JPH1139917A - High color rendering property light source - Google Patents

High color rendering property light source

Info

Publication number
JPH1139917A
JPH1139917A JP19544097A JP19544097A JPH1139917A JP H1139917 A JPH1139917 A JP H1139917A JP 19544097 A JP19544097 A JP 19544097A JP 19544097 A JP19544097 A JP 19544097A JP H1139917 A JPH1139917 A JP H1139917A
Authority
JP
Japan
Prior art keywords
light
light source
color rendering
wavelength conversion
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19544097A
Other languages
Japanese (ja)
Inventor
Satoshi Watanabe
智 渡辺
Bataworth Mark
マーク・バタワース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to JP19544097A priority Critical patent/JPH1139917A/en
Publication of JPH1139917A publication Critical patent/JPH1139917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a color rendering property, to reduce costs and to enhance efficiency by providing a wavelength conversion member containing organic coloring matter receiving light from at least one light emitting element and generating output light so as to produce combination light in the case of improving color effects through additive color mixing of the light from the plural light emitting elements. SOLUTION: A color rendering property is enhanced by applying a wavelength conversion material to a white light source whose light emitting elements are light emitting diode LED chips so as to convert wavelengths. Concretely, the LED chips 3, 4, 5 are coated by coloring matter rhodamine 19 dissolving- dispersed epoxy resin 6 so as to obtain an LED light source 10. Since a phosphor, including rhodamine 19, is powder, the same is mixed with epoxy resin for fixing the whole LED so as to form the wavelength conversion material. The wavelength conversion material is place in a reflection cup 2 containing the LED chips so as to reflect forward the light generated from the LED chips 3, 4, 5, and the light converted by the phosphor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は光源、特に波長変換を利用
して演色性を向上した光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source, and more particularly to a light source having improved color rendering by utilizing wavelength conversion.

【0002】[0002]

【発明の背景】近年、多くの照明光源がも用いられてお
り、その特性の改良が継続しておこなわれている。照明
光源の特性としては色温度、光束、効率などの他に、重
要な特性の一つとして、演色性がある。自然光を代替す
るためには自然光に対する演色性の良いものが望まれ
る。演色性の定量的評価方法としては、CIEが196
5年に定めて1974年に一部改訂した評価方法(以
下、「CIE第2版の評価方法」という)がある。日本
では、JIS Z 8726にCIE第2版の評価方法が
採用されている。これらの評価方法で規定された平均演
色評価数(Ra)により演色性を評価するのが一般的で
あり、本明細書でもRaを用いて説明することとする。
BACKGROUND OF THE INVENTION In recent years, many illumination light sources have been used, and their characteristics have been continuously improved. In addition to the color temperature, luminous flux, efficiency, and the like, the characteristics of the illumination light source include color rendering as one of the important characteristics. In order to substitute natural light, a material having good color rendering properties for natural light is desired. As a method of quantitatively evaluating color rendering properties, CIE 196
There is an evaluation method set in 5 years and partially revised in 1974 (hereinafter referred to as "CIE second edition evaluation method"). In Japan, the evaluation method of CIE 2nd edition is adopted in JIS Z8726. It is common to evaluate the color rendering properties based on the average color rendering index (Ra) defined by these evaluation methods, and the description will be made using Ra in this specification.

【0003】平均演色評価数Raは100に近いほど演
色性に優れていることを示す。白熱電球の演色評価数は
100である。光源の演色性に対する要求は光源を使用
する場所によって異なるが、通常の屋内環境においては
Raが60以上であることが要求される。また、演色性の
高い光源は同じ照度であっても演色性の低いランプより
大きな明るさ感が得られるので好ましい。
[0003] The closer the average color rendering index Ra is to 100, the better the color rendering properties. The color rendering index of the incandescent lamp is 100. The requirements for the color rendering properties of the light source differ depending on where the light source is used.
Ra is required to be 60 or more. Further, a light source having a high color rendering property is preferable because a larger brightness feeling can be obtained than a lamp having a low color rendering property even at the same illuminance.

【0004】従来より、光源の演色性を改善するため、
多くの工夫がなされてきた。例えば、蛍光ランプでは低
圧水銀放電で発生する253.7nmの強い線スペクトルのエ
ネルギを蛍光膜で受けて可視光に変換して色補正し演色
性を改善している。そこで、蛍光膜に使用する蛍光体や
蛍光膜の構造を適切に選んで演色性を改善できる。特開
平5ー86364号(畠山他)に開示され技術では、全
光束を高く保持しつつ複数の蛍光体を用いて演色評価数
を80以上にも高めている。
Conventionally, in order to improve the color rendering of a light source,
A lot of work has been done. For example, in a fluorescent lamp, the energy of a strong line spectrum of 253.7 nm generated by low-pressure mercury discharge is received by a fluorescent film and converted into visible light to perform color correction to improve color rendering. Therefore, the color rendering properties can be improved by appropriately selecting the phosphor used for the fluorescent film and the structure of the fluorescent film. In the technique disclosed in Japanese Patent Application Laid-Open No. 5-86364 (Hatakeyama et al.), The color rendering index is increased to 80 or more by using a plurality of phosphors while keeping the total luminous flux high.

