JP2004047825A - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP2004047825A
JP2004047825A JP2002204712A JP2002204712A JP2004047825A JP 2004047825 A JP2004047825 A JP 2004047825A JP 2002204712 A JP2002204712 A JP 2002204712A JP 2002204712 A JP2002204712 A JP 2002204712A JP 2004047825 A JP2004047825 A JP 2004047825A
Authority
JP
Japan
Prior art keywords
solar cell
type semiconductor
groove
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204712A
Other languages
English (en)
Inventor
Tadashi Iwakura
岩倉 正
Hiroaki Shimizu
清水 洋昭
Koji Saotome
五月女 耕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002204712A priority Critical patent/JP2004047825A/ja
Publication of JP2004047825A publication Critical patent/JP2004047825A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】溝と電極を形成しやすく、溝でのキャリアの再結合が起こりにくい変換効率を向上させた太陽電池を提供する。
【解決手段】結晶半導体基板の一面側に受光面が形成され、他面側にp型半導体層19とn型半導体層20とが交互に配設された太陽電池10において、p型半導体層19とn型半導体層20とが結晶半導体基板の他面に設けられた断面形状が三角形であるV溝18に交互に形成され、V溝18が同一電極材料で充填されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池に関し、特に、太陽電池の光電変換効率を向上させるための構造に関するものである。
【0002】
【従来の技術】
従来より、受光面の面積をなるべく大きく確保するために、電極を受光面と反対側に形成した太陽電池が開発されている。例えば、特開平3−165578号公報に、結晶シリコン基板のいずれか一方の面に、p型シリコン層とnシリコン層とが正極および負極として交互に配設された太陽電池が開示されている。
【0003】
従来例に係る太陽電池の部分断面図において、p型の結晶シリコン基板の裏面側にp型シリコン層からなるU字形状の溝と、n型シリコン層からなるU字形状の溝が形成されている。また、n型シリコン層からなる溝の中には銀により構成された負電極用金属が埋め込まれており、p型シリコン層からなる溝の中にはアルミニウム・シリコン合金により構成された正電極用金属が埋め込まれている。
【0004】
従来例に係る太陽電池によれば、p型シリコン層、n型シリコン層とこれらに埋め込まれた正電極用金属および負電極用金属との接触面積を増大させ、これらの間の接触抵抗を低減できる。また、正電極用金属と負電極用金属の厚みを増大させることができるので、電極用金属を流れる電流に対する電気抵抗も低減することができる。また、p型シリコン層、n型シリコン層は、上述したように溝形状となっているので、この凹部と結晶シリコン基板の受光面との距離が短縮され、キャリア再結合せずに電極に到達するキャリア(自由電子、自由正孔)が増加することにより光電変換効率を向上できる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、受光面の裏面側に形成された溝がU字形状をしているため、その溝を形成しにくいという問題点があった。また、上記従来技術においては、負電極用金属として銀を使用し、正電極用金属としてアルミニウム・シリコン合金を使用している。この場合、電極を形成するときに2種の電極材料を正電極となる溝と負電極となる溝に別々に充填しなくてはならず製造が容易ではないという問題点がある。さらに、アルミニウム・シリコン合金の形成時において、その合金化のために750℃程度の高温処理をする必要があるため、電極用金属の電気抵抗を高め、また、溝全面で電極材料とシリコンが接合しオーミック接触を形成するため電気的接触部の面積の増大によりキャリアの再結合を促進するので、太陽電池特性を劣化させるという問題点がある。
【0006】
本発明の目的は、上記問題を解決するため、溝と電極を形成しやすく、溝でのキャリアの再結合が起こりにくい変換効率を向上させた太陽電池を提供することにある。
【0007】
【課題を解決するための手段および作用】
本発明に係る太陽電池は、上記の目的を達成するために、次のように構成される。
【0008】
第1の太陽電池(請求項1に対応)は、半導体基板の一面側に受光面が形成され、他面側にp型半導体層とn型半導体層とが交互に配設された太陽電池において、p型半導体層とn型半導体層とが半導体基板の他面側に設けられた断面形状が三角形であるV溝に交互に形成され、V溝が同一電極材料で充填されていることで特徴づけられる。
【0009】
第1の太陽電池によれば、p型半導体層とn型半導体層とが結晶半導体基板の他面に設けられた断面形状が三角形であるV溝に交互に形成され、V溝が同一電極材料で充填されているため、溝を形成することが容易であり、また、2種の電極材料を用いるときのように正電極となる溝と負電極となる溝に別々に電極材料を充填する必要がないので、電極を容易に形成することが可能な太陽電池を得ることができる。
【0010】
