JP2004048617A - Transmission line substrate for high frequency - Google Patents

Transmission line substrate for high frequency Download PDF

Info

Publication number
JP2004048617A
JP2004048617A JP2002206422A JP2002206422A JP2004048617A JP 2004048617 A JP2004048617 A JP 2004048617A JP 2002206422 A JP2002206422 A JP 2002206422A JP 2002206422 A JP2002206422 A JP 2002206422A JP 2004048617 A JP2004048617 A JP 2004048617A
Authority
JP
Japan
Prior art keywords
metal conductor
line
pattern
transmission line
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002206422A
Other languages
Japanese (ja)
Other versions
JP3922551B2 (en
Inventor
Noboru Kubo
久保 昇
Hideaki Itakura
板倉 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2002206422A priority Critical patent/JP3922551B2/en
Publication of JP2004048617A publication Critical patent/JP2004048617A/en
Application granted granted Critical
Publication of JP3922551B2 publication Critical patent/JP3922551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission line substrate for high frequency which prevents short-circuit between a metal conductor line and a metal conductor pattern, prevents contamination of a pad section of the metal conductor line and reduces deterioration of transmission characteristics. <P>SOLUTION: In the transmission line substrate 10 for high frequency having the metal conductor line 12 for passing a high frequency signal and the metal conductor pattern 13 for ground to be arranged on the same surface by providing intervals, one end of the metal conductor line 12 consists of a connecting section 15 for performing wax joining of connector core wire 14 of a coaxial connector 29 by a low-temperature wax material 16 and the pad section 17 for connecting the other end with a semiconductor element, an interval between the connecting section 15 and the metal conductor pattern 13 is larger than an interval between the pad section 17 and the metal conductor pattern 13 and moreover, a flow stopping pattern 18 to be formed by metal which can inhibit wax flow and form electric capacity is provided between the connecting section 15 and the pad section 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、金属導体線路に高周波の信号を通過させるための高周波用伝送線路基板に係り、より詳細には、伝送特性及び接続信頼性が向上できる高周波用伝送線路基板に関する。
【0002】
【従来の技術】
近年のモジュールの高周波化に伴い、半導体素子を搭載するためのパッケージ、回路基板等を伝播する信号速度、更に、パッケージ、回路基板等に接合して用いられたりする異なる信号線形態間を接続するための伝送線路基板を伝播する信号速度が高速になっており、単なる電気的接続では様々なノイズの発生要因となっている。この高周波用伝送線路基板は、セラミックやプラスチックからなる誘電体基材に導体金属からなる信号線とグランドを形成して高速動作に対応できる特性インピーダンス等の電気的設計の考慮がなされている。高周波化に伴い、信号線を伝播する信号遅延、反射ノイズ、クロストークノイズ等の伝送線路としての電磁気的、電磁波的挙動が顕著になるため、反射ノイズを防止するための整合や、ドライバ回路のスイッチング時に生じる電源雑音、不要電磁放射(EMI)の対策が重要となっている。
【0003】
高周波用伝送線路基板上で高速信号を伝播させるには、代表的な伝送線路構造として、マイクロストリップ線路、ストリップ線路、コプレナー線路、グランデットコプレナー線路等がある。それぞれの線路構造の特性インピーダンスは、信号線配線幅、絶縁層(誘電体基材)の厚さや信号線とグランドパターンとの隙間の幾何的寸法と、誘電体基材の比誘電率によって決まる。例えば、信号線に同軸コネクターを接続させるための高周波用伝送線路基板としては、誘電体基材の表面に信号線が形成されるマイクロストリップ線路や、コプレナー線路や、グランデットコプレナー線路構造のものが用いられている。
【0004】
図4(A)〜(C)を参照しながら、従来の高周波用伝送線路基板、及びこれに同軸コネクターのコネクター芯線が接続される形態を説明する。図4(A)は従来の高周波用伝送線路基板の平面図を示し、コプレナー線路や、グランデットコプレナー線路構造からなる従来の高周波用伝送線路基板50は、誘電体基材51の一方の表面に信号線用の金属導体線路52とグランド用の金属導体パターン53を有している。そして、信号線用の金属導体線路52と、グランド用の金属導体パターン53は、近接して設けられている。図4(B)、(C)はそれぞれコネクター芯線が接続され平面視した概念図、B−B’線縦断面図を示し、金属導体線路52の一方の端部には、同軸コネクターのコネクター芯線54を接続するための接続部となり、コネクター芯線54が低温ろう材55でろう付け接合される。金属導体線路52の他方の端部は、半導体素子と導通状態とするためのパッド部となり、例えば、ボンディングワイヤ56でワイヤボンドが行われる。同様に、半導体素子とはグランド用の金属導体パターン53ともボンディングワイヤ56でワイヤボンドが行われる。なお、半導体素子との接続には、ボンディングワイヤ56以外にリボン等からなるリード線を用いて接続したり、フリップチップ方式で半導体素子を直接高周波用伝送線路基板50に接続させることもできる。
【0005】
【発明が解決しようとする課題】
しかしながら、前述したような従来の高周波用伝送線路基板は、次のような問題がある。
(1)高周波用伝送線路基板の信号線用の金属導体線路に同軸コネクターのコネクター芯線を接合する時、高周波用伝送線路基板には、基板寸法バラツキ等があり、コネクター芯線には、同軸コネクターとの接合バラツキ等があるので、接合位置ズレが発生する場合がある。特に、金属導体線路とグランド用の金属導体パターンとの間隔が小さいと、コネクター芯線が金属導体線路と金属導体パターンに跨って接触したり、接合材の低温ろうが流れたりして、金属導体線路と金属導体パターンとの間でショートが発生しやすくなる。
(2)コネクター芯線を金属導体線路の一方の端部の接続部に接合する時の低温ろう材は、半導体素子と、例えば、ボンディングワイヤ等のリード線を接続させるための金属導体線路の他方の端部のパッド部まで流れだし、リード線接合用のパッド部を汚すので、リード線の接合信頼性を低下させる問題が発生している。
(3)金属導体線路のパッド部には、ボンディングワイヤや、リボン等のリード線が接続されるが、リード線のインダクタンスによって、パッド部のリード線が接合された周辺部の特性インピーダンスの不整合がおこり、この不整合から伝送特性の悪化が発生している。
本発明は、かかる事情に鑑みてなされたものであって、金属導体線路と金属導体パターン間のショートを防止し、金属導体線路のパッド部の汚染を防止すると共に、伝送特性の悪化を低減する高周波用伝送線路基板を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的に沿う本発明に係る高周波用伝送線路基板は、高周波の信号を通過させるための信号線用の金属導体線路と、同一面に金属導体線路と間隔を設けて配置されるグランド用の金属導体パターンを有する高周波用伝送線路基板において、金属導体線路の一方の端部が同軸コネクターのコネクター芯線を低温ろう材でろう付け接合するための接続部、他方の端部が半導体素子と直接又は間接的に接続するためのパッド部からなり、接続部と金属導体パターンとの間隔がパッド部と金属導体パターンとの間隔より大きく、しかも、接続部とパッド部との間には低温ろう材のろう流れを阻害し、電気的容量が形成できる金属で金属導体線路を横断して被覆し形成される流れ止めパターンを有する。これにより、信号線用の金属導体線路のコネクター芯線の接続部と、グランド用の金属導体パターンとの間隔は広くできるので、ショートを防止できる。また、ろう流れを阻害する金属で形成する流れ止めパターンでパッド部への汚染を防止してリード線の接続信頼性を確保できる。更に、流れ止めパターンは金属からなるので、伝送特性の悪化を低減できる電気的容量を容易に形成できる。
【0007】
ここで、流れ止めパターンがパッド部に接続されるリード線のインダクタンスによる接合部周辺の特性インピーダンスの不整合からおこる伝送特性の悪化を低減させる容量パターンを兼ねているのがよい。これにより、流れ止めパターンが金属で形成されており、容量を構成するパターンによって伝送特性の悪化を低減させることができる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る高周波用伝送線路基板の斜視図、、図2(A)〜(C)はそれぞれ同高周波用伝送線路基板の変形例の平面図、図3(A)、(B)はそれぞれ同高周波用伝送線路基板を用いて作製する光通信用パッケージの平面図、A−A’線縦断面図である。
【0009】
図1に示すように、本発明の一実施の形態に係る高周波用伝送線路基板10は、コプレナー線路や、グランデットコプレナー線路構造からなり、セラミックや、プラスチック等の誘電体基材11の一方の表面に高周波の信号を通過させるための信号線用の金属導体線路12と、同一面に金属導体線路12と接触しないように誘電体基材11が露出して絶縁となる間隔を設けて配置されているグランド用の金属導体パターン13を有している。金属導体線路12の一方の端部は、同軸コネクター29(図3参照)のコネクター芯線14をコネクター芯線14の軸線方向に合わせて接続するための接続部15となり、コネクター芯線14がAu−Snろうや、Au−Geろう等からなる低温ろう材16でろう付け接合されるのに用いられる。金属導体線路12の他方の端部は、半導体素子(図示せず)と、例えば、フリップチップ方式で直接、あるいはボンディングワイヤや、リボン等のリード線を用いて間接的に接続するためのパッド部17となり、半導体素子と接続状態とするのに用いられる。
【0010】
金属導体線路12の接続部15とグランド用の金属導体パターン13との間隔aは、金属導体線路12のパッド部17と金属導体パターン13との間隔bより大きく(a>b)形成されている。金属導体線路12の接続部15とパッド部17との間には、接続部15に断面が円形のコネクター芯線14の一方の端部の側部を接合するための低温ろう材16の接合時のろう流れを阻害することができる金属で、流れ止めパターン18が形成されている。また、この流れ止めパターン18は、電気的な容量が形成できる金属からなり、金属導体線路12を横断し、金属導体線路12と金属導体パターン13との隙間部分に延設するようにして被覆して形成されている。
【0011】
この流れ止めパターン18は、例えば、Au−Snろうや、Au−Geろう等からなる低温ろう材16のろう流れを阻害する金属の一例である、Crや、Ni等の金属からなり、ろう流れを阻害することができる。また、流れ止めパターン18は、接続部15での低温ろう材16のろう流れを阻害すると同時に、パッド部17に接続されるボンディングワイヤや、リボン等のリード線がもつインダクタンスによる接合部周辺の特性インピーダンスの不整合からおこる伝送特性の悪化を低減させる容量パターンを兼ねることができる。
【0012】
次いで、図2(A)〜(D)を参照しながら、誘電体基材11に形成される信号線とグランドとの隙間の形態について説明する。図2(A)に示すように、例えば、信号線は、接続部15とパッド部17の幅が同一からなる金属導体線路12としている。これに対応するグランド用の金属導体パターン13は、金属導体線路12の接続部15との間隔が大きくなるように引き下げられ、パッド部17との間隔が小さくなるように飛び出した形状の金属導体パターン13としている。そして、接続部15とパッド部17との間に流れ止めパターン18を形成している。
【0013】
