JP2004060497A - 内燃機関の可変動弁機構及び内燃機関制御装置 - Google Patents

内燃機関の可変動弁機構及び内燃機関制御装置 Download PDF

Info

Publication number
JP2004060497A
JP2004060497A JP2002218271A JP2002218271A JP2004060497A JP 2004060497 A JP2004060497 A JP 2004060497A JP 2002218271 A JP2002218271 A JP 2002218271A JP 2002218271 A JP2002218271 A JP 2002218271A JP 2004060497 A JP2004060497 A JP 2004060497A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
control shaft
accelerator pedal
variable valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002218271A
Other languages
English (en)
Inventor
Yoshinori Kadowaki
門脇 美徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002218271A priority Critical patent/JP2004060497A/ja
Publication of JP2004060497A publication Critical patent/JP2004060497A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】電動モータを用いることなく内燃機関の運転状態や環境による影響を抑制する機構を採用することで、バルブ特性の変更をアクセルペダル等の操作に対応させる。
【解決手段】ワイヤ48によりアクセルペダル46とコントロールシャフト132とが連結されている。このためエンジン2の低回転時や低温時でも、運転者の操作力が原動力としてコントロールシャフト132に与えられるので、エンジンの運転状態や環境による影響を抑制してバルブ特性の変更をアクセルペダル46の操作に対応させることができる。このことにより吸入空気量の調量が容易となり始動性等のエンジン運転性を良好なものとなる。そして運転者によるアクセルペダル46を踏む力が原動力の全てとなっているので仲介駆動機構100を駆動するための燃費は不要となる。このため燃費の悪化を招くおそれが全くない。
【選択図】   図3

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の可変動弁機構及び内燃機関制御装置に関する。
【0002】
【従来の技術】
内燃機関のバルブ駆動機構に設けられたコントロールシャフトを軸方向に移動することにより内燃機関のバルブ特性を変更する可変動弁機構が知られている(特開平10−317927、特開2001−263015)。
【0003】
これらの可変動弁機構は油圧により駆動されることで、例えばバルブオーバラップ量やリフト量・作用角を変更し、このことにより内燃機関の負荷や燃焼状態を調節している。このため可変動弁機構の駆動制御に際しては、まず運転者が操作する機構、例えばスロットルバルブの踏み込み量(スロットル開度)を電気的に検出することで運転者の加減速要求を検出する。そして、この要求に対応したバルブオーバラップ量やリフト量・作用角となるように可変動弁機構が油圧駆動される。
【0004】
【発明が解決しようとする課題】
しかし、このような可変動弁機構の駆動のために前記開示技術のごとくの油圧機構を採用していると、内燃機関の低回転時や低温時では油圧低下や作動油粘度の上昇により駆動が困難な場合が生じる。このような状態は、特に低温始動時や低温始動直後に生じることが多く、吸気バルブが適切なバルブ特性に変更できなかったり、バルブ特性の変更動作が鈍化するためにアクセルペダルの踏み込み通りに内燃機関運転状態が迅速に変化しない場合がある。
【0005】
このような駆動上の問題を避けるために、油圧機構の代わりにサーボモータなどの電動モータを用いることも考えられるが、高コスト化を招くとともに、内燃機関の出力を電気エネルギーに変換して用いることになるため、エネルギー効率が悪く、燃費の悪化を招くおそれがある。
【0006】
本発明は電動モータを用いることなく内燃機関の運転状態や環境による影響を抑制する機構を採用することで、バルブ特性の変更をアクセルペダル等の操作に対応させることができる内燃機関の可変動弁機構及び、この可変動弁機構を用いる内燃機関制御装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の内燃機関の可変動弁機構は、内燃機関のバルブ駆動機構に設けられたコントロールシャフトを軸方向に移動することにより内燃機関のバルブ特性を変更する内燃機関の可変動弁機構であって、前記コントロールシャフトとアクセル操作部とを操作力の伝達物を介して連結することにより、該アクセル操作部の操作力を前記コントロールシャフトに伝達させる操作力伝達系を備えていることを特徴とする。
【0008】
この可変動弁機構は、コントロールシャフトとアクセル操作部とを操作力の伝達物を介して連結する操作力伝達系を備えている。このことによりアクセル操作部の操作力はコントロールシャフトに伝達されている。このため内燃機関の低回転時や低温時では油圧低下や作動油粘度の上昇が生じていたとしても、運転者による操作力が原動力として可変動弁機構に与えられるので、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させることができる。
【0009】
この場合、運転者の操作力が原動力になっているので、この原動力分については燃費は不要である。このため燃費の悪化を招くことはない。
尚、操作力の伝達物とは、操作力が伝達される物質であれば、固体でも液体でも気体でも良い。
【0010】
請求項2に記載の内燃機関の可変動弁機構では、請求項1において、前記バルブ特性は、吸気バルブのリフト量と作用角との一方又は両方であることを特徴とする。
【0011】
吸気バルブのリフト量と作用角との一方又は両方を変更することにより、可変動弁機構によって、スロットルバルブの代わりに内燃機関への吸入空気量を調節することができる。このことによりスロットルバルブを用いた場合よりも内燃機関のポンピング損失を小さくでき、燃費を向上させることができる。
【0012】
このように可変動弁機構により吸入空気量を調節する構成とした場合、従来のごとくの駆動機構では、低回転時や冷間時などで吸気バルブのバルブ特性の調節が困難となれば、内燃機関への吸入空気量の調量が困難となってしまう。
【0013】
しかし、本発明では、前記操作力伝達系により運転者の操作力が原動力になっているので、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させて吸気バルブのリフト量や作用角の調節を行うことができる。したがって内燃機関への吸入空気量の調量が容易となり始動性等の内燃機関運転性を良好なものとできる。
【0014】
請求項3に記載の内燃機関の可変動弁機構では、請求項1又は2において、前記操作力伝達系は、前記コントロールシャフトと前記アクセル操作部とを、操作力の伝達物としてのワイヤにて連結し、該ワイヤにて前記アクセル操作部の操作力を前記コントロールシャフトに伝達させる機構であることを特徴とする。
【0015】
このようにワイヤにてアクセル操作部の操作力をコントロールシャフトに伝達させる機構を採用することで、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させることができる。そして運転者の操作力が原動力になっているので燃費の悪化を招くおそれがない。
【0016】
更に操作力伝達系の構造が簡易なものとなるので耐久性が高く製造コストが抑制できる。
請求項4に記載の内燃機関の可変動弁機構では、請求項1又は2において、前記操作力伝達系は、前記コントロールシャフトと前記アクセル操作部とを油圧的に連結し、操作力の伝達物としての作動油を介して前記アクセル操作部の操作力を前記コントロールシャフトに伝達させる機構であることを特徴とする。
【0017】
コントロールシャフトとアクセル操作部とを油圧的に連結する機構を採用することができる。この場合、作動油を媒介させることになるが、アクセル操作部は内燃機関の運転状態に関係ない運転者の操作力を原動力としているので、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させることができる。そして運転者の操作力が原動力となっているので燃費の悪化を招くおそれがない。
【0018】
請求項5に記載の内燃機関の可変動弁機構では、請求項1〜4のいずれかにおいて、前記操作力伝達系は、前記アクセル操作部の操作力を増幅する倍力機構を備えたことを特徴とする。
【0019】
尚、運転者の操作力を原動力にすること自体は変わらないが、アクセル操作部による可変動弁機構の駆動を容易にするためにアクセル操作部の操作力を増幅する倍力機構を備えても良い。この場合、運転者の操作力は原動力の一部となるが、コントロールシャフトとアクセル操作部とは連結しているので、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させることができる。