第2の太陽電池(請求項2に対応)は、上記の構成において、好ましくはV溝の外側の電気的接触部以外に光電変換により発生した電子および正孔の再結合を防止する再結合防止膜を形成し、再結合防止膜を介して電極材料がV溝に充填され、電気的接触部で電極材料がp型半導体層およびn型半導体層とオーミック接触していることことで特徴づけられる。
【0011】
第2の太陽電池によれば、V溝の外側の電気的接触部以外に光電変換により発生した電子および正孔の再結合を防止する再結合防止膜を形成し、再結合防止膜を介して電極材料がV溝に充填され、電気的接触部部で電極材料がp型半導体層およびn型半導体層とオーミック接触しているため、溝でのキャリアの再結合が起こりにくく、電気的接触部が面積を小さく、かつ接触抵抗を小さくでき、また、電極自身の電気抵抗も小さくできるので、変換効率を向上させた太陽電池を得ることができる。
【0012】
第3の太陽電池(請求項3に対応)は、上記の構成において、好ましくは半導体基板は結晶シリコンであり、p型半導体層はp型シリコン層であり、n型半導体層はn型シリコン層であることで特徴づけられる。
【0013】
第3の太陽電池によれば、半導体基板は結晶シリコンであり、p型半導体層はp型シリコン層であり、n型半導体層はn型シリコン層であるため、容易に安い価格で高効率の太陽電池を得ることができる。
【0014】
第4の太陽電池(請求項4に対応)は、上記の構成において、好ましくは再結合防止膜は酸化膜からなることで特徴づけられる。
【0015】
第4の太陽電池によれば、再結合防止膜は酸化膜からなるため、容易に再結合防止膜を形成することができる。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施形態を添付図面に基づいて説明する。
【0017】
図1と図2は、本実施形態に係る太陽電池の一部の断面図と、受光面とは反対側の面の電極パターンを示す平面図である。太陽電池10は、受光部11とキャリア生成部12と電極部13から形成される。受光部11は、テクスチャー構造をしており、その構造の表面には、反射防止膜14で覆われている。反射防止膜14としては、例えば酸化チタン(TiO)と酸化シリコン(SiO)とからなる薄膜が用いられる。受光部11をこの反射防止膜14で覆われたテクスチャー構造にすることにより、入射された光がより多くキャリア生成部12に入るようになり、太陽電池10の変換効率を上げることができる。
【0018】
キャリア生成部12は、半導体15から成り、受光部11から入射された光、特に半導体15のバンドギャップ以上のエネルギーを持つ光により、価電子帯の電子が伝導帯に励起され、伝導帯に自由電子が生成され、価電子帯に自由正孔が生成されるものである。自由電子と自由正孔をキャリアと呼ぶ。そして、このキャリア生成部12で生成されたキャリアのうち再結合する前に、拡散により電極部13に到達することにより、電極部13により電流を取り出すことができる。それゆえ、キャリアの再結合が起こりにくい、すなわち、キャリア寿命が長い半導体を用いることにより、太陽電池10の変換効率を上げることができる。そのため、このキャリア生成部12に用いる半導体15としては高抵抗の結晶シリコンが用いられる。
【0019】
電極部13は、キャリア生成部12で生成されたキャリアを電流として取り出すところである。この電極部13は、半導体15の受光部11側とは、反対側の面に形成される。電極部13は、正電極16と負電極17とが半導体15の面に断面形状が三角形であるV溝18に交互に形成されている。V溝18には、p半導体層19とn半導体層20とが交互に形成されている。また、p半導体層19とn半導体層20が形成されたV溝18の表面には、酸化膜21により覆われている。V溝18には、同一電極材料、例えば銀22で充填されている。V溝18の底部23は、酸化膜をファイヤースルーすることにより、電極材料が直接半導体と接合し、電気的接触部24,25を形成する。電気的接触部24,25では、電極材料がp型半導体層19およびn型半導体層20とオーミック接触している。電極部13では、V溝18の底部23以外は、酸化膜がファイヤースルーしていない絶縁膜として電極材料と半導体15の間に存在するので、V溝18の外側の電気的接触部24以外に光電変換により発生したキャリア、すなわち自由電子および自由正孔の再結合を防止することができる。それゆえ、その酸化膜21を再結合防止膜と呼ぶ。また、電極部13を形成する面には、パシベーション膜、たとえば、酸化シリコン(SiO)が堆積されている。
【0020】
次に、本実施形態に係る太陽電池10の動作を説明する。太陽電池10の受光部11の受光面から入射された光は、テクスチャー構造の反射防止膜14を形成した受光面により、反射が抑えられ、半導体15内に透過する。半導体15内に透過した光のうち、半導体15のバンドギャップ以上のエネルギーを持つ光は、キャリア生成部12において、価電子帯の電子を伝導帯に励起し、価電子帯には自由正孔を生じ、伝導帯には自由電子を生成する。自由電子と自由正孔は半導体15中を拡散し、一部は、再結合し、一部は、電極部13に到達する。半導体として、不純物の少ない高抵抗の半導体を用いているため、再結合を起こすキャリアの量は少なく、再結合せずに電極部13に到達するキャリアの量は多い。
【0021】
キャリアのうち、自由電子は、n半導体層20と電気的接触部25を通して負電極17に流れ込み、自由正孔はp半導体層19と電気的接触部24を通して正電極16に流れ込む。このとき、V溝18の電気的接触部24,25以外は、酸化膜21による再結合防止膜が形成されているため、V溝18の表面でのキャリアの再結合が抑えられ、電極部13に到達したキャリアは、V溝18の底部23に形成された電気的接触部24,25から、銀で形成された電極16,17に流れ込む。これにより、電流を取り出すことができる。
【0022】
