JP2004064005A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2004064005A
JP2004064005A JP2002223571A JP2002223571A JP2004064005A JP 2004064005 A JP2004064005 A JP 2004064005A JP 2002223571 A JP2002223571 A JP 2002223571A JP 2002223571 A JP2002223571 A JP 2002223571A JP 2004064005 A JP2004064005 A JP 2004064005A
Authority
JP
Japan
Prior art keywords
region
film
metal film
semiconductor
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223571A
Other languages
English (en)
Inventor
Tsuyoshi Oki
大木 強師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002223571A priority Critical patent/JP2004064005A/ja
Publication of JP2004064005A publication Critical patent/JP2004064005A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】高周波特性の改善を図り、ゲート電極の電気抵抗の低減、信頼性を可能にした半導体装置の製造方法を提供する。
【解決手段】半導体基体22に第1半導体領域23を形成する工程と、半導体領域23上に第1の絶縁膜24及び第2の絶縁膜を順次形成する工程と、第1及び第2の絶縁膜の一部を選択的に除去して第1半導体領域23が臨む開口を形成する工程と、開口を通して第1半導体領域23にゲート領域となる第2半導体領域26を形成する工程と、第2半導体領域26に接続する第1金属膜27を、開口内及び第2の絶縁膜上にわたって形成する工程と、開口内以外の第1金属膜27を選択的に除去する工程と、第1金属膜27に接続して一部が第2の絶縁膜上に延長する第2金属膜28を形成し、第1及び第2金属27、28からなるゲート電極29を形成する工程と、第2の絶縁膜を除去する工程とを有する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法、例えば高周波集積回路の製造に適した製造方法に関する。
【0002】
【従来の技術】
図10は、従来の接合型電界効果トランジスタを示す。この接合型電界効果トランジスタ1は、半導体基体2にチャネル領域3C、ソース領域3S及びドレイン領域3Dとなる第1導電型の半導体領域3を形成し、この第1導電型半導体領域3に絶縁膜4の開口5を通して第2導電型不純物を導入して第2導電型のゲート領域6を形成し、このゲート領域6に接続し一部絶縁膜4上に延長するゲート電極7を形成して構成される。
【0003】
図12〜図13は、上記接合型電界効果トランジスタ1の製造方法を示す。
先ず、図12Aに示すように、半導体基体2の一面上にチャネル領域、ソース領域及びドレイン領域となる第1導電型、例えばn型の半導体領域3を形成する。次に、図12Bに示すように、半導体領域3上に絶縁膜4、例えばシリコン窒化(Si3 4 )膜を形成する。
【0004】
次に、図12Cに示すように、リソグラフィ技術を用いて絶縁膜4上にゲート領域に対応する部分に開口11Aを有する第1レジスト膜11を形成した後、この第1レジスト膜11をマスクとして異方性エッチング法、例えばドライエッチング法により絶縁膜4を選択的にエッチング除去し半導体領域3が臨む開口4Aを形成する。次に、図12Dに示すように、第1レジスト膜11を除去し、絶縁膜4の開口4Aを通じて第2導電型、例えばp型の不純物を導入し、n型半導体領域3にp型半導体領域、即ちゲート領域6を形成する。p型不純物の導入は、例えば熱拡散法で導入することができる。
【0005】
次に、図13Eに示すように、ゲート電極となる金属膜7Aは開口4A内を含む絶縁膜4上の全面に、例えばスパッタリング法により形成する。次に、図13Fに示すように、金属膜7A上のゲート電極を形成すべき領域に、リソグラフィ技術を用いて第2レジスト膜12を形成し、この第2レジスト膜12をマスクとして金属膜7Aを選択エッチングし、例えばイオンミリング法により金属膜7Aをエッチングし、ゲート電極7を形成する。
