JPH1139917A - High color rendering property light source - Google Patents

High color rendering property light source

Info

Publication number
JPH1139917A
JPH1139917A JP19544097A JP19544097A JPH1139917A JP H1139917 A JPH1139917 A JP H1139917A JP 19544097 A JP19544097 A JP 19544097A JP 19544097 A JP19544097 A JP 19544097A JP H1139917 A JPH1139917 A JP H1139917A
Authority
JP
Japan
Prior art keywords
light
light source
led
color rendering
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19544097A
Other languages
Japanese (ja)
Inventor
Bataworth Mark
Satoshi Watanabe
マーク・バタワース
智 渡辺
Original Assignee
Hewlett Packard Co <Hp>
ヒューレット・パッカード・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co <Hp>, ヒューレット・パッカード・カンパニー filed Critical Hewlett Packard Co <Hp>
Priority to JP19544097A priority Critical patent/JPH1139917A/en
Publication of JPH1139917A publication Critical patent/JPH1139917A/en
Application status is Pending legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Abstract

PROBLEM TO BE SOLVED: To enhance a color rendering property, to reduce costs and to enhance efficiency by providing a wavelength conversion member containing organic coloring matter receiving light from at least one light emitting element and generating output light so as to produce combination light in the case of improving color effects through additive color mixing of the light from the plural light emitting elements. SOLUTION: A color rendering property is enhanced by applying a wavelength conversion material to a white light source whose light emitting elements are light emitting diode LED chips so as to convert wavelengths. Concretely, the LED chips 3, 4, 5 are coated by coloring matter rhodamine 19 dissolving- dispersed epoxy resin 6 so as to obtain an LED light source 10. Since a phosphor, including rhodamine 19, is powder, the same is mixed with epoxy resin for fixing the whole LED so as to form the wavelength conversion material. The wavelength conversion material is place in a reflection cup 2 containing the LED chips so as to reflect forward the light generated from the LED chips 3, 4, 5, and the light converted by the phosphor.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の技術分野】本発明は光源、特に波長変換を利用して演色性を向上した光源に関する。 FIELD OF THE INVENTION The present invention relates a light source, a light source related with improved color rendering properties in particular use of wavelength conversion.

【0002】 [0002]

【発明の背景】近年、多くの照明光源がも用いられており、その特性の改良が継続しておこなわれている。 BACKGROUND OF THE INVENTION In recent years, have been used many lighting sources, it is continuously performed by the improvement of its characteristics. 照明光源の特性としては色温度、光束、効率などの他に、重要な特性の一つとして、演色性がある。 Color temperature as a characteristic of the illumination light source, the light flux, in addition to such efficiency, as one of the important characteristics, there is a color rendering property. 自然光を代替するためには自然光に対する演色性の良いものが望まれる。 In order to replace the natural light is desired good color rendering properties with respect to natural light. 演色性の定量的評価方法としては、CIEが196 The quantitative evaluation method of color rendering properties, CIE 196
5年に定めて1974年に一部改訂した評価方法(以下、「CIE第2版の評価方法」という)がある。 Some revised evaluation method in 5 1974 set out in years (hereinafter referred to as "evaluation method of CIE Second Edition") there is. 日本では、JIS Z 8726にCIE第2版の評価方法が採用されている。 In Japan, the evaluation method of the CIE the second edition has been adopted in JIS Z 8726. これらの評価方法で規定された平均演色評価数(Ra)により演色性を評価するのが一般的であり、本明細書でもRaを用いて説明することとする。 The general color rendering index as defined by these evaluation methods (Ra) to evaluate the color rendering properties are common, and it will be described also using the Ra herein.

【0003】平均演色評価数Raは100に近いほど演色性に優れていることを示す。 [0003] The average color rendering index Ra the better the color rendering properties closer to 100. 白熱電球の演色評価数は100である。 Color rendering index of the incandescent light bulb is 100. 光源の演色性に対する要求は光源を使用する場所によって異なるが、通常の屋内環境においては Demand for color rendering of the light source varies depending on where the use of a light source, but in a normal indoor environment
Raが60以上であることが要求される。 Ra is required to be 60 or more. また、演色性の高い光源は同じ照度であっても演色性の低いランプより大きな明るさ感が得られるので好ましい。 Also preferred since high color rendering light source a large brightness sensation lower lamp color rendering even at the same illuminance is obtained.