【0005】蛍光高圧水銀ランプ(例えば特開平4ー2
34482号(岩間))やメタルハライドランプ(例え
ば特開平6ー76798号(等々力他))においても、
蛍光体の開発により、蛍光体の吸収や発光により演色性
の改善が図られている。
[0005] Fluorescent high-pressure mercury lamps (for example, JP-A-4-24-2)
No. 34482 (Iwama)) and metal halide lamps (for example, JP-A-6-76798 (Todoroki et al.))
With the development of phosphors, color rendering properties have been improved by absorption and emission of the phosphors.

【0006】また、特開平6ー243841号には、高
圧ナトリウムランプと高圧水銀ランプを蛍光体を塗布し
た外管内に共に収容して演色性の高い混光照明を得る技
術が開示されている。上記の例では、何れも希土類元素
を含む無機蛍光体が管面に塗布される構成である。
[0006] Japanese Patent Application Laid-Open No. 6-243841 discloses a technique for obtaining a mixed color illumination having high color rendering properties by housing a high-pressure sodium lamp and a high-pressure mercury lamp together in an outer tube coated with a phosphor. Each of the above examples has a configuration in which an inorganic phosphor containing a rare earth element is applied to the tube surface.

【0007】ところで、照明光源として半導体発光ダイ
オード(以下LEDと称する)を使用すれば、照明光源
の寿命を格段に向上できる可能性がある。また、多数の
LEDを用いて曲面光源や立体光源を構成することがで
きる。そのため、近年開発市販されている高輝度青、緑
色LEDと従来からある高輝度赤色LEDとを共に用い
て、フルカラーLEDディスプレイやLED照明装置を
作る試みがなされている。特に赤、緑、青色LEDによ
り作られる白色光源は、従来の、白熱電球、蛍光ランプ
灯やHIDランプを置き換える近未来の照明光源として
注目されている。白色LED光源においても、演色性を
高めることが必要である。
[0007] If a semiconductor light emitting diode (hereinafter, referred to as an LED) is used as an illumination light source, the life of the illumination light source may be significantly improved. Further, a curved light source or a three-dimensional light source can be configured using a large number of LEDs. For this reason, an attempt has been made to produce a full-color LED display or an LED lighting device using both a high-brightness blue and green LED developed and marketed in recent years and a conventional high-brightness red LED. In particular, white light sources made of red, green, and blue LEDs have attracted attention as near-future illumination light sources that replace conventional incandescent bulbs, fluorescent lamps, and HID lamps. In a white LED light source, it is necessary to enhance color rendering.

【0008】[0008]

【発明の解決すべき課題】以上のように、多種の光源が
用いられるなか、波長変換によりそれら光源の演色性を
向上せしめようとすると、光源に適した性質の蛍光体
や、波長変換部材ががもとめられる。そして、そのよう
な波長変換材を従来技術の光源に応用して製造コストの
低減やその他の利益をうることが望まれる。特にLED
光源に利用すれば、さらに長寿命照明光源が期待でき
る。したがって本発明の目的は、従来ない構成により廉
価で効率的かつ演色性がすぐれた光源を提供することに
ある。さらに、本発明は、LED等の半導体発光装置の
照明光の演色性を向上させることをも目的としている。
As described above, in order to improve the color rendering properties of these light sources by using wavelength conversion while various types of light sources are used, a phosphor or a wavelength conversion member having properties suitable for the light source is used. Is determined. It is desired that such a wavelength conversion material be applied to a light source of the prior art to reduce manufacturing costs and obtain other benefits. Especially LED
If used as a light source, a longer-life illumination light source can be expected. Accordingly, it is an object of the present invention to provide a light source which is inexpensive, efficient and has excellent color rendering properties by a configuration not conventionally used. Still another object of the present invention is to improve the color rendering of illumination light of a semiconductor light emitting device such as an LED.

【0009】[0009]

【課題を解決するための手段】上記課題を達成するた
め、本発明の光源は、相異なる光を発生する複数の発光
素子からの該光を加法混色して照明光を生成する光源で
あって、少なくとも一つの前記発光素子からの光を入力
して出力光を発生する有機色素を含む波長変換部材を備
え、該出力光と前記照明光とを加法混色して生成した合
成照明光の演色性が照明光の演色性より向上するように
している。
In order to achieve the above object, a light source according to the present invention is a light source that generates illumination light by additively mixing light from a plurality of light emitting elements that generate different lights. A wavelength conversion member containing an organic dye that receives light from at least one of the light-emitting elements to generate output light, and color rendering properties of combined illumination light generated by additively mixing the output light and the illumination light. Are designed to improve the color rendering of the illumination light.

【0010】波長変換部材を有機色素を溶解したエポキ
シ樹脂とすることができ、透明でかつ効率的な波長変換
をおこなうことができる。また有機色素としてはローダ
ミンはじめいくつかの色素を用いることができる。
The wavelength conversion member can be made of an epoxy resin in which an organic dye is dissolved, and transparent and efficient wavelength conversion can be performed. Some dyes such as rhodamine can be used as the organic dye.

