JP2004079686A - 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ - Google Patents

誘電体セラミックおよびこれを用いた積層セラミックコンデンサ Download PDF

Info

Publication number
JP2004079686A
JP2004079686A JP2002236076A JP2002236076A JP2004079686A JP 2004079686 A JP2004079686 A JP 2004079686A JP 2002236076 A JP2002236076 A JP 2002236076A JP 2002236076 A JP2002236076 A JP 2002236076A JP 2004079686 A JP2004079686 A JP 2004079686A
Authority
JP
Japan
Prior art keywords
ceramic
dielectric
ceramic capacitor
dielectric ceramic
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002236076A
Other languages
English (en)
Other versions
JP4114434B2 (ja
Inventor
Takashi Hiramatsu
平松 隆
Jun Ikeda
池田 潤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002236076A priority Critical patent/JP4114434B2/ja
Publication of JP2004079686A publication Critical patent/JP2004079686A/ja
Application granted granted Critical
Publication of JP4114434B2 publication Critical patent/JP4114434B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

【課題】誘電率の温度特性が良く、特性のバラツキが小さく、信頼性の高い誘電体セラミックおよび積層セラミックコンデンサを得ることを課題とする。
【解決手段】一般式(Ba1−xCaTiO+αBaO+αCaO+βMnO+γMgO+δSiO+εBで表わされ、x、m、α、α、β、γ、δ、εが、モル比で、0.04≦x≦0.2、1.035<α+α+m≦1.07、0.99≦m、0.0001≦β≦0.05、0.0001≦γ≦0.025、0.002≦δ≦0.08、0.001≦ε≦0.05の範囲内である。
【選択図】    図1