図2(B)に示すように、信号線は、接続部15の幅がパッド部17の幅より大きい金属導体線路12aとしてもよい。これに対応するグランドは、金属導体線路12aの接続部15との間隔を大きくするように引き下げられ、パッド部17との間隔を小さくするように飛び出した形状の金属導体パターン13aとしている。そして、接続部15とパッド部17との間には、流れ止めパターン18を形成している。この場合は、接続部15を広くできるので、コネクター芯線14を容易に接合することができる。また、特性インピーダンスの整合のための形状設計の自由度を得ることができる。
【0014】
また、図2(C)に示すように、グランドが同一幅の金属導体パターン13bで金属導体線路12bの接続部15の幅よりパッド部17の幅を大きくした形状であってもよい。そして、接続部15とパッド部17との間には、流れ止めパターン18を形成している。この場合には、パッド部17を広く形成できるので、ワイヤボンド等のリード線を容易に接合させることができる。
【0015】
更に、図2(D)に示すように、信号線とグランドは、図2(A)、(C)の形状の中間的な形状の金属導体線路12cと、金属導体パターン13cであってもよい。そして、接続部15とパッド部17との間には、流れ止めパターン18を形成している。この場合には、特性インピーダンスの整合のための形状設計の自由度を得ることができる。
【0016】
なお、グランドは、誘電体基材11の底面側にも、全面にわたって設けられる場合があり、この場合には、誘電体基材11の上面側と、底面側を貫通する貫通孔に金属導体を形成したビアホールによって、上面側と、底面側のグランド用の金属導体パターンが導通状態に形成されている。また、グランドとしては、高周波用伝送線路基板10を載置するための金属で形成された台座部を、誘電体基材11の底面側で導通状態にさせて用いることもできる。
【0017】
次いで、高周波用伝送線路基板10の製造方法を説明する。
高周波用伝送線路基板10を構成する誘電体基材11は、誘電体の一例である、例えば、アルミナ(Al)等のセラミックからなり、先ず、アルミナ粉末にマグネシア、シリカ、カルシア等の焼結助剤を適当量加えた粉末に、ジオクチルフタレート等の可塑剤と、アクリル樹脂等のバインダー、及びトルエン、キシレン、アルコール類等の溶剤を加え、十分に混練し、脱泡して粘度2000〜40000cpsのスラリーを作製する。次いで、ドクターブレード法等によって、例えば、厚み0.25mmのロール状のシートを形成し、適当なサイズの矩形状に切断したセラミックグリーンシートを作製する。そして、このセラミックグリーンシートを、必要に応じて複数枚を重ね合わせ、温度と圧力をかけて積層した後、複数個の誘電体基材11が焼成後に得られるように、焼成収縮を見込んだ焼成前の外形寸法に合わせて分割用の溝を形成し、約1550℃で焼成して焼結体を作製する。なお、グランド用の導体パターンを誘電体基材11の底面側にも形成する場合には、焼成前のセラミックグリーンシートにパンチングマシーン等で穿孔したり、焼成後に炭酸ガスレーザ等を用いて穿孔したりして上面側と底面側を導通させるためのビア孔を形成する。
【0018】
次に、誘電体基材11の上面、必要に応じて底面、及びビア孔に、スパッタや、蒸着法等で、例えば、Ti、Pd、Au等からなる金属薄膜を付着させることで信号線用の金属導体線路12、12a、12b、12c(以下代表して12とする)、及びグランド用の金属導体パターン13、13a、13b、13c(以下代表して13とする)を形成する。なお、金属導体線路12、及び金属導体パターン13の間の間隔は、スパッタや、蒸着等を行う前にフォトリソグラフィ法で予め間隔部分にレジスト膜を形成しておき、スパッタや、蒸着等を行った後に、レジスト膜を除去して形成している。
【0019】
次に、金属導体線路12の一方側がコネクター芯線14を接続するための接続部15、他方側がパッド部17となるように分割する流れ止めパターン18は、先ず、フォトリソ法で流れ止めパターン18の形状が開口部として露出するフォトレジスト膜を形成した後、スパッタや、蒸着等を行う。このスパッタや、蒸着等によって、低温ろう材16の接合溶融時のろう流れを阻害できる、例えば、Crや、Ni等からなる金属薄膜層が形成される。次いで、フォトレジスト膜を除去することで、流れ止めパターン18を作製する。
【0020】
なお、誘電体基材11は、アルミナ以外の窒化アルミニウム、低温焼成セラミック等からなるセラミック基材や、各種プラスチックからなる樹脂基材であってもよい。
また、金属導体線路12の本数は限定されるものではなく、複数本であってもよい。また、金属導体線路12の形状は直線形状に限定されるものではなく、曲線形状であってもよく、金属導体パターン13の形状も金属導体線路12の形状に追随するものであってよい。更に、金属導体パターン13は、金属導体線路12の片側にのみあってもよい。
【0021】
続いて、図3(A)、(B)を参照しながら、本発明の高周波用伝送線路基板10が用いられる一例である光通信用パッケージ20を詳細に説明する。
同軸コネクター29を介して外部と電気的接続を行ったり、レーザーダイオード等の発光素子からの光波を搬送波として用いるような光通信用の半導体素子を収容するための光通信用パッケージ20は、KV(Fe−Ni−Co系合金、商品名「Kovar(コバール)」)や42アロイ(Fe−Ni系合金)等の金属部材からなる枠体21と、ボード等に取り付けるための固定用孔22(この実施例では4個)を備え、放熱性に優れたCu−W(銅タングステン)やCu−Mo−Cu(銅モリブデン銅の接合板)等の金属部材からなる底体23とをAg−Cuろう等の高温ろう材を用いてろう付け接合して、内部に光通信用の半導体素子を搭載するためのキャビティ部24が形成されている。
【0022】
枠体21の一側壁には、キャビティ部24に連通して切り欠いて形成した取付部25が設けられている。この取付部25には、KVや42アロイ等の金属部材からなるアダプター26の側壁部27がAg−Cuろう等の高温ろう材を用いてろう付け接合されている。このアダプター26は、側壁部27に一体化され、キャビティ部24に配置される台座部28が設けられており、また、側壁部27に同軸コネクター29を接続するための挿通孔30が設けられている。挿通孔30には、同軸コネクター29がAu−Snろうや、Au−Geろう等からなる低温ろう材で接合されている。同軸コネクター29は、KVや、42アロイ等の金属部材からなる金属製筒体31の筒内中央部に、金属製筒体31の軸線を合わせて、高融点ガラス等の絶縁部材32で長さ方向の中央部でコネクター芯線14が接合されている。
【0023】
アダプター26の台座部28上には、誘電体基材11の上面に金属導体線路12及び金属導体パターン13を有し、金属導体線路12の中間部に流れ止めパターン18を設けて、それぞれ接続部15とパッド部17とする高周波用伝送線路基板10が、コネクター芯線14のキャビティ部24内に突出する一方の端部の下側に配置し、一端面部を側壁部27に実質的に隙間を無くして当接させ、底面側をAu−Snろうや、Au−Geろう等からなる低温ろう材でろう付け接合されている。そして、コネクター芯線14は、高周波用伝送線路基板10の金属導体線路12の接続部15に、Au−Snろうや、Au−Geろう等からなる低温ろう材でろう付け接合されている。
【0024】
また、光通信用パッケージ20は、アダプター26が接合される枠体21の側壁に対向する側壁に、例えば、アルミナ等のセラミックからなるフィードスルー基板33を有する。フィードスルー基板33は、パッケージの内外部を導通する導体配線パターン34a、34bを備え、枠体21に設けられたキャビティ部24に連通する窓枠状切り欠き部35に嵌合され、Ag−Cuろう等の高温ろう材で接合されている。枠体21の外側の導体配線パターン34bには、外部接続端子36がバタフライ型にろう付け接合され、キャビティ部24側の導体配線パターン34aは、光通信用の半導体素子とボンディングワイヤで接続されるのに用いられる。
【0025】
更に、枠体21のアダプター26及びフィードスルー基板33が接合されていない一方の側壁部には、キャビティ部24に連通する貫通孔37が設けられいる。この貫通孔37には、光ファイバーの光の入出口となり、KV、42アロイ又はステンレス系等の金属部材からなる金属製固定部材38が挿入され、Ag−Cuろう等の高温ろう材でろう付け接合されている。この金属製固定部材38には、キャビティ部24に半導体素子が実装された後、半導体素子との間で光信号を送受するための光ファイバー部材(図示せず)がAu−Sn等の低温ろう材で接合されたり、YAG等のレーザ溶接で接合される。また、枠体21の上方には、Ag−Cuろう等からなる高温ろう材で接合したKVや、42アロイ等の金属部材からなるシールリング39がAg−Cuろう等の高温ろう材でろう付け接合されて設けられている。このシールリング39は、半導体素子を実装した後、蓋体(図示せず)を接合してキャビティ部24内を気密に封止するために用いられる。
なお、上記の高温ろう材のろう付け接合は、それぞれを一度に、又は複数回に分けてろう付けすることができる。また、低温ろう材のろう付け接合は、高温ろう材のろう付け接合後に行われ、それぞれを一度に、又は複数回に分けてろう付けすることができる。
【0026】
【発明の効果】
請求項1及びこれに従属する請求項2記載の高周波用伝送線路基板は、金属導体線路の一方の端部が同軸コネクターのコネクター芯線を低温ろう材でろう付け接合するための接続部、他方の端部が半導体素子と直接又は間接的に接続するためのパッド部からなり、接続部と金属導体パターンとの間隔がパッド部と金属導体パターンとの間隔より大きく、しかも、接続部とパッド部との間には低温ろう材のろう流れを阻害し、電気的容量が形成できる金属が金属導体線路を横断して被覆し形成される流れ止めパターンを有するので、コネクター芯線の接続部と、金属導体パターンとの間隔が広くなり、ショートを防止できる。また、ろう流れを阻害する金属による流れ止めパターンでパッド部への汚染を防止してボンディングワイヤや、リボン等のリード線の接続信頼性を確保できる。更に、流れ止めパターンは金属からなり、伝送特性の悪化を低減できる電気的容量を容易に形成できる。
【0027】
特に請求項2記載の高周波用伝送線路基板は、流れ止めパターンがパッド部に接続されるリード線のインダクタンスによる接合部周辺の特性インピーダンスの不整合からおこる伝送特性の悪化を低減させる容量パターンを兼ねているので、リード線接合部周辺の特性インピーダンスの不整合からおこる伝送特性の悪化を低減できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る高周波用伝送線路基板の斜視図である。
【図2】(A)〜(C)はそれぞれ同高周波用伝送線路基板の変形例の平面図である。
【図3】(A)、(B)はそれぞれ同高周波用伝送線路基板を用いて作製する光通信用パッケージの平面図、A−A’線縦断面図である。
【図4】(A)〜(C)はそれぞれ従来の高周波用伝送線路基板の説明図である。
【符号の説明】
10:高周波用伝送線路基板、11:誘電体基板、12、12a、12b、12c:金属導体線路、13、13a、13b、13c:金属導体パターン、14:コネクター芯線、15:接続部、16:低温ろう材、17:パッド部、18:流れ止めパターン、20:光通信用パッケージ、21:枠体、22:固定用孔、23:底体、24:キャビティ部、25:取付部、26:アダプター、27:側壁部、28:台座部、29:同軸コネクター、30:挿通孔、31:金属製筒体、32:絶縁部材、33:フィードスルー基板、34a、34b:導体配線パターン、35:窓枠状切り欠き部、36:外部接続端子、37:貫通孔、38:金属製固定部材、39:シールリング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency transmission line substrate for passing a high-frequency signal through a metal conductor line, and more particularly, to a high-frequency transmission line substrate capable of improving transmission characteristics and connection reliability.
[0002]
[Prior art]
With the recent increase in the frequency of modules, signal speeds propagating through packages for mounting semiconductor elements, circuit boards, and the like, and connecting between different signal line forms that are used by bonding to packages, circuit boards, etc. Therefore, the signal speed propagating through the transmission line substrate becomes high, and mere electrical connection causes various noises. This high-frequency transmission line substrate has been designed in consideration of electrical design such as characteristic impedance capable of coping with high-speed operation by forming a signal line and ground made of a conductive metal on a dielectric substrate made of ceramic or plastic. As the frequency becomes higher, the electromagnetic and electromagnetic behavior of the transmission line, such as signal delay, reflection noise, crosstalk noise, etc., propagating through the signal line becomes remarkable, so that matching to prevent reflection noise and driver circuit It is important to take measures against power supply noise and unnecessary electromagnetic radiation (EMI) generated during switching.