【0011】また、本発明は発光素子として発光ダイオ
ード・チップを用い、それらを組み合わせて白色光源を
得る場合に効果的に実施されるが、その他の発光素子に
たいしても適用できることは明らかである。
Although the present invention is effectively implemented when a light emitting diode chip is used as a light emitting element and a white light source is obtained by combining them, it is apparent that the present invention can be applied to other light emitting elements.

【0012】[0012]

【発明の実施例】以下に発光素子を発光ダイオード・チ
ップ(以下、LEDチップと称する)とした白色光源の
実施例について説明する。図1Aは従来技術による白色
LED光源1の概略平面図であり、図1Bはその概略A
−A側断面図である。理解を容易にするため、内部配線
やリード線そしてLEDチップを覆う透明なエポキシ樹
脂等の封止材は省略してある。両図において反射カップ
2上に青発光する青LEDチップ3、緑発光する緑LE
Dチップ4および赤発光する赤LEDチップ5が塔載さ
れている。これらLEDチップ3、4、5は、当業者に
周知の常套手段により点灯されて発光する。LEDチッ
プ3、4、5で発生された光は図1Bにおいて上方へ放
射されて加法混色されて基準光を近似する照明光とな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a white light source having a light emitting element as a light emitting diode chip (hereinafter, referred to as an LED chip) will be described below. FIG. 1A is a schematic plan view of a white LED light source 1 according to the prior art, and FIG.
It is -A side sectional drawing. For easy understanding, a sealing material such as a transparent epoxy resin covering the internal wiring, the lead wire, and the LED chip is omitted. In both figures, a blue LED chip 3 that emits blue light and a green LE that emits green light are placed on a reflective cup 2.
A D chip 4 and a red LED chip 5 that emits red light are mounted. These LED chips 3, 4, 5 are lit and emit light by conventional means well known to those skilled in the art. The light generated by the LED chips 3, 4, and 5 is radiated upward in FIG. 1B and is subjected to additive color mixing to become illumination light approximating the reference light.

【0013】上記白色LED光源1の各LEDチップに
流す電流を調整して白熱灯の色温度を近似して照明光の
平均演色評価数を測定するとせいぜい40止まりであっ
た。一般照明用の光源で要求される平均演色評価数60
に比べかなり低い値である。そこで照明光の相対分光分
布を測定すると図2のグラフに示す測定結果が得られ
た。図2のグラフから明らかなように、この照明光の相
対分光分布は、各LEDチップからの比較的細いスペク
トルを有し、また緑と赤の間に大きな深い谷を有する。
そして黄色の領域のスペクトルから成るこの谷間が、演
色性を低下させている原因であると推察された。
The average color rendering index of the illuminating light was measured to be at most 40 by adjusting the current flowing through each LED chip of the white LED light source 1 to approximate the color temperature of the incandescent lamp. Average color rendering index 60 required for light source for general lighting
This is a considerably lower value than. Then, when the relative spectral distribution of the illumination light was measured, the measurement results shown in the graph of FIG. 2 were obtained. As is clear from the graph of FIG. 2, the relative spectral distribution of the illumination light has a relatively narrow spectrum from each LED chip, and has a large deep valley between green and red.
Then, it was presumed that the valley composed of the spectrum in the yellow region was the cause of lowering the color rendering properties.

【0014】そこで発明者等は、この谷間を埋めること
ができれば平均演色評数を大きくすることが可能である
と考えた。このため、オレンジ色や黄色の発光をするL
EDチップを追加する方法が考えられたが、新たな色の
LEDチップを追加するための地所とコストの問題に加
えて白色光源を作るための各色LEDの調整が複雑にな
るという欠点のあることがわかった。
Therefore, the inventors thought that if the valley could be filled, it would be possible to increase the average color rendering index. For this reason, L that emits orange or yellow light
Although a method of adding an ED chip has been considered, there is a disadvantage that adjustment of each color LED for making a white light source becomes complicated in addition to a problem of a location and a cost for adding an LED chip of a new color. I understand.

【0015】そこで、波長変換材料を用いた波長変換に
よりこの谷を埋めて演色性を向上させることとした。ま
た、効率が高くかつ吸収、発光波長も適当な蛍光体を用
いれば測光量の変化(一般に効率の低下、全光束の減
少)も少なく好都合であると考えた。ストークスの法則
により、「蛍光を発する放射の波長は、照射された放射
の波長より常にながい」から、緑あるいは青LEDチッ
プからの光を変換しなければならない。LEDチップ
3、4、5からの光は、実質的に可視光領域の光のみで
あるから効率よく波長変換することが特に望まれる(紫
外光等の照明光のなかに含めたくない成分を有する場合
は、紫外光を可視光に変換するので比較的測光量の変化
を抑えやすい)。
Therefore, the valley is filled by wavelength conversion using a wavelength conversion material to improve color rendering. It was also considered that the use of a phosphor having high efficiency and appropriate absorption and emission wavelengths would be advantageous because there would be little change in the measured light amount (generally, a decrease in efficiency and a decrease in total luminous flux). According to Stokes' law, the light from a green or blue LED chip must be converted because "the wavelength of the fluorescing radiation is always longer than the wavelength of the emitted radiation." Since the light from the LED chips 3, 4, and 5 is substantially only light in the visible light range, it is particularly desirable to efficiently convert the wavelength (there is a component that does not need to be included in illumination light such as ultraviolet light). In this case, since the ultraviolet light is converted into visible light, the change in the light intensity can be relatively suppressed.