【0006】
次に、図13Gに示すように、第2レジスト膜12を除去する。n型半導体領域3のゲート領域6直下にチャネル領域3Cを挟む両側部分がソース領域3S及びドレイン領域3Dとなり、図示せざるも、ソース領域3S及びドレイン領域3Dにソース電極及びドレイン電極を形成する。このようにして、目的の接合型電界効果トランジスタ1を得る。
【0007】
一方、図示せざるも、接合型高電子移動度トランジスタ(JHEMT)におけるゲート部(ゲート電極を含む)も、上述の接合型電界効果トランジスタのゲート部と同様にして作成される。
【0008】
【発明が解決しようとする課題】
ところで、上述した接合型電界効果トランジスタ1、あるいは接合型高電子移動度トランジスタにおいては、図11の拡大図で示すように、絶縁膜4を挟んでゲート電極7の庇部7bとn型半導体領域3との間に寄生容量C1 が形成される。寄生容量C1 が形成されると高周波特性が悪化する。
寄生容量を低減させるために、ゲート電極7の庇部7bを小さくする方法が考えられるが、庇部7bを小さくするとゲート電極7の断面積が減少しゲート電極7の電気抵抗が増加する不都合がある。また、庇部7bを小さくした場合、リソグラフィ工程でのマスク合わせの余裕度(いわゆるマージン)が無くなり、ゲート電極7の作成が難しくなる。
【0009】
また、図10の従来構造では、絶縁膜4の開口段差によりゲート電極7の段切れ、開口内でのボイド(空孔)の発生等による電気抵抗の増加が発生する虞がある。この開口段差の問題を解決するため、絶縁膜4の膜厚を薄くすることが考えられるが、薄くすると寄生容量C1 が大きくなってしまい、高周波特性がさらに悪化してしまう。さらに、ゲート電極7をT字型電極にして寄生容量C1 を小さくし、且つ絶縁膜4の膜厚を薄くすることも可能であるが、この場合、ゲート電極を支えるものがなくゲート電極が倒れる危険性が生じる。
【0010】
本発明は、上述の点に鑑み、高周波特性の改善を図り、ゲート電極の電気抵抗の低減、信頼性を可能にした半導体装置の製造方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明に係る半導体装置の製造方法は、半導体基体に第1半導体領域を形成する工程と、半導体領域上に第1及び第2の絶縁膜を順次形成する工程と、第1及び第2の絶縁膜の一部を選択的に除去して第1半導体領域が臨む開口を形成する工程と、開口を通して第1半導体領域にゲート領域となる第2半導体領域を形成する工程と、第2半導体領域に接続する第1金属膜を、開口内及び第2の絶縁膜上にわたって形成する工程と、開口内以外の第1金属膜を選択的に除去する工程と、第1金属膜に接続して一部が第2の絶縁膜上に延長する第2金属膜を形成し、第1及び第2金属からなるゲート電極を形成する工程と、第2の絶縁膜を除去する工程とを有する。
【0012】
本発明の半導体装置の製造方法においては、積層した第1及び第2の絶縁膜に第1半導体領域が臨む開口を形成した後に、開口内及び第2の絶縁膜上にわたって第1金属膜を形成し、開口内以外の第1金属膜を除去することにより、第1金属の段差は小さくなる。この第1金属膜上に一部が第2の絶縁膜上に延長するように第2金属膜を形成するので、段差による段切れ、開口内でのボイド(空孔)の発生がなく、ゲート電極としての電気抵抗が低減する。
第2の絶縁膜を除去するので、ゲート電極はT字型電極になり、第1の絶縁膜とゲート電極の庇部間に空間が生じて寄生容量が低減する。第1の絶縁膜は残るので、ゲート電極は第1の絶縁膜に支えられ倒れない。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0014】
図1は、本発明に係る半導体装置を接合型電界効果トランジスタに適用した実施の形態を示す。
本発明実施の形態に係る接合型電界効果トランジスタ21は、半導体基板22の一面上にチャネル領域23C、ソース領域23S及びドレイン領域23Dとなる第1導電型の半導体領域23を形成し、この第1導電型半導体領域23に第1絶縁膜24の開口を通して第2導電型不純物を導入して第2導電型の半導体領域、即ちゲート領域26を形成し、このゲート領域26に接続して第1絶縁膜24の開口内に在る第1金属膜27とこの上の幅広の第2金属膜28とからなるT字型のゲート電極29を形成し、ゲート電極29の庇部29、即ち第2金属膜28と第1絶縁膜24との間に空間30を形成するようにして構成される。