Description

【発明の属する技術分野】
本発明は、例えばニッケルまたはニッケル合金などの卑金属よりなる内部電極を有する積層セラミックコンデンサに用いられる誘電体セラミックに関する。また、前記誘電体セラミックを用いた積層セラミックコンデンサに関する。
【従来の技術】
積層セラミックコンデンサは、複数の誘電体セラミック層と内部電極層の積層体である。最近では、内部電極のコスト低減のため、高価な貴金属であるAgやPdに代わって、安価な卑金属であるNiなどが用いられることが多い。
Ni等を内部電極に用いる場合には、Ni等が酸化されない還元性雰囲気で焼成する必要がある。しかしながら、還元性雰囲気下での焼成では、チタン酸バリウムからなるセラミックは、通常、還元されて半導体化するので好ましくない。
この問題を解決するため、たとえば、特公昭57−42588号公報に示されるように、チタン酸バリウム固溶体における、バリウムサイト/チタンサイトの比を化学量論比より過剰にした誘電体材料の非還元化技術が開発されている。これ以来、Ni等を内部電極とした積層セラミックコンデンサの実用化が可能となり、その生産量も拡大している。
近年のエレクトロニクスの発展に伴い、電子部品の小型化が急速に進行し、積層セラミックコンデンサにおいても、小型化、大容量化の傾向が顕著である。また、このような積層セラミックコンデンサに対しては、上述の静電容量の増大ばかりでなく、静電容量の温度安定性も求められており、温度特性の良い高誘電率材料として多くの材料が提案され、実用化されている。
これらの材料は、いずれもBaTiOを主成分とするもので、これに希土類元素を添加し、焼結する過程で添加成分をBaTiO粒子に拡散させている。得られた焼結体の個々の粒子は、添加成分が拡散していないコア部と添加成分が拡散したシェル部とからなるコアシェル構造をとることが知られており、平坦な誘電率温度特性は、誘電率の温度特性の異なるコア部とシェル部との重ね合わせによって与えられる。
このような材料が提供されたことによって、静電容量の温度変化の少ない、また高容量の積層セラミックコンデンサが実現し、市場拡大に貢献している。
【発明が解決しようとする課題】
上述のコアシェル構造は、セラミックの焼結過程において添加成分の拡散を制御することにより達成される。しかしながら、添加成分が過剰の場合、平坦な温度特性が得られない。他方、添加成分の拡散が不十分であれば、信頼性が劣化する。すなわち、上述した材料では、焼結に伴う添加成分の拡散を工業的かつ安定的に制御することは比較的難しく、得られる誘電率の温度特性も不安定である。
また、前述のように積層セラミックコンデンサの小型大容量化の要求を満たすため、積層体に備える誘電体セラミック層をより薄層化、かつ多層化する必要が生じてきている。しかし、誘電体セラミック層の薄層化においては、厚み方向のセラミック粒子の個数が減少し、信頼性の低下が著しい。そこで、セラミックの粒径が小さく、信頼性の高い、特に誘電率の電界強度安定性に優れた材料の開発が望まれている。
ところが、従来のコアシェル構造を持った材料では、セラミック粒子の粒径を小さくすると、添加成分の拡散が増大し、平坦な温度特性の確保が比較的困難になる。このため、コアシェル構造を持った材料を用いて、積層セラミックコンデンサの充分な薄層化や高い温度までの誘電率の充分な安定化を図ることは、実質的に困難であるのが現状である。
本発明の目的は、上述の問題を解決し得る、誘電体セラミックおよび積層セラミックコンデンサを提供することである。
【課題を解決するための手段】
上述の問題を解決するため、本発明の誘電体セラミックは、一般式(Ba1−xCaTiO+αBaO+αCaO+βMnO+γMgO+δSiO+εBで表わされ、x、m、α、α、β、γ、δ、εが、モル比で、0.04≦x≦0.2、1.035<α+α+m≦1.07、0.99≦m、0.0001≦β≦0.05、0.0001≦γ≦0.025、0.002≦δ≦0.08、0.001≦ε≦0.05の範囲内にあることを特徴とする。
また、本発明の積層セラミックコンデンサは、前記の誘電体セラミックからなる複数の誘電体セラミック層を有する積層体と、該積層体の端面上の互いに異なる位置に設けられた複数の外部電極を備え、前記積層体の内部には、複数の内部電極が前記外部電極のいずれかに電気的に接続されるように前記誘電体セラミック層間の界面に沿ってそれぞれ形成されているものである。
また、前記内部電極は、ニッケルまたはニッケル合金を含むことを特徴とする。
また、前記外部電極は、導電性金属粉末、またはガラスフリットを添加した導電性金属粉末の焼結層からなることを特徴とする。
また、前記外部電極は、導電性金属粉末、またはガラスフリットを添加した導電性金属粉末の焼結層からなる層と、該層上に形成された少なくとも1層以上のめっき層からなることを特徴とする。
