JP2004056121A - 高性能沸騰表面および凝縮表面を備えたエレクトロニクス冷却用熱サイホン - Google Patents

高性能沸騰表面および凝縮表面を備えたエレクトロニクス冷却用熱サイホン Download PDF

Info

Publication number
JP2004056121A
JP2004056121A JP2003166406A JP2003166406A JP2004056121A JP 2004056121 A JP2004056121 A JP 2004056121A JP 2003166406 A JP2003166406 A JP 2003166406A JP 2003166406 A JP2003166406 A JP 2003166406A JP 2004056121 A JP2004056121 A JP 2004056121A
Authority
JP
Japan
Prior art keywords
thermosiphon
fins
boiler plate
condenser tubes
pyramidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003166406A
Other languages
English (en)
Other versions
JP3779964B2 (ja
Inventor
Ilya Reyzin
イリヤ・レイジン
Mohinder Singh Bhatti
モヒンダー・シン・バハッティ
Debashis Ghosh
デバシス・ゴッシュ
Shrikant Mukund Joshi
シュリカント・ムカンド・ジョッシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Publication of JP2004056121A publication Critical patent/JP2004056121A/ja
Application granted granted Critical
Publication of JP3779964B2 publication Critical patent/JP3779964B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】電子デバイスを冷却するための熱サイホンを提供すること。
【解決手段】頂部表面(33)を有し、かつ、頂部表面(33)から上に向かって突出した複数のピラミッド形フィン(40)を備えたボイラプレート(30)を備えた、平均の幅が寸法「b」(9)の電子デバイス(8)を冷却するための熱サイホン(12)である。ボイラプレート(30)は、さらに、冷却する電子デバイス(8)を受け入れるための底部表面(32)を有している。間隔を隔てて配置された複数の復水器管(42)が、ボイラプレート(30)の上方に取り付けられ、ボイラプレート(30)および復水器管(42)が、動作流体を受け取るための蒸気チャンバ(54)をそれらの間に画定している。復水器管(42)の隣接する各々の対の間を、複数の回旋フィン(58)が延びている。
【選択図】   図2