【0016】波長変換に用いる材料を調査、実験してみ
ると、無機蛍光体のほかに例えば、有機の色素にもロー
ダミン系の色素を始めとして適当な材料があることが解
った。本発明の実施例の一つでは、色素ローダミン19
(ドイツ連邦共和国Lambda Physiks製):安息香酸,2-
[6-(エチルアミノ)-3-(エチルイミノ)-2,7-ジメチル-3
H-キサンテン-9-],パークロレートが選ばれた。エポキ
シ樹脂に分散されたローダミン19の吸収スペクトルは
図3のとおりであり、発光スペクトルは図4のとおりで
あることが判明した。そこでローダミン19は図2の緑
のピークを吸収し、黄の谷間を埋めるに好適であろうこ
とが予想された。
Investigations and experiments on the materials used for wavelength conversion revealed that, in addition to the inorganic phosphor, for example, organic dyes also include suitable materials such as rhodamine-based dyes. In one embodiment of the present invention, the dye rhodamine 19
(Lambda Physiks, Federal Republic of Germany): Benzoic acid, 2-
[6- (ethylamino) -3- (ethylimino) -2,7-dimethyl-3
H-Xanthen-9-], perchlorate was selected. The absorption spectrum of rhodamine 19 dispersed in the epoxy resin was as shown in FIG. 3, and the emission spectrum was as shown in FIG. Thus, it was expected that rhodamine 19 would absorb the green peak of FIG. 2 and be suitable for filling the yellow valley.

【0017】図1Bに対応して図5に断面を示すよう
に、色素ローダミン19を溶解分散させたエポキシ樹脂
6によりLEDチップを被覆したLED光源10が得ら
れた。LED光源10は、エポキシ樹脂6による被覆を
除けば、図1A、図1Bに示すLED光源1と同じであ
る。但し、LED光源10でエポキシ樹脂6のほかにさ
らに透明樹脂等を追加被覆してもよいし、しなくともよ
い。通常、ローダミン19をはじめとして蛍光体は粉末
であるためLED全体を樹脂で固定する際のエポキシ樹
脂と混ぜて、波長変換部材を構成する。また、LEDチ
ップから発生した光と、蛍光体により変換された光を前
方に反射するように、波長変換部材はLEDチップを収
納する反射カップ2内におかれる。波長変換部材は、3
つのLEDチップを覆う必要はなく、蛍光体を励起(吸
収)するLEDチップのみを覆うように充填することも
できる。
As shown in the cross section of FIG. 5 corresponding to FIG. 1B, an LED light source 10 was obtained in which the LED chip was covered with the epoxy resin 6 in which the dye rhodamine 19 was dissolved and dispersed. The LED light source 10 is the same as the LED light source 1 shown in FIGS. 1A and 1B except for the coating with the epoxy resin 6. However, the LED light source 10 may or may not be coated with a transparent resin or the like in addition to the epoxy resin 6. Usually, since the phosphor such as rhodamine 19 is a powder, it is mixed with an epoxy resin when the entire LED is fixed with a resin, thereby constituting a wavelength conversion member. The wavelength conversion member is placed in the reflection cup 2 that houses the LED chip so that the light generated from the LED chip and the light converted by the phosphor are reflected forward. The wavelength conversion member is 3
It is not necessary to cover one LED chip, and it can be filled so as to cover only the LED chip that excites (absorbs) the phosphor.

【0018】図6は図5に断面を示す本発明による白色
LEDの放射光の相対分光分布を示す。蛍光体としてロ
ーダミン19を用いたときの平均演色評価数は約76で
あっり、従来の白色LEDの平均演色評価数40に比べ
大きく改善された。また、図1に示す従来の白色LED
の効率に比べ、本発明の効率(lm/W)は約10%以
下の低下にとどまり、効率をそれほど犠牲にすることな
く、演色性を大きく改善できることがわかった。
FIG. 6 shows the relative spectral distribution of the emitted light of the white LED according to the present invention whose cross section is shown in FIG. The average color rendering index when Rhodamine 19 was used as the phosphor was about 76, which was greatly improved as compared with the average color rendering index 40 of the conventional white LED. The conventional white LED shown in FIG.
The efficiency (lm / W) of the present invention was reduced by about 10% or less as compared with the efficiency of the above, and it was found that the color rendering properties could be greatly improved without sacrificing the efficiency so much.