【0015】
図3〜図5は、この接合型電界効果トランジスタ21の製造方法の実施の形態を示す。
先ず、図3Aに示すように、半導体基板22の一面上にチャネル領域、ソース領域及びドレイン領域となる第1導電型、例えばn型の半導体領域23を形成する。次に、図3Bに示すように、第1導電型半導体領域23上に互いにエッチングレートを異にする第1絶縁膜24、例えばシリコン窒化膜(Si3 4 膜)と、第2絶縁膜25、例えばシリコン酸化膜(SiO2 膜)を順次堆積する。
【0016】
次に、図3Cに示すように、リソグラフィ技術を用いて第2絶縁膜25上にゲート領域に対応する部分に開口31Aを有する第1レジスト膜31を形成した後、この第1レジスト膜31をマスクとして異方性エッチング法、例えばドライエッチング法により第1絶縁膜24及び第2絶縁膜25に下地の第1導電型の半導体領域23が臨む開口24A及び25Aを形成する。次に、図3Dに示すように、第1レジスト膜31を除去し、第1及び第2絶縁膜の開口24A及び25Aを通じて第2導電型の例えばp型の半導体領域、すなわちゲート領域26を形成する。p型不純物の導入は、例えば熱拡散法で導入することができる。
【0017】
次に、図4Eに示すように、ゲート電極の一部となる第1金属膜27を開口24A、25A及び第2絶縁膜25上の全面に例えばスパッタリング法にて形成する。このとき、第1金属膜27は開口段差に沿って被着形成される。次に、図4Fに示すように、第1金属膜27上に平坦化膜、例えば第2レジスト膜32を被着形成する。第2レジスト膜32の膜厚d1 は、第1金属膜32の絶縁膜開口に対応する段差を埋めて平坦化するために、現状のレジストの場合、1.2μm以上とするのが好ましい。
【0018】
次に、図4Gに示すように、基板全面(例えばウェーハ全面)をエッチバックし、例えばイオンミリング法でエッチングし、第2絶縁膜25に達する位置まで第2レジスト膜32と共に第1金属膜27を除去する。この際、イオンミリング法でのエッチングは、平坦化膜である第2レジスト膜32と第1金属膜27との選択比がほぼ同等であるため、第2レジスト膜32に到達する時には段差が非常に小さくなる。これにより、第1金属膜27は、第1及び第2の絶縁膜24及び25の開口内にのみ残り、それ以外が除去される。
【0019】
次に、図5Hに示すように、第1金属膜27上の一部に残った第2レジスト膜32を剥離した後、第2絶縁膜24上にリソグラフィ技術にて残存する第1金属膜27を含んでこれより広い範囲に開口33Aを有する第3レジスト膜33を形成する。
【0020】
次に、図5Iに示すように、無電解メッキにより第1金属膜27上より開口33A内にわたってゲート電極の一部になる第2金属膜28を形成する。第1金属膜27及び第2金属膜28によりT字型のゲート電極29が形成される。
【0021】
次に、図5Jに示すように、第3レジスト膜33を剥離除去し、第2絶縁膜25を例えばドライエッチングによりエッチング除去する。これにより、ゲート領域26上にこれに接続してT字型ゲート電極29が形成され、ゲート領域26直下のチャネル領域23Cを挟んでソース領域23S及びドレイン領域23Dを有した目的の接合型電界効果トランジスタ21を得る。なお、図示せざるもソース領域23S及びドレイン領域23Dにはソース電極及びドレイン電極が形成される。
【0022】
この接合型電界効果トランジスタ21においては、例えばGaAs系半導体で形成することができる。この場合、半導体基板22は半絶縁性GaAs基板を用いることができる。GaAs系半導体で形成した場合、ゲート領域26をp型としたときには第1金属膜27を、例えば、下からTi、Pt、Auを積層したTi/Pt/Au膜とし、第2金属膜28を、例えばAu膜とすることができる。ゲート領域26をn型としたときには第1金属膜27を、例えば、下からAuGe、Ni、Auを積層したAuGe/Ni/Au膜とし、第2金属膜28をAu膜とすることができる。
また、この接合型電界効果トランジスタ21においては、例えばSi半導体で形成することができる。この場合、半導体基板22は例えば第2導電型の半導体基板で形成することができる。
【0023】
上述の本実施の形態によれば、図2に示すように、第1絶縁膜24を残し、第2絶縁膜25をエッチング除去することにより、ゲート電極29の第2金属膜による庇部29bと第1絶縁膜24との間に空間30が形成され、ゲート電極29と第1導電型半導体領域23間に生じる寄生容量C2 が低減し、もしくは消滅し、接合型電界効果トランジスタ21の高周波特性が改善される。