Description

【0001】
【発明の属する技術分野】
本発明は一般にヒートシンクに関し、より詳細には電気部品または電子部品およびアセンブリによって生成される廃熱を散逸させるために使用されるヒートシンクに関する。
【0002】
【従来の技術】
マイクロプロセッサおよびコンピュータチップなど、高度に集中した熱源から効果的に熱を散逸させるための開発活動は、ヒートシンクの開発に集中している。通常、これらの熱源の出力密度の範囲は、約5〜35ワット/cm(4〜31イギリス熱単位/ft)であり、また、ファン、熱交換器、ヒートシンク等を配置するための有効空間は比較的狭い。
【0003】
部品レベルでは、自然対流または強制対流、あるいは他の冷却方式を利用した様々なタイプの熱交換器およびヒートシンクが使用されている。最も広く使用されている、マイクロエレクトロニクスを冷却するための既存のヒートシンクは、通常、空気を使用して、熱源から熱を直接除去しているが、空気の熱容量は比較的小さい。このようなヒートシンクは、出力密度の範囲が約5〜15ワット/cm(4〜13イギリス熱単位/ft)の比較的出力の小さい熱源からの熱の除去に適している。計算速度の高速化に伴う熱源の20〜35ワット/cm(18〜31イギリス熱単位/ft)に及ぶ出力密度の増加により、より有効なヒートシンクが必要である。このようなタイプの高出力密度熱源からの熱を除去するためには、水および水−グリコール溶液のように熱容量の大きい流体を使用した液体冷却ヒートシンクが特に適している。あるタイプの液体冷却ヒートシンクは、冷却液を循環させることにより、液体に熱源からの熱を吸収させ、吸収した熱を、流れている空気流中に液体−空気熱交換器を使用して容易に放熱することができる遠隔位置に伝達している。このようなタイプのヒートシンクは、間接ヒートシンクとして特徴付けられている。
【0004】
計算速度は、絶え間なく、より劇的に高速化しており、それに伴うデバイスの出力密度は、100ワット/cmに達している。高熱流束とあいまって、必要な冷却システムの小型化という制約により、熱サイホンなどの極めて有効で、コンパクトかつ単純な、信頼性の高いヒートシンクが必要である。典型的な熱サイホンは、電子デバイスが発生する熱を、ヒートシンクの沸騰表面の拘束動作流体を蒸発させることによって吸収している。このプロセスは、良く知られている核沸騰の一般理論によって制御されている。蒸気は、次に、空気冷却復水器に移送され、熱サイホンの凝縮表面上の膜状凝縮プロセスによって液化される。熱は、空気冷却復水器のフィン付き外部表面を流れている空気流中に排出される。凝縮液は、重力によってボイラに戻る。空気冷却復水器の外部空冷フィンからの熱伝達率は、熱サイホンの内部で生じる沸騰プロセスおよび凝縮プロセスの熱伝達率よりはるかに小さく、したがって対応するフィン面積は、熱を発生するチップ表面積と比較すると、必然的に相対的に大きくなっている。
【0005】
コンピュータケースへの適合を意図したコンパクト熱サイホンの場合、沸騰プロセスおよび凝縮プロセスを互いに接近して生じさせる必要があるため、対立する熱条件を比較的小さい体積内で課さなければならない。これは、熱サイホンの性能を最適化するプロセスの重要な課題である。
【0006】
【発明が解決しようとする課題】
したがって、空気の圧力降下を押えつつ、空気冷却復水器の外部表面での沸騰プロセス、凝縮プロセスおよび対流熱伝達プロセスを促進するべく、熱サイホンのプロセスを最適化することが望ましい。
【0007】
【課題を解決するための手段】
本発明の一態様は、幅の平均寸法が「b」の電子デバイスを冷却するための熱サイホンである。熱サイホンは、頂部表面を有し、かつ、頂部表面から上に向かって突出した複数のピラミッド形フィンを備えたボイラプレートを備えている。また、ボイラプレートは、冷却する電子デバイスを受け入れるための底部表面を有している。ボイラプレート上には、間隔を隔てて配置された複数の復水器管が取り付けられ、該ボイラプレートおよび復水器管が、動作流体を受け取るための蒸気チャンバをそれらの間に画定している。隣接する復水器管対の各々の間を、複数の回旋フィンが延びている。
【0008】
本発明の他の態様は、幅の平均寸法が「b」の電子デバイスを冷却するための熱サイホンである。熱サイホンは、上に向かって突出した複数のピラミッド形フィンを備えた頂部表面、および冷却する電子デバイスを受け入れるための底部表面を有するボイラプレートを備えている。ボイラプレート上には、間隔を隔てて配置された複数の復水器管が取り付けられている。復水器管の各々は、対向する複数の側壁、および該対向する複数の側壁の間を延びた、少なくとも1つの横方向隔壁を有している。この横方向隔壁は、復水器管の両端の中間に配置されている。ボイラプレートおよび復水器管は、動作流体を受け取るための蒸気チャンバをそれらの間に画定している。隣接する復水器管対の各々の間を、複数の回旋フィンが延びている。
【0009】
本発明のさらに他の態様は、電子デバイスを冷却するためのヒートシンクアセンブリである。ヒートシンクアセンブリは、シュラウド内に収納された、シュラウドを通して空気流を軸方向に導くための空気移動装置、および一方の端部にシュラウドが取り付けられ、該シュラウドと流体連絡しているダクトを備えている。ダクトの第2の端部には熱サイホンが取り付けられ、流体連絡している。熱サイホンは、頂部表面を有し、かつ、頂部表面から上に向かって突出した複数のピラミッド形フィンを備えたボイラプレートを備えている。また、ボイラプレートは、冷却する電子デバイスを受け入れるための底部表面を有している。ボイラプレートの上方には、間隔を隔てて配置された複数の復水器管が取り付けられ、該ボイラプレートおよび復水器管が、動作流体を受け取るための蒸気チャンバをそれらの間に画定している。隣接する復水器管対の各々の間を、複数の回旋フィンが延びている。
【0010】
本発明のこれらおよびその他の利点については、以下に記した明細書、特許請求の範囲の各請求項、および添付の図面を参照することにより、当分野の技術者にはさらに理解され、かつ、認識されよう。
