JP2004053607A - 酸化窒素の濃度を測定する電気化学式の測定センサ - Google Patents

酸化窒素の濃度を測定する電気化学式の測定センサ Download PDF

Info

Publication number
JP2004053607A
JP2004053607A JP2003198547A JP2003198547A JP2004053607A JP 2004053607 A JP2004053607 A JP 2004053607A JP 2003198547 A JP2003198547 A JP 2003198547A JP 2003198547 A JP2003198547 A JP 2003198547A JP 2004053607 A JP2004053607 A JP 2004053607A
Authority
JP
Japan
Prior art keywords
pump
electrode
pump cell
gas
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003198547A
Other languages
English (en)
Inventor
Werner Gruenwald
ヴェルナー グリューンヴァルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2004053607A publication Critical patent/JP2004053607A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Abstract

【課題】構造が簡潔であり且つ製造コストが低減された測定センサを提供する。
【解決手段】第1のポンプセルの第2の電極も同様に基準ガスに曝す。
【選択図】   なし

Description

【0001】
【発明の属する技術分野】
本発明は、測定ガス、例えば自動車の内燃機関の排ガスにおける酸化窒素の濃度を測定する電気化学式の測定センサであって、酸素イオン伝導性の固体電解質及びこの固体電解質に配置され、第1のポンプ電圧がかかっている一対の電極を包含する第1のポンプセルを有し、これらの電極のうち、第1の電極には拡散区間にわたり測定ガスが加えられ、ガス流方向において第1のポンプセルの後方に配置されており、酸素イオン伝導性の固体電解質及びこの固体電解質に配置され、第2のポンプ電圧がかかっている一対の電極を包含する第2のポンプセルを有し、これらの電極のうち、第1の電極は前記第1のポンプセルから発生するガス容量に曝されており、第2の電極は基準ガスに曝されている、測定センサに関する。
【0002】
【従来の技術】
このようなの公知の測定センサ(EP 0 678 740 B1)では、2つのポンプセルの第1の電極がそれぞれ1つの内部空間に配置されており、これらの内部空間のうち第1の内部空間は第1の拡散バリアを介して測定ガスが加えられ、第2の内部空間は第2の拡散バリアを介して第1の内部空間と接続されている。第1の内部空間内にはさらに測定電極またはネルンスト電極が配置されており、この電極は基準ガス路内に配置されている基準電極と共にネルンストセルを形成する。第1のポンプセルの第2の電極は固体電解質の外面において測定ガスに曝されている。第1の電極にはポンプ電圧または直流電圧が印加され、この電圧は第1の内部空間と基準ガス路との間の濃度差に基づきネルンストセル内に形成された電圧によって制御される。第1のポンプセルにおいて制御されるポンプ電圧を用いることにより第1の内部空間では、一定の値を有する酸素粒子圧が生じる。第1の内部空間における第1の電極は触媒作用の無い材料から成り、また第1のポンプセルにおけるポンプ電圧は、第1の内部空間に侵入する酸化窒素が分解されないように調節されている。第1の内部空間におけるガス容量は第2の拡散バリアを介して第2の内部空間へと供給される。第2のポンプセルの第1の電極は触媒作用の有る材料から成り、また第2のポンプセルには一定のポンプ電圧または直流電圧が印加される。第2の内部空間においては酸化窒素が分解されて、自由になった酸素イオンがポンプ電圧によって第2の内部空間から排出される。この際第2のポンプセルを介して流れ、測定されるポンプ電流は測定ガスにおける酸化窒素の濃度の尺度である。