【0020】
請求項6に記載の内燃機関の可変動弁機構では、請求項5において、前記倍力機構は、バキュームポンプにより生じている負圧を利用したものであることを特徴とする。
【0021】
このように倍力機構としては、ブレーキブースタなどと同様なバキュームポンプによる負圧を利用するものを挙げることができ、アクセル操作部による可変動弁機構の駆動を容易にすることができる。
【0022】
請求項7に記載の内燃機関の可変動弁機構では、請求項5において、前記倍力機構は、前記アクセル操作部の操作力に応じたアシスト力を発生させる油圧アシスト機構を利用したものであることを特徴とする。
【0023】
このように倍力機構としては、アクセル操作部の操作力に応じたアシスト力を発生させる油圧アシスト機構を利用するものが挙げることができ、アクセル操作部による可変動弁機構の駆動を容易にすることができる。
【0024】
更に油圧アシスト機構が設けられることにより、この油圧アシスト機構を、オートクルーズやトラクションコントロールなどでの内燃機関出力制御に併用することも可能である。したがって複数の機能を1つの油圧アシスト機構で達成でき、少ない構成で高性能な内燃機関制御システムを構築できる。
【0025】
請求項8に記載の内燃機関の可変動弁機構では、請求項1〜7のいずれかにおいて、前記コントロールシャフトは、カムシャフトによる内燃機関の吸気バルブの駆動を仲介する仲介駆動機構にて、前記カムシャフトの回転に伴う吸気バルブのリフト量を調節するコントロールシャフトであることを特徴とする。
【0026】
上記仲介駆動機構を設けた場合には、コントロールシャフトとしては仲介駆動機構においてカムシャフトの回転に伴う吸気バルブのリフト量を調節するコントロールシャフトに相当する。
【0027】
このような仲介駆動機構を用いた場合にも、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させることができる。
【0028】
請求項9に記載の内燃機関の可変動弁機構では、請求項1〜7のいずれかにおいて、前記コントロールシャフトは吸気バルブを駆動するカムシャフトに該当し、該カムシャフトに設けられているカムは軸方向にカム面のプロフィールが異なる3次元カムとして形成されていることを特徴とする。
【0029】
コントロールシャフトとしては、このような3次元カムが取り付けられているカムシャフトを用いることができる。このような3次元カムを用いた場合にも、内燃機関の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル等の操作に対応させることができる。
【0030】
請求項10に記載の内燃機関制御装置は、請求項1〜9のいずれか記載の内燃機関の可変動弁機構と、該可変動弁機構におけるコントロールシャフトの移動量を検出するストロークセンサと、前記ストロークセンサの検出値に基づいて内燃機関を制御する制御手段とを備えたことを特徴とする。
【0031】
前述した可変動弁機構により内燃機関を運転する場合には、制御手段は、上記ストロークセンサからの検出値に基づいて内燃機関を制御する。このことにより、エアフローメータなどの吸入空気量検出手段を別途設けずに、簡易な構成で内燃機関を制御することもできる。
【0032】
請求項11に記載の内燃機関制御装置では、請求項10において、前記コントロールシャフト自体あるいは前記コントロールシャフト近傍の温度を検出する温度検出手段を備え、前記制御手段は、前記ストロークセンサの検出値を前記温度検出手段にて検出された温度に基づいて補正すると共に、該補正後の前記ストロークセンサの検出値を用いて内燃機関の制御に用いる物理量を算出することを特徴とする。
【0033】
可変動弁機構は、コントロールシャフトの軸方向移動量により内燃機関のバルブ特性を変更しているため、内燃機関が発生する熱によりコントロールシャフトが熱膨張してストロークセンサの検出値に影響が現れる。そしてこのことによりストロークセンサの検出値に基づく内燃機関の制御精度に悪影響を及ぼすおそれがある。
【0034】
このため制御手段は、温度検出手段にて検出された温度に基づいてストロークセンサの検出値を補正して、内燃機関の制御に用いる物理量を算出している。したがって、一層、精度の高い内燃機関制御が可能となる。
【0035】
【発明の実施の形態】
[実施の形態1]
図1は、上述した発明が適用された内燃機関としてのガソリンエンジン(以下、「エンジン」と略す)2およびその制御系統の概略構成図である。図2はエンジン2の縦断面図(図1のA−A断面)を示している。
【0036】
エンジン2は、車両走行用として自動車車両に搭載されているものである。このエンジン2は、シリンダブロック4、シリンダブロック4内で往復動するピストン6およびシリンダブロック4上に取り付けられたシリンダヘッド8等を備えている。シリンダブロック4には複数、ここでは4つの気筒2aが形成され、各気筒2aには、シリンダブロック4、ピストン6およびシリンダヘッド8にて区画された燃焼室10が形成されている。
【0037】
そして各燃焼室10には、それぞれ2つの吸気バルブ12a,12bと2つの排気バルブ16a,16bとが配置されて、吸気バルブ12a,12bはそれぞれ吸気ポート14a,14bを開閉し、排気バルブ16a,16bはそれぞれ排気ポート18a,18bを開閉するように配置されている。
【0038】
各気筒2aの吸気ポート14a,14bは吸気マニホールド30内に形成された吸気通路30aを介してサージタンク32に接続されている。各吸気通路30aにはそれぞれ燃料噴射弁34が配置されて、各吸気ポート14a,14bに対して制御上要求される量の燃料、例えば後述する負荷率に応じた燃料量を噴射している。こうして形成された混合気は点火プラグ36により点火される。
【0039】
又、サージタンク32は吸気ダクト40を介してエアクリーナ42に連結されている。尚、本実施の形態では吸気ダクト40内にはスロットルバルブは配置されていない。吸入空気量の調節は、吸気バルブ12a,12bのリフト量の調節によりなされる。
【0040】
この吸気バルブ12a,12bのリフト量には、図3に示すごとくアクセルペダル46がワイヤ48を介して後述する仲介駆動機構100に連結されていることにより、運転者の操作が直接、反映されるようにされている。
【0041】
ここでアクセルペダル46は、踏み込み部46aと支点46bと作用部46cとを備えている。アクセルペダル46の全体は支点46bにて揺動可能に車体側に支持されている。そしてアクセルペダル46全体は踏み込み部46a側にて圧縮スプリング46dにより図3にて反時計方向に付勢されている。このことにより踏み込み部46aを運転者が踏み込んでいない時には、作用部46cに接続されているワイヤ48は最小の引き出し量となっている。この引き出し量はストロークセンサ48aによりストローク量SLとして検出されている。
【0042】
運転者が踏み込み部46aを踏み込めば、ワイヤ48は引き出されて、これに連動して、仲介駆動機構100が吸気バルブ12a,12bのリフト量を大きくする。エンジン2が回転していれば、吸気バルブ12a,12bのリフト量が大きくなることにより、1回の吸気行程にて各燃焼室10に吸入される空気量も多くなる。そして運転者が踏み込み部46aを最大限踏み込めば、吸入空気量も最大となる。
【0043】
そして運転者が踏み込み部46aを戻していけば、次第に吸入空気量は減少し、完全に元に戻せば、すなわち踏み込み部46aの踏み込み量が「0」となれば、吸入空気量も最小となる。この最小量は、例えば暖機後のアイドル回転時において必要とする吸入空気量分は確保される状態に設定されている。
【0044】
尚、各気筒2aの排気ポート18a,18bを開閉している排気バルブ16a,16bは、排気カムシャフト54に設けられた排気カム56の回転により、ローラロッカーアーム58(図2)を介して一定のリフト量及び作用角で開閉されている。そして各気筒2aの排気ポート18a,18bは排気マニホルド60に連結されていることにより、排気は触媒コンバータ62及び図示していないマフラーを介して外部に排出される。
【0045】
電子制御ユニット(以下、ECUと称する)64は、双方向性バスを介して相互に接続されたRAM、ROM、CPU、入力ポートおよび出力ポートを備えて、デジタルコンピュータとして構成されている。
【0046】
このECU64には、ストロークセンサ48aからのストローク量SLを表す信号、エンジン回転数センサ66からのエンジン回転数NEに対応した信号、気筒判別センサ68からの基準クランク角G2を表す基準信号がそれぞれ入力されている。また、シリンダブロック4に設けられた冷却水温センサ70からの冷却水温THWを表す信号、仲介駆動機構100に取り付けられてコントロールシャフト132近傍の温度を検出する仲介駆動機構温度センサ100aからの仲介駆動機構温度THXを表す信号もECU64に入力されている。更にECU64には、排気マニホルド60に設けられた空燃比センサ71からの空燃比AFを表す信号、及びその他のセンサ類からの各種信号も入力されている。
【0047】
ECU64は、上述した各種信号内容、メモリーに記憶しているデータ及びこれらを用いた演算結果に基づいて、燃料噴射弁34から制御上要求されるタイミングで制御上要求される量の燃料を噴射し、イグナイタを駆動して点火プラグ36による点火を実行している。例えば、ECU64は、ストロークセンサ48aにて検出したストローク量SL等の値を用いて負荷率eklqを算出して、燃料噴射量、噴射時期、点火時期等を算出している。