【0011】
【発明の実施の形態】
本明細書における説明用として、「上部」、「下部」、「左」、「後」、「右」、「前」、「垂直」、「水平」という用語、およびそれらから派生する用語は、図2を中心とする発明に関したものであるが、本発明が、対立する特別な規定を除き、様々な代替オリエンテーションおよびステップシーケンスを想定していること理解すべきである。また、添付の図面に示し、かつ、以下の明細書に記載する特定のデバイスおよびプロセスが、特許請求の範囲の各請求項で定義されている本発明の概念の単なる例示的実施形態に過ぎないことを理解すべきである。したがって、特許請求の範囲の各請求項で特記されない限り、本明細書において開示する実施形態に関連する特定の寸法およびその他の物理特性を、本発明を制限するものとして捕えてはならない。
【0012】
図面を参照すると、図1に、本発明の好ましい実施形態の1つである空冷熱サイホンヒートシンク10およびその様々な構成要素が示されている。
【0013】
図1に示すように、ここでは単軸ファン14として示されている空気移動装置は、シュラウド16内に収納され、ダクト18を介して熱サイホン12に結合されている。ファン14は、プルまたはプッシュのいずれのタイプのファンであっても良いが、ファンハブ15による熱サイホン12の陰影化を最小化するためには、プルタイプのファンであることが好ましい。プッシュタイプのファンの場合、陰影化効果によってハブの背後の空気流が減少し、そのために熱サイホン12から冷却空気流への熱伝達が妨害される。空気の吐出を最大化し、かつ、空気を確実に混合するためには、Xで示すダクトの長さ20は、0.1≦X/√(LH)≦0.3の関係から最適決定されることが分かっている。この決定式では、Lは、熱サイホン12の全体の幅26であり、Hは、熱サイホン12の全体の高さ24である。
【0014】
図7は、二重ファン構造を組み込んだ熱サイホンヒートシンクアセンブリ100の代替実施形態を示したものである。この実施形態では、シュラウド116a内に収納されているファン114aは、プルタイプのファンであり、ダクト118aを介して熱サイホン112の一方の端部に結合されている。熱サイホン112の反対側の端部は、シュラウド116b内に収納された第2の軸ファン114bであり、ダクト118bを介して熱サイホン112の反対側の端部に結合されている。120aおよび120bで示すダクトの長さXは、同じく0.1≦X/√(LH)≦0.3の関係に従って見出されている。Lは、熱サイホン112の全体の幅126であり、Hは、熱サイホン112の全体の高さ124である。図7の熱サイホン112は、以下でさらに説明するように、図1の熱サイホン12と実質的に同じである。動作に関しては、軸ファン114bが周囲から空気を引き込み、引き込んだ空気を強制的にダクト118bを通過させ、それにより、熱サイホン112を介して所望の空気流を提供する軸ファン114aの動作を補助している。
【0015】
次に図2〜6を参照すると、熱サイホン12およびその様々な特徴が、より詳細に示されている。図2は、概ね、複数の復水器管42と結合したボイラプレート30を備えた熱サイホン12の横断面を示したものである。復水器管42は、ボイラプレート30の上方に取り付けられ、復水器管42とボイラプレート30の間に蒸気チャンバ54を画定している。蒸気チャンバ54は、寸法「j」で示す高さ55を有し、中には冷却流体(図示せず)が入っている。隣接する復水器管42の間を、空冷回旋フィン58が延び、側面44(図3)に取り付けられている。フィン58は、隣接する復水器管42の横方向の間隔に対応する、寸法「δ」で示す高さ59を有している。追加空冷回旋フィン60が、熱サイホン12の各側面に取り付けられており、最も外側の復水器管42の最も外側の壁44の冷却を容易にしている。冷却を必要とする電子デバイス8または他の電源は、ボイラプレート30の底部表面32に取り付けられる。デバイス8は、正方形であっても、あるいは長方形であっても良く、その平均の幅9は、寸法「b」で示されている。デバイス8と熱接触する底部表面32領域は、熱抵抗を小さくし、かつ、ボイラプレート30とデバイス8の間の最大熱伝達を促進するために、研磨されていることが好ましい。
【0016】
内側では、ボイラプレート30は、平らな中央部分34を備えた上部表面33を有している。上部表面33は、底部表面32と共に、「e」で示す厚さ35を画定している。中央部分34は、さらに、寸法「a」で示す平均幅39のフィン付き領域38を備えている。フィン付き領域38には、階段状ピラミッドフィン40のアレイが配置されている。階段状ピラミッドフィン40については、以下でさらに詳細に説明する。上に向かって湾曲している凹部分36は、寸法「c」で示す高さ37を有し、中央部分34を取り囲むべく、ボイラプレート30の外周部に配置され、それによりボイラプレート30を鉢状の構造に形成している。上に向かって湾曲した部分36により、熱サイホン10内の凝縮冷却流体を中央部分34に容易に導くことができ、かつ、デバイス8の真上の平らな中央部分34に生成される熱を容易に分散させることができる。
【0017】
図4〜6は、ボイラプレート30のフィン付き部分38および階段状ピラミッドフィン40の様々な特徴を拡大して示したものである。好ましい実施形態では、図4に示すように、階段状ピラミッドフィン40のアレイが、長方形の格子状パターンに配列されている。図4に示す階段状ピラミッドフィン40の規則的なパターンは、一様な熱負荷には最適である。別法としては、図5に示すフィン付き部分38aで示すように、フィン40のアレイを千鳥状に配列することもできる。
【0018】