【0003】
【特許文献1】
欧州特許(EP−B1)第0678740号明細書
【0004】
【発明が解決しようとする課題】
本発明の課題は、構造が簡潔であり且つ製造コストが低減された測定センサを提供することである。
【0005】
【課題を解決するための手段】
この課題は、第1のポンプセルの第2の電極も同様に基準ガスに曝されていることによって解決される。
【0006】
【発明の実施の形態】
請求項1記載の特徴を有する本発明による測定センサは以下の利点を有する。すなわち、第1のポンプセルの第2の電極が基準ガス路内に配置されることによって、第1のポンプセルが酸素を測定ガスにではなく、基準ガスに排出する。これによって、第1のポンプセルにおけるポンプ電圧を制御するための、前述した公知の測定センサに設けられているネルンストセルを省略することができる。測定センサの構造は簡潔になり、製造コストは低減される。第1のポンプセルを介して流れるポンプ電流は、測定ガスにおける酸素濃度と実質的に線形の関係にあるので、測定センサを、信号電流としての第1のポンプセルを介して流れるポンプ電流を用いて、測定ガスにおける酸素濃度の測定にも使用することができる。
【0007】
別の請求項に記載されている措置によって請求項1に記載されている測定センサの有利な実施形態及び改善形態が考えられる。
【0008】
本発明の有利な実施形態によれば、2つのポンプセルの第1の電極がそれぞれ第1の内部空間及び第2の内部空間に配置されており、これらの内部空間のうち第1の内部空間は測定ガスと接続しており、第2の内部空間は第1の内部空間と接続している。第1のポンプセルの第1の電極に配属されている拡散区間は第1の内部空間内に形成されている。
【0009】
本発明の有利な実施形態によれば拡散区間は第1のポンプセルの第1の電極自体によって形成されており、この第1の電極は第1の内部空間全体を充填する。この措置は製造コストを低減し、測定センサの構造の高さを低くすることに寄与する。
【0010】
本発明の択一的な実施形態では拡散区間として、第1の内部空間に形成されている拡散路を設けることができ、この拡散路は選択的にさらに多孔性の拡散材料でもって充填することができる。
【0011】
本発明の有利な実施形態では、第2のポンプセルの第1の電極に接続されている拡散区間が省略されており、第1の内部空間と第2の内部空間との間には空隙が配置されており、この空隙内では第1の内部空間から発生したガス容量がガス成分濃度に関して均質化される。ほぼ一定の粒子圧が生じる空隙は第2のポンプセルのためのガスタンクとして使用され、このガスタンクから第2のポンプセルを介して継続的にガスが排出される。
【0012】
本発明の有利な実施形態では空隙を完全に省略することができ、第2の内部空間は直接に第1の内部空間と接続される。第1のポンプセルの第1の電極は、第1の内部空間と第2の内部空間との間の接続部において、一定の十分に低い酸素濃度が達成されるように設計されている。両方の事例において第2のポンプセルの第1の電極は第2の内部空間を完全に充填する。しかしながら択一的に第2の内部空間に(第1の内部空間と同様に)、拡散材料で充填することができる拡散路を設けることができる。
【0013】
本発明の有利な実施形態によれば第1のポンプ電圧には、第1の内部空間における触媒作用の無い材料例えば白銀及び金から成る第1の電極での酸化窒素の分解が回避されるような高さの直流電圧が印加される。第2のポンプセルに印加される電圧は実質的に第1のポンプ電圧よりもより高い電圧であるので、第2の内部空間では、触媒作用のある材料例えば白銀からなる第1の電極において酸化窒素の分解が行われ、この分解の際に自由になった酸素イオンは基準ガス路に排出される。第2のポンプセルを介して流れるポンプ電流は、測定ガスにおける酸素残余濃度と酸化窒素濃度の尺度である。第1のポンプセルのポンプ電流を用いて測定可能な排ガスにおける酸素濃度が差し引かれると、測定ガスにおける酸化窒素の濃度が求められる。
【0014】
測定ガスにおける酸化窒素の濃度をより正確に検出するために、酸素平衡濃度を第1の内部空間と第2の内部空間との間の接続部では非常に局限された限界内で一定に保つことが必要であることが証明されている。何故ならば濃度の検出は、変動の影響が僅かである場合ですら測定ガスにおける酸素濃度に依存するからである。これを達成するために本発明の有利な実施形態によれば、第1のポンプセルにおけるポンプ電圧が測定ガスにおける酸素濃度に適合される。
【0015】
このために本発明の有利な実施形態によれば、第1のポンプセルを介して流れるポンプ電流と酸素濃度との関係がポンプ電圧と共にパラメータとして特性マップに記憶されている。第1のポンプセルを介して流れるポンプ電流が測定され、測定値を用いて特性マップから酸素濃度の目下の変化が得られる。測定ガスにおける酸素濃度と濃度変化の比から、電圧変化量が算出される。
【0016】
本発明を図面に示した実施例に基づき以下詳細に説明する。
【0017】
【実施例】
測定ガス、有利には自動車の内燃機関の排ガスにおける酸化窒素の濃度を測定する、図1に概略的に示された電気化学式の測定センサは、ガス感応型のセンサ素子10を有し、このセンサ素子10の原理的な構造が図1に断面図でもって示されている。通常の場合、センサ素子10は測定センサケーシング内に取り付けられており、この測定センサケーシングは内燃機関の排ガスパイプに、センサ素子10が内燃機関の排ガスに曝されているように設置されている。
【0018】
プレーナ層技術において形成されているセンサ素子10は例えば複数の固体電解質層11を有する。固体電解質層11はセラミックフィルムとして実施されており、平坦なセラミック基体を形成する。平坦なセラミック基体が統合されている形状は、機能層がプリントされたセラミックフィルムを一緒にラミネートし、引き続きラミネートされた構造を焼結することによって製造される。各固体電解質層は、例えばイットリウムで安定化されるジルコニウム酸化物(ZrO)のような酸素イオン伝導性の固体電解質材料から製造されている。
【0019】
センサ素子10は第1のポンプセル12と第2のポンプセル13とを包含し、第1のポンプセル12には実施例の構成では、以下ポンプ電圧Uと称する、限界内で適合可能な一定の直流電圧がかかっており、第2のポンプセル13には以下ポンプ電圧Uと称する一定の直流電圧がかかっている。各ポンプセル12ないし13はポンプ電圧UないしUがかかっている一対の電極を包含し、これらの電極は固体電解質に配置されている。このために上側の固体電解質層11aと後続の固体電解質層11cとの間に配置されている非常に薄い固体電解質層11b内には、2つの内部空間14、15が形成されており、これら2つの内部空間14、15のうち第1の内部空間14は測定ガス環境に対するガス侵入開口部24を有し、第2の内部空間15は空隙16を介して第1の内部空間14と繋がっている。測定ガス環境は図1では流れ矢印27によって記号でもって表されている。層結合部における後続の固体電解質層11dには基準ガス路17が形成されており、この基準ガス路17には基準ガス17が加えられており、例えば大気と接続されている。下側の2つの固体電解質層11eと11fとの間には抵抗加熱器18が配置されており、この抵抗加熱器は例えば酸化アルミニウム(Al)から成る電気的な絶縁部19に埋め込まれている。加熱電圧がかかっている抵抗加熱器18は2つの内部空間14、15にわたって延在するので、これら2つの内部空間はほぼ同一の温度レベルで加熱される。
【0020】
第1のポンプセル12の2つの電極のうち、第1の電極20は第1の内部空間14に配置されており、この第1の内部空間を完全に充填する。ここで第1の電極20は、第1の内部空間14に侵入する測定ガスのための拡散区間を形成するように実施されている。第1の電極20は触媒作用の無い材料、例えば白銀及び金から製造されている。第1のポンプセル12の第2の電極21は基準ガス路17に配置されている。第1のポンプセル12には、ポンプ電圧Uの比較的高い電位が第2の電極21におかれるように、このポンプ電圧Uがかかっている。
【0021】
第2のポンプセル13の2つの電極のうち、第1の電極22は第2の内部空間15に配置されており、この第2の内部空間を完全に充足する。この第1の電極22は触媒作用の有る材料、例えば白銀から製造されている。第2のポンプセル13の第2の電極23は同様に基準ガス路17に配置されている。ポンプセル13には、ポンプ電圧Uの比較的高い電位が第2の電極23におかれるように、このポンプ電圧U2がかかっている。基準ガス路17における2つのポンプセル12、13の2つの第2の電極21、23は、1つの電極層に一体化されており、この電極層は相互に並んで配置されている2つの内部空間14、15及び基準ガス路17の全体の長さにわたって延在する。
【0022】
第1のポンプセル12にポンプ電圧U、例えば150mVが印加されると、第1のポンプセル12を介してポンプ電流Iが流れて、第1の内部空間14から基準ガス路17へと酸素イオンが排出されることにより、第1の内部空間14の端部には一定の酸素粒子圧ないし一定の酸素濃度が生じる。
【0023】
図3には、第1のポンプセル12の第1の電極20の長さにわたる第1の内部空間14における酸素濃度Cの経過が、測定ガスないし排ガスにおける3つの異なる酸素濃度について示されている。例として、曲線aは10−9mol/mmの測定ガスにおける酸素濃度の経過、曲線bは10−10mol/mmの測定ガスにおける酸素濃度の経過、曲線cは10−11mol/mmの測定ガスにおける酸素濃度の経過をそれぞれ表している。図3から分かるように、第1の電極20の後方の領域においては、基準ガス(空気)に対するポンプ電圧Uに所属する、例えば1000ppmの酸素の平衡濃度が生じる。例えば僅か150mVの低いポンプ電圧Uが、ポンプ電圧が比較的高い場合には第1の電極20の触媒作用の無い材料が、第1の内部空間14における酸化窒素の分解を阻止する。この実施例ではガス容量の流れ方向において2つの内部空間14、15と同一の断面を有するが、この断面においては何倍か大きくすることができる、第1の内部空間の後方に配置されている空隙16内では、例えば1000ppmでわる酸素のこの端部濃度が生じる。
【0024】
第2のポンプセル13に、実質的に第1のポンプセル12に印加されるポンプ電圧Uよりも高い例えば400mVの一定のポンプ電圧Uが印加されると、空隙16からは第2のポンプセル13によって継続的にガスが第2の内部空間15へと排出される。ポンプ電圧Uが高い場合、第2のポンプセル13の第1の電極22の触媒作用の有る材料が触媒的に作用する場合には、第2の内部空間15において酸化窒素が分解され、自由になった酸素イオンが固体電解質層11cを介して基準ガス路17に排出される。
【0025】
図3には、第2のポンプセル13の第1の電極22の長さsにわたる酸素濃度Cが、この図3においては例として0、50及び100ppmで示されている測定ガスにおける酸化窒素の3つの異なる濃度について示されている。第2のポンプセル13を介して流れるポンプ電流Iは、一定の酸素残余濃度R(図1)も含む酸化窒素濃度に対する尺度である。この酸素残余濃度Rを取り除くと、測定ガスにおける純粋な酸化窒素濃度が求められる。
【0026】
図4には、内部空間14から基準ガス路17へとポンプセル12を介して酸素が排出されることにより流れるポンプ電流Iと、測定ガスにおける酸素濃度Cとの関係が示されている。酸素濃度Cと実際的に線形の関係にあるポンプ電流Iが示されており、測定センサを付加的に測定ガスにおける酸素濃度を測定するためにも使用することができる。
【0027】
空隙16内に生じた酸素の平衡濃度は絶対的に一定ではなく、局限された限界であっても測定ガス内の酸素濃度に依存して変動することが示されている。図5には、ポンプ電圧U=0.2Vであるときの濃度C=10−9mol/mm(曲線a)及び同様にポンプ電圧Uが0.2Vであるときの濃度C=10−11mol/mm(曲線b)の、第1の内部空間14における第1の電極20の長さsにわたる酸素濃度Cの経過が示されている。この曲線経過は図5の領域VIに関しては図6に拡大されて示されている。測定ガスにおける酸素濃度が変化する際には、第1の電極20の端部及び空隙16における酸素平衡濃度も同様に、僅かではあるが、変化することがはっきりと見て取れる。その結果、第2のポンプセル13において流れるポンプ電流Iは、酸素残余濃度Rに起因する成分に関してもはや厳密には一定でなく、測定ガスにおける酸素濃度に依存するので、測定された酸化窒素の濃度の質は下がる。
【0028】
非常に正確な測定を保証するために、第1のポンプセル12における電圧Uは測定ガスにおける酸素濃度に依存して、したがって第1のポンプセル12を介して流れるポンプ電流Iに依存して変えられる。このために特性マップが使用され、この特性マップには第1のポンプセル12を介して流れるポンプ電流Iと測定ガスにおける酸素濃度Cとの関係がポンプ電圧Uと共にパラメータとして記憶されている。第1のポンプセル12を介して流れるポンプ電流Iが測定され、測定値を用いて特性マップから酸素濃度の目下の変化ΔCが得られる。測定ガスにおける酸素の濃度Cと濃度変化ΔCとの比から、必要とされる電圧変化ΔUの量が
【0029】
【数1】
Figure 2004053607
【0030】
により算出され、ここで定数Kはネルンストの式から算定される。各10位はΔC/C=0.9の比であり、この10位だけ測定ガスにおける酸素の濃度は変化する。
【0031】
図5及び図6に示されている例では曲線aと曲線bとの間の濃度変化は10−2mol/mmであり、すなわち濃度は10位2つだけ変化する。例として10−9mol/mmから10−11mol/mmへと濃度が下がる際の電圧降下ΔUが2・(−0.014)V=−0.028Vである場合、実質的な領域においては曲線aと被る曲線cが生じる。この電圧降下ΔUに基づき、第1のポンプセル12の第1の電極20の端部領域における酸素濃度は絶対的に一定にとどまり、測定ガスにおける酸素の濃度の依存性を全く示さない。したがって、空隙16内に存在する酸素濃度に起因する、第2のポンプセル13のポンプ電流Iに包含される電流成分Rも一定であり、この一定の電流成分Rを差し引くことにより酸化窒素濃度を非常に正確に検出することができる。
【0032】
そのようにして第1のポンプセル12に印加されるポンプ電圧U1を測定ガスにおける酸素濃度の変化に適合させる場合には、第1の内部空間14から発生するガス容量をそのガス成分濃度に関して均質化するための、2つの内部空間14、15の間の空隙16を省略することができ、2つの内部空間14、15をその電極の位置と共に相互に近付くように移行させることができる。
【0033】
センサ素子10の図2に示した修正形態では、内部空間14、15内に第1のポンプセル12ないし第2のポンプセル13の第1の電極20ないし22にはそれぞれ拡散区間が接続されている。この拡散区間は拡散路25ないし26から構成されており、この拡散路を図2に示しているように、多孔性の拡散材料例えばAlでもって充填することができる。拡散材料を省略する場合には、拡散路25は構造的に、ガス侵入開口部24を介する第1の内部空間14への測定ガスの流入が妨げられていないにもかかわらず、第1のポンプセル12の第1の電極20の端部において十分低く一定の酸素濃度が生じるように実施される必要がある。
【図面の簡単な説明】
【図1】測定センサの断面図を概略的に示したものである。
【図2】修正された測定センサの図1と同様の概略図である。
【図3】図1の測定センサにおける2つの並んで配置されたポンプセルの第1の電極の長さにわたる酸素濃度の経過グラフである。
【図4】図1の測定センサにおけるポンプセルを介して流れるポンプ電流と測定ガスにおける酸素濃度との関係を示すグラフである。
【図5】測定ガスにおける2つの異なる酸素濃度及び第1のポンプセルにおける異なるポンプ電圧に関する、第1のポンプセルの電極の長さにわたる酸素濃度の経過グラフである。
【図6】図5のグラフにおける部分VIの拡大図である。
【符号の説明】
10 センサ素子、 11 固体電解質、 12 第1のポンプセル、 13第2のポンプセル、 14 第1の内部空間、 15 第2の内部空間、 16空隙、 17 基準ガス路、 18 抵抗加熱器、 19 絶縁部、 20、22 第1の電極、 21、23 第2の電極、 24 ガス侵入開口部、 25、26 拡散路

Claims (16)

  1. 測定ガス、例えば自動車の内燃機関の排ガスにおける酸化窒素の濃度を測定する電気化学式の測定センサであって、
    酸素イオン伝導性の固体電解質及び該固体電解質に配置され、第1のポンプ電圧(U)がかかっている一対の電極(20、21)を包含する第1のポンプセル(12)を有し、該電極(20、21)のうち、第1の電極(20)には拡散区間にわたり測定ガスが加えられ、
    ガス流方向において前記第1のポンプセル(12)の後方に配置されており、酸素イオン伝導性の固体電解質及び該固体電解質に配置され、第2のポンプ電圧(U)がかかっている一対の電極(22、23)を包含する第2のポンプセル(13)を有し、該第2のポンプセル(13)は該電極(22、23)のうち、第1の電極(22)は前記第1のポンプセル(12)から発生するガス容量に曝されており、前記第2の電極(23)は基準ガスに曝されている、電気化学式の測定センサにおいて、
    前記第1のポンプセル(12)の第2の電極(21)も同様に基準ガスに曝されていることを特徴とする、電気化学式の測定センサ。
  2. 前記ポンプセル(12、13)の第1の電極(20、22)は、それぞれ第1の内部空間(14)及び第2の内部空間(15)に配置されており、該内部空間のうち、第1の内部空間(14)は測定ガスと接続しており、第2の内部空間(15)は該第1の内部空間(14)と接続しており、
    前記拡散区間は該第1の内部空間(14)内に形成されている、請求項1記載の測定センサ。
  3. 前記拡散区間は前記第1のポンプセル(12)の第1の電極(20)自体によって形成されており、該第1の電極(20)は前記第1の内部空間(14)全体を充填する、請求項2記載の測定センサ。
  4. 前記拡散区間は前記第1の内部空間(14)において、前記第1のポンプセル(12)の第1の電極(20)の上に延在する拡散路(25)として形成されている、請求項2記載の測定センサ。
  5. 前記拡散路(25)は多孔性の拡散材料でもって充填されている、請求項4記載の測定センサ。
  6. 前記第1のポンプセル(12)の前記第1の電極(20)は触媒作用の無い材料から構成されている、請求項1から5のいずれか1項記載の測定センサ。
  7. 前記第1の内部空間(14)と前記第2の内部空間(15)との間には、該内部空間(14、15)と接続されている空隙(16)が形成されている、請求項2から6のいずれか1項記載の測定センサ。
  8. 前記空隙(16)の断面は、該空隙(16)における内部空間(14、15)の合流部断面の数倍である、請求項7記載の測定センサ。
  9. 前記第2のポンプセル(13)の第1の電極(22)には拡散区間が配置されている、請求項1から6のいずれか1項記載の測定センサ。
  10. 前記拡散区間は、前記第2のポンプセル(13)の第1の電極(22)自体によって形成されており、該第1の電極(22)は第2の内部空間(15)全体を充填する、請求項9記載の測定センサ。
  11. 前記拡散区間は前記第2の内部空間(15)において、前記第2のポンプセル(13)の第1の電極(22)の上に延在する拡散路(26)として形成されている、請求項9記載の測定センサ。
  12. 前記拡散路(26)は多孔性の拡散材料でもって充填されている、請求項11記載の測定センサ。
  13. 前記第1のポンプ電圧(U)は直流電圧であり、該直流電圧の電圧値は、ガス容量に包含されている酸化窒素の分解が回避されるように選定されており、前記第2のポンプ電圧(U)は該第1のポンプ電圧(U)よりも高い電圧値を有する一定の直流電圧である、請求項1から12のいずれか1項記載の測定センサ。
  14. 前記第1のポンプ電圧(U)は、前記測定ガスにおける酸素濃度の変化に適合される、請求項13記載の測定センサ。
  15. 前記第1のポンプ電圧(U)の適合は、前記第2のポンプセル(13)の第1の電極(22)に到達するガス容量における酸素濃度が前記測定ガスにおける酸素濃度に影響されないように行われている、請求項14記載の測定センサ。
  16. 特性マップには、前記第1のポンプセル(12)を介して流れるポンプ電流(I)と酸素濃度(C)との関係がポンプ電圧(U)と共にパラメータとして記憶されており、
    前記第1のポンプセル(12)を介して流れるポンプ電流(I)が測定され、測定値を用いて前記特性マップから酸素濃度の目下の変化(ΔC)が得られ、前記測定ガスにおける酸素の濃度(C)と濃度変化(ΔC)との比から、電圧変化量(ΔU)が算出される、請求項13から15のいずれか1項記載の測定センサ。
JP2003198547A 2002-07-17 2003-07-17 酸化窒素の濃度を測定する電気化学式の測定センサ Pending JP2004053607A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10232355A DE10232355B4 (de) 2002-07-17 2002-07-17 Elektrochemischer Messfühler zur Messung der Konzentration von Stickoxiden

Publications (1)

Publication Number Publication Date
JP2004053607A true JP2004053607A (ja) 2004-02-19

Family

ID=30128134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198547A Pending JP2004053607A (ja) 2002-07-17 2003-07-17 酸化窒素の濃度を測定する電気化学式の測定センサ

Country Status (3)

Country Link
US (1) US20040055886A1 (ja)
JP (1) JP2004053607A (ja)
DE (1) DE10232355B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515178A (ja) * 2005-11-03 2009-04-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサエレメント

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427346B2 (en) * 2004-05-04 2008-09-23 Advanced Technology Materials, Inc. Electrochemical drive circuitry and method
DE102009029415A1 (de) * 2009-09-14 2011-03-24 Robert Bosch Gmbh Sensorelement mit mehrteiliger Diffusionsbarriere
US10078033B2 (en) 2016-01-20 2018-09-18 Ford Global Technologies, Llc Oxygen sensor element blackening detection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769124A (en) * 1985-08-10 1988-09-06 Honda Giken Kogyo Kabushiki Kaisha Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
DE4032436A1 (de) * 1990-10-12 1992-04-16 Bosch Gmbh Robert Sensorelement fuer grenzstromsensoren zur bestimmung des (gamma)-wertes von gasgemischen
DE4341278B4 (de) * 1993-12-03 2004-05-06 Robert Bosch Gmbh Grenzstromsensor zur Bestimmung des Lambdawertes in Gasgemischen
JP2885336B2 (ja) * 1994-04-21 1999-04-19 日本碍子株式会社 被測定ガス中のNOx濃度の測定方法及び測定装置
US6068747A (en) * 1997-03-10 2000-05-30 Denso Corporation Solid electrolyte gas sensor
DE19955125A1 (de) * 1998-11-16 2000-06-21 Denso Corp Gassensor und Verfahren zur Messung der Konzentration eines bestimmten Gases
US6401522B1 (en) * 1999-09-22 2002-06-11 Ngk Insulators, Ltd. Gas analyzer and method of calibrating the same
JP4563606B2 (ja) * 2000-03-31 2010-10-13 株式会社デンソー 積層型センサ素子
JP4682465B2 (ja) * 2000-10-31 2011-05-11 株式会社デンソー ガス濃度検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515178A (ja) * 2005-11-03 2009-04-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサエレメント
JP4878371B2 (ja) * 2005-11-03 2012-02-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサエレメント

Also Published As

Publication number Publication date
DE10232355A1 (de) 2004-02-12
US20040055886A1 (en) 2004-03-25
DE10232355B4 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
US6344119B2 (en) Gas sensor
US8409414B2 (en) Gas sensor and nitrogen oxide sensor
JP3050781B2 (ja) 被測定ガス中の所定ガス成分の測定方法及び測定装置
US7445700B2 (en) Gas sensor and nitrogen oxide sensor
EP2107365B1 (en) NOx sensor
US8398836B2 (en) Gas sensor
JPH1090222A (ja) ガスセンサ
JP3860590B2 (ja) ガスセンサ及び窒素酸化物センサ
JP4855756B2 (ja) ガスセンサ素子
JP5705335B2 (ja) ガス空間における混合気のパラメータを検出するためのセンサ素子と方法
JP3631582B2 (ja) ガスセンサ
US7182846B2 (en) Hydrogen-containing gas measurement sensor element and measuring method using same
CN115087863A (zh) 气体传感器元件
JP2004294455A (ja) ガスセンサ
JP2004053607A (ja) 酸化窒素の濃度を測定する電気化学式の測定センサ
JP3771569B2 (ja) NOxセンサ
JP2004151018A (ja) 積層型ガスセンサ素子
US6214209B1 (en) Method of measuring oxygen
JP3798412B2 (ja) NOxセンサ
JP2016521855A (ja) 複数の異なるガスを測定するガスセンサ、及び関連する製造方法
JP3756123B2 (ja) NOxセンサ並びにNOx濃度の測定方法
EP1298430A2 (en) Gas sensor with error compensation
US20240027393A1 (en) Gas sensor element and gas sensor
WO2021033709A1 (ja) ガスセンサ
US20210302358A1 (en) Sensor element and gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090721

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090824

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090924

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091218