本発明の積層セラミックコンデンサの製造は、概ね次のように行われる。すなわち、出発原料として、(Ba1−xCaTiOで表わされる化合物と、Ba化合物、Ca化合物、Mn化合物、Mg化合物、Si化合物、およびB化合物とを含む混合物を調製する工程と、この混合物を含む複数のセラミックグリーンシート、およびセラミックグリーンシート間の特定の界面に沿ってそれぞれ形成された複数の内部電極を積層したものであって、各内部電極の端縁を端面に露出させている、積層体を作製する工程と、この積層体を焼成する工程と、各内部電極の露出した端縁にそれぞれ電気的に接続されるように積層体の端面上に複数の外部電極を形成する工程からなる。
【発明の実施の形態】
本発明の誘電体セラミックは、前述したように、一般式(Ba1−xCaTiO+αBaO+αCaO+βMnO+γMgO+δSiO+εBで表わされ、x、m、α、α、β、γ、δ、εが、モル比で、0.04≦x≦0.2、1.035<α+α+m≦1.07、0.99≦m、0.0001≦β≦0.05、0.0001≦γ≦0.025、0.002≦δ≦0.08、0.001≦ε≦0.05の範囲内にあることを特徴とする。
この誘電体セラミックは、従来のような添加成分の拡散によるコアシェル構造を持たず、均一な構造であるため、誘電率の温度特性や信頼性が、焼成条件の影響を受けにくい材料である。また、還元性雰囲気中で焼成しても半導体化することなく焼結することができる。また、この誘電体セラミックを用いることにより、静電容量の温度特性がEIA規格で規定するX7R特性を満足し、直流電圧に対する静電容量の変化率が小さく、絶縁抵抗が高く、信頼性の高い積層セラミックコンデンサを得ることができる。
このような誘電体セラミックの原料粉末の製造方法としては、上述したような(Ba1−xCaTiOで表わされる化合物を実現するものであれば、どのような製造方法であっても良い。
例えば、BaCOとTiOとCaCOとを混合する工程と、この混合物を熱処理することによりBaCOとTiOとCaCOとを反応させる工程によって、(Ba1−xCaTiOで表わされる化合物を製造することができる。
また、(Ba1−xCaTiOで表わされる化合物と、添加成分であるBa、Ca、Mg、Mn、Si、Bの各酸化物とを混合する工程により、誘電体セラミックの原料粉末を製造することができる。
また、(Ba1−xCaTiOで表わされる化合物の製造は、水熱合成法、加水分解法、あるいはゾルゲル法などの湿式合成を用いてもよい。
また、添加成分であるBa、Ca、Mg、Mn、Si、Bの各酸化物は、本発明に係わる誘電体セラミックを構成できるものであれば、酸化物粉末に限らず、アルコキシドや有機金属などの溶液や、炭酸化物を用いてもよい。
本発明の誘電体セラミックを用いた積層セラミックコンデンサの一例の断面図を図1に示す。積層セラミックコンデンサ1は、複数の積層された誘電体セラミック層2を有する積層体3と、この積層体3の第一および第二の端面4および5上にそれぞれ設けられる第1および第2の外部電極6および7とを備える。積層セラミックコンデンサ1は、全体として直方体形状のチップタイプの電子部品を構成する。
積層体3の内部には、第1の内部電極8と第2の内部電極9とが交互に配置される。第1の内部電極8は、第1の外部電極6に電気的に接続されるように、各端縁を第1の端面4に露出させた状態で誘電体セラミック層2間の特定の複数の界面に沿ってそれぞれ形成され、第2の内部電極9は、第2の外部電極7に電気的に接続されるように、各端縁を第2の端面5に露出させた状態で誘電体セラミック層2間の特定の複数の界面に沿ってそれぞれ形成される。
外部電極6および7の各上には、例えばニッケル、銅などからなる第1のめっき層10および11が形成されてもよい。さらにその上に、例えば半田、錫などからなる第2のめっき層12および13が形成されてもよい。
このような積層セラミックコンデンサ1において、誘電体セラミック層2が、本発明の誘電体セラミックより構成される。
次に、このような積層セラミックコンデンサ1の製造方法について製造工程順に説明する。
まず、前述したような誘電体セラミック原料粉末をスラリー化し、このスラリーをシート状に成形して、誘電体セラミック層2のためのセラミックグリーンシートを得る。
次いで、誘電体セラミック層2となるセラミックグリーンシートの各一方主面上に、ニッケル、ニッケル合金、銅、銅合金等の卑金属、および銀、パラジウム、銀パラジウム合金を導電性成分として含む内部電極8および9を形成する。これら内部電極8および9は、スクリーン印刷法などの印刷法や、転写法等により、内部電極が形成できれば、どのような製造方法によって形成されてもよい。
次いで、上述のように内部電極8および9を形成したセラミックグリーンシートを含む複数のセラミックグリーンシートを積層して、生の積層体3が作製される。この積層体3において、内部電極8および9の各端縁は端面4または5に露出している。
上記生積層体を、所定の還元性雰囲気中で所定の温度にて焼成し積層体3を得る。