階段状ピラミッド40をボイラプレート30の表面33に不規則なパターンで配置することにより、非一様な熱負荷に適応させることができる。不規則パターンは、熱出力の大きいデバイス8の真上の領域に、フィンがより高密度に配置され、かつ、熱出力の小さいデバイス8の真上の領域のフィンの密度がより小さくなるようなパターンにすることができる。ピラミッドフィンの不規則パターンの最大フィン密度は、50フィン/cmまでとすることが可能である。ピラミッドフィン40の各々は、底部層から頂部層へかけて、徐々に幾何学面積が小さくなる一連の複数の層を有する外観を有している。別法としては、熱流束の非一様性を補償するために、ピラミッドフィンの階段サイズを変更することもできる。
【0019】
好ましい実施形態では、図4および6に示すように、ピラミッドフィン40は、正方形の底面を有している。ピラミッドフィン40を、本明細書の教示の範囲を逸脱することなく、円形、三角形、長方形、台形あるいは他の幾何学構成で形成することもできることについては、当分野の技術者には容易に認識されよう。また、表面68およびボイラプレート30の上部表面33など、ピラミッドフィン40の表面は、熱サイホン12内の動作流体に露出され、さらにはそれらの個々の表面33、68を粗構造に形成するべく、サンドブラストされ、あるいは代替方法で処理されることが好ましい。表面33、68の粗さによって、フィン40からフィン40を覆う動作流体への沸騰熱の伝達が促進される。
【0020】
ピラミッドフィン40の階段状層の各々は、階段すなわち外部コーナ領域74および隣接層の接合点に内部コーナ領域80を画定している。コーナ領域74および80は、熱が集中する領域である。領域74および80に熱が集中する結果、その領域が核形成サイトとして作用し、それにより熱サイホン12内の冷却流体の沸騰が促進される。
【0021】
ピラミッドフィン40の各々は、寸法「k」で示す高さ70を有しており、階段74の各々は、寸法「s」で示す高さ76および寸法「t」で示す階段幅78を有している。階段状ピラミッド40の最大基底幅71は、寸法「g」で示され、また、隣接するピラミッドの隣接基底エッジ間の距離72は、寸法「f」で示されている。
【0022】
図4および5に示す、正方形の底面を有する階段状ピラミッドフィン以外に、長方形、三角形、台形および円形の底面を備えた他のタイプの階段状ピラミッドフィンの使用についても意図されている。様々なタイプの階段状ピラミッドフィンでは、階段と階段の間のコーナ領域が、急峻な温度勾配による液体の沸騰を促進する核形成サイトとして作用している。階段状ピラミッドのコーナ領域は、熱が集中する領域と見なすことができる。
【0023】
理論的および実験的研究により、以下に示す階段状ピラミッドフィンの寸法が最適であることが分かっている。0.2≦f/g≦0.4、1≦k/g≦4、および1≦s/t≦2。ここで、「g」はピラミッドの最大基底幅71であり、「f」は、隣接するピラミッド40の基底エッジ間の距離72、「k」はピラミッドフィン40の高さ70、「s」は階段の高さ76であり、また、「t」は、各階段74の階段幅78である。
【0024】
図2および3は、熱サイホン12上の復水器管42の配置およびその詳細な特徴を示したものである。ボイラプレート30の上に、複数の復水器管42が配列されている。復水器管42の各々は、寸法「d」で示す幅43および寸法「u」で示す高さ45を有している。また、復水器管42の各々は、寸法「D」で示す、熱サイホン12の全深さ22に渡って延びている。隣接する復水器管42は、回旋フィン58の高さ59に対応する寸法「δ」だけ、互いに間隔を隔てている。回旋フィン58は、軸ファン14によって誘導された空気流を、熱サイホン12の前から後へ、フィン58を通して通過させるべく整列している。
【0025】
復水器管42の各々は、概ね、対向する側面44、対向する側面44の間を延びた複数の横方向隔壁48、および側面44の頂部エッジと相互接続した頂部46で構築されている。端壁47は、復水器管42の前面および後面に配置され、底部から頂部46へ延びている。復水器管42は、流体蒸気がチャンバ54から復水器管42中へ立ち昇ることができ、さらには冷却された復水がチャンバ54内へ流れて戻ることができるよう、底部で開口し、かつ、蒸気チャンバ54と流体連絡している。隔壁48は、側壁44には結合されているが、頂部表面50には結合されていない。隔壁48は、頂部46まで延びていないため、隔壁48と頂部46の間に隙間52が画定され、それにより流体蒸気は、復水器管42のすみずみまで容易に循環することができる。
【0026】
隔壁48は、複数の機能を果たしている。第1に、隔壁48は、復水器管42の内部の蒸気から、復水器管42の側壁44の外部に結合された空冷フィン58への熱伝達を促進する補助フィンとして作用している。また、隔壁48は、R−134aのようなハロゲン化炭素などの動作流体の高蒸気圧に耐えることができるよう、復水器管42を補強している。さらに、隔壁48は、復水器管の内壁44上の復水液が、隔壁48と側壁44の内部との境界部分に形成されたコーナ56に、表面張力によって引っ張られる際の復水の排水を促進している。表面張力によって復水液がコーナ56に引っ張られると、復水器管の内部表面が露出し、それにより内部表面の熱抵抗が小さくなり、内部表面の熱抵抗が小さくなることにより、動作流体蒸気の復水化が促進される。
【0027】
広範囲の試験により、以下に示す復水器管の寸法関係が最適であることが確認されている。復水器管42の高さ45(u)に対する隔壁48の高さ50(v)の比率は、0.90≦v/u≦0.97の関係によって表され、熱サイホン12の全体深さ22(D)に対する隔壁間隔49(w)の比率は、0.1≦w/D≦0.5の関係によって表される。
【0028】
熱サイホン12に最適の動作流体としては、脱塩水およびR−134aのようなハロゲン化炭素流体がある。動作流体の量は、通常、復水器管42の内部体積および蒸気チャンバ54の体積からなる熱サイホン12の内部体積の30%である。安定した動作状態下における蒸気チャンバ54内の凝縮動作流体の好ましいレベルは、ピラミッドフィン40の先端が、液体プールの頂部表面下すれすれに水没するレベルである。
【0029】