【0004】従来より、光源の演色性を改善するため、 [0004] Conventionally, to improve the color rendering properties of a light source,
多くの工夫がなされてきた。 Many of the ideas have been made. 例えば、蛍光ランプでは低圧水銀放電で発生する253.7nmの強い線スペクトルのエネルギを蛍光膜で受けて可視光に変換して色補正し演色性を改善している。 For example, the fluorescent lamps have improved color corrected color rendering is converted into visible light by receiving the energy of the strong line spectrum of 253.7nm generated by low pressure mercury discharge fluorescent film. そこで、蛍光膜に使用する蛍光体や蛍光膜の構造を適切に選んで演色性を改善できる。 Therefore, it improves the color rendering properties by suitably choosing the structure of the phosphor or phosphor film used in the phosphor layer. 特開平5ー86364号(畠山他)に開示され技術では、全光束を高く保持しつつ複数の蛍光体を用いて演色評価数を80以上にも高めている。 The disclosed in JP-A 5 over No. 86364 (Hatakeyama et al.) Technique, and the number of color rendering index also increased to over 80 by using a plurality of phosphor while maintaining a high total flux.

【0005】蛍光高圧水銀ランプ(例えば特開平4ー2 [0005] Fluorescent high pressure mercury lamp (for example, Japanese Unexamined 4-2
34482号(岩間))やメタルハライドランプ(例えば特開平6ー76798号(等々力他))においても、 Even in No. 34,482 (Iwama)), a metal halide lamp (e.g., Japanese Patent Laid-Open 6-1 No. 76798 (Todoroki other)),
蛍光体の開発により、蛍光体の吸収や発光により演色性の改善が図られている。 The development of phosphors, improvement of color rendering properties are achieved by the absorption and emission of the phosphor.

【0006】また、特開平6ー243841号には、高圧ナトリウムランプと高圧水銀ランプを蛍光体を塗布した外管内に共に収容して演色性の高い混光照明を得る技術が開示されている。 Further, Japanese Unexamined 6-1 No. 243,841, technique and housed together in the outer tube coated with phosphor high pressure sodium lamp and high pressure mercury lamp to obtain a high light mixing lighting color rendering properties is disclosed. 上記の例では、何れも希土類元素を含む無機蛍光体が管面に塗布される構成である。 In the above example, both a configuration in which an inorganic phosphor containing the rare earth element is applied to the tube surface.

【0007】ところで、照明光源として半導体発光ダイオード(以下LEDと称する)を使用すれば、照明光源の寿命を格段に向上できる可能性がある。 By the way, the use of semiconductor light emitting diodes (hereinafter referred to as LED) as illumination light sources, there is a possibility of significantly improving the lifetime of the illumination source. また、多数のLEDを用いて曲面光源や立体光源を構成することができる。 Further, it is possible to construct a curved surface light source or solid source using a number the LED. そのため、近年開発市販されている高輝度青、緑色LEDと従来からある高輝度赤色LEDとを共に用いて、フルカラーLEDディスプレイやLED照明装置を作る試みがなされている。 Therefore, high luminance blue being developed commercially in recent years, using both the high-brightness red LED with a green LED and a conventional, attempts have been made to produce a full color LED display and LED lighting device. 特に赤、緑、青色LEDにより作られる白色光源は、従来の、白熱電球、蛍光ランプ灯やHIDランプを置き換える近未来の照明光源として注目されている。 In particular the red, green, white light produced by the blue LED is conventional, incandescent light bulbs, has attracted attention as a near future illumination light source to replace fluorescent lamps lamp and HID lamp. 白色LED光源においても、演色性を高めることが必要である。 Also in the white LED light source, it is necessary to increase the color rendering properties.

【0008】 [0008]

【発明の解決すべき課題】以上のように、多種の光源が用いられるなか、波長変換によりそれら光源の演色性を向上せしめようとすると、光源に適した性質の蛍光体や、波長変換部材ががもとめられる。 As [problem to be solved of the Invention above, among the various light sources are used, and it Seshimeyo improve the color rendering properties of these light sources by the wavelength conversion phosphor and characteristics suitable for the light source, the wavelength converting member is required. そして、そのような波長変換材を従来技術の光源に応用して製造コストの低減やその他の利益をうることが望まれる。 Then, it is desirable that may Such a wavelength converting material reduction or other benefits of manufacturing cost by applying the prior art light source. 特にLED In particular, LED
光源に利用すれば、さらに長寿命照明光源が期待できる。 By using the light source can be expected further long life illumination source. したがって本発明の目的は、従来ない構成により廉価で効率的かつ演色性がすぐれた光源を提供することにある。 Therefore, an object of the present invention is to provide a light source efficiently and color rendering inexpensive is excellent by conventional free configuration. さらに、本発明は、LED等の半導体発光装置の照明光の演色性を向上させることをも目的としている。 Furthermore, the present invention aims also to improve the color rendering properties of the illumination light of the semiconductor light emitting device such as an LED.

【0009】 [0009]

【課題を解決するための手段】上記課題を達成するため、本発明の光源は、相異なる光を発生する複数の発光素子からの該光を加法混色して照明光を生成する光源であって、少なくとも一つの前記発光素子からの光を入力して出力光を発生する有機色素を含む波長変換部材を備え、該出力光と前記照明光とを加法混色して生成した合成照明光の演色性が照明光の演色性より向上するようにしている。 Means for Solving the Problems] To achieve the above object, a light source of the present invention, the light from the plurality of light emitting elements for generating different light a light source for generating illumination light by additive color mixing at least one of said inputs light from the light emitting element includes a wavelength conversion member including an organic dye for generating an output light, the color rendering of the generated synthesized illumination light by additive color mixing and output light and the illumination light There has been so improved than color rendering properties of the illumination light.