【0019】本発明におけると同様の効果をうるための
蛍光体は下記蛍光体に限るものではないが、実施例で示
したローダミン19以外にも、以下に示すような有機、
無機系の蛍光体も実用的に使用しうる。 (有機色素):いずれもLambda Physiks製 ・ローダミン110:o-(6-アミノ-3-イミノ-3H-キサン
テン-9-イル)-安息香酸、吸収波長の中心は510nm,
発光中心波長は570nm(エポキシ樹脂に分散したば
あい) ・DCM:4-ジシアンメチレン-2-メチル-6-(p-ジメチ
ルアミノスチリル)-4H-ピラン、吸収中心波長は472
nm、発光中心波長は650nm(エポキシ樹脂に分散
したばあい) ・DCMspecial(Lambda Physiks製) (無機蛍光体) ・Ce:YAG、YAGの組成による特性の変化があるが、
吸収中心波長は450nm, 発光中心波長は580nm。 有機色素材料はエポキシ樹脂等の樹脂に溶解分散させや
すく、分散した粒子が小さく透明度が高くとれるので、
通過光の不要な散乱等を少なくすることができるので有
利である。また、吸収、発光の波長の選択の幅が広く、
設計の自由度が大きい。
The phosphor for obtaining the same effect as in the present invention is not limited to the following phosphor, but in addition to the rhodamine 19 shown in the examples, the following organic,
Inorganic phosphors can also be used practically. (Organic dyes): All manufactured by Lambda Physiks Rhodamine 110: o- (6-amino-3-imino-3H-xanthen-9-yl) -benzoic acid, center of absorption wavelength is 510 nm,
Emission center wavelength is 570 nm (when dispersed in epoxy resin). DCM: 4-dicyanmethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, absorption center wavelength is 472.
nm, emission center wavelength is 650 nm (when dispersed in epoxy resin) ・ DCM special (manufactured by Lambda Physiks) (inorganic phosphor) ・ Ce: There is a change in characteristics due to the composition of YAG and YAG.
The absorption center wavelength is 450 nm and the emission center wavelength is 580 nm. Organic dye materials are easy to dissolve and disperse in resins such as epoxy resin, and the dispersed particles are small and high transparency can be obtained.
This is advantageous because unnecessary scattering of transmitted light can be reduced. In addition, the range of selection of absorption and emission wavelengths is wide,
Large design freedom.

【0020】本発明を実施したLED光源の製造は、ま
ず従来と同様に反射カップ内2にLEDチップ3、4、
5を配置し配線した後、波長変換部材であるローダミン
19を分散したエポキシ樹脂6を適量反射カップに導入
しLEDチップを覆うようにする。まず、この時点で1
00―150℃に温度を上げ2時間ほどで波長変換材料
を硬化させる。その後、LED光源全体を従来と同様な
透明な樹脂で硬化させる。できあがった白色LED光源
に通電し平均演色評価数を測定し評価する。波長変換部
材の光学的特性(演色性を含む)を所望のものとするた
め、波長変換部材の幾何学的形状も一定とするよう常套
手段を用いる。蛍光体のエポキシ樹脂に対する濃度の最
適値は、用いる蛍光体によっても異なるが、所望の色温
度、演色性かつ、効率の低下を最小限に押さえるように
濃度を実験的に特定することができる。
The manufacture of the LED light source embodying the present invention is as follows. First, the LED chips 3, 4,.
After arranging and wiring 5, an appropriate amount of epoxy resin 6 in which rhodamine 19, which is a wavelength conversion member, is dispersed is introduced into a reflection cup to cover the LED chip. First, at this point
The temperature is raised to 00-150 ° C. and the wavelength conversion material is cured in about 2 hours. Thereafter, the entire LED light source is cured with a transparent resin similar to the conventional one. The obtained white LED light source is energized, and the average color rendering index is measured and evaluated. In order to make the optical characteristics (including color rendering properties) of the wavelength conversion member desired, conventional means are used so that the geometric shape of the wavelength conversion member is also constant. Although the optimum value of the concentration of the phosphor with respect to the epoxy resin varies depending on the phosphor used, the concentration can be experimentally specified so as to minimize the desired color temperature, color rendering, and efficiency.

【0021】まず、選択されたLEDチップにより所定
の発光パターンと放熱条件を満たすLED光源を設計す
る。有機色素を分散したエポキシ樹脂で封止した後各L
EDチップの動作電流を調整して合成照明光が所定のx
ーy色度座標をとるようにする。演色評価数と全光束を
測定する。有機色素の濃度を変えて上記測定を繰り返し
濃度に対する演色評価数と全光束のグラフが得られる。
該グラフから演色性を最高にする濃度がえられる。演色
性と全光束が所望の条件を満足し、それを実現する濃度
が二つある場合は、低い濃度が選ばれる。
First, an LED light source that satisfies a predetermined light emitting pattern and heat radiation condition is designed by the selected LED chip. After sealing with an epoxy resin in which an organic dye is dispersed, each L
By adjusting the operating current of the ED chip, the combined illumination light is adjusted to a predetermined x.
Take y-chromaticity coordinates. The color rendering index and total luminous flux are measured. By repeating the above measurement while changing the concentration of the organic dye, a graph of the color rendering index and the total luminous flux with respect to the concentration is obtained.
From the graph, the density that maximizes the color rendering is obtained. If the color rendering properties and the total luminous flux satisfy the desired conditions, and there are two densities that achieve this, a lower density is selected.

【0022】また、上記の実施例では赤、緑および青色
の3色のLEDを用いたが、赤と青緑色、または黄と青
色の2色によっても白色光を作ることができる。このよ
うな2色のLEDによって構成される白色LED光源は
適切な有機色素が経済的に調整使用できることにより容
易に実用化されるものである。勿論LEDチップが二種
類でありより簡便である。さらに、エポキシ樹脂に限ら
ず、透明であることが好ましいその他の熱硬化性樹脂を
波長変換部材に使用できる。これらの熱硬化性樹脂は耐
熱性があり軽量、廉価である。
Further, in the above embodiment, LEDs of three colors of red, green and blue are used. However, white light can be produced by two colors of red and blue green or yellow and blue. Such a white LED light source composed of two-color LEDs is easily put into practical use because an appropriate organic dye can be economically adjusted and used. Of course, there are two types of LED chips, which is more convenient. Further, not only the epoxy resin but also other thermosetting resins that are preferably transparent can be used for the wavelength conversion member. These thermosetting resins are heat-resistant, lightweight, and inexpensive.

【0023】図7に示す光源20ように、発光素子2
3、24、25の外部に反射カップ(あるいは反射板)
22の反対側でそれらと距離を隔てて波長変換部材27
を設置する応用もでき、光源20のコスト低減と性能の
改善ができる。このような本発明の実施は、LEDチッ
プ以外の発光素子23、24、25にも適用できること
は明らかである。例えば従来のHIDランプの外管やカ
バーをプラスチックにして、プラスチックに有機色素を
溶解分散させておけば容易に演色性の改良ができよう。
As in the light source 20 shown in FIG.
Reflection cup (or reflection plate) outside 3, 24, 25
22 and a wavelength conversion member 27 at a distance therefrom.
The light source 20 can be reduced in cost and its performance can be improved. It is obvious that the embodiment of the present invention can be applied to the light emitting elements 23, 24 and 25 other than the LED chip. For example, if the outer tube and cover of a conventional HID lamp are made of plastic and an organic dye is dissolved and dispersed in plastic, the color rendering properties can be easily improved.

【0024】[0024]

【発明の効果】以上説明したように、本発明の実施によ
り前記課題の達成がなされる。
As described above, the above objects can be achieved by implementing the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1A】従来技術による白色LED光源の概略平面図
である。
FIG. 1A is a schematic plan view of a conventional white LED light source.

【図1B】図1AのLED光源のA−A断面図である。1B is a cross-sectional view of the LED light source of FIG. 1A along AA.

【図2】従来技術による白色LED光源の相対分光分布
を示すグラフである。
FIG. 2 is a graph showing a relative spectral distribution of a conventional white LED light source.

【図3】有機色素ローダミン19の吸収スペクトル分布
を表わすグラフである(横軸波長、縦軸は相対吸収
度)。
FIG. 3 is a graph showing the absorption spectrum distribution of the organic dye rhodamine 19 (wavelength on the horizontal axis, relative absorbance on the vertical axis).

【図4】有機色素ローダミン19の発光スペクトル分布
を表わす相対分光分布のグラフである(横軸波長、縦軸
は相対エネルギー)。
FIG. 4 is a graph of a relative spectral distribution showing an emission spectrum distribution of the organic dye rhodamine 19 (wavelength on the horizontal axis, relative energy on the vertical axis).

【図5】本発明の一実施例のLED光源の図1Bに対応
する断面図である。
FIG. 5 is a sectional view corresponding to FIG. 1B of the LED light source according to the embodiment of the present invention.

【図6】図5に示すLED光源の相対分光分布のグラフ
である(横軸波長、縦軸は相対エネルギー)。
6 is a graph of the relative spectral distribution of the LED light source shown in FIG. 5 (horizontal axis wavelength, vertical axis relative energy).

【図7】本発明の実施例の光源の図1Bに対応する断面
図である。
FIG. 7 is a sectional view corresponding to FIG. 1B of the light source according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、10、20 白色LED光源 2、22 反射カップ 3、4、5 LEDチップ 6 ローダミン19を分散したエポキシ樹脂 23、24、25 発光素子 27 有機色素を分散した熱硬化性樹脂 1, 10, 20 White LED light source 2, 22 Reflection cup 3, 4, 5 LED chip 6 Epoxy resin dispersed with rhodamine 19 23, 24, 25 Light emitting element 27 Thermosetting resin dispersed with organic dye