理論的および実験的研究により、以下に示す熱サイホン12の寸法関係が最適であることが分かっている。デバイス8の平均幅9(b)に対するフィン付き領域38の平均幅39(a)の比率は、1≦a/b≦2の関係によって表され、熱サイホン12の高さ24(H)に対する蒸気チャンバ54の高さ55(j)の比率は、0.1≦j/H≦0.3の関係で表され、また、復水器管42の幅43(d)に対する回旋フィン58の高さ59(δ)の比率は、1≦δ/d≦2の範囲内であることが好ましい。
【0030】
使用に際しては、デバイス8が出力を生成し、したがって熱を発生すると、発生した熱がボイラプレート30のフィン付き部分38に伝達される。ボイラプレート30、詳細にはフィン付き部分38の温度が上昇すると、表面33およびピラミッドフィン40のコーナ領域74および80が十分に熱くなり、ピラミッドフィン40を覆っている動作流体が核形成すなわち沸騰する。動作流体蒸気が発生し、復水器管42に入る。発生した蒸気は、復水器管42の側壁44および隔壁48と接触し、蒸気から側壁44および隔壁48へ熱エネルギーが伝達され、かつ、伝導によって回旋フィン58へ伝達される。軸ファン14によって、冷却空気が寸法「D」に沿って回旋フィン58を通過し、熱を対流吸収する。蒸気から熱エネルギーを除去することにより、凝縮温度未満に蒸気が冷却され、側壁44および隔壁48に凝縮する。次に、表面張力効果によって、復水器管42内のコーナ領域56に復水液が引き出される。復水液は集まって小滴になり、滴下して蒸気チャンバ54内の動作流体のプール中に戻る。以上のプロセスが繰り返される。
【0031】
本明細書における教示の妥当性を検証するべく、アルミニウム製復水器管42およびピラミッドフィン40を備えたアルミニウム製および銅製ボイラプレート30を備えた、いくつかのプロトタイプの熱サイホン12が構築され、試験された。熱サイホンの全体寸法は、高さH=80mm、幅L=70mm、深さD=50mmである。220ワットの熱負荷を発生することができる、辺の寸法b=40mmの正方形の電源が使用された。復水器管42の寸法は、高さu=70mm、深さD=50mm、幅d=6mmである。復水器管42の各々は、高さv=65mm、間隔w=15mmの2つの隔壁48を備えている。ピラミッドフィン40のサイズは、幅g=4mm、高さk=5mm、ピラミッド間の間隔f=3mmである。ピラミッドの階段は、高さs=0.6mmであり、幅t=0.6mmである。空気の入口温度は、25〜35℃の範囲で変更された。熱サイホンには、動作流体として30gのR−134aが充填された。熱サイホンの性能は、銅製ボイラプレート30に対しては、q=100、150および200ワットの3つの熱負荷で、また、アルミニウム製ボイラプレート30に対しては、q=200ワットの熱負荷で測定された。ヒートシンク10の効率は、表面−空気熱抵抗RSAとして表され、前述の値の熱負荷qに対する、復水器管のフィン付き表面上を流れる空気の体積流量の関数である。
【0032】
前述のRSAを定義するために、対流冷却熱サイホンの熱負荷qが、
【0033】
【数1】
Figure 2004056121
【0034】
で与えられるニュートンの冷却法則の形で表されることに言及しておく。上式でhは、熱伝達係数W/m℃(イギリス熱単位/hrftF)、Tは、熱源におけるボイラプレートの最大温度℃(F)、Tは、フィン付き凝縮表面を冷却するために使用される吸込み空気温度℃(F)である。
【0035】
オームの法則からの類推により、式(1)は、慣例上、
【0036】
【数2】
Figure 2004056121
【0037】
として書き直すことができる。上式でRSAは、ヒートシンクの表面−空気熱抵抗として定義される。
【0038】
式(2)から、RSAが、熱源の熱負荷qに対する、最大熱源温度Tと入口空気温度Tの温度差の比率であることは明らかである。
【0039】
好ましい実施形態による熱サイホンの試験の結果によれば、試験した熱サイホンのRSAは、30CFMを超える体積空気流量に対して0.1℃/ワット未満である。このようなRSAの値は、エレクトロニクス産業で典型的に使用されている従来の空冷ヒートシンクおよび液体冷却ヒートシンクのRSA値のコンテキストから見た場合、極めて良好であると見なすことができる。典型的な空冷ヒートシンクが示すRSAは、30CFMを超える体積空気流量に対して約0.2℃/ワットであり、また、典型的な液体冷却ヒートシンクのRSAは、約0.12℃/ワットである。また、試験の結果によれば、試験に使用する熱負荷が大きくなると、熱サイホンが示すRSA値が小さくなり、したがって、高熱負荷条件下では、本発明を使用した熱サイホンのRSA値は、従来技術による典型的な空冷ヒートシンクおよび液体冷却ヒートシンクのRSA値より、はるかに小さくなることを立証している。したがって本明細書において説明した好ましい実施形態のような熱サイホンヒートシンクは、従来技術に対する明確な改善を示しており、核沸騰レジームで動作する高熱負荷アプリケーションのための好ましい選択肢である。
【0040】
以上の説明により、本明細書において開示した概念を逸脱することなく、本発明に改変を加えることができることは、当分野の技術者には容易に認識されよう。特許請求の範囲の各請求項に特記されていない限り、このような改変は、特許請求の範囲に包含されるものとする。
【図面の簡単な説明】
【図1】冷却空気を強制的に熱サイホンを通すべくファンが配置された、本発明を使用した熱サイホンおよび冷却ファンの斜視図である。
【図2】図1に示す熱サイホンの、線2−2に沿って取った正面横断面図である。
【図3】図1の熱サイホンに利用される復水器管の部分破断斜視図である。
【図4】ボイラプレート上に形成されたピラミッドフィンアレイの拡大斜視図である。
【図5】ボイラプレート上の非一様ピラミッドフィンアレイの拡大斜視図である。
【図6】図4に示すアレイのピラミッドの1つを示す拡大正面図である。
【図7】2つの冷却ファンを利用した熱サイホン冷却アセンブリの代替実施形態を示す図である。