【0010】波長変換部材を有機色素を溶解したエポキシ樹脂とすることができ、透明でかつ効率的な波長変換をおこなうことができる。 [0010] The wavelength conversion member can be an epoxy resin dissolved organic dye, it is possible to perform clear and efficient wavelength conversion. また有機色素としてはローダミンはじめいくつかの色素を用いることができる。 As the organic dye can be used rhodamine beginning several dyes.

【0011】また、本発明は発光素子として発光ダイオード・チップを用い、それらを組み合わせて白色光源を得る場合に効果的に実施されるが、その他の発光素子にたいしても適用できることは明らかである。 Further, the present invention uses a light-emitting diode chip as a light emitting element, but effectively carried out when a combination of them to obtain a white light source, it is clear that the applicable against other light emitting element.

【0012】 [0012]

【発明の実施例】以下に発光素子を発光ダイオード・チップ(以下、LEDチップと称する)とした白色光源の実施例について説明する。 BRIEF embodiment] The light emitting element emitting diode chip below (hereinafter, referred to as LED chips) and the for the embodiment of a white light source will be described. 図1Aは従来技術による白色LED光源1の概略平面図であり、図1Bはその概略A 1A is a schematic plan view of a white LED light source 1 according to the prior art, FIG. 1B is its schematic A
−A側断面図である。 It is -A-side sectional view. 理解を容易にするため、内部配線やリード線そしてLEDチップを覆う透明なエポキシ樹脂等の封止材は省略してある。 For ease of understanding, sealing material such as a transparent epoxy resin for covering the internal wiring and the lead wire and the LED chip is omitted. 両図において反射カップ2上に青発光する青LEDチップ3、緑発光する緑LE Blue LED chips 3 to blue light emission on the reflective cup 2 in both FIG green to green light emission LE
Dチップ4および赤発光する赤LEDチップ5が塔載されている。 D chip 4 and the red LED chip 5 to the red emission is the tower. これらLEDチップ3、4、5は、当業者に周知の常套手段により点灯されて発光する。 These LED chips 3, 4, 5, the light emission is turned on by known conventional means to those skilled in the art. LEDチップ3、4、5で発生された光は図1Bにおいて上方へ放射されて加法混色されて基準光を近似する照明光となる。 Light generated by the LED chips 3, 4, 5 is the illumination light is emitted upward is additive color mixing in FIG. 1B to approximate the reference light.

【0013】上記白色LED光源1の各LEDチップに流す電流を調整して白熱灯の色温度を近似して照明光の平均演色評価数を測定するとせいぜい40止まりであった。 [0013] was the white LED at most 40 blind when measuring the color rendering index of the illumination light by approximating the color temperature of the current incandescent lamp by adjusting the flow in each LED chip of the light source 1. 一般照明用の光源で要求される平均演色評価数60 Average color rendering index is required by the light source for general lighting 60
に比べかなり低い値である。 Is a much lower value than that of the. そこで照明光の相対分光分布を測定すると図2のグラフに示す測定結果が得られた。 So when measuring the relative spectral distribution of the illumination light measurement shown in the graph of FIG. 2 results. 図2のグラフから明らかなように、この照明光の相対分光分布は、各LEDチップからの比較的細いスペクトルを有し、また緑と赤の間に大きな深い谷を有する。 As apparent from the graph of FIG. 2, the relative spectral distribution of the illumination light has a relatively narrow spectrum from each LED chip, and has a large deep valley between the green and red.
そして黄色の領域のスペクトルから成るこの谷間が、演色性を低下させている原因であると推察された。 And this valley consisting yellow spectrum region were presumed to be the cause of lowering the color rendering properties.

【0014】そこで発明者等は、この谷間を埋めることができれば平均演色評数を大きくすることが可能であると考えた。 [0014] Therefore inventors have considered that it is possible to increase the average color rendering Review number if it is possible to fill the valleys. このため、オレンジ色や黄色の発光をするL For this reason, L to the light emission of the orange and yellow
EDチップを追加する方法が考えられたが、新たな色のLEDチップを追加するための地所とコストの問題に加えて白色光源を作るための各色LEDの調整が複雑になるという欠点のあることがわかった。 A method of adding the ED chip is considered, a disadvantage that the adjustment of each color LED to make white light source in addition to the estate and cost issues for adding a new color of the LED chip becomes complicated I understood it.