【0048】
ここで仲介駆動機構100を含めた可変動弁機構について説明する。
可変動弁機構は、図2,3に示したごとく、ワイヤ48、仲介駆動機構100及びローラロッカーアーム74にて構成されている。尚、排気バルブ16a,16b側については、前述したごとく排気カム56が直接ローラロッカーアーム58を駆動しているので可変動弁機構としては構成されていない。
【0049】
仲介駆動機構100は、気筒2a毎に1つ、ここでは4気筒であるので合計4つ備えられている。これらの4つの仲介駆動機構100は、同一の構成であり、図3に示したごとく1本の支持パイプ130と支持パイプ130内部に配置された1本のコントロールシャフト132にて連結されている。
【0050】
ここで、1つの仲介駆動機構100を図4の斜視図及び図5の部分破断斜視図に示す。仲介駆動機構100は、中央に設けられた入力部122、図示左に設けられた第1揺動カム124及び図示右に設けられた第2揺動カム126を備えている。これら入力部122のハウジング122aおよび揺動カム124,126の各ハウジング124a,126aはそれぞれ外径が同じ円柱状をなしている。
【0051】
入力部122のハウジング122aは内部に軸方向に空間を形成し、この空間の内周面には軸方向に右ネジの螺旋状に形成されたヘリカルスプライン122bを形成している。また外周面は2つのアーム122c,122dが平行に突出して形成されている。これらアーム122c,122dの先端には、シャフト122eが掛け渡されている。このシャフト122eはハウジング122aの軸方向と平行にされておりローラ122fが回転可能に取り付けられている。
【0052】
第1揺動カム124のハウジング124a及び第2揺動カム126のハウジング126aは、それぞれ内部に軸方向に空間を形成し、この内部空間の内周面には軸方向に左ネジの螺旋状に形成されたヘリカルスプライン124b,126bを形成している。この内部空間は、径の小さい中心孔を有するリング状の軸受部124c,126cにて端部が覆われている。また外周面は略三角形状のノーズ124d,126dが突出して形成されている。このノーズ124d,126dの一辺は凹状に湾曲するカム面124e,126eを形成している。
【0053】
これら第1揺動カム124および第2揺動カム126は、軸受部124c,126cを外側にして入力部122の両端から各端面を同軸上で接触させるように配置され、全体が図4に示したごとく内部空間を有する略円柱状となる。
【0054】
入力部122および2つ揺動カム124,126から構成される内部空間には、スライダギア128が配置されている。スライダギア128は略円柱状をなし、外周面中央には右ネジの螺旋状に形成された入力用ヘリカルスプライン128aが形成されている。この入力用ヘリカルスプライン128aの左側端部には小径部128bを挟んで左ネジの螺旋状に形成された第1出力用ヘリカルスプライン128cが形成されている。又、入力用ヘリカルスプライン128aの右側端部には小径部128dを挟んで左ネジの螺旋状に形成された第2出力用ヘリカルスプライン128eが形成されている。
【0055】
スライダギア128の内部には中心軸方向に貫通孔が形成されている。そして一方の小径部128dには貫通孔を外周面に開放するための長孔128gが形成されている。この長孔128gは周方向に長く形成されている。
【0056】
スライダギア128の中心にある貫通孔内には支持パイプ130が周方向に摺動可能に配置されている。この支持パイプ130は、図3に示したごとく、すべての仲介駆動機構100に共通の1本が設けられている。なお支持パイプ130にはスライダギア128の各長孔128gに対向する位置に、軸方向に長く形成された長孔130aが設けられている。
【0057】
更に、支持パイプ130内には軸方向に摺動可能にコントロールシャフト132が貫通している。このコントロールシャフト132も支持パイプ130と同様にすべての仲介駆動機構100に共通の1本が設けられている。尚、コントロールシャフト132には各仲介駆動機構100に対応する位置に係止ピン132aが形成されている。この係止ピン132aは、支持パイプ130の軸方向の長孔130aを貫通すると共に、スライダギア128に形成された周方向の長孔128g内にも先端が挿入されている。
【0058】
コントロールシャフト132の係止ピン132aは、支持パイプ130がシリンダヘッド8に対して固定されていても、支持パイプ130に形成された軸方向の長孔130aにより軸方向に移動できる。このためコントロールシャフト132の軸方向移動時には、係止ピン132aが周方向の長孔128gに係合することでスライダギア128を軸方向に移動させることができる。更に、スライダギア128自体は、周方向の長孔128gにて係止ピン132aに係止していることにより、係止ピン132aにて軸方向の位置は決定されるが、軸周りについては揺動可能となっている。
【0059】
スライダギア128の内で、入力用ヘリカルスプライン128aは入力部122内部のヘリカルスプライン122bに噛み合わされている。また第1出力用ヘリカルスプライン128cは第1揺動カム124内部のヘリカルスプライン124bに噛み合わされ、第2出力用ヘリカルスプライン128eは第2揺動カム126内部のヘリカルスプライン126bに噛み合わされている。
【0060】
このように構成された各仲介駆動機構100は、図3に示したごとく、揺動カム124,126の軸受部124c,126c側にて、シリンダヘッド8に形成された立壁部136,138に挟まれて、軸周りには揺動可能であるが軸方向に移動するのが阻止されている。この立壁部136,138には、軸受部124c,126cの中心孔に対応した位置に孔が形成され、支持パイプ130を貫通させ、かつ固定している。したがって支持パイプ130はシリンダヘッド8に対しては固定されて軸方向に移動したり回転したりすることはない。
【0061】
又、支持パイプ130内のコントロールシャフト132は支持パイプ130内を軸方向に摺動可能に貫通し、一端側にてワイヤ48に連結されている。したがってアクセルペダル46の踏み込みに、コントロールシャフト132の軸方向の変位を連動させることができる。
【0062】
すなわち運転者がアクセルペダル46を踏み込めば、ワイヤ48がアクセルペダル46側へ引き出されることで、コントロールシャフト132が図3において右側に移動することになる。すなわち図4,5ではコントロールシャフト132は矢印Sに示す方向の内、方向Fへ移動することになる。そして運転者がアクセルペダル46を戻せば、ワイヤ48が仲介駆動機構100側へ引き戻されることで、コントロールシャフト132が図3において左側に移動することになる。すなわち図4,5ではコントロールシャフト132は矢印Sに示す方向の内、方向Rへ戻ることになる。尚、コントロールシャフト132を方向Rへ戻す軸力は、ローラロッカーアーム74からの圧力により前述したスライダギア128のヘリカルスプライン128a,128c,128eと入力部122及び揺動カム124,126のヘリカルスプライン122b,124b,126bとの噛み合いにより発生している。
【0063】
各仲介駆動機構100の入力部122に設けられているローラ122fは、図2に示したごとく吸気カム72aに接触している。このため各仲介駆動機構100の入力部122は吸気カム72aのカム面のプロフィールに応じて支持パイプ130の軸周りで揺動する。尚、ローラ122fを支持しているアーム122c,122dにはローラ122fを吸気カム72a方向へ付勢する圧縮状スプリング122gがシリンダヘッド8との間に設けられている。このため、ローラ122fは常に吸気カム72aのカム面に接触している。
【0064】
一方、揺動カム124,126は、それぞれベース円部分(ノーズ124d,126dを除いた部分)で2つのローラロッカーアーム74の各中央に設けられた各ローラ74aに接触している。このローラロッカーアーム74はシリンダヘッド8の中央側の基端部74cでアジャスタ74bにて揺動可能に支持され、シリンダヘッド8の外側の先端部74dにて各吸気バルブ12a,12bのステムエンド12cにそれぞれ接触している。
【0065】
上述した構成により、運転者がアクセルペダル46の踏み込み量を調節することで、コントロールシャフト132とスライダギア128とを介して、入力部122のローラ122fと揺動カム124,126のノーズ124d,126dとの位相差が調整できる。すなわち、運転者はアクセルペダル46の踏み込み状態により、図6,7に示すごとく吸気バルブ12a,12bのリフト量を連続的に可変とすることができる。尚、図6,7では第2揺動カム126が第1吸気バルブ12aを駆動する状態を示しているが、第1揺動カム124が第2吸気バルブ12bを駆動する状態についても同じである。
【0066】
ここで図6はアクセルペダル46を踏み込んでいない状態、すなわち踏み込み量「0」の場合を示している。図6(A)は吸気行程以外の行程状態にあり、吸気カム72aのベース円部分(ノーズ72bを除いた部分)が、仲介駆動機構100における入力部122のローラ122fに接触している。この時、揺動カム124,126のノーズ124d,126dはローラロッカーアーム74のローラ74aには接触しておらず、ノーズ124d,126dから離れたベース円部分が接触している。このため、吸気バルブ12a,12bは閉弁状態にある。
【0067】
吸気行程となり吸気カムシャフト72の回転により吸気カム72aのノーズ72bが入力部122のローラ122fを押し下げる。すると、仲介駆動機構100内では入力部122からスライダギア128を介して揺動カム124,126に揺動が伝達されて、揺動カム124,126はノーズ124d,126dを押し下げるように揺動する。
【0068】
上述したごとく図6(A)の状態では、ローラロッカーアーム74のローラ74aはノーズ124d,126dからかなり離れたベース円部分が接触している。このため、揺動カム124,126が揺動を開始しても、しばらくはローラロッカーアーム74のローラ74aはノーズ124d,126dに設けられた湾曲状のカム面124e,126eに接触することなくベース円部分に接触した状態を継続する。その後、湾曲状のカム面124e,126eがローラ74aに接触して、図6(B)に示すごとくローラロッカーアーム74のローラ74aを押し下げる。このことにより、ローラロッカーアーム74は基端部74cを中心に揺動する。しかし、ローラロッカーアーム74のローラ74aが当初、ノーズ124d,126dから離れている分、カム面124e,126eの使用範囲は少ない。このためローラロッカーアーム74の揺動角度は小さく、ローラロッカーアーム74の先端部74dによるステムエンド12cの押し下げ量、すなわちリフト量はかなり少ない。こうして吸気バルブ12a,12bは最低限のリフト量にて吸気ポート14a,14bを開放状態にする。
【0069】
図7はアクセルペダル46を最大に踏み込んでいる状態、すなわち踏み込み量が最大値の場合を示している。図7(A)は吸気行程以外の行程状態にあり、吸気カム72aのベース円部分(ノーズ72bを除いた部分)が、仲介駆動機構100における入力部122のローラ122fに接触している。この時、揺動カム124,126のノーズ124d,126dはローラロッカーアーム74のローラ74aには接触しておらず、ノーズ124d,126dに隣接したベース円部分が接触している。このため吸気バルブ12a,12bは閉弁状態にある。
【0070】
吸気行程となって吸気カムシャフト72の回転により吸気カム72aのノーズ72bが入力部122のローラ122fを押し下げると、仲介駆動機構100内では入力部122からスライダギア128を介して揺動カム124,126に揺動が伝達される。このことにより揺動カム124,126はノーズ124d,126dを押し下げるように揺動する。この揺動開始時にノーズ124d,126dに設けられた湾曲状のカム面124e,126eが直ちにローラロッカーアーム74のローラ74aに接触する。したがって図7(B)に示すごとく、カム面124e,126eのほぼ全範囲を使用してローラロッカーアーム74のローラ74aを押し下げる。このことによりローラロッカーアーム74は基端部74c側を中心に大きく揺動し、ローラロッカーアーム74の先端部74dは大きくステムエンド12cを押し下げる。こうして吸気バルブ12a,12bは最大のリフト量にて吸気ポート14a,14bを開放状態にする。
【0071】
このように運転者がアクセルペダル46の踏み込み量を調節することで、図8のグラフに示す最小と最大とのリフト量パターン間で、吸気バルブ12a,12bのリフト量が無段階に連続的に変更可能となる。
【0072】
そしてこのリフト量に対応したストローク量SL等に基づいて、ECU64により各種エンジン制御に用いられる負荷率eklqが算出される。
ECU64により実行される負荷率算出処理を図9のフローチャートに示す。本処理は短時間周期で繰り返し実行される処理である。
【0073】
本処理が開始されると、まずエンジン回転数センサ66にて検出されているエンジン回転数NEがECU64のRAM中に設けられた作業領域に読み込まれる(S100)。次にストロークセンサ48aにて検出されているストローク量SLが同じく作業領域に読み込まれる(S102)。次に仲介駆動機構温度センサ100aにて検出されている仲介駆動機構温度THXが同じく作業領域に読み込まれる(S104)。
【0074】
次に仲介駆動機構温度THXに基づいてシャフト温度補正値dTHSが算出される(S106)。このシャフト温度補正値dTHSは、仲介駆動機構100のコントロールシャフト132が熱膨張することによりストロークセンサ48aにて検出されるストローク量SLと、実際の吸気バルブ12a,12bのリフト量との対応に誤差が生じるが、この誤差を補正するものである。例えば図10に示すごとくのマップにより算出される。
【0075】
次に次式1のごとく補正後ストローク量SLXを算出する(S108)。
【0076】
【数1】
SLX ← SL + dTHS   … [式1]
次に、補正後ストローク量SLXとエンジン回転数NEとのマップから、ステップS108にて算出された補正後ストローク量SLXと現在のエンジン回転数NEとに基づいて負荷率eklqを算出する(S110)。この負荷率eklqは最大機関負荷に対する現在の負荷の割合を示すものである。
【0077】
こうして負荷率eklqが繰り返し算出されることにより、エンジン制御、例えば燃料噴射制御では、負荷率eklqに基づいて基本燃料噴射量を算出する。そして、この基本燃料噴射量を空燃比センサ71により検出された空燃比AFに基づいて補正し、その他各種の補正をして実燃料噴射量を算出し、エンジン回転数NE、負荷率eklq及び実燃料噴射量に基づいて求めた燃料噴射タイミングにて燃料噴射弁34から噴射する。更に点火時期制御ではエンジン回転数NE及び負荷率eklqに基づいて基本点火時期を求め、各種の補正を行って実点火時期を求めて点火を実行する。
【0078】
上述した構成において、吸気カムシャフト72、仲介駆動機構100及びローラロッカーアーム74からなる機構がバルブ駆動機構に、アクセルペダル46がアクセル操作部に、ワイヤ48が操作力伝達系に、ECU64が制御手段に相当する。
【0079】
又、仲介駆動機構温度センサ100aが温度検出手段に相当し、負荷率eklqが内燃機関の制御に用いる物理量に相当する。
以上説明した本実施の形態1によれば、以下の効果が得られる。
【0080】
(イ).ワイヤ48によりアクセルペダル46とコントロールシャフト132とが連結されているので、アクセルペダル46の操作力は直接、コントロールシャフト132に伝達されている。
【0081】
このためエンジン2の低回転時や低温時でも、運転者の操作力が原動力としてコントロールシャフト132に与えられるので、エンジンの運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル46の操作に対応させることができる。このことにより吸入空気量の調量が容易となり始動性等のエンジン運転性を良好なものとなる。
【0082】
そして、運転者によるアクセルペダル46を踏む力が原動力の全てとなっているので仲介駆動機構100を駆動するための燃費は不要となる。このため燃費の悪化を招くおそれが全くない。
【0083】
(ロ).アクセルペダル46とコントロールシャフト132とをワイヤ48にて連結する構成であるので、操作力伝達系の構造が簡易となり、耐久性が高く製造コストが抑制できる。
【0084】
(ハ).ECU64が行うエンジン制御は、補正後ストローク量SLXとエンジン回転数NEとから、負荷率eklqを算出している。このようにエアフローメータを用いないので、エンジン2が簡易な構成となり、耐久性が高く製造コストが抑制できる。
【0085】
(ニ).仲介駆動機構温度THXに基づいてストローク量SLを補正して補正後ストローク量SLXを求めている。したがって、この補正後ストローク量SLXにはコントロールシャフト132の熱膨張の影響が排除されている。このため、この補正後ストローク量SLXに基づいて得られる負荷率eklqが高精度なものとなり精度の高いエンジン制御が可能となる。
【0086】
[実施の形態2]
本実施の形態では、図11に示すごとく、ワイヤ48を引くためのアクセルペダル146及びこれをアシストする構成が備えられている点が異なる。これ以外は前記実施の形態1と同じ構成である。
【0087】
アクセルペダル146は、作用部146cが支点146bと踏み込み部146aとの間に存在する。したがって運転者がアクセルペダル146を踏み込んだ場合には、作用部146cは踏み込み方向と同じ方向に押し込まれることになる。
【0088】
作用部146cには入力側ロッド146dが揺動可能に取り付けられ、この入力側ロッド146dはブースタ機構150に接続されている。
ブースタ機構150はアクセルペダル146の踏み込み力を増加させるものであり、ダイヤフラム150aにより区画されて形成された2つの圧力室150b,150cを有している。この内、第1圧力室150bへは、チェック弁152を介してエンジン2の駆動あるいはバッテリからの電気エネルギーにより駆動するバキュームポンプから負圧が供給されている。このチェック弁152は第1圧力室150bからバキュームポンプへの空気の流れを許し、逆の流れは禁止するものである。
【0089】
上記ブースタ機構150は次のように機能する。すなわちアクセルペダル146が踏み込まれていない時には、ブースタ機構150内に設けられた負圧制御バルブ150eは第1圧力室150b内の負圧を第2圧力室150c内へ導入している。このため第1圧力室150bと第2圧力室150cとは同じ負圧状態となるので、スプリング150fによりダイヤフラム150aはアクセルペダル146側に押し戻されている。このためダイヤフラム150aと連動するプッシュロッド150gは、揺動レバー154を押すことはない。
【0090】
一方、アクセルペダル146が踏み込まれると、アクセルペダル146に設けられた入力側ロッド146dに連動して負圧制御バルブ150eが第1圧力室150bと第2圧力室150cとの間を遮断するとともに、大気を第2圧力室150cに導入する。このことにより負圧状態の第1圧力室150bと、大気圧の導入により第1圧力室150bより高圧となった第2圧力室150cとの間に圧力差が生じる。このためアクセルペダル146に対する踏み込み力が増幅されてダイヤフラム150aはスプリング150fの付勢力に抗してプッシュロッド150gを押し出す。このことにより揺動レバー154の押圧端部154aが押される。
【0091】
揺動レバー154はその中央部分の支点154bにて揺動可能に支持されているため、押圧端部154aの反対側にある作用端部154cが押圧端部154aとは反対方向に移動する。このことにより作用端部154cに接続されているワイヤ48が引き出される。このため仲介駆動機構100のコントロールシャフト132が図示右側に移動することにより、吸気バルブ12a,12bのリフト量が増加する。
【0092】
そしてアクセルペダル146が踏み戻されると、入力側ロッド146dに連動して負圧制御バルブ150eが第2圧力室150cと外気側との連通を遮断し、第1圧力室150bと第2圧力室150cとの間を連通状態にする。このことにより第2圧力室150c内に第1圧力室150bから負圧が導入される。このため第1圧力室150bと第2圧力室150cとの圧力は近づく。したがってダイヤフラム150aはスプリング150fの付勢力によりアクセルペダル146側に移動する。このことによりプッシュロッド150gは戻り、揺動レバー154の押圧端部154aを戻す。
【0093】
このことにより作用端部154cに接続されているワイヤ48が戻され、仲介駆動機構100のコントロールシャフト132が図示左側に戻ることにより、吸気バルブ12a,12bのリフト量が減少する。
【0094】
上述した構成において、アクセルペダル146がアクセル操作部に、ワイヤ48、揺動レバー154、ブースタ機構150及び入力側ロッド146dが操作力伝達系に、ブースタ機構150が倍力機構に相当する。
【0095】
以上説明した本実施の形態2によれば、以下の効果が得られる。
(イ).前記実施の形態1の(イ)、(ハ)、(ニ)の効果を生じる。
(ロ).ブースタ機構150を用いているため、アクセルペダル146によるコントロールシャフト132の移動を容易にすることができる。
【0096】
(ハ).ブースタ機構150を用いているため、運転者の操作力は、仲介駆動機構100を駆動する原動力の一部ではある。しかし、アクセルペダル146とコントロールシャフト132とは連結されているので、エンジン2の運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル146の操作に対応させることができる。
【0097】
[実施の形態3]
本実施の形態では、図12に示すごとく、ワイヤ48を引くためのアクセルペダル246及びこれをアシストする構成が備えられている点が異なる。そしてアシスト制御がECUにより実行されている点が異なる。これ以外は前記実施の形態1と同じ構成である。
【0098】
アクセルペダル246は、作用部246cは支点246bを挟んで踏み込み部246aとは反対側に存在する。したがって運転者がアクセルペダル246を踏み込んだ場合には、作用部246cは踏み込み方向とは反対方向に引かれることになる。
【0099】
油圧シリンダ250はアクセルペダル246の踏み込み操作をアシストするものであり、ピストン250aにより区画されて形成された2つの圧力室250b,250cを有している。これら圧力室250b,250cには、油圧経路250d,250eにより、ECUにより駆動される3位置電磁弁252を介して、油圧ポンプ254から作動油圧が供給される作動油圧供給経路254aとリザーバ256側に作動油圧を解放するリターン経路256aが接続されている。
【0100】
尚、油圧ポンプ254はバッテリを電源とする電動モータ255により駆動される。
3位置電磁弁252に通電がなされていない場合には、図12に示したごとくリターン経路256aは第1油圧経路250dに接続し、作動油圧供給経路254aは第2油圧経路250eに接続するので、ピストン250aを図示左側に移動させることができる。
【0101】
又、3位置電磁弁252に中程度の通電がなされている場合には、作動油圧供給経路254aとリターン経路256aとが連通し、第1油圧経路250dと第2油圧経路250eとはそれぞれ遮断される。このためピストン250aの位置を維持することができる。
【0102】
3位置電磁弁252に最大の通電がなされている場合には、リターン経路256aは第2油圧経路250eに接続し、作動油圧供給経路254aは第1油圧経路250dに接続するので、ピストン250aを図示右側に移動させることができる。
【0103】
油圧シリンダ250内のピストン250aには入力側ロッド250fが設けられて、アクセルペダル246の作用部246cに連結されている。又、ピストン250aには入力側ロッド250fの反対側に出力側ロッド250gが設けられて、ワイヤ48に接続されている。
【0104】
したがって運転者によるアクセルペダル246の踏み込み操作に応じて、3位置電磁弁252を駆動制御することにより、アクセルペダル246の踏み込み操作をアシストして、吸気バルブのリフト量調節を容易にすることができる。
【0105】
尚、運転者によるアクセルペダル246の踏み込み操作は、運転者によるアクセルペダル246の踏み込み力に対応して入力側ロッド250fに生じる歪み量を、入力側ロッド250fに設けた歪みセンサ258により検出することで判断している。そして、この歪み量が常に一定、ここでは歪みが「0」を含む或る範囲に収束するように3位置電磁弁252を制御してピストン250aを移動させることでアシストを実行している。
【0106】
尚、アシストを実行している時においても運転者はアクセルペダル246を押し戻そうとする圧縮スプリング246dから、踏み込み量に応じた抵抗力を受けるので、アクセルペダル246の踏み込み操作に違和感を感じることはない。
【0107】
運転者によりアクセルペダル246が踏み込まれていない時には、圧縮スプリング246dから入力側ロッド250fは圧縮される方向の歪みを受けるので、ECUは3位置電磁弁252による油圧制御によりピストン250aを図示左側に移動させて、ワイヤ48の引き出し量を最小にする。
【0108】
運転者によりアクセルペダル246が踏み込まれた時には、入力側ロッド250fは、アクセルペダル246の作用部246cから伸張される方向の歪みを受ける。このためECUは3位置電磁弁252による油圧制御によりピストン250aを図示右側に移動させて、入力側ロッド250fの伸張歪みが小さくなるようにする。この油圧シリンダ250のアシスト力と運転者の踏み込み力とによりワイヤ48は引き出される。
【0109】
運転者がアクセルペダル246を戻そうとすれば、圧縮スプリング246dから入力側ロッド250fは圧縮される方向の歪みを受けるので、ECUは3位置電磁弁252による油圧制御によりピストン250aを図示左側に移動させて、入力側ロッド250fの圧縮歪みが小さくなるようにする。このことによりワイヤ48は戻される。
【0110】
このようにして、アクセルペダル246の踏み込み操作に応じて油圧シリンダ250によりアシストされることで、運転者は容易にコントロールシャフト132を移動させて吸気バルブのリフト量が調節できる。
【0111】
上述した構成において、アクセルペダル246がアクセル操作部に、ワイヤ48、油圧シリンダ250、3位置電磁弁252及び油圧ポンプ254が操作力伝達系に、油圧シリンダ250、3位置電磁弁252及び油圧ポンプ254が油圧アシスト機構に相当する。
【0112】
以上説明した本実施の形態3によれば、以下の効果が得られる。
(イ).前記実施の形態1の(イ)、(ハ)、(ニ)及び前記実施の形態2の(ロ)、(ハ)の効果を生じる。
【0113】
(ロ).本実施の形態の構成では、3位置電磁弁252による油圧シリンダ250の作動油圧制御により、運転者によるアクセルペダル246の操作とは独立してコントロールシャフト132のストローク量制御を実行できる。
【0114】
このため、この油圧アシスト機構を、オートクルーズやトラクションコントロールなどでのエンジン出力制御に併用することも可能である。したがって複数の機能を1つの油圧アシスト機構で達成でき、少ない構成で高性能なエンジン制御システムを構築できる。
【0115】
[実施の形態4]
本実施の形態では、ワイヤを用いずに図13に示すごとくアクセルペダル146は油圧的にコントロールシャフト132と連結している。そして前記実施の形態2と同様にブースタ機構150にてアクセルペダル146の踏み込み操作をアシストしている。これ以外は前記実施の形態1と同じ構成である。
【0116】
アクセルペダル146及びブースタ機構150については前記実施の形態2にて説明したごとくであるので詳細な説明は省略する。ただしストロークセンサ48aは入力側ロッド146dのストロークを検出している。尚、ストロークセンサ48aはプッシュロッド150gのストロークを検出するようにしても良い。
【0117】
ブースタ機構150のプッシュロッド150g側には、マスターシリンダ300が設けられて、マスターピストン300aにブースタ機構150のプッシュロッド150gが接続されている。このため運転者がアクセルペダル146を踏み込むとブースタ機構150にて増幅された踏み込み力にてプッシュロッド150gはマスターピストン300aを押して、マスター油圧室300bを圧縮することができる。
【0118】
マスター油圧室300bは、油圧経路302にてレリーズシリンダ304のレリーズ油圧室304bに接続されている。レリーズシリンダ304内はレリーズピストン304aにて区画されて、一方がレリーズ油圧室304bとされ、他方には圧縮スプリング304cが配置されている。このレリーズピストン304aには、レリーズ油圧室304bを貫通するようにして、仲介駆動機構100からコントロールシャフト132が接続されている。
【0119】
このため運転者がアクセルペダル146を踏み込むと、マスター油圧室300bを圧縮するのでマスター油圧室300b内の圧力が上昇する。すると、油圧経路302により油圧が伝達されて、レリーズシリンダ304のレリーズ油圧室304b内の圧力が上昇する。このことでレリーズピストン304aが圧縮スプリング304cの付勢力に抗して図示右側に移動する。
【0120】
このことによりコントロールシャフト132は仲介駆動機構100側から引き出されるので、吸気バルブのリフト量が大きくなり吸入空気量を増加させることができる。
【0121】
逆に、運転者がアクセルペダル146を戻そうとすると、マスター油圧室300bの圧力が低下する。すると、油圧経路302により油圧が伝達されて、レリーズシリンダ304のレリーズ油圧室304b内の油圧が低下する。このことでレリーズピストン304aが圧縮スプリング304cの付勢力により図示左側に戻る。
【0122】
このことによりコントロールシャフト132は仲介駆動機構100側に戻されるので、吸気バルブのリフト量が小さくなり吸入空気量を減少させることができる。
【0123】
尚、本実施の形態ではブースタ機構150とマスターシリンダ300とを組み合わせたが、マスターシリンダ300の種類によってはブースタ機構150を設けなくても良く、アクセルペダル146にて直接、マスターピストン300aを操作しても良い。
【0124】
上述した構成においてアクセルペダル146がアクセル操作部に、入力側ロッド146d、ブースタ機構150、マスターシリンダ300、油圧経路302、レリーズシリンダ304が操作力伝達系に相当する。
【0125】
以上説明した本実施の形態4によれば、以下の効果が得られる。
(イ).ブースタ機構150、マスターシリンダ300、油圧経路302及びレリーズシリンダ304を介しているが、アクセルペダル146の操作力はコントロールシャフト132に伝達されている。
【0126】
このためエンジンの低回転時や低温時でも、運転者の操作力が原動力としてコントロールシャフト132に与えられるので、エンジンの運転状態や環境による影響を抑制して、バルブ特性の変更をアクセルペダル146の操作に対応させることができる。このことにより吸入空気量の調量が容易となり始動性等のエンジン運転性を良好なものとなる。
【0127】
そして、運転者によるアクセルペダル146を踏む力が原動力に加わっているので仲介駆動機構100を駆動するための燃費は少なくて済む。このため燃費の悪化を招くおそれがない。
【0128】
(ロ).前記実施の形態1の(ハ)、(ニ)及び前記実施の形態2の(ロ)、(ハ)の効果を生じる。
[実施の形態5]
本実施の形態では、前記実施の形態1にて用いた仲介駆動機構100を用いずに、3次元カムを用いることにより吸気バルブのリフト量の調節を行う構成を採用している。他の構成については、前記実施の形態1と同じである。
【0129】
図14に吸気バルブのリフト量調節機構を示す。アクセルペダル46側の構成は前記実施の形態1と同じ構成であるので詳細な説明は省略する。
アクセルペダル46により引き出し量が調節されるワイヤ48の先端は、アジャスタ474aを介して補助シャフト474に接続されている。この補助シャフト474はシリンダヘッド上の軸受けにて回転しないが軸方向には移動可能に支持されている。そして補助シャフト474は、吸気カムシャフト472に対して転がり軸受部473を介して接続されている。
【0130】
吸気カムシャフト472はシリンダヘッド上の軸受けにて回転可能に、かつ軸方向に移動可能に支持されている。そして吸気カムシャフト472は、一端に設けられたタイミングスプロケット(タイミングギアやタイミングプーリでも良い)476を介してエンジンのクランクシャフトの回転と連動している。前述したごとく転がり軸受部473が存在するので、補助シャフト474は吸気カムシャフト472が回転しても連動して回転することはなく、軸方向移動についてのみ連動する。
【0131】
吸気カムシャフト472と接続しているタイミングスプロケット476は、エンジンのシリンダブロックに対して回転可能にかつ軸方向へは移動しないように支持されている。しかし吸気カムシャフト472とは中心部にてストレートスプライン機構472cにより接続されているので、タイミングスプロケット476は吸気カムシャフト472を連動して回転させるが、軸方向には吸気カムシャフト472の移動を許している。
【0132】
尚、仲介駆動機構温度センサ100aの代わりに、吸気カムシャフト472の近傍にはカムシャフト温度センサ472dが設けられて吸気カムシャフト472近傍の温度を検出している。
【0133】
ここで吸気カムシャフト472に、各気筒毎に設けられた各2つの吸気カム472a,472bは、軸方向にカム面のプロフィールが異なる3次元カムとして構成されている。この各2つの吸気カム472a,472bは、図14に示すごとく、直接、吸気バルブ12a,12bを駆動する。そして軸方向のカム面のプロフィールの違いにより前記図8に示したと同様に最大リフトと最小リフトとの間でリフト量を無段階に連続的に可変することができる。
【0134】
したがって運転者によるアクセルペダル46の踏み込み操作に応じて、吸気カムシャフト472の軸方向位置が変化されると、吸気カム472a,472bのカム面に対して接触する吸気バルブ12a,12bの位置が変わる。このことによりカム面のプロフィールが変化して吸気バルブ12a,12bのリフト量が変化し、吸入空気量が変化する。
【0135】
運転者によりアクセルペダル46が踏み込まれていない時には、吸気カム472a,472bのカム面のプロフィールにより吸気カムシャフト472は図示左側に移動する軸力を生じているので、ワイヤ48は限界まで引き戻されて、ワイヤ48の引き出し量は最小になっている。したがって吸気カム472a,472bのカム面のプロフィールの内で最もリフト量の小さい部分で吸気バルブ12a,12bを駆動することになる。
【0136】
運転者によりアクセルペダル46が踏み込まれた時には、ワイヤ48、補助シャフト474及び転がり軸受部473を介して、吸気カムシャフト472は図示右側に移動する。このことによりリフト量が大きいプロフィール側が吸気バルブ12a,12bを駆動するようになるため、リフト量は次第に大きくなる。そして最大限にアクセルペダル46が踏み込まれた時には、カム面のプロフィールの内で最もリフト量の大きい部分で吸気バルブ12a,12bを駆動することになる。
【0137】
運転者がアクセルペダル46を戻そうとすれば、吸気カム472a,472bのカム面のプロフィールにより生じている図示左方向の軸力によりアクセルペダル46の戻し量に対応して吸気カムシャフト472は図示左側に移動し、リフト量は次第に小さくなり、アクセルペダル46を離した状態で最小となる。
【0138】
このようにして、アクセルペダル46の踏み込み操作に応じて吸気バルブ12a,12bのリフト量が調節でき、これに伴って吸入空気量も調節できる。
上述した構成において、3次元カムとして形成されている吸気カム472a,472bを備えた吸気カムシャフト472がバルブ駆動機構に、アクセルペダル46がアクセル操作部に、転がり軸受部473、補助シャフト474、アジャスタ474a及びワイヤ48が操作力伝達系に相当する。
【0139】
以上説明した本実施の形態5によれば、以下の効果が得られる。
(イ).前記実施の形態1の(イ)〜(ニ)の効果を生じる。
[実施の形態6]
本実施の形態では、図15に示すごとく、ワイヤ48を引くためのアクセルペダル546及びこれを梃子の原理によりアシストする構成が備えられている点が異なる。これ以外は前記実施の形態1と同じ構成である。
【0140】
アクセルペダル546は、作用部546cが支点546bと踏み込み部546aとの間に存在する。したがって運転者がアクセルペダル546を踏み込んだ場合には、作用部546cは踏み込み方向と同じ方向に押し込まれることになる。
【0141】
作用部546cにある長孔には入力側ロッド546dの一端が連結されている。この入力側ロッド546dは軸方向に移動可能に図示していない軸受けにて支持されている。ストロークセンサ48aはこの入力側ロッド546dの軸方向移動位置を検出している。
【0142】
更に入力側ロッド546dの他端は揺動レバー554の押圧端部554aにある長孔に連結されている。揺動レバー554は、その中央部分の支点554bにて支持部555にて揺動可能に支持されているため、押圧端部554aの反対側にある作用端部554cが押圧端部554aとは反対方向に移動する。尚、支持部555と押圧端部554aとの間には圧縮スプリング554dが配置されているため、揺動レバー554には図15において時計回りに付勢力が作用している。
【0143】
そして揺動レバー554の作用端部554cにはワイヤ48が接続されている。したがって運転者がアクセルペダル546を踏み込むと、揺動レバー554は圧縮スプリング554dの付勢力に抗して反時計回りに回転して、ワイヤ48を引き出す。このことにより仲介駆動機構100のコントロールシャフト132が図示右側に移動することにより、吸気バルブのリフト量が増加する。
【0144】
この時、揺動レバー554において、中央部分の支点554bから押圧端部554aの長孔までの距離と、中央部分の支点554bから作用端部554cのワイヤ48の取り付け位置までの距離とは、前者の方が長く設定されている。したがって梃子の原理により、運転者は、直接にワイヤ48を引き出す場合よりも、弱い操作力でワイヤ48を引き出すことができる。
【0145】
そしてアクセルペダル546が戻されると、入力側ロッド546dから押圧端部554aへの押圧力が低下するので、圧縮スプリング554dの付勢力により、揺動レバー554が時計回転する。このことにより作用端部554cに接続されているワイヤ48が戻され、仲介駆動機構100のコントロールシャフト132が図示左側に戻ることにより、吸気バルブのリフト量が減少する。
【0146】
上述した構成において、アクセルペダル546がアクセル操作部に、ワイヤ48、揺動レバー554及び入力側ロッド546dが操作力伝達系に相当する。
以上説明した本実施の形態6によれば、以下の効果が得られる。
【0147】
(イ).前記実施の形態1の(イ)〜(ニ)の効果を生じる。
(ロ).アクセルペダル546の操作力は梃子の原理で増幅されている。このため簡易な構成で、アクセルペダル546による仲介駆動機構100の駆動をより容易にすることができる。
【0148】
[その他の実施の形態]
(a).前記実施の形態5において、前記実施の形態1の構成と同じアクセルペダル46の代わりに、図11に示した実施の形態2のアクセルペダル146、ブースタ機構150及び揺動レバー154の構成を用いても良い。又、揺動レバー154を用いることなく、プッシュロッド150gにて押すことにより吸気カムシャフト472を移動させるようにしても良い。すなわち図14の左側から吸気カムシャフト472をプッシュロッド150gにて押すようにしても良い。
【0149】
同様に、前記実施の形態5においてアクセルペダル46の代わりに、前記実施の形態3のアクセルペダル246及び油圧シリンダ250の構成を用いても良い。又、前記実施の形態5においてアクセルペダル46及びワイヤ48の代わりに、実施の形態4の実施の形態2のアクセルペダル146、ブースタ機構150、マスターシリンダ300、油圧経路302及びレリーズシリンダ304の構成を用いても良い。又、前記実施の形態5においてアクセルペダル46の代わりに、前記実施の形態6のアクセルペダル546及び揺動レバー554の構成を用いても良い。
【0150】
(b).前記実施の形態2,4において、入力側ロッド146dの圧力、プッシュロッド150gの圧力、あるいはレリーズピストン304aの圧力を、コントロールシャフト132の反対端から与えることにより、吸気バルブのリフト量調節を実行しても良い。
【0151】
(c).図3〜5に示したごとく仲介駆動機構100は支持パイプ130にて全体が支持されるようにしていたが、コントロールシャフト132に支持機能を持たせることで、支持パイプ130を省略しても良い。
【0152】
(d).前記各実施の形態では、ストロークセンサを備えることでストローク量SLを求めて、エンジン回転数NEとともにマップから負荷率を求めていた。これ以外に、ストロークセンサを備えずに、エアフローメータを吸気ダクトに設けることにより吸入空気量を算出し、エンジン回転数NEとともにマップあるいは関数計算により負荷率を求めるようにしても良い。
【0153】
尚、ストローク量SLとエンジン回転数NEとから負荷率を求める場合も関数計算にて行っても良い。
(e).前記実施の形態5では、吸気カム472a,472bのカム面は、図8に示したごとくに軸方向にリフト量と作用角とが異なるプロフィールとなっていた。これ以外にカム面のプロフィールを図16(A)に示すごとく作用角は同一でリフト量のみ変更(L1〜L4)するものであっても良く、又、図16(B)に示すごとくリフト量(L0)は同一で作用角のみ変更(作用角1〜作用角3)するものであっても良い。図16(A)の場合はリフト量を大きくすれば吸入空気量を増加させ、小さくすれば減少させることができる。図16(B)の場合は作用角を大きくすれば吸入空気量を増加させ、小さくすれば減少させることができる。
【0154】
(f).コントロールシャフト132や3次元カムの吸気カムシャフト472の温度は仲介駆動機構温度センサ100aやカムシャフト温度センサ472dにて検出されていた。これらの温度センサを用いずに、冷却水温センサ70にて検出される冷却水温THWから、コントロールシャフト132や3次元カムの吸気カムシャフト472の温度を推定して用いても良い。
【0155】
(g).図2,6,7に示したごとく前記仲介駆動機構100はローラロッカーアーム74を介して吸気バルブ12a,12bを駆動していたが、ローラロッカーアーム74を介さず直接吸気バルブ12a,12bを駆動しても良い。
【0156】
例えば、図17,18に示すごとく仲介駆動機構600の揺動カム626が、バルブリフタ613の頂部に設けられたローラ613aを介してバルブリフタ613に接触して吸気バルブ612を駆動する構成でも良い。図17,18の各図において、(A)は吸気バルブ612の閉弁時、(B)は吸気バルブ612の開弁時を表している。揺動カム626のノーズ626dは前記仲介駆動機構100の場合とは異なる形状に湾曲し、その湾曲面626eにてバルブリフタ613のローラ613aに当接する。仲介駆動機構600内部のスライダギアおよびスプライン機構は前記仲介駆動機構100と同じである。したがって、入力部622と揺動カム626との相対的位相差をスライダギアの軸方向への移動により変更し、図17の状態を最小のリフト量および作用角として、図18へと入力部622と揺動カム626との相対的位相差を大きくすると、リフト量および作用角を大きくすることができる。このような構成により、前記実施の形態1で述べた(イ)〜(ニ)と同様な効果を生じる。
【図面の簡単な説明】
【図1】実施の形態1としてエンジンおよびその制御系統の概略構成図。
【図2】上記エンジンの縦断面図。
【図3】実施の形態1の操作力伝達系とアクセル操作部の構成説明図。
【図4】実施の形態1で用いられる仲介駆動機構の斜視図。
【図5】上記仲介駆動機構の部分破断斜視図。
【図6】上記仲介駆動機構の動作説明図。
【図7】上記仲介駆動機構の動作説明図。
【図8】上記仲介駆動機構によるリフト量変化を示すグラフ。
【図9】実施の形態1のECUが実行する負荷率算出処理のフローチャート。
【図10】上記負荷率算出処理にて用いられるシャフト温度補正値dTHSを求めるためのマップ構成説明図。
【図11】実施の形態2の操作力伝達系とアクセル操作部の構成説明図。
【図12】実施の形態3の操作力伝達系とアクセル操作部の構成説明図。
【図13】実施の形態4の操作力伝達系とアクセル操作部の構成説明図。
【図14】実施の形態5の操作力伝達系とアクセル操作部の構成説明図。
【図15】実施の形態6の操作力伝達系とアクセル操作部の構成説明図。
【図16】バルブ特性の調節における他の例を示すグラフ。
【図17】他の例のバルブ駆動機構の動作説明図。
【図18】他の例のバルブ駆動機構の動作説明図。
【符号の説明】
2…エンジン、2a…気筒、4…シリンダブロック、6…ピストン、8…シリンダヘッド、10…燃焼室、12a,12b…吸気バルブ、12c…ステムエンド、14a,14b…吸気ポート、16a,16b…排気バルブ、18a,18b…排気ポート、30…吸気マニホールド、30a…吸気通路、32…サージタンク、34…燃料噴射弁、36…点火プラグ、40…吸気ダクト、42…エアクリーナ、46…アクセルペダル、46a…踏み込み部、46b…支点、46c…作用部、46d…圧縮スプリング、48…ワイヤ、48a…ストロークセンサ、54…排気カムシャフト、56…排気カム、58…ローラロッカーアーム、60…排気マニホルド、62…触媒コンバータ、64…ECU、66…エンジン回転数センサ、68…気筒判別センサ、70…冷却水温センサ、71…空燃比センサ、72…吸気カムシャフト、72a…吸気カム、72b…ノーズ、74…ローラロッカーアーム、74a…ローラ、74b…アジャスタ、74c…基端部、74d…先端部、100…仲介駆動機構、100a…仲介駆動機構温度センサ、122…入力部、122a…ハウジング、122b…ヘリカルスプライン、122c,122d…アーム、122e…シャフト、122f…ローラ、122g…圧縮状スプリング、124,126…揺動カム、124a,126a…ハウジング、124b,126b…ヘリカルスプライン、124c,126c…軸受部、124d,126d…ノーズ、124e,126e…カム面、128…スライダギア、128a…入力用ヘリカルスプライン、128b…小径部、128c…第1出力用ヘリカルスプライン、128d…小径部、128e…第2出力用ヘリカルスプライン、128g…長孔、130…支持パイプ、130a…長孔、132…コントロールシャフト、132a…係止ピン、136,138…立壁部、146…アクセルペダル、146a…踏み込み部、146b…支点、146c…作用部、146d…入力側ロッド、150…ブースタ機構、150a…ダイヤフラム、150b…第1圧力室、150c…第2圧力室、150e…負圧制御バルブ、150f…スプリング、150g…プッシュロッド、152…チェック弁、154…揺動レバー、154a…押圧端部、154b…支点、154c…作用端部、246…アクセルペダル、246a…踏み込み部、246b…支点、246c…作用部、246d…圧縮スプリング、250…油圧シリンダ、250a…ピストン、250b,250c…圧力室、250d…第1油圧経路、250e…第2油圧経路、250f…入力側ロッド、250g…出力側ロッド、252…3位置電磁弁、254…油圧ポンプ、254a…作動油圧供給経路、255…電動モータ、256…リザーバ、256a…リターン経路、258…歪みセンサ、300…マスターシリンダ、300a…マスターピストン、300b…マスター油圧室、302…油圧経路、304…レリーズシリンダ、304a…レリーズピストン、304b…レリーズ油圧室、304c…圧縮スプリング、472…吸気カムシャフト、472a,472b…吸気カム、472c…ストレートスプライン機構、473…転がり軸受部、474…補助シャフト、474a…アジャスタ、476…タイミングスプロケット、546…アクセルペダル、546a…踏み込み部、546b…支点、546c…作用部、546d…入力側ロッド、554…揺動レバー、554a…押圧端部、554b…中央部分の支点、554c…作用端部、554d…圧縮スプリング、555…支持部、600…仲介駆動機構、612…吸気バルブ、613…バルブリフタ、613a…ローラ、622…入力部、626…揺動カム、626d…ノーズ、626e…湾曲面。

Claims (11)

  1. 内燃機関のバルブ駆動機構に設けられたコントロールシャフトを軸方向に移動することにより内燃機関のバルブ特性を変更する内燃機関の可変動弁機構であって、
    前記コントロールシャフトとアクセル操作部とを操作力の伝達物を介して連結することにより、該アクセル操作部の操作力を前記コントロールシャフトに伝達させる操作力伝達系を備えていることを特徴とする内燃機関の可変動弁機構。
  2. 請求項1において、前記バルブ特性は、吸気バルブのリフト量と作用角との一方又は両方であることを特徴とする内燃機関の可変動弁機構。
  3. 請求項1又は2において、前記操作力伝達系は、前記コントロールシャフトと前記アクセル操作部とを、操作力の伝達物としてのワイヤにて連結し、該ワイヤにて前記アクセル操作部の操作力を前記コントロールシャフトに伝達させる機構であることを特徴とする内燃機関の可変動弁機構。
  4. 請求項1又は2において、前記操作力伝達系は、前記コントロールシャフトと前記アクセル操作部とを油圧的に連結し、操作力の伝達物としての作動油を介して前記アクセル操作部の操作力を前記コントロールシャフトに伝達させる機構であることを特徴とする内燃機関の可変動弁機構。
  5. 請求項1〜4のいずれかにおいて、前記操作力伝達系は、前記アクセル操作部の操作力を増幅する倍力機構を備えたことを特徴とする内燃機関の可変動弁機構。
  6. 請求項5において、前記倍力機構は、バキュームポンプにより生じている負圧を利用したものであることを特徴とする内燃機関の可変動弁機構。
  7. 請求項5において、前記倍力機構は、前記アクセル操作部の操作力に応じたアシスト力を発生させる油圧アシスト機構を利用したものであることを特徴とする内燃機関の可変動弁機構。
  8. 請求項1〜7のいずれかにおいて、前記コントロールシャフトは、カムシャフトによる内燃機関の吸気バルブの駆動を仲介する仲介駆動機構にて、前記カムシャフトの回転に伴う吸気バルブのリフト量を調節するコントロールシャフトであることを特徴とする内燃機関の可変動弁機構。
  9. 請求項1〜7のいずれかにおいて、前記コントロールシャフトは吸気バルブを駆動するカムシャフトに該当し、該カムシャフトに設けられているカムは軸方向にカム面のプロフィールが異なる3次元カムとして形成されていることを特徴とする内燃機関の可変動弁機構。
  10. 請求項1〜9のいずれか記載の内燃機関の可変動弁機構と、
    該可変動弁機構におけるコントロールシャフトの移動量を検出するストロークセンサと、
    前記ストロークセンサの検出値に基づいて内燃機関を制御する制御手段と、
    を備えたことを特徴とする内燃機関制御装置。
  11. 請求項10において、前記コントロールシャフト自体あるいは前記コントロールシャフト近傍の温度を検出する温度検出手段を備え、
    前記制御手段は、前記ストロークセンサの検出値を前記温度検出手段にて検出された温度に基づいて補正すると共に、該補正後の前記ストロークセンサの検出値を用いて内燃機関の制御に用いる物理量を算出することを特徴とする内燃機関制御装置。
JP2002218271A 2002-07-26 2002-07-26 内燃機関の可変動弁機構及び内燃機関制御装置 Pending JP2004060497A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218271A JP2004060497A (ja) 2002-07-26 2002-07-26 内燃機関の可変動弁機構及び内燃機関制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218271A JP2004060497A (ja) 2002-07-26 2002-07-26 内燃機関の可変動弁機構及び内燃機関制御装置

Publications (1)

Publication Number Publication Date
JP2004060497A true JP2004060497A (ja) 2004-02-26

Family

ID=31939514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218271A Pending JP2004060497A (ja) 2002-07-26 2002-07-26 内燃機関の可変動弁機構及び内燃機関制御装置

Country Status (1)

Country Link
JP (1) JP2004060497A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303444A (ja) * 2006-05-15 2007-11-22 Otics Corp 内燃機関の可変動弁機構
JP2010261402A (ja) * 2009-05-08 2010-11-18 Isuzu Motors Ltd 内燃機関の可変動弁機構およびこれを用いた内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303444A (ja) * 2006-05-15 2007-11-22 Otics Corp 内燃機関の可変動弁機構
JP4630224B2 (ja) * 2006-05-15 2011-02-09 株式会社オティックス 内燃機関の可変動弁機構
JP2010261402A (ja) * 2009-05-08 2010-11-18 Isuzu Motors Ltd 内燃機関の可変動弁機構およびこれを用いた内燃機関

Similar Documents

Publication Publication Date Title
US7210450B2 (en) Intake control apparatus and method for internal combustion engine
US7308873B2 (en) Variable valve control system for internal combustion engine
US10060364B2 (en) Controller for internal combustion engine
EP2260194B1 (en) Valve control apparatus for internal combustion engine
WO2006030707A1 (ja) 車両の制御装置
US8355857B2 (en) Control apparatus of internal combustion engine for vehicle
TWI388719B (zh) Operation control device for internal combustion engine
JP4779775B2 (ja) 内燃機関の吸気制御装置
JP2004197716A (ja) 内燃機関の制御装置
JP4278151B2 (ja) 内燃機関の制御方法
JP2011069245A (ja) エンジンの制御装置
JP3982492B2 (ja) 内燃機関のバルブリフト制御装置
JP2004060497A (ja) 内燃機関の可変動弁機構及び内燃機関制御装置
JP2007198284A (ja) 車両用内燃機関の吸気管負圧制御装置
JP4193448B2 (ja) 内燃機関の可変動弁機構及び内燃機関制御装置
JP4123214B2 (ja) 内燃機関の制御装置
JP4925991B2 (ja) Egr装置
JP4412247B2 (ja) エンジンのトルク演算装置
JP4784302B2 (ja) 可変動弁機構の異常検出装置
JP4019818B2 (ja) 可変動弁機構のセンサ異常検出装置
JP3812764B2 (ja) エンジンの制御装置
JP4165432B2 (ja) 内燃機関の制御装置
JP5525311B2 (ja) 副室付き内燃機関
JP4048560B2 (ja) エンジンの動弁制御装置
JP4123216B2 (ja) 内燃機関の制御装置