Claims (28)

  1. 平均の幅が寸法「b」(9)の電子デバイス(8)を冷却するための熱サイホン(12)であって、
    上に向かって突出した複数のピラミッド形フィン(40)を備えた頂部表面(33)を有し、かつ、冷却する電子デバイス(8)を受け入れるための底部表面(32)をさらに有するボイラプレート(30)と、
    前記ボイラプレート(30)の上方に、間隔を隔てて取り付けられた複数の復水器管(42)であって、前記ボイラプレート(30)および前記復水器管(42)が、動作流体を受け取るための蒸気チャンバ(54)をそれらの間に画定する複数の復水器管(42)と、
    前記復水器管(42)の隣接する各々の対の間を延びた複数の回旋フィン(58)とを備えた熱サイホン(12)。
  2. 前記ピラミッド形フィン(40)が複数の階段(74)を備えた、請求項1に記載の熱サイホン(12)。
  3. 前記階段(74)が、前記蒸気チャンバ(54)内に保持されている動作流体の沸騰を促進する核形成サイトとして機能する複数のコーナ領域(80)を画定する、請求項2に記載の熱サイホン(12)。
  4. 前記ピラミッド形フィンの前記階段(74)が複数の面(68)を備え、さらに前記面(68)が粗構造を有する、請求項3に記載の熱サイホン(12)。
  5. 前記粗構造がサンドブラストによって形成される、請求項4に記載の熱サイホン(12)。
  6. 前記階段の各々が、高さ「s」(76)および幅「t」(78)を有し、かつ、前記階段(74)が、比率s/tが式1≦s/t≦2の範囲内に入るように形成された、請求項2に記載の熱サイホン(12)。
  7. 前記ピラミッド形フィン(40)の各々が、高さ「k」(70)および基底寸法「g」(71)を有し、かつ、前記ピラミッド形フィン(40)が、比率k/gが式1≦k/g≦4の範囲内に入るように形成された、請求項2に記載の熱サイホン(12)。
  8. 前記ボイラプレート(30)が、前記ピラミッド形フィン(40)が配置されるフィン付き部分(38)を画定する、請求項1に記載の熱サイホン(12)。
  9. 前記フィン付き部分(38)が、冷却する電子デバイス(8)を受け入れるべく画定された前記底部表面(32)上の領域と垂直方向に整列した、請求項8に記載の熱サイホン(12)。
  10. 前記ピラミッド形フィン(40)が、幾何学的格子状パターンに配列された、請求項9に記載の熱サイホン(12)。
  11. 前記ピラミッド形フィン(40)の各々が、基底寸法「g」(71)を有する底面を備え、かつ、前記ピラミッド形フィンの隣接するファンが、比率f/gが式0.2≦f/g≦0.4の範囲内に入る寸法「f」(72)だけ互いに間隔を隔てた底面をそれぞれ有する、請求項10に記載の熱サイホン(12)。
  12. 前記フィン付き領域(38)の平均の幅が、寸法「a」(39)であり、比率a/bが式1≦a/b≦2の範囲内に入る、請求項11に記載の熱サイホン(12)。
  13. 前記ピラミッド形フィン(40)が、不規則パターンに配列された、請求項9に記載の熱サイホン(12)。
  14. 前記ピラミッド形フィン(40)が、最大50フィン/cmの密度で前記ボイラプレート(30)上に配置された、請求項13に記載の熱サイホン(12)。
  15. 前記ボイラプレート(30)が、前記ボイラプレート(30)の中央部分(34)の厚さより分厚い末端部分(36)を備えた、請求項1に記載の熱サイホン(12)。
  16. 前記末端部分(36)の頂部表面が、前記蒸気チャンバ(54)内に保持されている動作流体を中央部分(34)に向けて導くための凹表面を画定する、請求項15に記載の熱サイホン(12)。
  17. 平均の幅が寸法「b」(9)の電子デバイス(8)を冷却するための熱サイホン(12)であって、
    上に向かって突出した複数のピラミッド形フィン(40)を備えた頂部表面(33)を有し、かつ、冷却する電子デバイス(8)を受け入れるための底部表面(32)をさらに有するボイラプレート(30)と、
    前記ボイラプレート(30)の上方に、間隔を隔てて取り付けられた複数の復水器管(42)であって、前記復水器管(42)の各々が、対向する側壁(44)、前記対向する側壁(44)の間を延びた少なくとも1つの横方向隔壁(48)、および前記復水器管(42)の中間端部(47)を有し、前記ボイラプレート(30)および前記復水器管(42)が、動作流体を受け取るための蒸気チャンバ(54)をそれらの間に画定する複数の復水器管(42)と、
    前記復水器管(42)の隣接する各々の対の間を延びた複数の回旋フィン(58)とを備えた熱サイホン(12)。
  18. 前記復水器管(42)の各々が、複数の前記横方向隔壁(48)を備えた、請求項17に記載の熱サイホン(12)。
  19. 前記横方向隔壁(48)の頂部が、前記復水器管(42)の頂部(46)と共に、それらの間に隙間(52)を画定する、請求項18に記載の熱サイホン(12)。
  20. 前記複数の回旋フィン(58)が、前記ボイラプレート(30)に実質的に平行な空気通路を画定するべく配向された、請求項19に記載の熱サイホン(12)。
  21. 前記複数の横方向隔壁(48)が、寸法「w」(49)だけ互いに間隔を隔て、かつ、前記復水器管(42)が、寸法「w」(49)に平行に、比率w/Dが式0.1≦w/D≦0.5の範囲内に入る寸法「D」の深さを有する、請求項18に記載の熱サイホン(12)。
  22. 最も外側の復水器管(42)の各々の最も外側の壁(44)に固定された第2の回旋フィン(60)をさらに備えた、請求項17に記載の熱サイホン(12)。
  23. 前記ピラミッド形フィン(40)が複数の階段(74)を備えた、請求項17に記載の熱サイホン(12)。
  24. 前記ピラミッド形フィン(40)の前記階段(74)が複数の面(68)を備え、さらに前記面(68)が粗構造を有する、請求項23に記載の熱サイホン(12)。
  25. 前記ボイラプレート(30)が、前記ボイラプレートの中央部分(34)の厚さより分厚い末端部分(36)を備えた、請求項17に記載の熱サイホン(12)。
  26. 前記末端部分(36)の頂部表面(33)が、前記蒸気チャンバ(54)内に保持されている動作流体を中央部分(34)に向けて導くための凹表面を画定する、請求項25に記載の熱サイホン(12)。
  27. 電子デバイス(8)を冷却するためのヒートシンクアセンブリ(10)であって、前記ヒートシンクアセンブリ(10)が、
    シュラウド(16)内に収納された、前記シュラウド(16)を通して空気流を軸方向に導くための空気移動装置(14)と、
    一方の端部に前記シュラウド(16)が取り付けられ、前記シュラウド(16)と流体連絡しているダクト(18)と、
    前記ダクト(18)の第2の端部に取り付けられ、前記ダクト(18)と流体連絡している熱サイホン(12)とを備え、
    前記熱サイホン(12)が、
    上に向かって突出した複数のピラミッド形フィン(40)を備えた頂部表面(33)を有し、かつ、冷却する電子デバイス(8)を受け入れるための底部表面(32)をさらに有するボイラプレート(30)と、
    前記ボイラプレート(30)の上方に、間隔を隔てて取り付けられた複数の復水器管(42)であって、前記ボイラプレート(30)および前記復水器管(42)が、動作流体を受け取るための蒸気チャンバ(54)をそれらの間に画定する複数の復水器管(42)と、
    前記復水器管(42)の隣接する各々の対の間を延びた複数の回旋フィン(58)とを備えることを特徴とする、ヒートシンクアセンブリ(10)。
  28. 前記ダクト(18)が、長さ「X」(20)を有し、
    前記熱サイホン(12)が、幅「L」(26)および高さ「H」(24)を有し、さらに前記ダクト(18)の長さ「X」が、0.1≦X/√(LH)≦0.3の関係によって決定される、請求項27に記載のヒートシンクアセンブリ(10)。
JP2003166406A 2002-07-18 2003-06-11 高性能沸騰表面および凝縮表面を備えたエレクトロニクス冷却用熱サイホン Expired - Fee Related JP3779964B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/198,321 US6588498B1 (en) 2002-07-18 2002-07-18 Thermosiphon for electronics cooling with high performance boiling and condensing surfaces