【0015】そこで、波長変換材料を用いた波長変換によりこの谷を埋めて演色性を向上させることとした。 [0015] Therefore, it was decided to improve the color rendering properties by filling the valley by the wavelength conversion using the wavelength converting material. また、効率が高くかつ吸収、発光波長も適当な蛍光体を用いれば測光量の変化(一般に効率の低下、全光束の減少)も少なく好都合であると考えた。 Further, high efficiency and absorption, the change in photometric Using the emission wavelengths suitable phosphor (typically reduced efficiency, reduced total luminous flux) was also considered less advantageous. ストークスの法則により、「蛍光を発する放射の波長は、照射された放射の波長より常にながい」から、緑あるいは青LEDチップからの光を変換しなければならない。 The Stokes law, "the wavelength of the radiation to emit fluorescence is always long than the wavelength of the irradiated radiation" from must convert the light from the green or blue LED chip. LEDチップ3、4、5からの光は、実質的に可視光領域の光のみであるから効率よく波長変換することが特に望まれる(紫外光等の照明光のなかに含めたくない成分を有する場合は、紫外光を可視光に変換するので比較的測光量の変化を抑えやすい)。 Light from the LED chips 3, 4, 5 has a substantially ingredients you do not want Some illumination light (such as ultraviolet light, in particular it is desired to efficiently wavelength-converted from light only in the visible light region If, easily suppress a change in the relatively photometric since converts ultraviolet light into visible light).

【0016】波長変換に用いる材料を調査、実験してみると、無機蛍光体のほかに例えば、有機の色素にもローダミン系の色素を始めとして適当な材料があることが解った。 [0016] investigated material used for the wavelength conversion, and try to experiment, for example, in addition to inorganic phosphors, also organic dyes were found to have suitable material including the rhodamine dyes. 本発明の実施例の一つでは、色素ローダミン19 In one embodiment of the present invention, the dye Rhodamine 19
(ドイツ連邦共和国Lambda Physiks製):安息香酸,2- (Made in Germany Federal Republic of Lambda Physiks): benzoic acid, 2-
[6-(エチルアミノ)-3-(エチルイミノ)-2,7-ジメチル-3 [6- (ethylamino) -3- (ethylimino) -2,7-dimethyl-3
H-キサンテン-9-],パークロレートが選ばれた。 H- xanthene-9], perchlorate has been selected. エポキシ樹脂に分散されたローダミン19の吸収スペクトルは図3のとおりであり、発光スペクトルは図4のとおりであることが判明した。 Absorption spectra of rhodamine 19 dispersed in the epoxy resin are shown in Chart 3, the emission spectrum was found to be as in Figure 4. そこでローダミン19は図2の緑のピークを吸収し、黄の谷間を埋めるに好適であろうことが予想された。 Therefore Rhodamine 19 absorbs the green peak in FIG. 2, it was expected that would be suitable for fill valleys yellow.

【0017】図1Bに対応して図5に断面を示すように、色素ローダミン19を溶解分散させたエポキシ樹脂6によりLEDチップを被覆したLED光源10が得られた。 [0017] Corresponding to FIG. 1B, as shown in the sectional view of FIG. 5, LED light source 10 that covers the LED chip with epoxy resin 6 was dissolved dispersing a dye rhodamine 19 was obtained. LED光源10は、エポキシ樹脂6による被覆を除けば、図1A、図1Bに示すLED光源1と同じである。 LED light source 10, except coating with epoxy resin 6, FIG. 1A, the same as the LED light source 1 shown in FIG. 1B. 但し、LED光源10でエポキシ樹脂6のほかにさらに透明樹脂等を追加被覆してもよいし、しなくともよい。 However, to other more transparent resin such an epoxy resin 6 in the LED light source 10 may be added coating or may not. 通常、ローダミン19をはじめとして蛍光体は粉末であるためLED全体を樹脂で固定する際のエポキシ樹脂と混ぜて、波長変換部材を構成する。 Usually, the phosphor including the rhodamine 19 across LED for a powder mixed with an epoxy resin in fixing a resin to form a wavelength conversion member. また、LEDチップから発生した光と、蛍光体により変換された光を前方に反射するように、波長変換部材はLEDチップを収納する反射カップ2内におかれる。 Further, the light generated from the LED chips, to reflect converted light forward by the phosphor, the wavelength conversion member is placed on the reflecting cup 2 for housing the LED chip. 波長変換部材は、3 Wavelength conversion member, 3
つのLEDチップを覆う必要はなく、蛍光体を励起(吸収)するLEDチップのみを覆うように充填することもできる。 One of the LED chips need not cover the can be filled so as to cover only the LED chip excites the phosphor (absorption).