次に、積層体3の両端面上に、内部電極8および9の特定のものと電気的に接続されるように、外部電極6および7を形成する。この外部電極6および7の材料としては、内部電極8および9と同じ材料、たとえば、ニッケル、ニッケル合金、銅、銅合金を使用することができるが、それら以外に、銀、パラジウム、銀―パラジウム合金なども使用可能である。またこれらの金属粉末に、B−SiO−BaO系ガラス、LiO―SiO−BaO系ガラスなどのガラスフリットを添加したものも使用されるが、積層セラミックコンデンサ1の用途を考慮に入れて適当な材料が選択される。
また、外部電極6および7は、典型的には、材料となる金属粉末ペーストを、焼成により得た積層体3に塗布して、焼き付けることによって形成されるが、焼成前に塗布して、積層体3を得るための焼成と同時に焼き付けることによって形成されてもよい。
その後、外部電極8および9の各々上に、ニッケル、銅などのめっきを施し、第1のめっき層10および11を形成する。最後に、この第1のめっき層10および11の上に、半田、錫などの第2のめっき層12および13を形成し、積層セラミックコンデンサ1を完成させる。
なお、積層コンデンサの内部電極に含まれるニッケル、ニッケル合金、銅、銅合金等の卑金属、および銀、パラジウム、銀パラジウム合金は、焼成工程において積層体を構成する誘電体セラミック中に拡散することがある。しかし、本発明の誘電体セラミックを用いた積層セラミックコンデンサは、前記の導電性成分が拡散しても、電気的特性に影響がない。
【実施例】
出発原料として、高純度のTiO、BaCO、およびCaCOを準備して、以下の表1に示す組成となるように秤量した後、混合粉砕した。乾燥後、粉末を1000℃以上の温度で加熱し、表1に示す平均粒径0.2μmの(Ba,Ca)TiO粉末を合成した。
また、BaCO粉末、CaCO粉末、MnCO粉末、MgCO粉末、SiO粉末、およびB粉末を準備した。
次に、これらの原料粉末を以下の表2に示す組成になるように配合し、配合物を得た。さらに、前記配合物を、1000〜1050℃で2時間熱処理を行い、仮焼物を得た。この仮焼物にポリビニルブチラール系バインダおよびエタノール等の有機溶剤を加えて、ボールミルにより湿式混合し、セラミックスラリーを調製した。このセラミックススラリーをドクターブレード法によりシート成形し、厚み2.8μmの短形のグリーンシートを得た。次に、このセラミックグリーンシート上に、Niを主体とする導電性ペーストを印刷し、内部電極を構成するための導電性ペースト膜を形成した。
次いで、セラミックグリーンシートを、上述の導電性ペースト膜の引き出されている側が互い違いとなるように複数枚積層し、積層体を得た。この積層体を、N雰囲気にて350℃の温度に加熱し、バインダを燃焼させた後、酸素分圧10−9〜10−12MPaのH−N―HOガスからなる還元雰囲気中において表3に示す温度で2時間焼成した。
焼成後の積層体の両端面にB−SiO―BaO系のガラスフリットを含有する銀ペーストを塗布し、N2雰囲気中において600℃の温度で焼き付け、内部電極と電気的に接続された外部電極を形成した。
以上の工程により、図1に示すような積層セラミックコンデンサを得た。その外形寸法は、幅が5.0mm、長さが5.7mm、厚さが2.4mmであり、内部電極間に介在する誘電体セラミック層の厚みが2.0μmであった。また、有効誘電体セラミック層の層数は5であり、1層あたりの対抗電極の面積は16.3×10−6であった。
このようにして得れらた試料について、自動ブリッジ式測定器を用い、JIS規格5102に従って静電容量(C)および誘電損失(tanδ)を測定した。得られた静電容量から誘電率(ε)を算出した。
また、絶縁抵抗(R)を測定するために、絶縁抵抗計を用い、10Vの直流電圧を2分間印可して25℃で絶縁抵抗(R)を求め、比抵抗を算出した。
温度変化に対する静電容量の変化率については、25℃での静電容量を基準とした−55℃〜+125℃の範囲での変化率(ΔC/C25℃)を求めた。
直流電圧に対する静電容量の変化率については、直流電圧を印加しない場合の25℃での静電容量を基準とし、直流電圧を4V印加したときの静電容量の基準に対する変化率(ΔCDC4V/CDC0V)を求めた。
また、高温負荷試験として、温度150℃にて直流電圧を20V印可して、その絶縁抵抗の経時変化を測定した。なお高温負荷試験は、各試料の絶縁抵抗値(R)が105Ω以下になったときを故障とし、平均故障時間を評価した。
また、セラミック粒子の構造について、焼成後の誘電体セラミック部を、Arイオンミリングを施して薄片化した後、高分解能電子顕微鏡を用い、倍率40万倍にて、観察した。
上記の特性項目の評価結果を表3に示す。なお、表1、表2、表3において試料番号に*を付したものは、本発明の請求の範囲外であることを示す。
各特性の好ましい範囲は、誘電率については、1500以上であり、誘電損失については、3.0%以下であり、容量温度変化率における25℃での静電容量を基準とした−55℃〜+125℃の範囲での変化率については、±15%以内である。直流電圧に対する静電容量の変化率については、変化率の絶対値が10%以内である。比抵抗については、13.0Ωcm以上であり、高温負荷での故障に至るまでの時間は、100時間以上である。