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】相異なる光を発生する複数の発光素子から
の該光を加法混色して照明光を生成する光源であって、
前記照明光中において少なくとも一つの前記発光素子か
らの光を変換するための有機色素を含む波長変換部材を
備え、該変換によって前記照明光の演色性向上するよう
にしたことを特長とする光源。
1. A light source for generating illumination light by additively mixing light from a plurality of light emitting elements that generate different light,
A light source, comprising: a wavelength conversion member including an organic dye for converting light from at least one of the light-emitting elements in the illumination light, whereby the color rendering of the illumination light is improved by the conversion.
【請求項2】前記波長変換部材が有機色素を溶解したエ
ポキシ樹脂を含む請求項1に記載の光源。
2. The light source according to claim 1, wherein the wavelength conversion member includes an epoxy resin in which an organic dye is dissolved.
【請求項3】前記有機色素がローダミン系である請求項
1又は請求項2に記載の光源。
3. The light source according to claim 1, wherein the organic dye is rhodamine-based.
【請求項4】前記発光素子が発光ダイオード・チップで
ある請求項1乃至請求項3に記載の光源。
4. The light source according to claim 1, wherein the light emitting element is a light emitting diode chip.
【請求項5】前記波長変換部材が前記発光素子から離隔
して配置されたことを特長とする請求項1乃至請求項4
に記載の光源。
5. The light-emitting device according to claim 1, wherein said wavelength conversion member is disposed apart from said light-emitting element.
The light source according to 1.
JP19544097A 1997-07-22 1997-07-22 High color rendering property light source Pending JPH1139917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19544097A JPH1139917A (en) 1997-07-22 1997-07-22 High color rendering property light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19544097A JPH1139917A (en) 1997-07-22 1997-07-22 High color rendering property light source

Publications (1)

Publication Number Publication Date
JPH1139917A true JPH1139917A (en) 1999-02-12

Family

ID=16341105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19544097A Pending JPH1139917A (en) 1997-07-22 1997-07-22 High color rendering property light source

Country Status (1)