【0018】図6は図5に断面を示す本発明による白色LEDの放射光の相対分光分布を示す。 [0018] Figure 6 shows the relative spectral distribution of the emitted light of the white LED according to the present invention shown in the sectional view of FIG. 蛍光体としてローダミン19を用いたときの平均演色評価数は約76であっり、従来の白色LEDの平均演色評価数40に比べ大きく改善された。 Average color rendering index when using rhodamine 19 as phosphor Agli about 76, has greatly improved compared to the average of the conventional white LED color rendering index 40. また、図1に示す従来の白色LED Further, conventional white LED shown in FIG. 1
の効率に比べ、本発明の効率(lm/W)は約10%以下の低下にとどまり、効率をそれほど犠牲にすることなく、演色性を大きく改善できることがわかった。 Compared to the efficiency, the efficiency of the present invention (lm / W) remains in reduction of about 10% or less, without significantly sacrificing the efficiency, was found to be greatly improved color rendering properties.

【0019】本発明におけると同様の効果をうるための蛍光体は下記蛍光体に限るものではないが、実施例で示したローダミン19以外にも、以下に示すような有機、 The phosphor to sell the same effect as in the present invention are not limited to the following phosphors, but in addition rhodamine 19 shown in the embodiment also, as shown below organic,
無機系の蛍光体も実用的に使用しうる。 Phosphor inorganic also can practically use. (有機色素):いずれもLambda Physiks製 ・ローダミン110:o-(6-アミノ-3-イミノ-3H-キサンテン-9-イル)-安息香酸、吸収波長の中心は510nm, (Organic dye): Both Lambda Physiks Made Rhodamine 110: o-(6- amino-3-imino -3H- xanthen-9-yl) - benzoic acid, the center of the absorption wavelength 510 nm,
発光中心波長は570nm(エポキシ樹脂に分散したばあい) ・DCM:4-ジシアンメチレン-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン、吸収中心波長は472 Emission center (when dispersed in an epoxy resin) wavelength 570 nm · DCM: 4-di-cyan-2-methyl-6-(p-dimethylaminostyryl) -4H- pyran, absorption center wavelength 472
nm、発光中心波長は650nm(エポキシ樹脂に分散したばあい) ・DCMspecial(Lambda Physiks製) (無機蛍光体) ・Ce:YAG、YAGの組成による特性の変化があるが、 nm, emission center wavelength is 650 nm (when dispersed in an epoxy resin) · DCMspecial (Lambda Physiks Ltd.) (inorganic phosphor) · Ce: YAG, there is a change in characteristics due to the composition of YAG,
吸収中心波長は450nm, 発光中心波長は580nm。 Absorption center wavelength 450 nm, emission center wavelength 580 nm. 有機色素材料はエポキシ樹脂等の樹脂に溶解分散させやすく、分散した粒子が小さく透明度が高くとれるので、 The organic dye material is easily dissolved dispersed in a resin such as an epoxy resin, since the dispersed particles can have a high small transparency,
通過光の不要な散乱等を少なくすることができるので有利である。 Advantageously it is possible to reduce the unnecessary scattered like of the passing light. また、吸収、発光の波長の選択の幅が広く、 Further, the absorption, the range of selection of the wavelength of the emission is wide,
設計の自由度が大きい。 A large degree of freedom of design.

【0020】本発明を実施したLED光源の製造は、まず従来と同様に反射カップ内2にLEDチップ3、4、 [0020] Production of the LED light source to which the present invention first conventional LED chips 3 and 4 in the same manner as in the reflective cup 2,
5を配置し配線した後、波長変換部材であるローダミン19を分散したエポキシ樹脂6を適量反射カップに導入しLEDチップを覆うようにする。 After 5 was arranged and wired to the epoxy resin 6 dispersed rhodamine 19 which is a wavelength converting member so as to cover the introduced LED chip qs reflective cup. まず、この時点で1 First of all, 1 at this point
00―150℃に温度を上げ2時間ほどで波長変換材料を硬化させる。 00-150 in two hours raising the temperature to cure the wavelength converting material in ° C.. その後、LED光源全体を従来と同様な透明な樹脂で硬化させる。 Thereafter, curing the entire LED light source in a conventional manner, transparent resin. できあがった白色LED光源に通電し平均演色評価数を測定し評価する。 The resulting energized white LED light source to evaluate by measuring the color rendering index. 波長変換部材の光学的特性(演色性を含む)を所望のものとするため、波長変換部材の幾何学的形状も一定とするよう常套手段を用いる。 To the optical properties of the wavelength converting member (including color rendering) and desired one, the geometric shape of the wavelength conversion member is also used conventional means to a constant. 蛍光体のエポキシ樹脂に対する濃度の最適値は、用いる蛍光体によっても異なるが、所望の色温度、演色性かつ、効率の低下を最小限に押さえるように濃度を実験的に特定することができる。 Optimum value of concentration for the epoxy resin of the phosphor varies depending phosphors used, a desired color temperature, color rendering properties and a decrease in efficiency can be identified to a concentration experimentally as minimized.

【0021】まず、選択されたLEDチップにより所定の発光パターンと放熱条件を満たすLED光源を設計する。 Firstly, to design a heat radiation condition is satisfied LED light source and a predetermined light emitting pattern by the selected LED chips. 有機色素を分散したエポキシ樹脂で封止した後各L Each L After sealing the organic dye dispersed epoxy resin
EDチップの動作電流を調整して合成照明光が所定のx By adjusting the operating current of the ED chip combining illumination light given x
ーy色度座標をとるようにする。 To take the over y chromaticity coordinates. 演色評価数と全光束を測定する。 To measure the color rendering index and the total luminous flux. 有機色素の濃度を変えて上記測定を繰り返し濃度に対する演色評価数と全光束のグラフが得られる。 By changing the concentration of the organic dye graph of color rendering index and luminous flux to repeated concentration above measurement is obtained.
該グラフから演色性を最高にする濃度がえられる。 Concentration to maximize the color rendering properties from the graph will be obtained. 演色性と全光束が所望の条件を満足し、それを実現する濃度が二つある場合は、低い濃度が選ばれる。 Color rendering and luminous flux satisfies the desired condition, if the concentration of realizing it are two, low concentration is chosen.

【0022】また、上記の実施例では赤、緑および青色の3色のLEDを用いたが、赤と青緑色、または黄と青色の2色によっても白色光を作ることができる。 Further, in the above embodiment red, was used green and blue three colors of LED, it is possible to make white light by red and blue-green or yellow colors and blue. このような2色のLEDによって構成される白色LED光源は適切な有機色素が経済的に調整使用できることにより容易に実用化されるものである。 Such two-color white LED light source constituted by the LED are those suitable organic dyes are easily commercialized by economical adjustment use. 勿論LEDチップが二種類でありより簡便である。 Of course, an LED chip are two types is more convenient. さらに、エポキシ樹脂に限らず、透明であることが好ましいその他の熱硬化性樹脂を波長変換部材に使用できる。 Furthermore, not only the epoxy resin is preferably a transparent other thermosetting resins can be used in the wavelength conversion member. これらの熱硬化性樹脂は耐熱性があり軽量、廉価である。 These thermosetting resins have heat resistance lightweight and inexpensive.

【0023】図7に示す光源20ように、発光素子2 [0023] As the light source 20 shown in FIG. 7, the light emitting element 2
3、24、25の外部に反射カップ(あるいは反射板) 3,24,25 outside reflective cup (or reflector)
22の反対側でそれらと距離を隔てて波長変換部材27 Wavelength conversion member 27 on the opposite side of the 22 separates them and distance
を設置する応用もでき、光源20のコスト低減と性能の改善ができる。 Can also apply to install, it can improve the cost and performance of the light source 20. このような本発明の実施は、LEDチップ以外の発光素子23、24、25にも適用できることは明らかである。 Implementation of the present invention as described above, will be obvious that the same may be applied to the LED chip other than the light emitting element 23, 24 and 25. 例えば従来のHIDランプの外管やカバーをプラスチックにして、プラスチックに有機色素を溶解分散させておけば容易に演色性の改良ができよう。 For example an outer tube or cover of a conventional HID lamp in the plastic, could easily color rendering improved if the organic dye is dissolved dispersed in plastics.

【0024】 [0024]

【発明の効果】以上説明したように、本発明の実施により前記課題の達成がなされる。 As described above, according to the present invention, achievement of the object is made by the practice of the present invention.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1A】従来技術による白色LED光源の概略平面図である。 1A is a schematic plan view of a white LED light source according to the prior art.

【図1B】図1AのLED光源のA−A断面図である。 1B is an A-A sectional view of the LED light source of FIG. 1A.

【図2】従来技術による白色LED光源の相対分光分布を示すグラフである。 2 is a graph showing the relative spectral distribution of the white LED light source according to the prior art.

【図3】有機色素ローダミン19の吸収スペクトル分布を表わすグラフである(横軸波長、縦軸は相対吸収度)。 3 is a graph showing the absorption spectrum distribution of the organic dye rhodamine 19 (horizontal axis wavelength, the vertical axis represents the relative absorbance).

【図4】有機色素ローダミン19の発光スペクトル分布を表わす相対分光分布のグラフである(横軸波長、縦軸は相対エネルギー)。 4 is a graph of relative spectral distribution representing the emission spectrum distribution of the organic dye rhodamine 19 (horizontal axis wavelength, the vertical axis represents the relative energy).

【図5】本発明の一実施例のLED光源の図1Bに対応する断面図である。 5 is a cross-sectional view corresponding to Figure 1B of the LED light source of an embodiment of the present invention.

【図6】図5に示すLED光源の相対分光分布のグラフである(横軸波長、縦軸は相対エネルギー)。 6 is a graph of the relative spectral distribution of the LED light source shown in FIG. 5 (horizontal axis wavelength, the vertical axis represents the relative energy).

【図7】本発明の実施例の光源の図1Bに対応する断面図である。 7 is a sectional view corresponding to Figure 1B of the light source in the embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1、10、20 白色LED光源 2、22 反射カップ 3、4、5 LEDチップ 6 ローダミン19を分散したエポキシ樹脂 23、24、25 発光素子 27 有機色素を分散した熱硬化性樹脂 1, 10, 20, the white LED light source 2,22 reflective cup 3,4,5 thermosetting resin the LED chips 6 Rhodamine 19 to disperse the dispersed epoxy resin 23, 24, 25 light emitting element 27 organic dye

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】相異なる光を発生する複数の発光素子からの該光を加法混色して照明光を生成する光源であって、 The method according to claim 1] light from the plurality of light emitting elements for generating different light a light source for generating illumination light by additive color mixing,
    前記照明光中において少なくとも一つの前記発光素子からの光を変換するための有機色素を含む波長変換部材を備え、該変換によって前記照明光の演色性向上するようにしたことを特長とする光源。 Light source that features that the includes a wavelength conversion member including an organic dye for converting light from at least one of the light emitting element in the illumination optical, and so as to improve color rendering properties of the illumination light by the conversion.
  2. 【請求項2】前記波長変換部材が有機色素を溶解したエポキシ樹脂を含む請求項1に記載の光源。 2. A light source according to claim 1 comprising an epoxy resin wherein the wavelength conversion member is dissolved an organic dye.
  3. 【請求項3】前記有機色素がローダミン系である請求項1又は請求項2に記載の光源。 Wherein the light source according to claim 1 or claim 2 organic dye is a rhodamine.
  4. 【請求項4】前記発光素子が発光ダイオード・チップである請求項1乃至請求項3に記載の光源。 4. A light source according to claim 1 to claim 3 wherein the light emitting element is a light emitting diode chip.
  5. 【請求項5】前記波長変換部材が前記発光素子から離隔して配置されたことを特長とする請求項1乃至請求項4 5. A method according to claim 1 to claim 4, featuring the fact that the wavelength conversion member is spaced apart from the light emitting element
    に記載の光源。 Light source according to.
JP19544097A 1997-07-22 1997-07-22 High color rendering property light source Pending JPH1139917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19544097A JPH1139917A (en) 1997-07-22 1997-07-22 High color rendering property light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19544097A JPH1139917A (en) 1997-07-22 1997-07-22 High color rendering property light source

Publications (1)

Publication Number Publication Date
JPH1139917A true JPH1139917A (en) 1999-02-12

Family

ID=16341105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19544097A Pending JPH1139917A (en) 1997-07-22 1997-07-22 High color rendering property light source

Country Status (1)

Country Link
JP (1) JPH1139917A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019546A1 (en) * 1998-09-28 2000-04-06 Koninklijke Philips Electronics N.V. Lighting system
WO2001041215A1 (en) * 1999-12-02 2001-06-07 Koninklijke Philips Electronics N.V. Hybrid white light source comprising led and phosphor-led
EP1081771A3 (en) * 1999-09-03 2002-03-13 Hewlett-Packard Company, A Delaware Corporation Light emitting device
WO2004032251A1 (en) * 2002-09-30 2004-04-15 Toyoda Gosei Co., Ltd. White light emitting device
EP1160883A3 (en) * 2000-05-31 2005-06-22 Matsushita Electric Industrial Co., Ltd. LED lamp
JP2006332692A (en) * 1996-07-29 2006-12-07 Nichia Chem Ind Ltd Light-emitting device
US7294956B2 (en) 2001-10-01 2007-11-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and light emitting device using this
JP2008028384A (en) * 2006-07-24 2008-02-07 Yiguang Electronic Ind Co Ltd Light-emitting diode encapsulating structure
WO2008104106A1 (en) * 2007-02-27 2008-09-04 He Shan Lide Electronic Enterprise Company Ltd. A method of producing white light and a white light led obtained by using such producing method
JP2010171466A (en) * 2010-05-11 2010-08-05 Toshiba Lighting & Technology Corp Light-emitting device
JP2010534907A (en) * 2007-07-26 2010-11-11 レムニス・ライティング・パテント・ホールディング・ビー.・ブイ.Lemnis Lighting Patent Holding B.V. Lighting device
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
JP2011192738A (en) * 2010-03-12 2011-09-29 Seiwa Electric Mfg Co Ltd Light-emitting device
US8142051B2 (en) 1999-11-18 2012-03-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for converting illumination
US8641256B2 (en) 2007-11-06 2014-02-04 Sanken Electric Co., Ltd. Semiconductor light emitting device, composite light emitting device with arrangement of semiconductor light emitting devices, and planar light source using composite light emitting device
US9169994B2 (en) 2012-03-12 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, and illumination apparatus and luminaire using same
EP1234140B2 (en) 1999-11-18 2015-11-25 Philips Lighting North America Corporation Systems and methods for generating and modulating illumination conditions
US9287200B2 (en) * 2013-06-27 2016-03-15 Freescale Semiconductor, Inc. Packaged semiconductor device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332692A (en) * 1996-07-29 2006-12-07 Nichia Chem Ind Ltd Light-emitting device
WO2000019546A1 (en) * 1998-09-28 2000-04-06 Koninklijke Philips Electronics N.V. Lighting system
EP1046196A1 (en) 1998-09-28 2000-10-25 Philips Corporate Intellectual Property GmbH Lighting system
EP1046196B2 (en) 1998-09-28 2011-07-27 Koninklijke Philips Electronics N.V. Lighting system
EP1081771A3 (en) * 1999-09-03 2002-03-13 Hewlett-Packard Company, A Delaware Corporation Light emitting device
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US8142051B2 (en) 1999-11-18 2012-03-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for converting illumination
EP1234140B2 (en) 1999-11-18 2015-11-25 Philips Lighting North America Corporation Systems and methods for generating and modulating illumination conditions
EP2940732A1 (en) * 1999-12-02 2015-11-04 Koninklijke Philips N.V. Hybrid white light source comprising leds and a phosphor-led
WO2001041215A1 (en) * 1999-12-02 2001-06-07 Koninklijke Philips Electronics N.V. Hybrid white light source comprising led and phosphor-led
EP1160883B1 (en) * 2000-05-31 2018-02-07 Panasonic Intellectual Property Management Co., Ltd. LED lamp
EP1160883A3 (en) * 2000-05-31 2005-06-22 Matsushita Electric Industrial Co., Ltd. LED lamp
EP3312890A1 (en) * 2000-05-31 2018-04-25 Panasonic Intellectual Property Management Co., Ltd. Led lamp
US7294956B2 (en) 2001-10-01 2007-11-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element and light emitting device using this
US7227190B2 (en) 2002-09-30 2007-06-05 Toyoda Gosei Co., Ltd. White light emitting device
WO2004032251A1 (en) * 2002-09-30 2004-04-15 Toyoda Gosei Co., Ltd. White light emitting device
US8093600B2 (en) 2006-07-24 2012-01-10 Everlight Electronics Co., Ltd. LED packaging structure
JP2008028384A (en) * 2006-07-24 2008-02-07 Yiguang Electronic Ind Co Ltd Light-emitting diode encapsulating structure
WO2008104106A1 (en) * 2007-02-27 2008-09-04 He Shan Lide Electronic Enterprise Company Ltd. A method of producing white light and a white light led obtained by using such producing method
JP2010534907A (en) * 2007-07-26 2010-11-11 レムニス・ライティング・パテント・ホールディング・ビー.・ブイ.Lemnis Lighting Patent Holding B.V. Lighting device
US8641256B2 (en) 2007-11-06 2014-02-04 Sanken Electric Co., Ltd. Semiconductor light emitting device, composite light emitting device with arrangement of semiconductor light emitting devices, and planar light source using composite light emitting device
JP2011192738A (en) * 2010-03-12 2011-09-29 Seiwa Electric Mfg Co Ltd Light-emitting device
JP2010171466A (en) * 2010-05-11 2010-08-05 Toshiba Lighting & Technology Corp Light-emitting device
US9169994B2 (en) 2012-03-12 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, and illumination apparatus and luminaire using same
US9287200B2 (en) * 2013-06-27 2016-03-15 Freescale Semiconductor, Inc. Packaged semiconductor device

Similar Documents

Publication Publication Date Title
US7722211B2 (en) Light engine
US7213940B1 (en) Lighting device and lighting method
US7852010B2 (en) Lighting device and method of lighting
JP4744534B2 (en) A light-emitting device
CN1124426C (en) Lighting system
ES2299260T5 (en) Lighting system.
US8104908B2 (en) Efficient LED-based illumination module with high color rendering index
CN1893136B (en) Light radiating semiconductor device and arrangement containing same
KR100532638B1 (en) Light emitting device
US8205998B2 (en) Phosphor-centric control of solid state lighting
US8445824B2 (en) Lighting device
KR101340682B1 (en) Lighting device
EP2027412B1 (en) Lighting device
EP2460193B1 (en) Solid state lighting devices including light mixtures
KR101332139B1 (en) Lighting device and lighting method
CN103222077B (en) Light emitting means
US20110127557A1 (en) Light fixture using near uv solid state device and remote semiconductor nanophosphors to produce white light
JP3773541B2 (en) The semiconductor light emitting device having a luminescence conversion element
US20070235751A1 (en) White light LED devices with flat spectra
JP4231418B2 (en) Light emitting module and a vehicle lamp
CN101438630B (en) Lighting device and lighting method
JP5624031B2 (en) Solid-state lighting device comprising a mixed light
JP5934130B2 (en) Packages designed to produce white light with short wavelength led and downconversion materials
EP2008019B1 (en) Lighting device and lighting method
CN101688644B (en) Lighting device and lighting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061024

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070604