Publications (2)

Publication Number Publication Date
JP2004056121A true JP2004056121A (ja) 2004-02-19
JP3779964B2 JP3779964B2 (ja) 2006-05-31

Family

ID=22732887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166406A Expired - Fee Related JP3779964B2 (ja) 2002-07-18 2003-06-11 高性能沸騰表面および凝縮表面を備えたエレクトロニクス冷却用熱サイホン

Country Status (4)

Country Link
US (1) US6588498B1 (ja)
EP (1) EP1383369B1 (ja)
JP (1) JP3779964B2 (ja)
DE (1) DE60315096T2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050326A (ja) * 2008-08-22 2010-03-04 Denso Corp 冷却装置
WO2010058520A1 (ja) * 2008-11-18 2010-05-27 日本電気株式会社 沸騰冷却装置
US9557117B2 (en) 2008-10-29 2017-01-31 Nec Corporation Cooling structure, electronic device using same, and cooling method
WO2019172221A1 (ja) * 2018-03-05 2019-09-12 住友精密工業株式会社 航空機エンジン用の熱交換器

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125630A (en) * 1995-10-27 2000-10-03 Tuff Torq Corporation Axle driving apparatus
TW556328B (en) * 2001-05-11 2003-10-01 Denso Corp Cooling device boiling and condensing refrigerant
JP2003214750A (ja) * 2002-01-23 2003-07-30 Twinbird Corp サーモサイフォン
US6834713B2 (en) * 2002-07-18 2004-12-28 Delphi Technologies, Inc. Thermosiphon for electronics cooling with nonuniform airflow
US6881039B2 (en) * 2002-09-23 2005-04-19 Cooligy, Inc. Micro-fabricated electrokinetic pump
US7836597B2 (en) 2002-11-01 2010-11-23 Cooligy Inc. Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
DE10393588T5 (de) 2002-11-01 2006-02-23 Cooligy, Inc., Mountain View Optimales Ausbreitungssystem, Vorrichtung und Verfahren für flüssigkeitsgekühlten, mikroskalierten Wärmetausch
US6840311B2 (en) * 2003-02-25 2005-01-11 Delphi Technologies, Inc. Compact thermosiphon for dissipating heat generated by electronic components
US6938680B2 (en) * 2003-07-14 2005-09-06 Thermal Corp. Tower heat sink with sintered grooved wick
US7591302B1 (en) 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system
US7021369B2 (en) * 2003-07-23 2006-04-04 Cooligy, Inc. Hermetic closed loop fluid system
US6918431B2 (en) * 2003-08-22 2005-07-19 Delphi Technologies, Inc. Cooling assembly
US6789610B1 (en) * 2003-08-28 2004-09-14 Hewlett-Packard Development Company, L.P. High performance cooling device with vapor chamber
CN1314112C (zh) * 2004-01-08 2007-05-02 杨洪武 发热电子元件的热管散热器
CN100405588C (zh) * 2004-03-16 2008-07-23 杨洪武 外侧导流集成热管散热器
US7142424B2 (en) * 2004-04-29 2006-11-28 Hewlett-Packard Development Company, L.P. Heat exchanger including flow straightening fins
US7509995B2 (en) * 2004-05-06 2009-03-31 Delphi Technologies, Inc. Heat dissipation element for cooling electronic devices
US7353860B2 (en) * 2004-06-16 2008-04-08 Intel Corporation Heat dissipating device with enhanced boiling/condensation structure
US20060039111A1 (en) * 2004-08-17 2006-02-23 Shine Ying Co., Ltd. [high-performance two-phase flow evaporator for heat dissipation]
US7212403B2 (en) * 2004-10-25 2007-05-01 Rocky Research Apparatus and method for cooling electronics and computer components with managed and prioritized directional air flow heat rejection
US20060196640A1 (en) * 2004-12-01 2006-09-07 Convergence Technologies Limited Vapor chamber with boiling-enhanced multi-wick structure
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
US7506682B2 (en) 2005-01-21 2009-03-24 Delphi Technologies, Inc. Liquid cooled thermosiphon for electronic components
TWI311363B (en) * 2005-04-22 2009-06-21 Foxconn Tech Co Ltd Boiling chamber cooling device
US7913719B2 (en) 2006-01-30 2011-03-29 Cooligy Inc. Tape-wrapped multilayer tubing and methods for making the same
US8157001B2 (en) 2006-03-30 2012-04-17 Cooligy Inc. Integrated liquid to air conduction module
US20070227701A1 (en) * 2006-03-31 2007-10-04 Bhatti Mohinder S Thermosiphon with flexible boiler plate
US7556089B2 (en) * 2006-03-31 2009-07-07 Coolit Systems, Inc. Liquid cooled thermosiphon with condenser coil running in and out of liquid refrigerant
US7715194B2 (en) 2006-04-11 2010-05-11 Cooligy Inc. Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
US7422052B2 (en) * 2006-04-20 2008-09-09 Delphi Technologies, Inc. Low profile thermosiphon
US20070246193A1 (en) * 2006-04-20 2007-10-25 Bhatti Mohinder S Orientation insensitive thermosiphon of v-configuration
WO2007130668A2 (en) * 2006-05-06 2007-11-15 Articchoke Enterprises Llc Phase-separated evaporator, blade-thru condenser and heat dissipation system thereof
US7661465B2 (en) * 2006-08-16 2010-02-16 Hon Hai Precision Industry Co., Ltd. Integrated cooling system with multiple condensing passages for cooling electronic components
US7408778B2 (en) * 2006-09-11 2008-08-05 International Business Machines Corporation Heat sinks for dissipating a thermal load
US20080093058A1 (en) * 2006-10-24 2008-04-24 Jesse Jaejin Kim Systems and methods for orientation and direction-free cooling of devices
US7766076B2 (en) * 2007-03-23 2010-08-03 Rocky Research Spot cooler for heat generating electronic components
JP4899997B2 (ja) * 2007-03-30 2012-03-21 日本電気株式会社 サーマルサイフォン式沸騰冷却器
US7650928B2 (en) * 2007-03-30 2010-01-26 Coolit Systems Inc. High performance compact thermosiphon with integrated boiler plate
US20100132924A1 (en) * 2007-04-27 2010-06-03 National University Of Singapore Cooling device for electronic components
TW200934352A (en) 2007-08-07 2009-08-01 Cooligy Inc Internal access mechanism for a server rack
US9297571B1 (en) 2008-03-10 2016-03-29 Liebert Corporation Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
US8250877B2 (en) 2008-03-10 2012-08-28 Cooligy Inc. Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
CN102149266A (zh) * 2010-02-04 2011-08-10 台烨科技股份有限公司 均温板
CN102130080B (zh) * 2010-11-11 2012-12-12 华为技术有限公司 一种散热装置
CN102595861B (zh) * 2012-03-12 2014-12-31 华南理工大学 一种带内烧结结构支撑柱的均热板
US20150257249A1 (en) * 2014-03-08 2015-09-10 Gerald Ho Kim Heat Sink With Protrusions On Multiple Sides Thereof And Apparatus Using The Same
WO2016053227A1 (en) * 2014-09-29 2016-04-07 Hewlett Packard Enterprise Development Lp Fan controlled ambient air cooling of equipment in a controlled airflow environment
DK3115729T3 (en) 2015-07-09 2019-04-01 Abb Schweiz Ag HEAT EXCHANGE
EP3365915A4 (en) * 2016-02-16 2019-05-29 Siemens Aktiengesellschaft RADIATOR AND ELECTRICAL DEVICE
CN106197100B (zh) * 2016-07-01 2018-02-06 电子科技大学 一种硅基均热型复合平板热管均热器
TWI645155B (zh) * 2018-02-27 2018-12-21 雙鴻科技股份有限公司 散熱裝置
US20220232736A1 (en) * 2019-05-21 2022-07-21 Antpool Technologies Limited Cooling device and data processing apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027728A (en) * 1975-03-31 1977-06-07 Mitsubishi Denki Kabushiki Kaisha Vapor cooling device for semiconductor device
DE4121534C2 (de) * 1990-06-30 1998-10-08 Toshiba Kawasaki Kk Kühlvorrichtung
JPH07106478A (ja) * 1993-10-07 1995-04-21 Nippondenso Co Ltd 沸騰冷却装置及びその製造方法
JP3451737B2 (ja) * 1994-09-06 2003-09-29 株式会社デンソー 沸騰冷却装置
JP3487374B2 (ja) * 1994-12-28 2004-01-19 株式会社デンソー 沸騰冷却装置
TW307837B (ja) * 1995-05-30 1997-06-11 Fujikura Kk
JPH10154781A (ja) * 1996-07-19 1998-06-09 Denso Corp 沸騰冷却装置
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
JPH11330329A (ja) * 1998-05-20 1999-11-30 Denso Corp 沸騰冷却装置
JP2000161879A (ja) * 1998-11-20 2000-06-16 Fujikura Ltd 平板状ヒートパイプ
US6341646B1 (en) * 1998-11-20 2002-01-29 Denso Corporation Cooling device boiling and condensing refrigerant
JP2000180080A (ja) * 1998-12-15 2000-06-30 Calsonic Kansei Corp ヒートパイプ式放熱器
US6360814B1 (en) * 1999-08-31 2002-03-26 Denso Corporation Cooling device boiling and condensing refrigerant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050326A (ja) * 2008-08-22 2010-03-04 Denso Corp 冷却装置
US9557117B2 (en) 2008-10-29 2017-01-31 Nec Corporation Cooling structure, electronic device using same, and cooling method
WO2010058520A1 (ja) * 2008-11-18 2010-05-27 日本電気株式会社 沸騰冷却装置
JP5678662B2 (ja) * 2008-11-18 2015-03-04 日本電気株式会社 沸騰冷却装置
US9297589B2 (en) 2008-11-18 2016-03-29 Nec Corporation Boiling heat transfer device
WO2019172221A1 (ja) * 2018-03-05 2019-09-12 住友精密工業株式会社 航空機エンジン用の熱交換器