Country Link
JP (1) JPH1139917A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019546A1 (en) * 1998-09-28 2000-04-06 Koninklijke Philips Electronics N.V. Lighting system
JP2000275636A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and illumination device as well as liquid crystal device using the illumination device
WO2001041215A1 (en) * 1999-12-02 2001-06-07 Koninklijke Philips Electronics N.V. Hybrid white light source comprising led and phosphor-led
EP1081771A3 (en) * 1999-09-03 2002-03-13 Hewlett-Packard Company, A Delaware Corporation Light emitting device
JP2004080046A (en) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Led lamp and lamp unit
WO2004032251A1 (en) * 2002-09-30 2004-04-15 Toyoda Gosei Co., Ltd. White light emitting device
JP2005005482A (en) * 2003-06-12 2005-01-06 Citizen Electronics Co Ltd Led light emitting device and color display device using the same
EP1160883A3 (en) * 2000-05-31 2005-06-22 Matsushita Electric Industrial Co., Ltd. LED lamp
JP2006332692A (en) * 1996-07-29 2006-12-07 Nichia Chem Ind Ltd Light-emitting device
US7294956B2 (en) 2001-10-01 2007-11-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and light emitting device using this
JP2008028384A (en) * 2006-07-24 2008-02-07 Yiguang Electronic Ind Co Ltd Light-emitting diode encapsulating structure
WO2008104106A1 (en) * 2007-02-27 2008-09-04 He Shan Lide Electronic Enterprise Company Ltd. A method of producing white light and a white light led obtained by using such producing method
JP2010171466A (en) * 2010-05-11 2010-08-05 Toshiba Lighting & Technology Corp Light-emitting device
JP2010534907A (en) * 2007-07-26 2010-11-11 レムニス・ライティング・パテント・ホールディング・ビー.・ブイ. Lighting device
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
JP2011192738A (en) * 2010-03-12 2011-09-29 Seiwa Electric Mfg Co Ltd Light-emitting device
US8142051B2 (en) 1999-11-18 2012-03-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for converting illumination
US8641256B2 (en) 2007-11-06 2014-02-04 Sanken Electric Co., Ltd. Semiconductor light emitting device, composite light emitting device with arrangement of semiconductor light emitting devices, and planar light source using composite light emitting device
US9169994B2 (en) 2012-03-12 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, and illumination apparatus and luminaire using same
EP1234140B2 (en) 1999-11-18 2015-11-25 Philips Lighting North America Corporation Systems and methods for generating and modulating illumination conditions
US9287200B2 (en) * 2013-06-27 2016-03-15 Freescale Semiconductor, Inc. Packaged semiconductor device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332692A (en) * 1996-07-29 2006-12-07 Nichia Chem Ind Ltd Light-emitting device
WO2000019546A1 (en) * 1998-09-28 2000-04-06 Koninklijke Philips Electronics N.V. Lighting system
EP1046196A1 (en) 1998-09-28 2000-10-25 Koninklijke Philips Electronics N.V. Lighting system
EP1046196B2 (en) 1998-09-28 2011-07-27 Koninklijke Philips Electronics N.V. Lighting system
JP2000275636A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Light source and illumination device as well as liquid crystal device using the illumination device
EP1081771A3 (en) * 1999-09-03 2002-03-13 Hewlett-Packard Company, A Delaware Corporation Light emitting device
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
EP1234140B2 (en) 1999-11-18 2015-11-25 Philips Lighting North America Corporation Systems and methods for generating and modulating illumination conditions
US8142051B2 (en) 1999-11-18 2012-03-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for converting illumination
WO2001041215A1 (en) * 1999-12-02 2001-06-07 Koninklijke Philips Electronics N.V. Hybrid white light source comprising led and phosphor-led
EP2940732A1 (en) * 1999-12-02 2015-11-04 Koninklijke Philips N.V. Hybrid white light source comprising leds and a phosphor-led
EP1160883A3 (en) * 2000-05-31 2005-06-22 Matsushita Electric Industrial Co., Ltd. LED lamp
EP3312890A1 (en) * 2000-05-31 2018-04-25 Panasonic Intellectual Property Management Co., Ltd. Led lamp
EP1160883B1 (en) * 2000-05-31 2018-02-07 Panasonic Intellectual Property Management Co., Ltd. LED lamp
JP2004080046A (en) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Led lamp and lamp unit
US7294956B2 (en) 2001-10-01 2007-11-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and light emitting device using this
US7227190B2 (en) 2002-09-30 2007-06-05 Toyoda Gosei Co., Ltd. White light emitting device
CN100428505C (en) * 2002-09-30 2008-10-22 丰田合成株式会社 White light emitting device
JP2004127988A (en) * 2002-09-30 2004-04-22 Toyoda Gosei Co Ltd White light emitting device
WO2004032251A1 (en) * 2002-09-30 2004-04-15 Toyoda Gosei Co., Ltd. White light emitting device
JP2005005482A (en) * 2003-06-12 2005-01-06 Citizen Electronics Co Ltd Led light emitting device and color display device using the same
JP2008028384A (en) * 2006-07-24 2008-02-07 Yiguang Electronic Ind Co Ltd Light-emitting diode encapsulating structure
US8093600B2 (en) 2006-07-24 2012-01-10 Everlight Electronics Co., Ltd. LED packaging structure
WO2008104106A1 (en) * 2007-02-27 2008-09-04 He Shan Lide Electronic Enterprise Company Ltd. A method of producing white light and a white light led obtained by using such producing method
JP2010534907A (en) * 2007-07-26 2010-11-11 レムニス・ライティング・パテント・ホールディング・ビー.・ブイ. Lighting device
US8641256B2 (en) 2007-11-06 2014-02-04 Sanken Electric Co., Ltd. Semiconductor light emitting device, composite light emitting device with arrangement of semiconductor light emitting devices, and planar light source using composite light emitting device
JP2011192738A (en) * 2010-03-12 2011-09-29 Seiwa Electric Mfg Co Ltd Light-emitting device
JP2010171466A (en) * 2010-05-11 2010-08-05 Toshiba Lighting & Technology Corp Light-emitting device
US9169994B2 (en) 2012-03-12 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, and illumination apparatus and luminaire using same
US9287200B2 (en) * 2013-06-27 2016-03-15 Freescale Semiconductor, Inc. Packaged semiconductor device

Similar Documents

Publication Publication Date Title
JPH1139917A (en) High color rendering property light source
JP4366016B2 (en) Lighting device
EP2095438B1 (en) Lighting device and lighting method
US7722220B2 (en) Lighting device
US8662732B2 (en) Light emitting diode devices containing replaceable subassemblies
US7989833B2 (en) Silicon nanoparticle white light emitting diode device
US7699490B2 (en) Light-emitting structure for generating an annular illumination effect
JP5153783B2 (en) Lighting device and lighting method
US7586127B2 (en) Light emitting diode
US20080089053A1 (en) Lighting device and method of making same
US8664891B2 (en) LED white-light devices for direct form, fit, and function replacement of existing lighting devices
US20110175510A1 (en) Tubular lighting products using solid state source and semiconductor nanophosphor, e.g. for florescent tube replacement
JP6223479B2 (en) Solid light emitter package, light emitting device, flexible LED strip, and luminaire
CN101554089A (en) Lighting device and lighting method
CN1465106A (en) Light emitting device using led
JP2008140704A (en) Led backlight
JP2007059864A (en) Lighting device and light emitting diode device
JP2006060238A (en) Device and method for generating output light having wavelength spectrum in visible and infrared wavelength ranges by using fluorescent material
US20070023762A1 (en) White light emitting LED-powered lamp
US8269428B2 (en) Light emitting diode devices containing replaceable subassemblies
JP2005268786A (en) Device and method for emitting composite output light using multiple wavelength-conversion mechanism
US20100295069A1 (en) High Luminous Flux Warm White Solid State Lighting Device
JP4140157B2 (en) Illumination light source and illumination device using light emitting diode
CN1208847C (en) Process for making three wavelengh white light light-emitting diode
CN107238004A (en) Laser-excited white light illumination system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061024

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070604