【0024】
ゲート領域26上の第1金属膜27に形成される段差は、第1金属膜27が第2絶縁膜25に達するまでエッチバックされることにより小さくなり、第1金属膜27と第2金属膜28の接続が良好に行われ、実質的にゲート電極29の段切れが生ぜず、ゲート電極29の電気抵抗は低下する。第1金属膜27の段差が小さくなるので、第2金属膜28を形成した際に段差の影響を受けず、段差により出来るボイド(空孔)が発生しなくなる。
【0025】
最後に第2絶縁膜25をエッチング除去するので、例えばイオンミリング法にて第1金属膜27をエッチング除去するとき、そのオーバーエッチング量が多く設定でき、製造する際にもプロセスマージンが多く取れ、製造が容易になる。
ゲート電極29の形成の最終段階で、第2絶縁膜25は除去するも第1絶縁膜24は残るので、第1絶縁膜24がT字型ゲート電極29を支えることになり、ゲート電極29が倒れる心配がなく、信頼性の高い接合型電界効果トランジスタ21を製造することができる。
【0026】
図6〜図7は、本発明に係る半導体装置を接合型電界効果トランジスタに適用した他の実施の形態を示す。
先ず、図6Aに示すように、前述の図3Aから図4Gと同じ工程を経て、半導体基板22に第1導電型半導体領域23、第2導電型のゲート領域26を形成し、さらに第1金属膜27を第1及び第2の絶縁膜24及び25の開口24A及び25A内にのみ形成する。
【0027】
次に、図6Bに示すように、第1金属膜27の一部に残存する第2レジスト膜32を剥離除去した後、第1金属に接続するように第2絶縁膜25上を含む全面にゲート電極の一部となる第3金属膜36を例えばスパッタリング法により形成する。
【0028】
次に、図6Cに示すように、第3金属膜36上にリソグラフィ技術にて残存する第1金属膜27より広い範囲に開口33Aを有する第3レジスト膜33を形成する。そして、電解メッキにより第3金属膜36上にゲート電極の一部になる第2金属膜28を形成する。
【0029】
次に、図7Dに示すように、第3レジスト膜33を剥離除去する。次に、例えばイオンミリング第2金属膜28直下以外の不要な第3金属膜36をエッチング除去する。次に、図7Eに示すように、第2絶縁膜25を、例えばドライエッチング法によりエッチング除去し、第1金属膜27、第3金属膜36及び第2金属膜28からなるT字型のゲート電極29を有する目的の接合型電界効果トランジスタ27を得る。なお、図示せざるもソース領域23S及びドレイン領域23Dにはソース電極及びドレイン電極が形成される。
本実施の形態においても、基本的なゲート電極29の構成が前述と同様であるので、前述と同様の効果を奏する。
【0030】
図8は、本発明に係る半導体装置を代表的な接合型高電子移動度トランジスタ(JHEMT)に適用した実施の形態を示す。
本実施の形態に係る接合型高電子移動度トランジスタ41は、半絶縁性GaAs基板42上にノンドープGaAs層43、電子供給層となる第1導電型不純物ドープ、例えばSiドープのn型AlGaAs層44を形成し、n型AlGaAs層44上に絶縁膜45を形成すると共に、絶縁膜45の開口45Aを通して第2導電型不純物、例えばp型不純物を導入してn型AlGaAs層44内にp型半導体領域、即ちゲート領域46を形成し、このゲート領域46に接続したT字型ゲート電極47、ゲート電極47を挟んでn型AlGaAs層4に接続したソース電極48及びドレイン電極49を形成して構成される。ゲート電極47は、絶縁膜45の開口45A内より突出する第1金属膜53と、これより幅広の第2金属膜54とからなるT字型をなし、ゲート電極47の庇部47bと絶縁膜45との間には空間51が形成される。50は2次元電子ガス層を示す。
この接合型高電子移動度トランジスタ41の製造、特にそのp型のゲート領域46及びゲート電極47を含むn型AlGaAs層44より上の部分の製造方法は、前述の図3A〜図5Jの工程、又は図6A〜図7Eの工程と同様の製造工程で形成することができる。
この接合型高電子移動度トランジスタ41では、ゲート電極47に印加する電圧によりゲート領域46の下の2次元電子ガスの濃度が変化し、FET動作する。本実施の形態においても、ゲート電極47の構成が前述と同様であるので、前述と同様の効果を奏する。
【0031】
図9は、本発明の半導体装置をモノリシックマイクロ波集積回路(MMIC)に適用した実施の形態を示す。
