecting light. 前記LED素子は青色LED素子であり、前記波長変換部材は緑色蛍光粒子と赤色蛍光粒子を含有する蛍光樹脂であり、前記誘電体多層膜は出射光の色ムラに対応して緑色光と赤色光を反射する光学特性を有することを特徴とする請求項1または2に記載のLED発光装置。   The LED element is a blue LED element, the wavelength conversion member is a fluorescent resin containing green fluorescent particles and red fluorescent particles, and the dielectric multilayer film has green light and red light corresponding to color unevenness of emitted light. The LED light-emitting device according to claim 1, wherein the LED light-emitting device has an optical characteristic of reflecting light. 前記基板の上面に反射性枠体を設け、前記蛍光樹脂は、前記反射性枠体の内部に充填されていることを特徴とする請求項1〜5のいずれか1項に記載のLED発光装置。   The LED light-emitting device according to claim 1, wherein a reflective frame is provided on an upper surface of the substrate, and the fluorescent resin is filled in the reflective frame. .
JP2013174136A 2013-08-26 2013-08-26 LED light emitting device Active JP6266923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013174136A JP6266923B2 (en) 2013-08-26 2013-08-26 LED light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013174136A JP6266923B2 (en) 2013-08-26 2013-08-26 LED light emitting device

Publications (2)

Publication Number Publication Date
JP2015043359A true JP2015043359A (en) 2015-03-05
JP6266923B2 JP6266923B2 (en) 2018-01-24

Family

ID=52696769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013174136A Active JP6266923B2 (en) 2013-08-26 2013-08-26 LED light emitting device

Country Status (1)

Country Link
JP (1) JP6266923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114630A (en) * 2017-12-22 2019-07-11 シチズン電子株式会社 Light emitting device and manufacturing method of light emitting device
US10490717B2 (en) 2016-07-13 2019-11-26 Nichia Corporation Light emitting device and method of manufacturing the same, and display device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178839A (en) * 1997-12-19 1999-07-06 Daiichi Shomei Kk Medical treatment lighting system
JP2000244021A (en) * 1999-02-18 2000-09-08 Agilent Technol Inc Led using phosphor for compensating insufficiency of red
JP2004080046A (en) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Led lamp and lamp unit
JP2005093601A (en) * 2003-09-16 2005-04-07 Stanley Electric Co Ltd Semiconductor light emitting device
JP2005166734A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2006106583A (en) * 2004-10-08 2006-04-20 Seiko Epson Corp Image display device
JP2006261540A (en) * 2005-03-18 2006-09-28 Stanley Electric Co Ltd Light emitting device
JP2008280471A (en) * 2007-05-14 2008-11-20 Sony Corp Light emitting composition, light source device using the same and display device using the same
JP2008287963A (en) * 2007-05-16 2008-11-27 Denso Corp Operation panel
JP2009507936A (en) * 2005-05-24 2009-02-26 ソウル セミコンダクター カンパニー リミテッド Light emitting device and alkaline earth metal sulfide phosphor for the same
JP2009260320A (en) * 2008-03-24 2009-11-05 Citizen Holdings Co Ltd Led light source, and method for adjusting chromaticity of led light source
JP2010016029A (en) * 2008-07-01 2010-01-21 Citizen Holdings Co Ltd Led light source
JP2010135753A (en) * 2008-10-27 2010-06-17 Okaya Electric Ind Co Ltd Light emitting diode
JP2011044418A (en) * 2009-07-24 2011-03-03 Iwasaki Electric Co Ltd Led unit
WO2011058497A2 (en) * 2009-11-13 2011-05-19 Koninklijke Philips Electronics N.V. Led assembly
JP2011515846A (en) * 2008-03-21 2011-05-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
JP2012046766A (en) * 2005-05-24 2012-03-08 National Institute For Materials Science Phosphor and utilization thereof
JP2012174985A (en) * 2011-02-23 2012-09-10 Jvc Kenwood Corp White led lighting device
JP2012243701A (en) * 2011-05-24 2012-12-10 Stanley Electric Co Ltd Light source device and lighting system
JP2013021339A (en) * 2004-04-27 2013-01-31 Panasonic Corp Light-emitting device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178839A (en) * 1997-12-19 1999-07-06 Daiichi Shomei Kk Medical treatment lighting system
JP2000244021A (en) * 1999-02-18 2000-09-08 Agilent Technol Inc Led using phosphor for compensating insufficiency of red
JP2004080046A (en) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Led lamp and lamp unit
JP2005093601A (en) * 2003-09-16 2005-04-07 Stanley Electric Co Ltd Semiconductor light emitting device
JP2005166734A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2013021339A (en) * 2004-04-27 2013-01-31 Panasonic Corp Light-emitting device
JP2006106583A (en) * 2004-10-08 2006-04-20 Seiko Epson Corp Image display device
JP2006261540A (en) * 2005-03-18 2006-09-28 Stanley Electric Co Ltd Light emitting device
JP2009507936A (en) * 2005-05-24 2009-02-26 ソウル セミコンダクター カンパニー リミテッド Light emitting device and alkaline earth metal sulfide phosphor for the same
JP2012046766A (en) * 2005-05-24 2012-03-08 National Institute For Materials Science Phosphor and utilization thereof
JP2008280471A (en) * 2007-05-14 2008-11-20 Sony Corp Light emitting composition, light source device using the same and display device using the same
JP2008287963A (en) * 2007-05-16 2008-11-27 Denso Corp Operation panel
JP2011515846A (en) * 2008-03-21 2011-05-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
JP2009260320A (en) * 2008-03-24 2009-11-05 Citizen Holdings Co Ltd Led light source, and method for adjusting chromaticity of led light source
JP2010016029A (en) * 2008-07-01 2010-01-21 Citizen Holdings Co Ltd Led light source
JP2010135753A (en) * 2008-10-27 2010-06-17 Okaya Electric Ind Co Ltd Light emitting diode
JP2011044418A (en) * 2009-07-24 2011-03-03 Iwasaki Electric Co Ltd Led unit
WO2011058497A2 (en) * 2009-11-13 2011-05-19 Koninklijke Philips Electronics N.V. Led assembly
JP2012174985A (en) * 2011-02-23 2012-09-10 Jvc Kenwood Corp White led lighting device
JP2012243701A (en) * 2011-05-24 2012-12-10 Stanley Electric Co Ltd Light source device and lighting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490717B2 (en) 2016-07-13 2019-11-26 Nichia Corporation Light emitting device and method of manufacturing the same, and display device
US10957831B2 (en) 2016-07-13 2021-03-23 Nichia Corporation Light emitting device and method of manufacturing the same, and display device
JP2019114630A (en) * 2017-12-22 2019-07-11 シチズン電子株式会社 Light emitting device and manufacturing method of light emitting device

Also Published As

Publication number Publication date
JP6266923B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP5481587B2 (en) Light emitting element
US9484509B2 (en) Lighting device and method of manufacturing the same
JP5743548B2 (en) Lighting device
EP2461380B1 (en) Light emitting diode device package and manufacturing method thereof
JP3863174B2 (en) Light emitting device
US10707189B2 (en) Light-emitting device
US11043615B2 (en) Light-emitting device having a dielectric multilayer film arranged on the side surface of the light-emitting element
JP6107415B2 (en) Light emitting device
JP2015176960A (en) light-emitting device
JP2015076527A (en) Led light emitting device
JP2013236076A (en) Light emitting element
JP2014222705A (en) LED light-emitting device
KR20200038864A (en) Light emitting device
KR101974348B1 (en) Light emitting device package and method of manufacturing the same
JP6266923B2 (en) LED light emitting device
JP2019062058A (en) Light-emitting device
JP2006041553A (en) Light emitting device
KR100730771B1 (en) Package for light emission device
US20180190887A1 (en) Light emitting device structure
WO2013027413A1 (en) Protection element and light emitting device using same
JP6525782B2 (en) Light emitting device
JP2007080875A (en) Light-emitting device, light-emitting element and manufacturing method of light-emitting device
JP2023091319A (en) light emitting device
KR101258232B1 (en) Light emitting device having plurality of light-converting material layers
KR20130050804A (en) Light emitting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6266923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250