[0003]
In order to propagate a high-speed signal on a high-frequency transmission line substrate, typical transmission line structures include a microstrip line, a strip line, a coplanar line, and a grand coplanar line. The characteristic impedance of each line structure is determined by the signal line wiring width, the thickness of the insulating layer (dielectric substrate), the geometric dimension of the gap between the signal line and the ground pattern, and the relative permittivity of the dielectric substrate. For example, as a high-frequency transmission line substrate for connecting a coaxial connector to a signal line, a microstrip line in which a signal line is formed on the surface of a dielectric substrate, a coplanar line, or a grounded coplanar line structure. Is used.
[0004]
With reference to FIGS. 4A to 4C, a description will be given of a conventional high-frequency transmission line substrate and a mode in which a connector core wire of a coaxial connector is connected thereto. FIG. 4A is a plan view of a conventional high-frequency transmission line substrate. A conventional high-frequency transmission line substrate 50 having a coplanar line or a grounded coplanar line structure is provided on one surface of a dielectric substrate 51. And a metal conductor line 52 for signal lines and a metal conductor pattern 53 for ground. The metal conductor line 52 for the signal line and the metal conductor pattern 53 for the ground are provided close to each other. 4 (B) and 4 (C) are conceptual views of the connector core wires connected to each other and a plan view, and a vertical sectional view taken along the line BB ′. One end of the metal conductor line 52 has a connector core wire of a coaxial connector. It becomes a connection part for connecting 54, and the connector core wire 54 is brazed and joined with a low-temperature brazing material 55. The other end of the metal conductor line 52 serves as a pad portion for making a conductive state with the semiconductor element. For example, wire bonding is performed with a bonding wire 56. Similarly, the semiconductor element is bonded to the ground metal conductor pattern 53 by a bonding wire 56. The connection with the semiconductor element can be made by using a lead wire made of a ribbon or the like other than the bonding wire 56, or the semiconductor element can be directly connected to the high-frequency transmission line substrate 50 by a flip-chip method.
[0005]
[Problems to be solved by the invention]
However, the conventional high-frequency transmission line substrate as described above has the following problems.
(1) When a connector core of a coaxial connector is joined to a metal conductor line for a signal line of a high-frequency transmission line substrate, the high-frequency transmission line substrate has variations in board dimensions, and the connector core has a coaxial connector. , There may be a displacement of the joining position. In particular, if the distance between the metal conductor line and the metal conductor pattern for ground is small, the connector core wire may straddle the metal conductor line and the metal conductor pattern, or the low-temperature solder of the bonding material may flow, and the metal conductor line And the metal conductor pattern is likely to cause a short circuit.
(2) The low-temperature brazing material used when joining the connector core wire to the connection portion at one end of the metal conductor line is the other of the metal conductor line for connecting the semiconductor element and, for example, a lead wire such as a bonding wire. Since it flows to the pad portion at the end portion and soils the pad portion for joining the lead wire, there is a problem that the joining reliability of the lead wire is reduced.
(3) A lead wire such as a bonding wire or a ribbon is connected to the pad portion of the metal conductor line. Due to the inductance of the lead wire, the characteristic impedance of the peripheral portion where the lead wire of the pad portion is joined is mismatched. And the transmission characteristics deteriorate due to the mismatch.
The present invention has been made in view of such circumstances, and prevents a short circuit between a metal conductor line and a metal conductor pattern, prevents contamination of a pad portion of the metal conductor line, and reduces deterioration of transmission characteristics. An object is to provide a high-frequency transmission line substrate.
[0006]
[Means for Solving the Problems]
A high-frequency transmission line substrate according to the present invention, which meets the above object, has a metal conductor line for a signal line for passing a high-frequency signal, and a ground metal arranged at a distance from the metal conductor line on the same surface. In a high-frequency transmission line substrate having a conductor pattern, one end of a metal conductor line is a connection part for brazing and joining a connector core wire of a coaxial connector with a low-temperature brazing material, and the other end is directly or indirectly connected to a semiconductor element. The space between the connection portion and the metal conductor pattern is larger than the space between the pad portion and the metal conductor pattern, and a low-temperature brazing filler metal is provided between the connection portion and the pad portion. It has a flow stopping pattern formed by covering the metal conductor line with a metal capable of inhibiting flow and forming an electric capacitance. Accordingly, the distance between the connection portion of the connector core of the metal conductor line for the signal line and the metal conductor pattern for the ground can be widened, so that short circuit can be prevented. In addition, the pad portion can be prevented from being contaminated by the flow stopping pattern formed of a metal that inhibits the flow of brazing, and the connection reliability of the lead wire can be secured. Further, since the flow stopping pattern is made of metal, it is possible to easily form an electric capacitance capable of reducing deterioration of transmission characteristics.