本実施の形態に係るモノリシックマイクロ波IC61は、接合型電界効果トランジスタ(JFET)62と抵抗素子63とを備えて成る。即ち、本実施の形態においては、GaAs基板64のJFETを形成すべき所要領域に第1導電型、例えばn型の半導体領域65が形成され、抵抗素子を形成すべき他の所要領域に第1導電型の例えばn型の半導体領域、すなわち抵抗体74が形成される。n型半導体領域65には第2導電型、例えばp型のゲート領域66が形成され、このゲート領域66に接続して絶縁膜80の開口内より上に突出する第1金属膜67と幅広の第2金属膜68からなるT字型のゲート電極69が形成される。第1金属膜67は例えばTi/Pt/Au膜で形成され、第2金属膜68は例えばAu膜で形成される。T字型ゲート電極69の基部は絶縁膜80にて支えられ、ゲートの庇部と絶縁膜80との間には空間81が形成される。
【0032】
n型半導体領域65では、そのゲート領域66の直下がチャネル領域65Cとなり、これを挟んでソース領域65S及びドレイン領域65Dが形成される。基板64内には、ソース領域65S及びドレイン領域65Dに接続する高濃度のn+ 電極取出し領域71及び72が形成される。n+ 電極取出し領域71及び72に夫々接続するように、例えばAuGe/Ni/Au膜による第4金属膜84とTi/Pt/Au膜による第5金属膜85とからなるソース電極86及びドレイン電極87が形成される。
【0033】
一方、抵抗体74の両端に接続する高濃度のn+ 電極取出し領域75及び76が形成される。n+ 電極取出し領域75及び76の夫々接続するように、例えばAuGe/Ni/Au膜による第4金属膜84とTi/Pt/Au膜による第5金属膜85とからなる抵抗素子63の両端電極89及び90が形成される。
JFET62のドレイン電極87と抵抗素子63の一方の電極89とは、例えばTi/Au膜による第6金属膜91により接続される。93及び94は絶縁膜である。
【0034】
本実施の形態のモノリシックマイクロ波IC61、特にそのJFET62は、前述した図3A〜図5Jと同様の工程により作成することができる。
本実施の形態のモノリシックマイクロ波IC61においても、そのJFET41が前述と同様に構成されるので、前述と同様の効果を奏する。
【0035】
なお、図示せざるも本発明の半導体装置及びその製法を接合型高電子移動度トランジスタを含むモノリシックマイクロ波集回路(MMIC)に適用することもできる。この場合も、その接合型高電子移動度トランジスタのゲート部が前述した工程により作成することができ、前述と同様の効果を奏する。
【0036】
【発明の効果】
本発明に係る半導体装置の製造方法によれば、T字型のゲート電極を形成した後、第2の絶縁膜を除去することにより、ゲート電極の庇部と基板間に空間が形成され、寄生容量が減少し、あるいは消滅し、半導体装置の高周波特性を改善することができる。第2の絶縁膜は除去するも、第1の絶縁膜を残しているので、T字型ゲート電極の基部は第1の絶縁膜により支えられ倒れることがない。
【0037】
ゲート領域上の第1金属膜の表面段差が、第1及び第2の絶縁膜の開口内以外の第1金属膜を除去することにより小さくなり、第1金属膜と第2金属膜との段差による接続異常はなくなり、ゲート電極の電気抵抗も低下する。第1金属膜の表面段差を小さくしたので、第2金属膜を形成したときに表面段差の影響を受けず、段差によるボイドの発生がなくなり、電気抵抗の低下、ゲート電極の信頼性の向上が図れる。最後には第2の絶縁膜が除去されるので、第1金属膜の選択除去のときにオーバーエッチング量が多くなるように設定することが可能になり、製造の際のプロセスマージンを多く取ることができ、製造を容易にする。
【0038】
本発明は、モノリシックマイクロ波ICを構成する例えば接合型電界効果トランジスタ、あるいは接合型高電子移動度トランジスタの製造に適用して好適である。
【図面の簡単な説明】
【図1】本発明に係る半導体装置を接合型電界効果トランジスタに適用した実施の形態を示す構成図である。
【図2】本実施の形態に係る接合型電界効果トランジスタの説明に供する拡大図である。
【図3】A〜D 本発明に係る半導体装置の製造方法を接合型電界効果トランジスタに適用した実施の形態を示す製造工程図(その1)である。
【図4】E〜G 本発明に係る半導体装置の製造方法を接合型電界効果トランジスタに適用した実施の形態を示す製造工程図(その2)である。
【図5】H〜J 本発明に係る半導体装置の製造方法を接合型電界効果トランジスタに適用した実施の形態を示す製造工程図(その3)である。
【図6】A〜C 本発明に係る半導体装置の製造方法を接合型電界効果トランジスタに適用した他の実施の形態を示す製造工程図(その1)である。
【図7】D〜E 本発明に係る半導体装置の製造方法を接合型電界効果トランジスタに適用した他の実施の形態を示す製造工程図(その2)である。
【図8】本発明に係る半導体装置を接合型高電子移動度トランジスタに適用した実施の形態を示す構成図である。
【図9】本発明に係る半導体装置をモノリシックマイクロ波集積回路に適用した実施の形態を示す構成図である。
【図10】従来例に係る接合型電界効果トランジスタの例を示す構成図である。
【図11】従来例の説明に供する拡大図である。
【図12】A〜D 従来例の接合型電界効果トランジスタの製造方法を示す製造工程図(その1)である。
【図13】E〜G 従来例の接合型電界効果トランジスタの製造方法を示す製造工程図(その2)である。
【符号の説明】
21・・・接合型電界効果トランジスタ、22・・・半導体基板、23・・・第1導電型半導体領域、23C・・・チャネル領域、23S・・・ソース領域、23D・・・ドレイン領域、24・・・第1絶縁膜、25・・・第2絶縁膜、26・・・ゲート領域、27・・・第1金属膜、28・・・第2金属膜、29・・・ゲート電極、30・・・空間、31、32、33・・・レジスト膜、41・・・接合型高電子移動度トランジスタ、42・・・半絶縁性GaAs基板、43・・・ノンドープGaAs層、44・・・n型AlGaAs層、45・・・絶縁膜、46・・・p型AlGaAs層(ゲート領域)、47・・・ゲート電極、48・・・ソース電極、49・・・ドレイン電極、50・・・2次元電子ガス層、53・・・第1金属膜、54・・・第2金属膜、51・・・空間、61・・・モノリシックマイクロ波集積回路、62・・・接合型電界効果トランジスタ、63・・・抵抗素子、64・・・基板、65・・・第1導電型半導体領域、66・・・第2導電型のゲート領域、67・・・第1金属膜、68・・・第2金属膜、69・・・ゲート電極、71、72、75、77・・・電極取出し領域、74・・・抵抗体、86・・・ソース電極、87・・・ドレイン電極、89、90・・・電極91・・・金属膜

Claims (4)

  1. 半導体基体に第1半導体領域を形成する工程と、
    前記半導体領域上に第1及び第2の絶縁膜を順次形成する工程と、
    前記第1及び第2の絶縁膜の一部を選択的に除去して前記第1半導体領域が臨む開口を形成する工程と、
    前記開口を通して前記第1半導体領域にゲート領域となる第2半導体領域を形成する工程と、
    前記第2半導体領域に接続する第1金属膜を、前記開口内及び前記第2の絶縁膜上にわたって形成する工程と、
    前記開口内以外の前記第1金属膜を選択的に除去する工程と、
    前記第1金属膜に接続して一部が前記第2の絶縁膜上に延長する第2金属膜を形成し、前記第1及び第2金属からなるゲート電極を形成する工程と、
    前記第2の絶縁膜を除去する工程とを有する
    ことを特徴とする半導体装置の製造方法。
  2. 前記半導体基体をガリウム砒素系半導体で形成する
    ことを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記半導体基体をガリウム砒素系半導体で形成し、
    前記第1半導体領域をチャネルとなる第1導電型とし、
    前記ゲート領域となる第2半導体領域を第2導電型として、
    モノリシックマイクロ波ICの接合型電界効果トランジスタを形成する
    ことを特徴とする請求項1記載の半導体装置の製造方法。
  4. 前記半導体基体をガリウム砒素系半導体で形成し、
    前記第1半導体領域に形成する前記ゲート領域となる第2半導体領域を第2導電型半導体で形成して、
    モノリシックマイクロ波ICの接合型高電子移動度トランジスタを形成する
    ことを特徴とする請求項1記載の半導体装置の製造方法。
JP2002223571A 2002-07-31 2002-07-31 半導体装置の製造方法 Pending JP2004064005A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223571A JP2004064005A (ja) 2002-07-31 2002-07-31 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223571A JP2004064005A (ja) 2002-07-31 2002-07-31 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2004064005A true JP2004064005A (ja) 2004-02-26

Family

ID=31943287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223571A Pending JP2004064005A (ja) 2002-07-31 2002-07-31 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2004064005A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318982A (ja) * 2005-05-10 2006-11-24 Sony Corp 記憶素子及びその製造方法、エッチング方法
US7748164B2 (en) 2002-07-30 2010-07-06 Incorporated Administrative Agency National Agriculture And Bio-Oriented Research Organization Micro gravity environmental control apparatus and micro gravity environmental control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748164B2 (en) 2002-07-30 2010-07-06 Incorporated Administrative Agency National Agriculture And Bio-Oriented Research Organization Micro gravity environmental control apparatus and micro gravity environmental control method
JP2006318982A (ja) * 2005-05-10 2006-11-24 Sony Corp 記憶素子及びその製造方法、エッチング方法
JP4552745B2 (ja) * 2005-05-10 2010-09-29 ソニー株式会社 記憶素子及びその製造方法

Similar Documents

Publication Publication Date Title
US9466536B2 (en) Semiconductor-on-insulator integrated circuit with back side gate
TW201921687A (zh) 場效電晶體的電極結構
JP3609242B2 (ja) トランジスタ電極上にシリサイド層が形成されているic構造、mosトランジスタおよびその製造方法
JP2007526633A (ja) Iii族窒化膜双方向スイッチ
JPH10107285A (ja) 電界効果によって制御可能な縦形半導体デバイス及びその製造方法
CN211578757U (zh) 高电子迁移率晶体管
JP2001085670A (ja) 電界効果型トランジスタ及びその製造方法
JP2010157617A (ja) 化合物半導体装置及びその製造方法
JP2001284598A (ja) 半導体装置及びその製造方法
JP2009253072A (ja) 半導体装置およびその製造方法
JP2000022089A (ja) 電界効果トランジスタおよびその製造方法
JP2007527623A (ja) 相補的窒化膜トランジスタの垂直およびコモンドレイン
TWI521641B (zh) 製作氮化鎵裝置及積體電路中之自我對準隔離部的方法
JP2004064005A (ja) 半導体装置の製造方法
JP2000091348A (ja) 電界効果型半導体装置及びその製造方法
JPH01259546A (ja) 半導体装置の製造方法
JP2912906B1 (ja) 半導体装置
JP2006303393A (ja) 半導体装置とその製造方法
JP4606552B2 (ja) 半導体装置
JP2004221344A (ja) 半導体装置およびその製造方法
JPH08115924A (ja) 電界効果型トランジスタおよびその製造方法
JPS63227059A (ja) 半導体装置およびその製造方法
JP2004288952A (ja) 電界効果トランジスタ及びその製造方法
JP2002100640A (ja) 電界効果型化合物半導体装置
JPS58197882A (ja) 半導体装置の製造方法