このとき、V溝18の底部23近辺のみが電気的接触部であるため、電極面積が小さく、そのため、開放端電圧(VOC)を増加することができる。また、電極は、V溝内で電気的接触部から上部にいくにしたがって面積が広くなっていくので、電極の金属内を電流が流れるときの電気抵抗が小さくなるため、フィルファクタ(FF)が大きくなる。さらに、V溝の大部分が酸化膜による再結合防止膜により覆われているため、電極部付近でのキャリア再結合が抑えられ、キャリア生成部で生成されたキャリアの多くが電気的接触部から電極に流れ込む。これらにより、変換効率を向上することができる。また、p半導体層19とn半導体層20と受光部11が近いため、半導体基板を薄くする必要がないので、半導体基板あるいはその基板を用いた太陽電池は割れにくく強固なものとなる。
【0023】
次に、本実施形態に係る太陽電池の製造方法を図3により説明する。まず、厚さ約250μm(ミクロン)の高抵抗シリコン(100)基板26の両面に酸化膜を形成する。この酸化膜形成は、例えば、熱酸化で行う。その後、シリコン基板の一方の面に形成された酸化膜をフォトリソグラフィーやレーザエッチング等により、所定の幅、例えば、100μmの幅で、300μmの間隔でストライプ状に除去する。
【0024】
その後、水酸化カリウム(KOH)あるいは、テトラメチルアンモニウムハイドロオキサイド(TMAH)等により異方性エッチングを行い、断面形状が三角形のストライプ状のV溝を300μm間隔に形成する。
【0025】
次に、その基板を拡散炉の中に入れ、リンを拡散する。それにより、図(3a)で示すようにV溝27を形成するシリコン部分にn型シリコン層28が形成される。また、このとき、拡散炉の中で、リンの材料となるガスを止め、その後、酸素だけを導入することにより、リンを拡散したV溝27の表面が酸化膜で覆われる。
【0026】
次に、V溝27の300μm幅の間の酸化膜20のV溝27からの距離が100μmになるように、100μm幅に酸化膜27をフォトリソグラフィーやレーザエッチングなどにより除去する。
【0027】
その後、水酸化カリウム(KOH)あるいは、テトラメチルアンモニウムハイドロオキサイド(TMAH)等により異方性エッチングを行い、断面形状が三角形のストライプ状のV溝を100μm間隔に形成する。
【0028】
次に、その基板を拡散炉の中に入れ、ボロンを拡散する。それにより、図3(b)で示すようにn型シリコン層28が形成されたV溝27の間のV溝30を形成するシリコン部分にp型シリコン層31が形成される。また、このとき、拡散炉の中で、ボロンの材料となるガスを止め、その後、酸素だけを導入することにより、ボロンを拡散したV溝30の表面が酸化膜で覆われる。
【0029】
そのシリコン基板26のもう一方の表面を覆う酸化膜を除去し、水酸化カリウム(KOH)あるいは、テトラメチルアンモニウムハイドロオキサイド(TMAH)等により異方性エッチングを行い、断面形状が三角形のストライプ状のテクスチャー構造を形成する。そして、拡散炉によりドライ酸化を行うことにより、もう一方の面も酸化膜が形成される(図3(c))。
【0030】
その後、両面に酸化チタン(TiO)をスッパタリングなどにより常温で堆積する。これにより、もう一方の面にテクスチャー構造の反射防止膜を有する受光面が形成される。
【0031】
次に、図3(d)で示すように、pシリコン層と、n型シリコン層を有し、表面が酸化膜で覆われたV溝27,30に銀ペースト32を埋め込む。このとき、V溝の底部近傍だけに銀ペーストを入れ、一度焼成することにより、底部のみシリコンと銀との電気的接触を形成する。その後、V溝全体に銀を埋め込み、前の焼成温度より低い温度で焼成する。その後、接触抵抗を低減し、またキャリア寿命を向上させために、水素雰囲気中でアニールする。これにより、V溝内の底部以外は、電気的接触を形成しない。
【0032】
その後、電極部側の面を保護フィルムで多い、導電性インクを塗布することにより配線を形成し、ダイシングすることにより太陽電池が作製される。
【0033】
なお、本実施形態においては、半導体として結晶シリコンを用いて説明したが、半導体として結晶シリコンに限らず、他の半導体、例えば、ひ化ガリウム(GaAs)などの半導体を用いることができる。
【0034】
【発明の効果】
以上の説明で明らかなように本発明によれば、次の効果を奏する。
【0035】
p型半導体層とn型半導体層とが結晶半導体基板の裏面に設けられた断面形状が三角形であるV溝に交互に形成され、V溝が同一電極材料で充填されているため、溝を形成することが容易であり、また、2種の電極材料を用いるときのように正電極となる溝と負電極となる溝に別々に充填する必要がないので、電極を容易に形成することが可能な太陽電池を得ることができる。また、V溝の外側の電気的接触部以外に光電変換により発生した電子および正孔の再結合を防止する再結合防止膜を形成し、再結合防止膜を介して電極材料がV溝に充填され、電気的接触部で電極材料がp型半導体層およびn型半導体層とオーミック接触しているため、開放端電圧(VOC)を増加することができる。さらに、電極は、V溝内で電気的接触部から上部にいくにしたがって面積が広くなっていくので、電極の金属内を電流が流れるときの電気抵抗が小さくなるため、フィルファクタ(FF)が大きくなる。また、、V溝の大部分が酸化膜による再結合防止膜により覆われているため、電極部付近でのキャリア再結合が抑えられ、キャリア生成部で生成されたキャリアの多くが電気的接触部から電極に流れ込む。これらにより、変換効率を向上させた太陽電池を低コストで得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る太陽電池の一部の断面図である。
【図2】本発明の実施形態に係る太陽電池の一部の受光面とは反対側の面の電極パターンを示す平面図である。
【図3】本発明の実施形態に係る太陽電池の製造方法を示す断面図である。
【符号の説明】
10     太陽電池
11     受光部
12     キャリア生成部
13     電極部
14     反射防止膜
15     半導体
16     正電極
17     負電極
18     V溝
19     p半導体層
20     n半導体層
21     酸化膜
22     銀
23     底部
24,25  電気的接触部