[0007]
Here, it is preferable that the flow stopping pattern also serves as a capacitance pattern that reduces deterioration of transmission characteristics caused by mismatching of characteristic impedance around the junction due to inductance of a lead wire connected to the pad portion. Thereby, the flow stopping pattern is formed of metal, and the deterioration of the transmission characteristics due to the pattern constituting the capacitance can be reduced.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is a perspective view of a high-frequency transmission line substrate according to one embodiment of the present invention, and FIGS. 2A to 2C are plan views of modifications of the high-frequency transmission line substrate, respectively. 3A and 3B are a plan view and a longitudinal sectional view taken along line AA ′ of an optical communication package manufactured using the same high-frequency transmission line substrate, respectively.
[0009]
As shown in FIG. 1, a high-frequency transmission line substrate 10 according to an embodiment of the present invention has a coplanar line or a grounded coplanar line structure, and is one of dielectric substrates 11 such as ceramic or plastic. And a metal conductor line 12 for a signal line for passing a high-frequency signal on the surface of the substrate, and an interval where the dielectric substrate 11 is exposed and insulated so as not to contact the metal conductor line 12 on the same surface. And a grounded metal conductor pattern 13. One end of the metal conductor line 12 is a connecting portion 15 for connecting the connector core wire 14 of the coaxial connector 29 (see FIG. 3) in the axial direction of the connector core wire 14, and the connector core wire 14 is made of Au-Sn solder. Also, it is used for brazing with a low-temperature brazing material 16 made of Au-Ge brazing or the like. The other end of the metal conductor line 12 is connected to a semiconductor element (not shown) directly, for example, by a flip chip method, or indirectly by using a bonding wire or a lead wire such as a ribbon. 17 is used to establish a connection state with the semiconductor element.
[0010]
The distance a between the connection portion 15 of the metal conductor line 12 and the ground metal conductor pattern 13 is formed to be larger than the distance b between the pad portion 17 of the metal conductor line 12 and the metal conductor pattern 13 (a> b). . Between the connecting portion 15 and the pad portion 17 of the metal conductor line 12, a low-temperature brazing material 16 for joining one side of the connector core wire 14 having a circular cross section to the connecting portion 15 at the time of joining is used. The flow stopping pattern 18 is formed of a metal capable of inhibiting a brazing flow. The flow stopping pattern 18 is made of a metal capable of forming an electric capacitance, and is coated so as to extend across the metal conductor line 12 and the gap between the metal conductor line 12 and the metal conductor pattern 13. It is formed.
[0011]
The flow stopping pattern 18 is made of a metal such as Cr or Ni, which is an example of a metal that hinders the flow of the low-temperature brazing material 16 made of, for example, Au-Sn brazing or Au-Ge brazing. Can be inhibited. In addition, the flow stopping pattern 18 inhibits the brazing flow of the low-temperature brazing material 16 at the connection portion 15 and at the same time, the characteristic around the bonding portion due to the inductance of the bonding wire connected to the pad portion 17 and the lead wire such as the ribbon. It can also serve as a capacitance pattern that reduces the deterioration of transmission characteristics caused by impedance mismatch.
[0012]
Next, the form of the gap between the signal line formed on the dielectric substrate 11 and the ground will be described with reference to FIGS. As shown in FIG. 2A, for example, the signal line is a metal conductor line 12 having the same width of the connection portion 15 and the pad portion 17. The corresponding metal conductor pattern 13 for ground is pulled down so as to increase the space between the metal conductor line 12 and the connection portion 15 and protrudes so as to reduce the space between the metal conductor line 12 and the pad portion 17. It is set to 13. Then, a flow stopping pattern 18 is formed between the connection portion 15 and the pad portion 17.
[0013]
As shown in FIG. 2B, the signal line may be a metal conductor line 12a in which the width of the connection portion 15 is larger than the width of the pad portion 17. The corresponding ground is a metal conductor pattern 13a which is pulled down so as to increase the interval between the metal conductor line 12a and the connection portion 15 and protrudes so as to decrease the interval between the pad portion 17 and the metal conductor line 12a. A flow stopping pattern 18 is formed between the connection part 15 and the pad part 17. In this case, since the connecting portion 15 can be widened, the connector core wire 14 can be easily joined. Further, it is possible to obtain a degree of freedom in shape design for matching of characteristic impedance.
[0014]
Further, as shown in FIG. 2C, the ground may have a shape in which the width of the pad portion 17 is larger than the width of the connection portion 15 of the metal conductor line 12b with the metal conductor pattern 13b having the same width. A flow stopping pattern 18 is formed between the connection part 15 and the pad part 17. In this case, since the pad portion 17 can be formed widely, a lead wire such as a wire bond can be easily bonded.
[0015]
Further, as shown in FIG. 2D, the signal line and the ground may be a metal conductor line 12c having an intermediate shape between the shapes of FIGS. 2A and 2C and a metal conductor pattern 13c. . A flow stopping pattern 18 is formed between the connection part 15 and the pad part 17. In this case, a degree of freedom in shape design for matching of characteristic impedance can be obtained.
[0016]