以下、本発明の組成範囲を限定した理由を説明する。
試料1のように、Caの添加量xが0.04未満の場合には、高温負荷での故障に至るまでの時間が短くなることがある。一方、試料2のようにCaの添加量xが0.2を超える場合には、比誘電率が小さく、誘電率の温度変化が大きくなることがある。
また、試料3のように(Ba+Ca)/Ti比mが、0.99未満の場合には、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。
また、試料4〜6のように、(Ba+Ca)/Ti比mとBaO含有量αとCaO含有量αとの和、すなわち、m+α+αが1.07を超える場合には、焼結が不十分であり、誘電率が低く、tanδが大きく、誘電率の温度変化が大きく、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。また、試料7〜8のように、(Ba+Ca)/Ti比mとBaO含有量αとCaO含有量αとの和、すなわち、m+α+αが1.035以下の場合には、tanδが大きく、直流電圧に対する誘電率の変化率が大きかった。
また、試料9のように、MnOの添加量βが0.0001未満の場合、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。また、試料10のように、MnOの添加量βが0.05を超える場合、誘電率の温度変化が大きく、比抵抗が低かった。
また、試料11のように、MgOの添加量γが0.0001未満の場合、tanδが大きく、直流電圧に対する誘電率の変化率が大きく、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。また、試料12のように、MgOの添加量γが0.025を超える場合、焼結が不十分であり、誘電率が低く、tanδが大きく、誘電率の温度変化が大きく、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。
また、試料13のように、SiOの添加量δが0.002未満の場合、焼結が不十分であり、誘電率が低く、tanδが大きく、誘電率の温度変化が大きく、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。また、試料14のように、SiOの添加量δが0.08を超える場合、誘電率の温度変化が大きく、高温負荷での故障に至るまでの時間が短かかった。
また、試料15のように、Bの添加量εが0.001未満の場合、焼結が不十分であり、誘電率が低く、tanδが大きく、誘電率の温度変化が大きく、比抵抗が低く、高温負荷での故障に至るまでの時間が著しく短くなることがあり、高温で電圧を印可した瞬間に故障するものがあった。また、試料16のように、Bの添加量εが0.05を超える場合、誘電率の温度変化が大きく、高温負荷での故障に至るまでの時間が短かかった。
一方、試料17〜35のように、本発明の組成範囲内にあれば、誘電率は1500以上であり、誘電損失は3.0%以下であり、温度に対する静電容量の変化率がEIA規格に規定するX7R特性を満足し、比抵抗は13.0Ωcm以上であり、直流電圧に対する静電容量の変化率の絶対値が10%以下であり、高温負荷試験での平均寿命時間は100時間を超え、信頼性に優れ、焼成温度も1200℃以下の温度で焼成可能である。
また、試料17〜35のように、本発明の組成範囲内にあれば、焼成後の誘電体セラミック部を、高分解能電子顕微鏡で観察したところ、コアシェル構造を有する粒子はなく、ドメイン構造が端まで形成されていた。
【表1】
Figure 2004079686
【表2】
Figure 2004079686
【表3】
Figure 2004079686
【発明の効果】
本発明の誘電体セラミックを用いることで、誘電率の温度特性が良く、信頼性の高い積層セラミックコンデンサを得ることができる。
また、この誘電体セラミックは、還元性雰囲気で焼成しても半導体化せず高い比抵抗が得られるので、これと共焼成する内部電極として卑金属であるニッケルおよびニッケル合金を用いることができ、積層セラミックコンデンサのコストダウンを図ることができる。
本発明の誘電体セラミックは、従来のコアシェル構造によって誘電率の温度特性を平坦化したものと異なり、均一構造でありながら誘電率の温度特性を平坦化しているので、焼成温度による誘電率の温度特性の変動が小さい。そのため、この誘電体セラミックを用いた、本発明の積層セラミックコンデンサは、特性のバラツキが小さく、誘電率の温度特性が安定かつ良好である。
【図面の簡単な説明】
【図1】本発明の一実施形態による積層セラミックコンデンサの断面図である。
【符号の説明】
1  積層セラミックコンデンサ
2  誘電体セラミック層
3  積層体
4  第一の端面
5  第二の端面
6  第一の外部電極
7  第二の外部電極
8  第一の内部電極
9  第二の内部電極
10、11 第一のメッキ層
12、13 第二のメッキ層

Claims (5)

  1. 一般式(Ba1−xCaTiO+αBaO+αCaO+βMnO+γMgO+δSiO+εBで表わされ、x、m、α、α、β、γ、δ、εが、モル比で、
    0.04≦x≦0.2
    1.035<α+α+m≦1.07
    0.99≦m
    0.0001≦β≦0.05
    0.0001≦γ≦0.025
    0.002≦δ≦0.08
    0.001≦ε≦0.05
    の範囲内にあることを特徴とする誘電体セラミック。
  2. 請求項1に記載の誘電体セラミックからなる複数の誘電体セラミック層を有する積層体と、該積層体の端面上の互いに異なる位置に設けられた複数の外部電極を備え、前記積層体の内部には、複数の内部電極が前記外部電極のいずれかに電気的に接続されるように前記誘電体セラミック層間の界面に沿ってそれぞれ形成されている、積層セラミックコンデンサ。
  3. 前記内部電極は、ニッケルまたはニッケル合金を含むことを特徴とする、請求項2に記載の積層セラミックコンデンサ。
  4. 前記外部電極は、導電性金属粉末、またはガラスフリットを添加した導電性金属粉末の焼結層からなることを特徴とする、請求項2または3に記載の積層セラミックコンデンサ。
  5. 前記外部電極は、導電性金属粉末、またはガラスフリットを添加した導電性金属粉末の焼結層からなる層と、該層上に形成された少なくとも1層以上のめっき層からなることを特徴とする、請求項2〜4のうちのいずれかに記載の積層セラミックコンデンサ。
JP2002236076A 2002-08-13 2002-08-13 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ Expired - Lifetime JP4114434B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236076A JP4114434B2 (ja) 2002-08-13 2002-08-13 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236076A JP4114434B2 (ja) 2002-08-13 2002-08-13 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ

Publications (2)

Publication Number Publication Date
JP2004079686A true JP2004079686A (ja) 2004-03-11
JP4114434B2 JP4114434B2 (ja) 2008-07-09

Family

ID=32020377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236076A Expired - Lifetime JP4114434B2 (ja) 2002-08-13 2002-08-13 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ

Country Status (1)

Country Link
JP (1) JP4114434B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075751A1 (ja) * 2005-01-17 2006-07-20 Mitsui Mining & Smelting Co., Ltd. キャパシタ層形成材及びそのキャパシタ層形成材の製造方法並びにそのキャパシタ層形成材を用いて得られる内蔵キャパシタ層を備えたプリント配線板
JP2007063039A (ja) * 2005-08-29 2007-03-15 Tdk Corp 誘電体磁器組成物の製造方法、および電子部品
JP2008254936A (ja) * 2007-03-30 2008-10-23 Tdk Corp 誘電体磁器組成物、複合電子部品および積層セラミックコンデンサ
WO2010095860A2 (ko) 2009-02-18 2010-08-26 서울대학교 산학협력단 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
EP2266933A1 (en) 2009-06-12 2010-12-29 SNU R&DB Foundation Sintered material for dielectric substance and process for preparing the same
JP2015051913A (ja) * 2013-08-05 2015-03-19 国立大学法人北見工業大学 ペロブスカイト型複合酸化物からなる膜を形成する方法、ペロブスカイト型複合酸化物被覆粒子、触媒、電極及び誘電体材料

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075751A1 (ja) * 2005-01-17 2006-07-20 Mitsui Mining & Smelting Co., Ltd. キャパシタ層形成材及びそのキャパシタ層形成材の製造方法並びにそのキャパシタ層形成材を用いて得られる内蔵キャパシタ層を備えたプリント配線板
JP2007063039A (ja) * 2005-08-29 2007-03-15 Tdk Corp 誘電体磁器組成物の製造方法、および電子部品
JP2008254936A (ja) * 2007-03-30 2008-10-23 Tdk Corp 誘電体磁器組成物、複合電子部品および積層セラミックコンデンサ
WO2010095860A2 (ko) 2009-02-18 2010-08-26 서울대학교 산학협력단 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
EP2266933A1 (en) 2009-06-12 2010-12-29 SNU R&DB Foundation Sintered material for dielectric substance and process for preparing the same
JP2015051913A (ja) * 2013-08-05 2015-03-19 国立大学法人北見工業大学 ペロブスカイト型複合酸化物からなる膜を形成する方法、ペロブスカイト型複合酸化物被覆粒子、触媒、電極及び誘電体材料

Also Published As

Publication number Publication date
JP4114434B2 (ja) 2008-07-09

Similar Documents

Publication Publication Date Title
JP3039397B2 (ja) 誘電体磁器組成物とそれを用いた積層セラミックコンデンサ
JP3567759B2 (ja) 誘電体セラミック組成物および積層セラミックコンデンサ
JP2998639B2 (ja) 積層セラミックコンデンサ
JP3282520B2 (ja) 積層セラミックコンデンサ
JP3024537B2 (ja) 積層セラミックコンデンサ
JP2004262717A (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP5077362B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
JP2004224653A (ja) 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ
JP2007331956A (ja) 電子部品、誘電体磁器組成物およびその製造方法
JP2001143955A (ja) 誘電体セラミック組成物、および積層セラミックコンデンサ
JPH09232180A (ja) 積層セラミックコンデンサ
JP4457630B2 (ja) 誘電体セラミックおよび積層セラミックコンデンサ
JP3882054B2 (ja) 積層セラミックコンデンサ
JP3603607B2 (ja) 誘電体セラミック、積層セラミックコンデンサおよび積層セラミックコンデンサの製造方法
JP4997685B2 (ja) 誘電体セラミック組成物、及び積層セラミックコンデンサ
JP2008201616A (ja) 誘電体セラミックス及び積層セラミックコンデンサ
JP4029204B2 (ja) 誘電体セラミック組成物および積層セラミック電子部品
JP5229685B2 (ja) 誘電体セラミック、及び積層セラミックコンデンサ
JP4048808B2 (ja) 誘電体セラミック組成物および積層セラミック電子部品
JP3945033B2 (ja) 積層セラミックコンデンサの製造方法
JP4114434B2 (ja) 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ
JP3994719B2 (ja) 積層セラミック電子部品
JP2005187296A (ja) 誘電体セラミック組成物及び積層セラミックコンデンサ
JP4496639B2 (ja) 電子部品およびその製造方法
JP4506090B2 (ja) 誘電体セラミックおよび積層セラミックコンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

EXPY Cancellation because of completion of term