Claims (4)

  1. 半導体基板の一面側に受光面が形成され、他面側にp型半導体層とn型半導体層とが交互に配設された太陽電池において、
    前記p型半導体層と前記n型半導体層とが前記半導体基板の前記他面側に設けられた断面形状が三角形であるV溝に交互に形成され、
    前記V溝が同一電極材料で充填されていることを特徴とする太陽電池。
  2. 前記V溝の外側の電気的接触部以外に光電変換により発生した電子および正孔の再結合を防止する再結合防止膜を形成し、
    前記再結合防止膜を介して前記電極材料が前記V溝に充填され、
    前記電気的接触部で前記電極材料が前記p型半導体層および前記n型半導体層とオーミック接触していることを特徴とする請求項1記載の太陽電池。
  3. 前記半導体基板は結晶シリコンであり、前記p型半導体層はp型シリコン層であり、前記n型半導体層はn型シリコン層であることを特徴とする請求項1または2記載の太陽電池。
  4. 前記再結合防止膜は酸化膜からなることを特徴とする請求項2記載の太陽電池。
JP2002204712A 2002-07-12 2002-07-12 太陽電池 Pending JP2004047825A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204712A JP2004047825A (ja) 2002-07-12 2002-07-12 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204712A JP2004047825A (ja) 2002-07-12 2002-07-12 太陽電池

Publications (1)

Publication Number Publication Date
JP2004047825A true JP2004047825A (ja) 2004-02-12

Family

ID=31710238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204712A Pending JP2004047825A (ja) 2002-07-12 2002-07-12 太陽電池

Country Status (1)

Country Link
JP (1) JP2004047825A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066802A (ja) * 2004-08-30 2006-03-09 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
WO2009108800A3 (en) * 2008-02-28 2009-11-05 Sunlight Photonics Inc. Method and appartus for fabricating composite substrates for thin film electro-optical devices
CN101969086A (zh) * 2010-07-29 2011-02-09 厦门市三安光电科技有限公司 一种防止边缘漏电的聚光太阳电池芯片制作方法
KR101051574B1 (ko) 2009-04-17 2011-07-22 서태욱 태양전지 및 그 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066802A (ja) * 2004-08-30 2006-03-09 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
WO2009108800A3 (en) * 2008-02-28 2009-11-05 Sunlight Photonics Inc. Method and appartus for fabricating composite substrates for thin film electro-optical devices
US8187906B2 (en) 2008-02-28 2012-05-29 Sunlight Photonics Inc. Method for fabricating composite substances for thin film electro-optical devices
KR101051574B1 (ko) 2009-04-17 2011-07-22 서태욱 태양전지 및 그 제조방법
CN101969086A (zh) * 2010-07-29 2011-02-09 厦门市三安光电科技有限公司 一种防止边缘漏电的聚光太阳电池芯片制作方法

Similar Documents

Publication Publication Date Title
JP5390102B2 (ja) へテロ接合およびインターフィンガ構造を有する半導体デバイス
KR100974226B1 (ko) 유전체를 이용한 태양전지의 후면 반사막 및 패시베이션층형성
JP2011507246A (ja) 広いうら側エミッタ領域を有する裏面電極型太陽電池およびその製造方法
JPH09172196A (ja) アルミニウム合金接合自己整合裏面電極型シリコン太陽電池の構造および製造
JP2003124483A (ja) 光起電力素子
WO2006129444A1 (ja) 太陽電池素子及びその製造方法
JP2008543067A (ja) 片面コンタクト型ソーラーセルの製造方法および片面コンタクト型ソーラーセル
WO2006025203A1 (ja) 太陽電池およびその製造方法
JP5851284B2 (ja) 太陽電池の製造方法
JP2013513964A (ja) 裏面接点・ヘテロ接合太陽電池
JPH02135786A (ja) 太陽電池セル
WO2011074280A1 (ja) 光起電力装置およびその製造方法
JP5430773B2 (ja) 光起電力装置およびその製造方法
TWI415280B (zh) Light power device and manufacturing method thereof
JP4325912B2 (ja) 太陽電池素子及びその製造方法
JP2007019259A (ja) 太陽電池およびその製造方法
JP4641858B2 (ja) 太陽電池
JP2004047825A (ja) 太陽電池
WO2010150358A1 (ja) 光起電力装置およびその製造方法
JPS6231834B2 (ja)
JP2004047824A (ja) 太陽電池とその製造方法
KR100403803B1 (ko) n-p형 후면 반전층을 갖는 양면 태양전지 및 그 제조방법
JP5022743B2 (ja) 光電変換素子
KR20190041989A (ko) 태양 전지 제조 방법 및 태양 전지
JPH0548123A (ja) 光電変換素子