The ground may be provided on the entire bottom surface of the dielectric substrate 11 as well. In this case, a metal conductor is provided in a through hole passing through the top surface of the dielectric substrate 11 and the bottom surface. By the formed via holes, the metal conductor patterns for ground on the upper surface side and the bottom surface side are formed in a conductive state. Further, as the ground, a pedestal portion formed of a metal for mounting the high-frequency transmission line substrate 10 can be used in a state where the pedestal portion is in a conductive state on the bottom surface side of the dielectric base material 11.
[0017]
Next, a method of manufacturing the high-frequency transmission line substrate 10 will be described.
The dielectric substrate 11 constituting the high-frequency transmission line substrate 10 is made of a ceramic such as alumina (Al 2 O 3 ), which is an example of a dielectric. First, alumina powder such as magnesia, silica, calcia, etc. A plasticizer such as dioctyl phthalate, a binder such as an acrylic resin, and a solvent such as toluene, xylene, and alcohols are added to the powder to which an appropriate amount of a sintering aid has been added. Make a slurry of ~ 40000 cps. Next, for example, a roll-shaped sheet having a thickness of 0.25 mm is formed by a doctor blade method or the like, and a ceramic green sheet cut into a rectangular shape having an appropriate size is manufactured. Then, after laminating a plurality of the ceramic green sheets as necessary and laminating them by applying temperature and pressure, firing is performed in consideration of firing shrinkage so that a plurality of dielectric substrates 11 are obtained after firing. Grooves for division are formed in accordance with the previous external dimensions, and fired at about 1550 ° C. to produce a sintered body. When the ground conductor pattern is also formed on the bottom side of the dielectric substrate 11, the ceramic green sheet before firing may be perforated with a punching machine or the like, or may be perforated using a carbon dioxide laser or the like after firing. Then, a via hole for conducting between the top side and the bottom side is formed.
[0018]
Next, a metal thin film made of, for example, Ti, Pd, Au, or the like is attached to the top surface, the bottom surface, and the via hole of the dielectric substrate 11 by sputtering, vapor deposition, or the like to form a signal line. Metal conductor lines 12, 12a, 12b, and 12c (hereinafter, typically 12) and metal conductor patterns 13, 13a, 13b, and 13c for ground (hereinafter, typically 13) are formed. The space between the metal conductor line 12 and the metal conductor pattern 13 is formed by forming a resist film in advance by photolithography before performing sputtering, vapor deposition, or the like, and performing sputtering, vapor deposition, or the like. After that, the resist film is removed to form the film.
[0019]
Next, the flow stopping pattern 18 which is divided so that one side of the metal conductor line 12 is connected to the connector core wire 14 and the other side is the pad 17 is formed by the photolithography method. After forming a photoresist film that is exposed as an opening, sputtering, vapor deposition or the like is performed. By this sputtering, vapor deposition, or the like, a metal thin film layer made of, for example, Cr, Ni, or the like that can inhibit the brazing flow at the time of joining and melting the low-temperature brazing material 16 is formed. Next, the flow stopper pattern 18 is formed by removing the photoresist film.
[0020]
Note that the dielectric substrate 11 may be a ceramic substrate made of aluminum nitride other than alumina, low-temperature fired ceramic, or the like, or a resin substrate made of various plastics.
The number of the metal conductor lines 12 is not limited, and may be plural. Further, the shape of the metal conductor line 12 is not limited to a linear shape, but may be a curved shape, and the shape of the metal conductor pattern 13 may follow the shape of the metal conductor line 12. Further, the metal conductor pattern 13 may be provided only on one side of the metal conductor line 12.
[0021]
Next, an optical communication package 20, which is an example in which the high-frequency transmission line substrate 10 of the present invention is used, will be described in detail with reference to FIGS.
The optical communication package 20 for making an electrical connection to the outside via the coaxial connector 29 and for housing a semiconductor element for optical communication such as using a light wave from a light emitting element such as a laser diode as a carrier is a KV ( A frame 21 made of a metal member such as an Fe-Ni-Co-based alloy, trade name "Kovar (Kovar)" or 42 alloy (Fe-Ni-based alloy), and a fixing hole 22 for attaching to a board or the like. Ag-Cu solder is provided with a bottom body 23 made of a metal member such as Cu-W (copper tungsten) or Cu-Mo-Cu (copper-molybdenum-copper joint plate) having excellent heat dissipation. A cavity 24 for mounting a semiconductor element for optical communication therein is formed by brazing using a high-temperature brazing material such as.
[0022]
On one side wall of the frame body 21, there is provided a mounting portion 25 cut out so as to communicate with the cavity portion 24. A side wall 27 of an adapter 26 made of a metal member such as KV or 42 alloy is brazed to the mounting portion 25 using a high-temperature brazing material such as Ag-Cu brazing. The adapter 26 is integrated with a side wall 27 and provided with a pedestal 28 disposed in the cavity 24, and the side wall 27 is provided with an insertion hole 30 for connecting a coaxial connector 29. I have. The coaxial connector 29 is joined to the insertion hole 30 with a low-temperature brazing material such as Au-Sn brazing or Au-Ge brazing. The coaxial connector 29 is lengthened by an insulating member 32 such as a high melting point glass by aligning the axis of the metal cylinder 31 with the central portion of the metal cylinder 31 made of a metal member such as KV or 42 alloy. The connector core wire 14 is joined at the center in the direction.
[0023]
On the pedestal portion 28 of the adapter 26, the metal conductor line 12 and the metal conductor pattern 13 are provided on the upper surface of the dielectric base material 11, and the flow stopping pattern 18 is provided at an intermediate portion of the metal conductor line 12, and the connection portion is provided. The high-frequency transmission line substrate 10 serving as the pad 15 and the pad portion 17 is disposed below one end of the connector core wire 14 protruding into the cavity portion 24, and one end face portion is substantially eliminated from the side wall portion 27. And the bottom surface is brazed and joined with a low-temperature brazing material such as Au-Sn brazing or Au-Ge brazing. The connector core wire 14 is brazed to the connection portion 15 of the metal conductor line 12 of the high-frequency transmission line substrate 10 with a low-temperature brazing material such as Au-Sn brazing or Au-Ge brazing.
[0024]
The optical communication package 20 has a feed-through board 33 made of, for example, ceramic such as alumina on a side wall facing the side wall of the frame body 21 to which the adapter 26 is joined. The feed-through board 33 includes conductor wiring patterns 34a and 34b that conduct between the inside and the outside of the package. The feed-through board 33 is fitted into a window frame-shaped notch 35 that communicates with the cavity 24 provided in the frame 21, and is made of Ag-Cu. It is joined with a high-temperature brazing material such as brazing. An external connection terminal 36 is brazed to the conductor wiring pattern 34b outside the frame 21 in a butterfly shape, and the conductor wiring pattern 34a on the cavity 24 side is connected to a semiconductor element for optical communication by a bonding wire. Used for
[0025]
Further, a through hole 37 communicating with the cavity 24 is provided on one side wall of the frame body 21 where the adapter 26 and the feedthrough board 33 are not joined. A metal fixing member 38 made of a metal member such as KV, 42 alloy or stainless steel is inserted into the through hole 37 as a light entrance / exit of the optical fiber, and brazed with a high-temperature brazing material such as Ag-Cu brazing. Have been. After the semiconductor element is mounted in the cavity portion 24, an optical fiber member (not shown) for transmitting and receiving an optical signal to and from the semiconductor element is provided on the metal fixing member 38 by a low-temperature brazing material such as Au-Sn. Or by laser welding such as YAG. Above the frame 21, a sealing ring 39 made of a metal member such as KV or 42 alloy joined with a high-temperature brazing material such as Ag-Cu brazing is brazed with a high-temperature brazing material such as Ag-Cu brazing. It is provided joined. The seal ring 39 is used for bonding the lid (not shown) after mounting the semiconductor element to hermetically seal the inside of the cavity 24.
In addition, the above-mentioned brazing of the high-temperature brazing material can be brazed all at once or in a plurality of times. Further, the brazing of the low-temperature brazing material is performed after the brazing of the high-temperature brazing material, and each of them can be brazed at a time or in a plurality of times.
[0026]
【The invention's effect】
According to a first aspect of the present invention, there is provided a high-frequency transmission line board according to the second aspect, wherein one end of the metal conductor line is connected to a connector core of the coaxial connector by brazing with a low-temperature brazing material, and the other end is connected to the other end. The end portion is composed of a pad portion for directly or indirectly connecting to the semiconductor element, the interval between the connection portion and the metal conductor pattern is larger than the interval between the pad portion and the metal conductor pattern, and furthermore, the connection portion and the pad portion In between, the metal that can inhibit the brazing flow of the low-temperature brazing material and forms an electric capacitance has a flow stopping pattern formed by covering the metal conductor line, so that the connection portion of the connector core wire and the metal conductor The distance from the pattern is increased, and short circuit can be prevented. In addition, the pad portion is prevented from being contaminated by the flow stopping pattern made of a metal that inhibits the flow of the brazing, and the connection reliability of the bonding wire and the lead wire such as the ribbon can be secured. Further, the flow stopping pattern is made of metal, and can easily form an electric capacitance capable of reducing deterioration of transmission characteristics.
[0027]
In particular, in the high-frequency transmission line substrate according to the second aspect, the flow stopping pattern also serves as a capacitance pattern for reducing deterioration of transmission characteristics caused by mismatching of characteristic impedance around the junction due to inductance of a lead wire connected to the pad portion. Therefore, it is possible to reduce the deterioration of the transmission characteristics caused by the mismatch of the characteristic impedance around the lead wire junction.
[Brief description of the drawings]
FIG. 1 is a perspective view of a high-frequency transmission line substrate according to an embodiment of the present invention.
FIGS. 2A to 2C are plan views of modified examples of the transmission line substrate for high frequency.
FIGS. 3A and 3B are a plan view and an AA ′ line vertical sectional view, respectively, of an optical communication package manufactured using the same high-frequency transmission line substrate.
FIGS. 4A to 4C are explanatory views of a conventional high-frequency transmission line substrate.
[Explanation of symbols]
10: transmission line substrate for high frequency, 11: dielectric substrate, 12, 12a, 12b, 12c: metal conductor line, 13, 13a, 13b, 13c: metal conductor pattern, 14: connector core wire, 15: connection portion, 16: Low-temperature brazing material, 17: pad portion, 18: flow-stop pattern, 20: optical communication package, 21: frame, 22: fixing hole, 23: bottom, 24: cavity, 25: mounting portion, 26: Adapter: 27: side wall, 28: pedestal, 29: coaxial connector, 30: insertion hole, 31: metal cylinder, 32: insulating member, 33: feed-through board, 34a, 34b: conductor wiring pattern, 35: Window frame cutout, 36: external connection terminal, 37: through hole, 38: metal fixing member, 39: seal ring

Claims (2)

高周波の信号を通過させるための信号線用の金属導体線路と、同一面に該金属導体線路と間隔を設けて配置されるグランド用の金属導体パターンを有する高周波用伝送線路基板において、
前記金属導体線路の一方の端部が同軸コネクターのコネクター芯線を低温ろう材でろう付け接合するための接続部、他方の端部が半導体素子と直接又は間接的に接続するためのパッド部からなり、前記接続部と前記金属導体パターンとの前記間隔が前記パッド部と前記金属導体パターンとの前記間隔より大きく、しかも、前記接続部と前記パッド部との間には前記低温ろう材のろう流れを阻害し、電気的容量が形成できる金属で前記金属導体線路を横断して被覆し形成される流れ止めパターンを有することを特徴とする高周波用伝送線路基板。
In a high-frequency transmission line substrate having a metal conductor line for a signal line for passing a high-frequency signal and a metal conductor pattern for ground disposed at an interval from the metal conductor line on the same surface,
One end of the metal conductor line includes a connecting portion for brazing and joining a connector core wire of a coaxial connector with a low-temperature brazing material, and the other end includes a pad portion for directly or indirectly connecting to a semiconductor element. The distance between the connection portion and the metal conductor pattern is larger than the distance between the pad portion and the metal conductor pattern, and the brazing flow of the low-temperature brazing material flows between the connection portion and the pad portion. A high-frequency transmission line substrate having a flow-stop pattern formed by covering the metal conductor line with a metal capable of forming an electric capacitance.
請求項1記載の高周波用伝送線路基板において、前記流れ止めパターンが前記パッド部に接続されるリード線のインダクタンスによる接合部周辺の特性インピーダンスの不整合からおこる伝送特性の悪化を低減させる容量パターンを兼ねていることを特徴とする高周波用伝送線路基板。2. The high-frequency transmission line substrate according to claim 1, wherein the flow stopping pattern includes a capacitance pattern that reduces deterioration of transmission characteristics caused by mismatching of characteristic impedance around a junction due to inductance of a lead wire connected to the pad portion. A high-frequency transmission line substrate that also serves as a transmission line substrate.
JP2002206422A 2002-07-16 2002-07-16 High-frequency transmission line substrate Expired - Fee Related JP3922551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206422A JP3922551B2 (en) 2002-07-16 2002-07-16 High-frequency transmission line substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206422A JP3922551B2 (en) 2002-07-16 2002-07-16 High-frequency transmission line substrate

Publications (2)

Publication Number Publication Date
JP2004048617A true JP2004048617A (en) 2004-02-12
JP3922551B2 JP3922551B2 (en) 2007-05-30

Family

ID=31711409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206422A Expired - Fee Related JP3922551B2 (en) 2002-07-16 2002-07-16 High-frequency transmission line substrate

Country Status (1)

Country Link
JP (1) JP3922551B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088046A (en) * 2008-10-02 2010-04-15 Sumitomo Metal Electronics Devices Inc High-frequency transmission line substrate
JP2010177364A (en) * 2009-01-28 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor package and packaging method thereof
JP2011015200A (en) * 2009-07-02 2011-01-20 Anritsu Corp High-frequency connection wiring board, and optical modulator module including the same
JP2011119634A (en) * 2009-10-28 2011-06-16 Kyocera Corp Package for electronic component mounting, and electronic device using the same
WO2018235414A1 (en) * 2017-06-22 2018-12-27 ソニーセミコンダクタソリューションズ株式会社 Transmission line

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103903U (en) * 1983-12-19 1985-07-16 関西日本電気株式会社 Printed circuit board with strip line
JPS645102A (en) * 1987-06-29 1989-01-10 Nippon Telegraph & Telephone Transmission line mode converter
JPH01276901A (en) * 1988-04-28 1989-11-07 Matsushita Electric Ind Co Ltd Microwave transmission circuit device
JPH0238806U (en) * 1988-09-05 1990-03-15
JPH03278588A (en) * 1990-03-28 1991-12-10 Nec Corp Hybrid integrated circuit board
JPH07211846A (en) * 1995-02-23 1995-08-11 Ngk Spark Plug Co Ltd Lead frame
JPH09312507A (en) * 1996-05-20 1997-12-02 Oki Electric Ind Co Ltd High frequency circuit board and connection method of the same
JPH104155A (en) * 1996-06-15 1998-01-06 Ngk Spark Plug Co Ltd Package for electronic component
JP2000195619A (en) * 1998-12-25 2000-07-14 Ace Five:Kk Cable assembly
JP2002016163A (en) * 2000-06-29 2002-01-18 Sumitomo Metal Electronics Devices Inc Ceramic package

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103903U (en) * 1983-12-19 1985-07-16 関西日本電気株式会社 Printed circuit board with strip line
JPS645102A (en) * 1987-06-29 1989-01-10 Nippon Telegraph & Telephone Transmission line mode converter
JPH01276901A (en) * 1988-04-28 1989-11-07 Matsushita Electric Ind Co Ltd Microwave transmission circuit device
JPH0238806U (en) * 1988-09-05 1990-03-15
JPH03278588A (en) * 1990-03-28 1991-12-10 Nec Corp Hybrid integrated circuit board
JPH07211846A (en) * 1995-02-23 1995-08-11 Ngk Spark Plug Co Ltd Lead frame
JPH09312507A (en) * 1996-05-20 1997-12-02 Oki Electric Ind Co Ltd High frequency circuit board and connection method of the same
JPH104155A (en) * 1996-06-15 1998-01-06 Ngk Spark Plug Co Ltd Package for electronic component
JP2000195619A (en) * 1998-12-25 2000-07-14 Ace Five:Kk Cable assembly
JP2002016163A (en) * 2000-06-29 2002-01-18 Sumitomo Metal Electronics Devices Inc Ceramic package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088046A (en) * 2008-10-02 2010-04-15 Sumitomo Metal Electronics Devices Inc High-frequency transmission line substrate
JP2010177364A (en) * 2009-01-28 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor package and packaging method thereof
JP2011015200A (en) * 2009-07-02 2011-01-20 Anritsu Corp High-frequency connection wiring board, and optical modulator module including the same
JP2011119634A (en) * 2009-10-28 2011-06-16 Kyocera Corp Package for electronic component mounting, and electronic device using the same
WO2018235414A1 (en) * 2017-06-22 2018-12-27 ソニーセミコンダクタソリューションズ株式会社 Transmission line

Also Published As

Publication number Publication date
JP3922551B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US4881116A (en) Package for integrated circuit
US6770822B2 (en) High frequency device packages and methods
EP2237316B1 (en) Connection terminal, package using the same and electronic device
JP5636834B2 (en) High frequency circuit package and high frequency circuit device
CN112640102A (en) Electronic component module and method for manufacturing electronic component module
US10249564B2 (en) Electronic component mounting substrate, electronic device, and electronic module
JP2004064459A (en) Transmission line substrate for high frequency and method for manufacturing same
JP4903738B2 (en) Electronic component storage package and electronic device
JP4874177B2 (en) Connection terminal, package using the same, and electronic device
JP6626735B2 (en) Electronic component mounting board, electronic device and electronic module
EP3451371A1 (en) Substrate for mounting electronic component, electronic device and electronic module
JP3922551B2 (en) High-frequency transmission line substrate
JP3570887B2 (en) High frequency wiring board
JP2009283898A (en) Electronic part container, package for storing electronic part using the same and electronic device
JPH11214580A (en) Package for high-frequency element
JP3834190B2 (en) High frequency package
JP7573040B2 (en) Wiring substrate and electronic device
WO2022070856A1 (en) Wiring substrate and electronic device
JPH11251488A (en) Ceramic package
JP2019175939A (en) Package for semiconductor element and semiconductor device
JP2004134413A (en) Package for housing semiconductor device and semiconductor device
JP3840160B2 (en) High frequency device storage package
JP2005130406A (en) Waveguide member, waveguide, and high frequency module
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP2004153165A (en) Package for housing semiconductor component and its mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Ref document number: 3922551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees