JP2008071805A - Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors - Google Patents

Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors Download PDF

Info

Publication number
JP2008071805A
JP2008071805A JP2006246819A JP2006246819A JP2008071805A JP 2008071805 A JP2008071805 A JP 2008071805A JP 2006246819 A JP2006246819 A JP 2006246819A JP 2006246819 A JP2006246819 A JP 2006246819A JP 2008071805 A JP2008071805 A JP 2008071805A
Authority
JP
Japan
Prior art keywords
light
light emitting
types
phosphors
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006246819A
Other languages
Japanese (ja)
Inventor
Kunio Ito
伊藤國雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006246819A priority Critical patent/JP2008071805A/en
Publication of JP2008071805A publication Critical patent/JP2008071805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white light-emitting element having optimum high color rendering properties as white illumination. <P>SOLUTION: At least not less than two types of semiconductor light-emitting elements are formed on one substrate material, each semiconductor light-emitting element is coated with a plurality of types of phosphors reacting with the light-emitting wavelength of each element, and each semiconductor light-emitting element is allowed to emit light simultaneously, thus emitting visible light having a wide range of light-emitting wavelengths and obtaining high color rendering properties. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体発光素子上に蛍光体を塗布した多波長半導体発光装置に関係する。 The present invention relates to a multiwavelength semiconductor light emitting device in which a phosphor is coated on a semiconductor light emitting element.

数年前に青色発光ダイオード(Light-Emitting Diode : LED)が実用化され,LEDによる光の3原色がそろった。このことにより,現在ではLEDで白色光を作ることができるようになり,主に表示用光源として広く使用されている。 A few years ago, light-emitting diodes (LEDs) were put into practical use, and the three primary colors of light from LEDs were aligned. This makes it possible to produce white light with LEDs, and it is widely used mainly as a light source for display.

またLEDは長寿命(約10万時間),小型・堅牢,水銀などの有害物質を含まない,現在の白熱電球や蛍光灯を上回るエネルギー効率を有しているなど照明用光源としても多くの利点を持っている。 In addition, LED has many advantages as a light source for lighting such as long life (approx. 100,000 hours), small size, robustness, free of harmful substances such as mercury, and energy efficiency exceeding current incandescent bulbs and fluorescent lamps. have.

光源を照明として用いるには、光源が照らす色を、太陽光で照らしたときと比べどれだけ忠実に再現できるかが重要となる。この色の再現性は平均演色評価指数Raを用いて表すが、現在広く使用されている白色LEDは,青色LEDの光で黄色蛍光体を励起するという方法で実現されているため、発光波長領域が太陽光スペクトルのものと比べ狭くなり平均演色評指数は良くなくRa=55程度である。 In order to use a light source as illumination, it is important how faithfully the color illuminated by the light source can be reproduced compared to when illuminated with sunlight. This color reproducibility is expressed using the average color rendering index Ra, but the white LED currently widely used is realized by exciting yellow phosphors with blue LED light. However, the average color rendering index is not good and Ra = 55.

今後、白色LEDが照明として広く用いられるためには、この演色評価指数の向上が必要である。そのためには、できるだけ多くの発光波長を有する白色光を有するLEDを実現すればよい。 In the future, in order for white LEDs to be widely used as lighting, it is necessary to improve the color rendering index. For this purpose, an LED having white light having as many emission wavelengths as possible may be realized.

従来の技術において青色LEDの光で黄色蛍光体を励起するという方法が主流であるが,さらに演色性を向上させるために近紫外LEDの光で複数種の蛍光体を励起するという方法も考案されている。その例として特開2004-331934がある。しかしこれでは1種の素子上に塗布する蛍光体の種類には限界がある。 In the prior art, the method of exciting yellow phosphors with blue LED light is the mainstream, but in order to further improve color rendering, a method of exciting multiple types of phosphors with near ultraviolet LED light has also been devised. ing. An example is JP-A-2004-331934. However, there is a limit to the type of phosphor that can be applied on one type of device.

また、従来の技術において特開平08-293625があるが、これに代表されるように従来は光の三原色のような波長を発する複数の発光素子を集積化し、広い波長帯域を得ようとする方法もあった。この場合,それぞれの素子の発光に必要な電圧などが異なることから別に駆動のための回路が必要となり多くのコストがかかる。またそれぞれの素子で寿命が異なることが考えられる。さらに、特開2004-072047では青色光に励起され黄色光を発する物質として蛍光体の変わりにZnSe基板を用いているが、これも2つの波長しか発光することができず演色性の向上には寄与できない。
特開平08-293625
In addition, there is JP-A-08-293625 in the prior art. As represented by this, conventionally, a method for obtaining a wide wavelength band by integrating a plurality of light emitting elements emitting wavelengths such as the three primary colors of light. There was also. In this case, since the voltage required for light emission of each element is different, a separate circuit for driving is required, and a lot of cost is required. Moreover, it is possible that each element has a different lifetime. Furthermore, in Japanese Patent Application Laid-Open No. 2004-072047, a ZnSe substrate is used instead of a phosphor as a substance that is excited by blue light and emits yellow light. However, this can also emit only two wavelengths, so that color rendering can be improved. Cannot contribute.
JP 08-293625

上記に示すように、半導体発光素子上に複数種の蛍光体を塗布し、あるいは複数の発光素子を用いて演色性の高い白色LEDを実現する方法があるが、多くの発光ピーク波長もたせるには限界があった。 As shown above, there is a method of applying a plurality of types of phosphors on a semiconductor light emitting element or realizing a white LED with high color rendering using a plurality of light emitting elements. There was a limit.

また、ひとつの素子上に多くの蛍光体を塗布しすぎると発光強度が弱くなり、一方、種類の異なる発光素子を複数使用すると印加電圧や寿命が異なることから問題が多く発生した。 Also, if too many phosphors are applied on one element, the light emission intensity is weakened. On the other hand, when a plurality of different types of light emitting elements are used, the applied voltage and the life are different, resulting in many problems.

本発明はこのような従来の問題を解決しようとするものであり、その目的は、印加電圧や寿命がほぼ同じで、発光波長の異なる2つ以上の発光素子上にそれぞれ蛍光体を塗布することにより、多くの発光ピーク波長を含む高演色な白色光発光装置を提供することにある。 The present invention is intended to solve such a conventional problem, and its purpose is to apply phosphors on two or more light emitting elements having substantially the same applied voltage and lifetime and different emission wavelengths. Accordingly, it is an object of the present invention to provide a high color rendering white light emitting device including many emission peak wavelengths.

本発明は、1つの基板材料上に少なくとも2種類以上の半導体発光素子を形成し、各々の半導体発光素子上に、それぞれの素子の発光波長に反応する蛍光体を複数種類塗布し、各々の半導体発光素子を同時に発光させることにより、広範囲な発光波長を有する可視光の発光を実現し高演色性を得て、上記課題を解決したものである。 In the present invention, at least two kinds of semiconductor light emitting elements are formed on one substrate material, and a plurality of kinds of phosphors that react to the emission wavelength of each element are coated on each of the semiconductor light emitting elements. By simultaneously emitting light from the light emitting element, visible light emission having a wide range of emission wavelengths is realized and high color rendering properties are obtained, thereby solving the above problems.

以上説明したことから明らかなように、本発明によれば、同材料系の異なる発光波長を持つ半導体素子上に複数種の蛍光体を塗布することにより、特別な駆動回路の組み込みや寿命の差異を問題とすることなく、多くの波長領域を含む可視光の発光装置を提供できる。このことは演色性の高い照明用LEDの実現のために大きな意味があり、蛍光灯がLED照明にとって変わることに貢献する。そして、LEDの用途拡大や進展に大きく貢献する。   As is apparent from the above description, according to the present invention, by applying a plurality of types of phosphors on a semiconductor element having the same material system and different emission wavelengths, the special drive circuit can be incorporated and the lifetime difference can be increased. Thus, a visible light emitting device including many wavelength regions can be provided. This has great implications for the realization of lighting LEDs with high color rendering properties and contributes to the change of fluorescent lamps for LED lighting. This will greatly contribute to the expansion and progress of LED applications.

現在、半導体レーザの製造にはMOCVD成長法(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)が使われている。これは、LPE成長法(Liquid Phase Epitaxy:液相エピタキシャル成長法)やMBE成長法(Molecular Beam Epitaxy:分子線エピタキシャル成長法)に比べ、広い面積への均一な薄膜成長が比較的容易なためである。MOCVDは、半導体の材料を有機化合物の状態で反応室へ導入し、誘導過熱によって高温にされた基板上に、薄膜を成長させる方法である。この半導体発光装置の製造においてもMOCVD成長法を用いる。 Currently, the MOCVD growth method (Metal Organic Chemical Vapor Deposition) is used to manufacture semiconductor lasers. This is because uniform thin film growth over a wide area is relatively easy as compared with the LPE growth method (Liquid Phase Epitaxy) and MBE growth method (Molecular Beam Epitaxy). MOCVD is a method in which a semiconductor material is introduced into a reaction chamber in the form of an organic compound, and a thin film is grown on a substrate heated to high temperature by induction overheating. The MOCVD growth method is also used in the manufacture of this semiconductor light emitting device.

具体的に図1から図25に三波長半導体レーザアレイ装置の製造方法を示す。 Specifically, FIGS. 1 to 25 show a method of manufacturing a three-wavelength semiconductor laser array device.

最初に青色LEDの成長を行う。まずn型のGaN基板1上に、GaNバッファ層2を0.5μm、n-InAlGaNクラッド層3を1μm、InGaN TQW活性層4を全厚さで40nm、p-InAlGaNクラッド層5を0.3μm、p-GaNコンタクト層6を0.5μm成長し、次いでSiO2酸化膜7を0.5μm成長させる(図1)。SiO2酸化膜7を青色LED部分となる部分を中心とした130μmの幅だけ残し、残りのSiO2酸化膜7をエッチングしてHFで取り除く(図2)。次にn-GaN基板1までドライエッチングを行う。このときSiO2酸化膜7が残っている部分はエッチングされない(図3)。 First, blue LED is grown. First, on the n-type GaN substrate 1, the GaN buffer layer 2 is 0.5 μm, the n-InAlGaN cladding layer 3 is 1 μm, the InGaN TQW active layer 4 is 40 nm in total thickness, the p-InAlGaN cladding layer 5 is 0.3 μm, p The -GaN contact layer 6 is grown by 0.5 μm, and then the SiO 2 oxide film 7 is grown by 0.5 μm (FIG. 1). The SiO 2 oxide film 7 is left with a width of 130 μm centering on the portion to be the blue LED portion, and the remaining SiO 2 oxide film 7 is etched and removed with HF (FIG. 2). Next, dry etching is performed up to the n-GaN substrate 1. At this time, the portion where the SiO 2 oxide film 7 remains is not etched (FIG. 3).

続けて紫外LEDの成長を行う。n型のGaN基板1上に、バッファ層2を0.5μm、n-InAlGaNクラッド層8を1μm、InGaN TQW活性層9を全厚さで40nm、p-InAlGaNクラッド層10を0.3μm、p-GaNコンタクト層6を0.5μm成長し、次いでSiO2酸化膜7を0.5μm成長させる(図4)。SiO2酸化膜7を紫外LED部分となる部分を中心とした130μmの幅だけ残し、かつ紫外LEDと青色LED間の隙間間隔が100μmとなるようにマスクを形成し、エッチングしてHFで取り除く(図5)。そして,n-GaN基板2までドライエッチングを行う。このときSiO2酸化膜7が残っている部分はエッチングされない(図6)。
この後、いったん各LED素子上にあるSiO2酸化膜7を取り除いた後、再びSiO2酸化膜7を成長する(図7)。各レーザ素子上にあるSiO2酸化膜7のみをエッチングして取り除き(図8)、その後Ni/Au2層の金属電極11をニッケル0.1μm、金1μmの順で真空蒸着する。SiO2酸化膜7を取り除けば、各レーザ素子上のNi/Au2層の金属電極11は残る(図9)。n型のGaN基板2のLED素子を形成してあるのとは逆側を研磨して全体の厚さが100μmになるようにし、Au-Ge-Ni合金の金属電極12を1μmの厚さ真空蒸着する(図10)。Au-Ge-Ni3層の金属電極12側をCu(放熱体)13にボンディングし、Cu(放熱体)13にカソードの銅線を取り付け、各LED素子のNi/Au2層の金属電極11上にアノードの銅線を取り付ける(図11)。
Continue to grow ultraviolet LEDs. On n-type GaN substrate 1, buffer layer 2 is 0.5 μm, n-InAlGaN cladding layer 8 is 1 μm, InGaN TQW active layer 9 is 40 nm in total thickness, p-InAlGaN cladding layer 10 is 0.3 μm, p-GaN The contact layer 6 is grown by 0.5 μm, and then the SiO 2 oxide film 7 is grown by 0.5 μm (FIG. 4). A mask is formed so that the SiO 2 oxide film 7 is left with a width of 130 μm centering on the portion to be the ultraviolet LED portion, and the gap distance between the ultraviolet LED and the blue LED is 100 μm, etched and removed by HF ( Figure 5). Then, dry etching is performed up to the n-GaN substrate 2. At this time, the portion where the SiO 2 oxide film 7 remains is not etched (FIG. 6).
Thereafter, once the SiO 2 oxide film 7 on each LED element is removed, the SiO 2 oxide film 7 is grown again (FIG. 7). Only the SiO 2 oxide film 7 on each laser element is removed by etching (FIG. 8), and then the Ni / Au 2 layer metal electrode 11 is vacuum deposited in the order of nickel 0.1 μm and gold 1 μm. If the SiO 2 oxide film 7 is removed, the metal electrode 11 of the Ni / Au 2 layer on each laser element remains (FIG. 9). The opposite side of the LED element of the n-type GaN substrate 2 is polished to a total thickness of 100 μm, and the Au—Ge—Ni alloy metal electrode 12 is vacuumed to a thickness of 1 μm. Evaporate (Figure 10). The metal electrode 12 side of the Au-Ge-Ni 3 layer is bonded to Cu (heat sink) 13, a copper wire of the cathode is attached to Cu (heat sink) 13, and the Ni / Au 2 layer metal electrode 11 of each LED element is attached. Install the anode copper wire (Figure 11).

その後、上記のようにして形成した青色LEDと紫外LEDそれぞれの発光波長に励起される蛍光体(青色LEDに対して(Y,Gd)3(Al,Ga)5O12:Ce3+(黄色)、紫外LEDに対してLa2O2S:Eu3+(赤色)、ZnS:Cu,Al(Au)(緑色)、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu2+(青色))を混合したもの14を塗布することで本発明に係る半導体多波長発光装置が完成する(図12)。なお、蛍光体をLED素子上に塗布する際には、各々の素子の発光ピーク波長に対応する少なくとも赤色・緑色・青色蛍光体3種のコーティングを各々の素子上に別々に行うことで、白色光の効率及び演色性はさらに改善される。 After that, the phosphors excited by the emission wavelengths of the blue LED and ultraviolet LED formed as described above ((Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ (yellow ), UV LED with La 2 O 2 S: Eu 3+ (red), ZnS: Cu, Al (Au) (green), (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : The semiconductor multiwavelength light emitting device according to the present invention is completed by applying a mixture 14 of Eu 2+ (blue)) (FIG. 12). In addition, when applying the phosphor on the LED element, the coating of at least three types of red, green, and blue phosphors corresponding to the emission peak wavelength of each element is separately performed on each element, thereby producing a white color. Light efficiency and color rendering are further improved.

発明の実施例の青色LEDの成長(1)Growth of blue LED of embodiment of invention (1) 発明の実施例の青色LEDの成長(2)Growth of blue LED of embodiment of invention (2) 発明の実施例の青色LEDの成長(3)Growth of blue LED of embodiment of invention (3) 発明の実施例の紫外LEDの成長(1)Growth of ultraviolet LED of the embodiment of the invention (1) 発明の実施例の紫外LEDの成長(2)Growth of ultraviolet LED of the embodiment of the invention (2) 発明の実施例の紫外LEDの成長(3)Growth of ultraviolet LED of the embodiment of the invention (3) 発明の実施例のアノード電極層の形成(1)Formation of anode electrode layer of embodiment of invention (1) 発明の実施例のアノード電極層の形成(2)Formation of anode electrode layer of embodiment of invention (2) 発明の実施例のアノード電極層の形成(3)Formation of anode electrode layer of embodiment of invention (3) 発明の実施例のカソード電極層の形成Formation of cathode electrode layer of embodiment of invention 発明の実施例の銅のボンディングと銅線の取付けExample of Inventive Copper Bonding and Copper Wire Installation 本発明に係る発光装置構造Light emitting device structure according to the present invention

符号の説明Explanation of symbols

1・・・GaN基板
2・・・GaNバッファ層
3・・・n-InAlGaNクラッド層
4・・・InGaN TQW活性層
5・・・p-InAlGaNクラッド層
6・・・p-GaNコンタクト層
7・・・SiO2酸化膜
8・・・n-InAlGaNクラッド層
9・・・InGaN TQW活性層
10・・・p-InAlGaNクラッド層
11・・・Ni/Au2層の金属電極
12・・・Au-Ge-Ni3層の金属電極
13・・・Cu(放熱体)
14・・・混合蛍光体
DESCRIPTION OF SYMBOLS 1 ... GaN substrate 2 ... GaN buffer layer 3 ... n-InAlGaN clad layer 4 ... InGaN TQW active layer 5 ... p-InAlGaN clad layer 6 ... p-GaN contact layer ..SiO 2 oxide film 8... N-InAlGaN cladding layer 9... InGaN TQW active layer 10... P-InAlGaN cladding layer 11... Ni / Au2 layer metal electrode 12. -Ni 3-layer metal electrode 13 ... Cu (heat sink)
14 ... Mixed phosphor

Claims (4)

1つの基板材料上に少なくとも2種類以上の半導体発光素子を形成し、各々の半導体発光素子上に、それぞれの素子の発光波長に反応する蛍光体を複数種類塗布し、各々の半導体発光素子を同時に発光させることにより、広範囲の発光波長を有する可視光を発光することを特徴とする多波長発光装置。 At least two types of semiconductor light emitting elements are formed on one substrate material, and a plurality of types of phosphors that react to the emission wavelength of each element are coated on each semiconductor light emitting element, and each semiconductor light emitting element is simultaneously applied. A multi-wavelength light emitting device which emits visible light having a wide range of emission wavelengths by emitting light. 上記請求項1において半導体発光素子としてInAlGaN系材料で370±15nmと410±15nmの波長を発光の中心とする2種類のものを用いることを特徴とする多波長発光装置。 2. The multi-wavelength light emitting device according to claim 1, wherein two types of semiconductor light emitting elements having In370 light emission wavelengths of 370 ± 15 nm and 410 ± 15 nm are used. 上記請求項1においてそれぞれの素子に反応する蛍光体は光の三原色である青色,緑色,赤色の3種を少なくとも含んでいることを特徴とする多波長発光装置。 2. The multi-wavelength light emitting device according to claim 1, wherein the phosphors reacting with the respective elements include at least three kinds of light of three primary colors of blue, green and red. 上記請求項1において1つの基板材料上に形成された2種類以上の半導体発光素子がモノリシックに形成されていることを特徴とする多波長発光装置。 2. The multi-wavelength light emitting device according to claim 1, wherein two or more kinds of semiconductor light emitting elements formed on one substrate material are monolithically formed.
JP2006246819A 2006-09-12 2006-09-12 Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors Pending JP2008071805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246819A JP2008071805A (en) 2006-09-12 2006-09-12 Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246819A JP2008071805A (en) 2006-09-12 2006-09-12 Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors

Publications (1)

Publication Number Publication Date
JP2008071805A true JP2008071805A (en) 2008-03-27

Family

ID=39293173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246819A Pending JP2008071805A (en) 2006-09-12 2006-09-12 Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors

Country Status (1)

Country Link
JP (1) JP2008071805A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123801A (en) * 2008-11-20 2010-06-03 Sharp Corp Light emitting device
KR20170084066A (en) 2014-11-07 2017-07-19 스탠리 일렉트릭 컴퍼니, 리미티드 Semiconductor light-emitting element
US10056524B2 (en) 2014-11-07 2018-08-21 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10062805B2 (en) 2014-11-07 2018-08-28 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10186634B2 (en) 2015-03-23 2019-01-22 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10193021B2 (en) 2015-03-23 2019-01-29 Stanley Electric Co., Ltd. Semiconductor light-emitting element, and manufacturing method for same
US10270045B2 (en) 2014-11-07 2019-04-23 Stanley Electric Co., Ltd. Semiconductor light-emitting element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153644A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor display device
JP2004079867A (en) * 2002-08-21 2004-03-11 Shiro Sakai Manufacturing method of gallium nitride base compound semiconductor device, and light emitting device
JP2004080046A (en) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Led lamp and lamp unit
JP2005019874A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Led, led chip, led module, and lighting system
JP2005136006A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Light-emitting device and producing device using it
JP2006073656A (en) * 2004-08-31 2006-03-16 Nichia Chem Ind Ltd Light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153644A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor display device
JP2004080046A (en) * 2000-05-31 2004-03-11 Matsushita Electric Ind Co Ltd Led lamp and lamp unit
JP2004079867A (en) * 2002-08-21 2004-03-11 Shiro Sakai Manufacturing method of gallium nitride base compound semiconductor device, and light emitting device
JP2005019874A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Led, led chip, led module, and lighting system
JP2005136006A (en) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd Light-emitting device and producing device using it
JP2006073656A (en) * 2004-08-31 2006-03-16 Nichia Chem Ind Ltd Light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123801A (en) * 2008-11-20 2010-06-03 Sharp Corp Light emitting device
KR20170084066A (en) 2014-11-07 2017-07-19 스탠리 일렉트릭 컴퍼니, 리미티드 Semiconductor light-emitting element
US10056524B2 (en) 2014-11-07 2018-08-21 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10062805B2 (en) 2014-11-07 2018-08-28 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10186671B2 (en) 2014-11-07 2019-01-22 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10270045B2 (en) 2014-11-07 2019-04-23 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10186634B2 (en) 2015-03-23 2019-01-22 Stanley Electric Co., Ltd. Semiconductor light-emitting element
US10193021B2 (en) 2015-03-23 2019-01-29 Stanley Electric Co., Ltd. Semiconductor light-emitting element, and manufacturing method for same

Similar Documents

Publication Publication Date Title
KR100723233B1 (en) White light emitting device
TWI495145B (en) Led lamp using blue and cyan leds and a phosphor
TW497277B (en) Semiconductor light emitting device and method for manufacturing the same
US6329676B1 (en) Flat panel solid state light source
KR101196579B1 (en) Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
CN102130144B (en) White LED chip and forming method thereof
JP2005197718A (en) Light-emitting device and method for manufacturing the same
WO2009041237A1 (en) Iii nitride semiconductor light emitting element
JP2008071805A (en) Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors
KR100901369B1 (en) White light emitting diode chip and manufacturing method therof
JP3240926B2 (en) Light emitting element
JP2005217386A (en) White light emitting device and its manufacturing method
TWI552392B (en) A light-emitting device
CN100470864C (en) Light emitting device with fluorescent material
JP4975029B2 (en) Red phosphor, method for producing the same, and light emitting device using the same
JP2002198561A (en) Semiconductor light emitting device
KR20080030404A (en) Method of fabricating light emitting diode chip
JP2007324411A (en) Semiconductor light-emitting device and manufacturing method therefor and illumination apparatus using the same
EP3657064B1 (en) Led lighting apparatus having improved color rendering, and led filament
CN102064168B (en) Electroluminescent/photoinduced mixed white LED chip and manufacturing method
CN110875358A (en) White light emitting chip with LED and OLED connected in series and preparation method thereof
KR20200066590A (en) Semiconductor light emitting device
JP2008270669A (en) Light emitting element
JP2008071803A (en) Compound mixed crystal semiconductor light-emitting device
KR20120011198A (en) Light emitting device, light emitting device package and method for fabricating light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323