Also Published As

Publication number Publication date
DE60315096D1 (de) 2007-09-06
EP1383369A3 (en) 2005-04-06
DE60315096T2 (de) 2008-04-10
EP1383369B1 (en) 2007-07-25
EP1383369A2 (en) 2004-01-21
JP3779964B2 (ja) 2006-05-31
US6588498B1 (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP3779964B2 (ja) 高性能沸騰表面および凝縮表面を備えたエレクトロニクス冷却用熱サイホン
US6834713B2 (en) Thermosiphon for electronics cooling with nonuniform airflow
US6714413B1 (en) Compact thermosiphon with enhanced condenser for electronics cooling
US7509995B2 (en) Heat dissipation element for cooling electronic devices
CN111106411B (zh) 一种基于环路热管和相变材料耦合冷却的动力电池模块
US8837139B2 (en) Flat heat pipe radiator and application thereof
US7204299B2 (en) Cooling assembly with sucessively contracting and expanding coolant flow
US20100073866A1 (en) Cooling device and electronic equipment including cooling device
US20070246193A1 (en) Orientation insensitive thermosiphon of v-configuration
US7650928B2 (en) High performance compact thermosiphon with integrated boiler plate
US20060289146A1 (en) Thermal module incorporating heat pipe
JP6228730B2 (ja) ラジエータ、電子装置及び冷却装置
JP6358872B2 (ja) 発熱素子用沸騰冷却器
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
CN116931698B (zh) 一体式液冷散热器
JP2010080507A (ja) 電子装置
JP2005210088A (ja) 密閉筐体内冷却装置
CN208796185U (zh) 散热器
CN211352922U (zh) 一种用于光伏逆变器的新型散热器结构
JP3924674B2 (ja) 発熱素子用沸騰冷却器
CN115036279A (zh) 散热装置和冷却单元
JP5860728B2 (ja) 電子機器の冷却システム
JP2004047789A (ja) ヒートシンク
CN220326107U (zh) 一种水冷散热降温装置
CN219780755U (zh) 一种热交换器和电子机柜

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051005

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees