JP2004047599A - 半導体装置およびその製造方法 - Google Patents
半導体装置およびその製造方法 Download PDFInfo
- Publication number
- JP2004047599A JP2004047599A JP2002200882A JP2002200882A JP2004047599A JP 2004047599 A JP2004047599 A JP 2004047599A JP 2002200882 A JP2002200882 A JP 2002200882A JP 2002200882 A JP2002200882 A JP 2002200882A JP 2004047599 A JP2004047599 A JP 2004047599A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- trench
- wall
- semiconductor device
- nitrided
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000002955 isolation Methods 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 22
- 150000003254 radicals Chemical class 0.000 claims description 14
- 238000005121 nitriding Methods 0.000 claims description 12
- 150000002831 nitrogen free-radicals Chemical class 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 34
- 229910052710 silicon Inorganic materials 0.000 abstract description 34
- 239000010703 silicon Substances 0.000 abstract description 34
- 230000003647 oxidation Effects 0.000 abstract description 11
- 238000007254 oxidation reaction Methods 0.000 abstract description 11
- 230000007547 defect Effects 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 150000004767 nitrides Chemical class 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 54
- 239000007789 gas Substances 0.000 description 17
- 229910052581 Si3N4 Inorganic materials 0.000 description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 229910018557 Si O Inorganic materials 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 5
- 229910007991 Si-N Inorganic materials 0.000 description 4
- 229910006294 Si—N Inorganic materials 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910016570 AlCu Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 radical nitride Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76232—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823481—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Formation Of Insulating Films (AREA)
Abstract
【課題】トレンチ内壁の酸化による結晶欠陥の発生を抑制することができ、かつゲート酸化膜の薄膜化をも抑制することができ、さらには分離酸化膜の埋込不良をも抑制することができる半導体装置およびその製造方法を提供する。
【解決手段】本発明の半導体装置は、主表面を有するp型シリコン基板1と、p型シリコン基板1の主表面における素子分離領域に形成されたトレンチ2と、トレンチ2の内壁上に形成された内壁酸化膜3と、内壁酸化膜3の表面に形成された窒化酸化層4と、トレンチ2内に埋め込まれた分離酸化膜5とを備える。素子分離領域上には、ゲート酸化膜6を介してゲート電極7が形成される。
【選択図】 図1
【解決手段】本発明の半導体装置は、主表面を有するp型シリコン基板1と、p型シリコン基板1の主表面における素子分離領域に形成されたトレンチ2と、トレンチ2の内壁上に形成された内壁酸化膜3と、内壁酸化膜3の表面に形成された窒化酸化層4と、トレンチ2内に埋め込まれた分離酸化膜5とを備える。素子分離領域上には、ゲート酸化膜6を介してゲート電極7が形成される。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、特に、半導体装置において素子間を分離する素子分離領域の構造およびその製造方法に関する。
【0002】
【従来の技術】
半導体装置の素子間を分離する素子分離構造として、トレンチ分離構造は知られている。このトレンチ分離構造は、シリコン基板をエッチングしてトレンチを形成し、該トレンチの内壁を酸化して内壁酸化膜を形成し、その後トレンチ内に酸化膜を埋め込むことで分離酸化膜を形成する。
【0003】
また、トレンチ内への酸化膜の埋込特性を向上させるため、該酸化膜に不純物を添加することもなされている。この場合、分離酸化膜からシリコン基板に不純物が拡散するのを抑制する必要がある。
【0004】
【発明が解決しようとする課題】
半導体装置の製造プロセスにおいて、トレンチ分離形成後に酸化プロセスは必須である。たとえば、シリコン基板の主表面上にMOS(Metal Oxide Semiconductor)トランジスタを形成する際には、トレンチ分離形成後にシリコン基板の主表面を熱酸化してゲート酸化膜を形成する。
【0005】
このとき、酸化剤がトレンチ内のシリコン酸化膜中を拡散し、トレンチ内壁のシリコンと反応し、トレンチ内壁が酸化される。それにより、トレンチ内壁のシリコンがシリコン酸化膜に変化する。
【0006】
シリコンがシリコン酸化膜に変化すると、シリコン酸化膜の体積は酸化されたシリコンの体積よりも増加するので、トレンチ内に埋め込まれたシリコン酸化膜が膨張したことと等価な状態となる。そのため、トレンチの周囲の素子形成領域が圧縮応力を受け、シリコン基板に結晶欠陥が発生する。このような欠陥が発生することにより、接合リーク電流が増大し、半導体装置の消費電力が増大するという問題が生じる。
【0007】
他方、分離酸化膜からシリコン基板に不純物が拡散するのを抑制するための手法としては、内壁酸化膜形成後にNO/O2ガスやNH3ガス等を用いて熱窒化を行ったり、内壁酸化膜形成後にCVD(Chemical Vapor Deposition)法によりシリコン窒化膜を堆積する手法を挙げることができる。これらの手法によれば、トレンチ内壁に沿ってシリコン窒化層を形成することができるので、分離酸化膜からシリコン基板に不純物が拡散するのを抑制することができる。
【0008】
しかし、上記の熱窒化を行うと、シリコン基板と内壁酸化膜との界面にシリコン窒化層が形成され、素子形成領域の一部である、トレンチの上端部近傍に位置するシリコンの主表面も窒化されてしまう。そのため、該主表面上にゲート酸化膜を形成した場合にゲート酸化膜が局所的に薄膜化し、絶縁耐圧が低下する等の問題が生じる。
【0009】
また、内壁酸化膜上にCVD法でシリコン窒化膜を形成して上述の不純物拡散を効果的に抑制するには、シリコン窒化膜の厚みは5nm程度以上必要である。しかし、かかるシリコン窒化膜をトレンチ内に形成することにより、トレンチの開口幅が小さくなり、トレンチ内に酸化膜を埋め込んだ際に埋込不良が生じ易くなるという問題が生じる。この問題は、素子の微細化が進むにつれて顕著なものとなる。
【0010】
本発明は、以上のような課題を解決するためになされたものであり、トレンチ内壁の酸化による結晶欠陥の発生を抑制することができ、かつゲート酸化膜の局所的な薄膜化をも抑制することができ、さらには分離酸化膜の埋込不良をも抑制することができる半導体装置およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る半導体装置は、主表面を有する半導体基板と、半導体基板の主表面における素子分離領域に形成されたトレンチと、トレンチの内壁上に形成された内壁酸化膜と、内壁酸化膜の表面に形成された窒化酸化層と、トレンチ内に埋め込まれた分離酸化膜とを備える。
【0012】
上記の窒化酸化層は、典型的にはSi−O結合のO(酸素原子)をN(窒素原子)に置換することにより得られたSi−N結合を主として有する層であり、Si−H結合を含まない層である。かかる窒化酸化層を形成することにより、後工程の酸化時に酸化剤がトレンチ内の酸化膜中を通過してトレンチ内壁に達するのを抑制することができる。また、該窒化酸化層の厚みをかなり薄くしても不純物拡散を抑制することができる。したがって、分離酸化膜に不純物が添加されている場合でも、分離酸化膜から半導体基板へ不純物が拡散するのを抑制し、かつ分離酸化膜の埋込不良をも効果的に抑制することができる。
【0013】
上記窒化酸化層は、トレンチ内であってトレンチ内壁から離隔してトレンチ内壁に沿って延在する。また、窒化酸化層の厚みは、好ましくは、0.2nm以上4nm以下である。上記分離酸化膜は、好ましくは、不純物を含む。
【0014】
本発明に係る半導体装置の製造方法は、次の各工程を備える。半導体基板の素子分離領域にトレンチを形成する。トレンチの内壁を酸化して内壁酸化膜を形成する。内壁酸化膜の表面をラジカル窒化法により窒化して窒化酸化層を形成する。トレンチ内に分離酸化膜を埋め込む。
【0015】
このようにラジカル窒化法により内壁酸化膜の表面を窒化して窒化酸化層を形成することにより、内壁酸化膜の表面におけるSi−O結合のO(酸化原子)をN(窒素原子)に置換し、Si−N結合を主として有する窒化酸化層を内壁酸化膜の表面上に形成することができる。それにより、上述の効果が得られる。それに加え、この窒化酸化層は上記のような置換反応により形成されるので、窒化酸化層の厚みの制御を容易に行え、窒化酸化層の厚みを極めて薄くすることができる。
【0016】
上記のラジカル窒化法を行うに際し、窒素ラジカルを発生させるプラズマの電子温度をたとえば1eV以上1.5eV以下と低くしながら上記窒化酸化層を形成することが好ましい。
【0017】
【発明の実施の形態】
以下、図1〜図16を用いて、本発明の実施の形態について説明する。
【0018】
図1および図2は、本発明の1つの実施の形態における半導体装置の断面図であり、それぞれ図3のI−I線に沿う断面、II−II線に沿う断面を示す図である。
【0019】
図1〜図3に示すように、p型シリコン基板(半導体基板)1の主表面における素子分離領域にトレンチ分離領域を形成し、該トレンチ分離領域に囲まれた素子形成領域上にMOSトランジスタ等の素子を形成する。MOSトランジスタは、ソース/ドレインとなるn型不純物領域8,9と、ゲート酸化膜6と、ゲート電極7とを有する。なお、ゲート電極7の側壁上に図示しないサイドウォール絶縁膜を形成してもよい。
【0020】
トレンチ分離領域は、トレンチ2と、トレンチ2の内壁上に形成された内壁酸化膜3と、内壁酸化膜3の表面上に形成された窒化酸化層(ラジカル窒化層)4と、トレンチ2内に埋め込まれた分離酸化膜5とを有する。
【0021】
窒化酸化層4は、内壁酸化膜3の表面をラジカル窒化することにより形成される。より詳しくは、たとえばArガスとN2ガスの混合ガス雰囲気内で窒素ラジカルを発生させ、内壁酸化膜3の表面におけるSi−O結合のO(酸素原子)をN(窒素原子)に置換することにより窒化酸化層4を形成することができ、該窒化酸化層4はSi−N結合を主として有する。
【0022】
窒化酸化層4は、内壁酸化膜3の表面上にのみ形成され、内壁酸化膜3の深部あるいはシリコン基板1は窒化されない。図4に、内壁酸化膜3をラジカル窒化した場合の内壁酸化膜3の表面および内部における窒素量の分布を示す。図4において、0nmの位置がp型シリコン基板1と内壁酸化膜3との界面に相当し、8nmの位置が窒化酸化層4の表面に相当する。図4に示すように、内壁酸化膜3表面の1〜2nmの範囲内にのみ窒素が存在し、内壁酸化膜3中の深い位置およびp型シリコン基板1と内壁酸化膜3との界面には窒素が存在していないことがわかる。
【0023】
上記のように窒化酸化層4は、内壁酸化膜3の表面のみを窒化することにより形成されるので、窒化酸化層4の厚みを極めて薄くすることができる。具体的には窒化酸化層4の厚みをたとえば0.2nm以上4nm以下、好ましくは2nm程度とすることができる。このように窒化酸化層4の厚みを薄くしても、後工程の酸化時に酸化剤がトレンチ2の内壁に達するのを抑制することができる。
【0024】
さらに、上述のようなArガスとN2ガスの混合ガス雰囲気内で窒化酸化層4を形成することにより、窒化酸化層4はSi−H結合を含まないものとなる。したがって、窒化酸化層4内からMOSトランジスタ等の素子中に水素原子が拡散することに起因する問題は生じない。
【0025】
図1および図2に示すように、窒化酸化層4は、トレンチ2内であってトレンチ2内壁から離隔してトレンチ2内壁に沿って延在し、内壁酸化膜3の内表面を覆うように形成される。
【0026】
このように窒化酸化層4がトレンチ2内壁から離隔しており、また上述のようにシリコン基板1が窒化されないので、トレンチ2の内壁上端部近傍に位置する素子形成領域が窒化されることはない。したがって、素子形成領域上にゲート酸化膜6を形成した場合においても、ゲート酸化膜6がトレンチ2の内壁上端部近傍で局所的に薄膜化するのを阻止することができる。具体的には、図3の領域10、11内におけるゲート酸化膜6の薄膜化を抑制することができる。
【0027】
分離酸化膜5は、トレンチ2への埋込特性を向上させるリン(P)、ボロン(B)、フッ素(F)等の不純物を含むことが好ましい。それにより、トレンチ2の開口幅が縮小された場合でも、トレンチ2内に分離酸化膜5を埋め込むことができ、分離酸化膜5の埋込不良をも効果的に抑制することができる。
【0028】
また、分離酸化膜5に上述のような不純物が添加されている場合でも、窒化酸化層4を形成することにより、分離酸化膜5からシリコン基板1へ不純物が拡散するのを抑制することができる。つまり、本発明の窒化酸化層4は、不純物拡散を抑制するバリア層として機能する。
【0029】
次に、本発明に係る半導体装置の製造方法について図5〜図16を用いて説明する。
【0030】
たとえば比抵抗が8.5〜11.5Ω・cm、面方位が(100)、厚さ725μmのp型シリコン基板1を、750℃でO2ガスとH2ガスの混合ガス中で熱酸化する。それにより、図5に示すように、p型シリコン基板1の主表面上に150nmの厚みの酸化膜(シリコン酸化膜)12を形成する。この酸化膜12上に、たとえば熱CVD法により、厚さ100nm〜200nmのシリコン窒化膜13を堆積する。
【0031】
次に、シリコン窒化膜13上にレジスト(図示せず)を塗布し、フォトリソグラフィ技術により露光、現像してレジストをパターニングし、素子分離領域パターンに対応した開口を有するレジストパターンを形成する。このレジストパターンをマスクとして異方性エッチングを行い、図6に示すように、シリコン窒化膜13に開口14を形成する。その後、レジストパターンを除去する。
【0032】
次に、シリコン窒化膜13をマスクとして、たとえば塩化炭素系のガスを用いたRIE(Reactive Ion Etching)により酸化膜12およびp型シリコン基板1をエッチングし、図7に示すように、深さ約0.6μmのトレンチ2を形成する。
【0033】
その後、たとえばランプアニール装置によってドライO2ガスを用いて、1000℃、30秒間の酸化処理を行い、トレンチ2の内壁を酸化する。それにより、図8に示すように、1nm〜50nm程度の厚みの内壁酸化膜3を形成する。
【0034】
その後、たとえば図16に示すラジカル窒化装置を用いて、内壁酸化膜3の表面上に2nm程度の厚みの窒化酸化層4を形成する。
【0035】
ここで、ラジカル窒化装置の構成例について説明する。図16に示すように、ラジカル窒化装置は、チャンバ15と、ヒータ17と、石英プレート20と、スロットプレーンアンテナ21とを備える。
【0036】
チャンバ15内壁には石英ライナー16が設けられる。チャンバ15の近傍には、マイクロパルスジェネレータ(図示せず)が配置され、該マイクロパルスジェネレータにより2.45GHz,5kWのマイクロ波が生成される。マイクロパルスジェネレータとチャンバ15は、導波管を介して接続される。
【0037】
ヒータ17は、たとえばAlNヒータであり、400℃程度の加熱が可能である。このヒータ17上にウェハ(シリコンウェハ)18が載置され加熱される。スロットプレーンアンテナ21は、チャンバ15の上端に設置され、円状の銅板に多数の孔が設けたもので構成される。石英プレート20は、スロットプレーンアンテナ21下に設置される。
【0038】
次に、上述のラジカル窒化装置を用いた窒化法(ラジカル窒化法)について説明する。まずマイクロパルスジェネレータにより生成されたマイクロ波は、導波管内を伝搬してチャンバ15の上端に達する。このマイクロ波は、スロットプレーンアンテナ21を通過し、チャンバ15内に入る。
【0039】
チャンバ15内部にはArガスとN2ガスの混合ガスが導入されており、チャンバ15内の圧力は、たとえば66.5Pa(500mTorr)〜133Pa(1000mTorr)とされる。上記のマイクロ波により窒素が励起され、チャンバ15内にはプラズマ19とともに窒素ラジカルが発生する。このとき、窒素ラジカルを発生させるプラズマの電子温度をたとえば1eV以上1.5eV以下とする。
【0040】
そして、p型シリコン基板1をヒータ17によって所定温度に加熱しながら上述の窒素ラジカルにより内壁酸化膜3の表面を窒化し、本発明の窒化酸化層4を形成する。
【0041】
このようにラジカル窒化法を行った場合、上述のように内壁酸化膜3の表面におけるSi−O結合のO(酸化原子)がN(窒素原子)に置換されてSi−N結合を主として有する窒化酸化層4が得られるので、理論的には内壁酸化膜3の表面に存在するSi−O結合のみをN(窒素原子)に置換することが可能であると考えられる。したがって、窒化酸化層4を極めて薄く形成することができる。また、窒化酸化層4の厚みの制御を容易に行える。
【0042】
また、窒素ラジカルを発生させるプラズマの電子温度を1eV以上1.5eV以下と低くすることにより、プラズマによるp型シリコン基板1へのダメージを低減することができる。
【0043】
以上のようにして窒化酸化層4を形成した後、図10に示すように、CVD法により、たとえば8%フッ素を含む酸化膜(F−SiO2)を形成し、該酸化膜をトレンチ2内に埋め込む。その後、CMP(Chemical Mechanical Polishing)処理を行い、図11に示すように、酸化膜を研磨する。このとき、ストッパとしてシリコン窒化膜13を用い、シリコン窒化膜13が10nm程度残るまで研磨を行う。
【0044】
次に、上記のシリコン窒化膜13をたとえば160℃の燐酸によるウェットエッチングにより除去し、図12に示すように、酸化膜12を露出させる。その後イオン注入機を用いて、たとえば250keV,1×1013/cm2、140keV,3×1012/cm2、50keV,2×1012/cm2のようなエネルギーとドーズ量でボロン注入を3回行い、p型シリコン基板1中にpウェルを形成する。
【0045】
次に、10:1の弗酸(HF)によって35秒間ウェットエッチングを行い、酸化膜12を除去し、図13に示すように、p型シリコン基板1の主表面(素子形成領域)を露出させる。
【0046】
その後、たとえば硫酸処理、アンモニア加水、塩酸処理を順次行い、p型シリコン基板1の主表面上にケミカルオキサイドを形成し、50:1の弗酸(HF)によりエッチングを行うことで自然酸化膜を除去する。
【0047】
次に、たとえばランプアニール装置で、ドライO2ガスを用いて1000℃、30秒の条件でp型シリコン基板1の主表面(素子形成領域)を熱酸化し、図14に示すように、10nm〜100nmのゲート酸化膜6を形成する。
【0048】
その後、図15に示すように、CVD法により、650℃の温度で200nmの厚みのポリシリコン膜7aを堆積する。このポリシリコン膜7aに、たとえば30keV,4×1015/cm2の条件でリンを注入する。
【0049】
この後、ポリシリコン膜7a上にTEOS(Tetra Ethyl Ortho Silicate)酸化膜を700nm堆積する。このTEOS酸化膜を所定形状にパターニングし、該パターニングされたTEOS酸化膜をマスクとしてポリシリコン膜7aをパターニングする。それにより、ゲート電極7を形成する。
【0050】
その後、砒素を50keV,5×1014/cm2の条件でp型シリコン基板1の主表面(素子形成領域)に注入し、ソース/ドレイン領域となるn型不純物領域8,9を形成する。それにより、図1,2に示す構造が得られる。その後、ゲート電極7上に層間絶縁膜を形成し、AlCu等の配線工程を経てトランジスタが完成する。なお、ゲート電極7の側壁上にサイドウォール絶縁膜を形成し、n型不純物領域8,9をLDD(Lightly Doped Drain)構造としてもよい。
【0051】
なお、上述の実施の形態では、トレンチ2へ埋め込まれる酸化膜の一例としてF添加酸化膜を挙げたが、PSG(Phospho Silicate Glass),BPSG(Boro Phospho Silicate Glass),TEOS,HDP(High Density Plasma)酸化膜等も使用可能である。
【0052】
また、シリコン窒化膜13の代わりにポリシリコン膜やシリコン酸化膜を使用することも可能である。さらに、上述の例では内壁酸化膜3をドライO2酸化により形成したが、RTO(H2/O2)酸化、WET酸化、ラジカル酸化、プラズマ酸化で形成することも可能である。
【0053】
以上のように本発明の実施の形態について説明を行なったが、今回開示した実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0054】
【発明の効果】
本発明の半導体装置によれば、トレンチ内に窒化酸化層を形成しているので、後工程の酸化時に酸化剤がトレンチ内壁に達するのを抑制することができ、該酸化剤でトレンチ内壁が酸化されることに起因する酸化膜の体積増加を抑制することができる。よって、該体積増加に起因して生じる接合リーク電流の発生を効果的に抑制することができる。また、分離酸化膜に不純物が添加されている場合でも、窒化酸化層によって分離酸化膜から半導体基板へ不純物が拡散するのを抑制することができるので、該不純物拡散により素子形成領域における不純物プロファイルが変化するのを抑制することができる。さらに、上記窒化酸化層の厚みを薄くできるので、分離酸化膜の埋込不良をも効果的に抑制することができる。したがって、信頼性の高い半導体装置が得られる。
【0055】
窒化酸化層形成の際には内壁酸化膜の表面のみが窒化されるので、上記窒化酸化層はトレンチ内であってトレンチ内壁から離隔してトレンチ内壁に沿って延在し、素子形成領域の表面の一部が窒化されるのを回避することができる。したがって、素子形成領域上にゲート酸化膜を形成した場合においても、ゲート酸化膜がトレンチ近傍において局所的に薄膜化するのを阻止することができる。
【0056】
上記窒化酸化層の厚みが薄い場合でも、酸化剤や不純物が分離酸化膜から半導体基板へ拡散するのを抑制することができる。具体的には、窒化酸化層の厚みが0.2nm以上4nm以下であれば上記効果が得られる。
【0057】
分離酸化膜がたとえばリンやボロン等の不純物を含む場合には、トレンチへの埋込特性を向上することができる。この場合には、埋込特性を向上しながら上述の効果が得られる。
【0058】
本発明の半導体装置の製造方法によれば、ラジカル窒化法により内壁酸化膜の表面を窒化して窒化酸化層を形成しているので、内壁酸化膜の表面に極めて薄い窒化酸化層を精度良く形成することができる。また、該窒化酸化層を内壁酸化膜の表面に形成することにより、上述のように信頼性の高い半導体装置を製造することができる。
【0059】
窒素ラジカルを発生させるプラズマの電子温度を1eV以上1.5eV以下と低く制御しながら上記窒化酸化層を形成した場合には、プラズマによる半導体基板へのダメージを低減することができる。
【図面の簡単な説明】
【図1】本発明の1つの実施の形態における半導体装置の断面図であり、図3のI−I線に沿う断面図である。
【図2】本発明の1つの実施の形態における半導体装置の断面図であり、図3のII−II線に沿う断面図である。
【図3】本発明の半導体装置の平面図である。
【図4】内壁酸化膜表面からシリコン基板までの窒素量分布を示す図である。
【図5】本発明の半導体装置の製造工程の第1工程を示す断面図である。
【図6】本発明の半導体装置の製造工程の第2工程を示す断面図である。
【図7】本発明の半導体装置の製造工程の第3工程を示す断面図である。
【図8】本発明の半導体装置の製造工程の第4工程を示す断面図である。
【図9】本発明の半導体装置の製造工程の第5工程を示す断面図である。
【図10】本発明の半導体装置の製造工程の第6工程を示す断面図である。
【図11】本発明の半導体装置の製造工程の第7工程を示す断面図である。
【図12】本発明の半導体装置の製造工程の第8工程を示す断面図である。
【図13】本発明の半導体装置の製造工程の第9工程を示す断面図である。
【図14】本発明の半導体装置の製造工程の第10工程を示す断面図である。
【図15】本発明の半導体装置の製造工程の第11工程を示す断面図である。
【図16】本発明において使用可能なラジカル窒化装置の断面図である。
【符号の説明】
1 p型シリコン基板、2 トレンチ、3 内壁酸化膜、4 窒化酸化層、5分離酸化膜、6 ゲート酸化膜、7 ゲート電極、7a ポリシリコン層、8,9 n型不純物領域、10,11 領域、12 酸化膜、13 シリコン窒化膜、14 開口、15 チャンバ、16 ライナー、17 ヒータ、18 ウエハ(半導体ウェハ)、19 プラズマ、20 石英プレート、21 スロットプレートアンテナ。
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、特に、半導体装置において素子間を分離する素子分離領域の構造およびその製造方法に関する。
【0002】
【従来の技術】
半導体装置の素子間を分離する素子分離構造として、トレンチ分離構造は知られている。このトレンチ分離構造は、シリコン基板をエッチングしてトレンチを形成し、該トレンチの内壁を酸化して内壁酸化膜を形成し、その後トレンチ内に酸化膜を埋め込むことで分離酸化膜を形成する。
【0003】
また、トレンチ内への酸化膜の埋込特性を向上させるため、該酸化膜に不純物を添加することもなされている。この場合、分離酸化膜からシリコン基板に不純物が拡散するのを抑制する必要がある。
【0004】
【発明が解決しようとする課題】
半導体装置の製造プロセスにおいて、トレンチ分離形成後に酸化プロセスは必須である。たとえば、シリコン基板の主表面上にMOS(Metal Oxide Semiconductor)トランジスタを形成する際には、トレンチ分離形成後にシリコン基板の主表面を熱酸化してゲート酸化膜を形成する。
【0005】
このとき、酸化剤がトレンチ内のシリコン酸化膜中を拡散し、トレンチ内壁のシリコンと反応し、トレンチ内壁が酸化される。それにより、トレンチ内壁のシリコンがシリコン酸化膜に変化する。
【0006】
シリコンがシリコン酸化膜に変化すると、シリコン酸化膜の体積は酸化されたシリコンの体積よりも増加するので、トレンチ内に埋め込まれたシリコン酸化膜が膨張したことと等価な状態となる。そのため、トレンチの周囲の素子形成領域が圧縮応力を受け、シリコン基板に結晶欠陥が発生する。このような欠陥が発生することにより、接合リーク電流が増大し、半導体装置の消費電力が増大するという問題が生じる。
【0007】
他方、分離酸化膜からシリコン基板に不純物が拡散するのを抑制するための手法としては、内壁酸化膜形成後にNO/O2ガスやNH3ガス等を用いて熱窒化を行ったり、内壁酸化膜形成後にCVD(Chemical Vapor Deposition)法によりシリコン窒化膜を堆積する手法を挙げることができる。これらの手法によれば、トレンチ内壁に沿ってシリコン窒化層を形成することができるので、分離酸化膜からシリコン基板に不純物が拡散するのを抑制することができる。
【0008】
しかし、上記の熱窒化を行うと、シリコン基板と内壁酸化膜との界面にシリコン窒化層が形成され、素子形成領域の一部である、トレンチの上端部近傍に位置するシリコンの主表面も窒化されてしまう。そのため、該主表面上にゲート酸化膜を形成した場合にゲート酸化膜が局所的に薄膜化し、絶縁耐圧が低下する等の問題が生じる。
【0009】
また、内壁酸化膜上にCVD法でシリコン窒化膜を形成して上述の不純物拡散を効果的に抑制するには、シリコン窒化膜の厚みは5nm程度以上必要である。しかし、かかるシリコン窒化膜をトレンチ内に形成することにより、トレンチの開口幅が小さくなり、トレンチ内に酸化膜を埋め込んだ際に埋込不良が生じ易くなるという問題が生じる。この問題は、素子の微細化が進むにつれて顕著なものとなる。
【0010】
本発明は、以上のような課題を解決するためになされたものであり、トレンチ内壁の酸化による結晶欠陥の発生を抑制することができ、かつゲート酸化膜の局所的な薄膜化をも抑制することができ、さらには分離酸化膜の埋込不良をも抑制することができる半導体装置およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る半導体装置は、主表面を有する半導体基板と、半導体基板の主表面における素子分離領域に形成されたトレンチと、トレンチの内壁上に形成された内壁酸化膜と、内壁酸化膜の表面に形成された窒化酸化層と、トレンチ内に埋め込まれた分離酸化膜とを備える。
【0012】
上記の窒化酸化層は、典型的にはSi−O結合のO(酸素原子)をN(窒素原子)に置換することにより得られたSi−N結合を主として有する層であり、Si−H結合を含まない層である。かかる窒化酸化層を形成することにより、後工程の酸化時に酸化剤がトレンチ内の酸化膜中を通過してトレンチ内壁に達するのを抑制することができる。また、該窒化酸化層の厚みをかなり薄くしても不純物拡散を抑制することができる。したがって、分離酸化膜に不純物が添加されている場合でも、分離酸化膜から半導体基板へ不純物が拡散するのを抑制し、かつ分離酸化膜の埋込不良をも効果的に抑制することができる。
【0013】
上記窒化酸化層は、トレンチ内であってトレンチ内壁から離隔してトレンチ内壁に沿って延在する。また、窒化酸化層の厚みは、好ましくは、0.2nm以上4nm以下である。上記分離酸化膜は、好ましくは、不純物を含む。
【0014】
本発明に係る半導体装置の製造方法は、次の各工程を備える。半導体基板の素子分離領域にトレンチを形成する。トレンチの内壁を酸化して内壁酸化膜を形成する。内壁酸化膜の表面をラジカル窒化法により窒化して窒化酸化層を形成する。トレンチ内に分離酸化膜を埋め込む。
【0015】
このようにラジカル窒化法により内壁酸化膜の表面を窒化して窒化酸化層を形成することにより、内壁酸化膜の表面におけるSi−O結合のO(酸化原子)をN(窒素原子)に置換し、Si−N結合を主として有する窒化酸化層を内壁酸化膜の表面上に形成することができる。それにより、上述の効果が得られる。それに加え、この窒化酸化層は上記のような置換反応により形成されるので、窒化酸化層の厚みの制御を容易に行え、窒化酸化層の厚みを極めて薄くすることができる。
【0016】
上記のラジカル窒化法を行うに際し、窒素ラジカルを発生させるプラズマの電子温度をたとえば1eV以上1.5eV以下と低くしながら上記窒化酸化層を形成することが好ましい。
【0017】
【発明の実施の形態】
以下、図1〜図16を用いて、本発明の実施の形態について説明する。
【0018】
図1および図2は、本発明の1つの実施の形態における半導体装置の断面図であり、それぞれ図3のI−I線に沿う断面、II−II線に沿う断面を示す図である。
【0019】
図1〜図3に示すように、p型シリコン基板(半導体基板)1の主表面における素子分離領域にトレンチ分離領域を形成し、該トレンチ分離領域に囲まれた素子形成領域上にMOSトランジスタ等の素子を形成する。MOSトランジスタは、ソース/ドレインとなるn型不純物領域8,9と、ゲート酸化膜6と、ゲート電極7とを有する。なお、ゲート電極7の側壁上に図示しないサイドウォール絶縁膜を形成してもよい。
【0020】
トレンチ分離領域は、トレンチ2と、トレンチ2の内壁上に形成された内壁酸化膜3と、内壁酸化膜3の表面上に形成された窒化酸化層(ラジカル窒化層)4と、トレンチ2内に埋め込まれた分離酸化膜5とを有する。
【0021】
窒化酸化層4は、内壁酸化膜3の表面をラジカル窒化することにより形成される。より詳しくは、たとえばArガスとN2ガスの混合ガス雰囲気内で窒素ラジカルを発生させ、内壁酸化膜3の表面におけるSi−O結合のO(酸素原子)をN(窒素原子)に置換することにより窒化酸化層4を形成することができ、該窒化酸化層4はSi−N結合を主として有する。
【0022】
窒化酸化層4は、内壁酸化膜3の表面上にのみ形成され、内壁酸化膜3の深部あるいはシリコン基板1は窒化されない。図4に、内壁酸化膜3をラジカル窒化した場合の内壁酸化膜3の表面および内部における窒素量の分布を示す。図4において、0nmの位置がp型シリコン基板1と内壁酸化膜3との界面に相当し、8nmの位置が窒化酸化層4の表面に相当する。図4に示すように、内壁酸化膜3表面の1〜2nmの範囲内にのみ窒素が存在し、内壁酸化膜3中の深い位置およびp型シリコン基板1と内壁酸化膜3との界面には窒素が存在していないことがわかる。
【0023】
上記のように窒化酸化層4は、内壁酸化膜3の表面のみを窒化することにより形成されるので、窒化酸化層4の厚みを極めて薄くすることができる。具体的には窒化酸化層4の厚みをたとえば0.2nm以上4nm以下、好ましくは2nm程度とすることができる。このように窒化酸化層4の厚みを薄くしても、後工程の酸化時に酸化剤がトレンチ2の内壁に達するのを抑制することができる。
【0024】
さらに、上述のようなArガスとN2ガスの混合ガス雰囲気内で窒化酸化層4を形成することにより、窒化酸化層4はSi−H結合を含まないものとなる。したがって、窒化酸化層4内からMOSトランジスタ等の素子中に水素原子が拡散することに起因する問題は生じない。
【0025】
図1および図2に示すように、窒化酸化層4は、トレンチ2内であってトレンチ2内壁から離隔してトレンチ2内壁に沿って延在し、内壁酸化膜3の内表面を覆うように形成される。
【0026】
このように窒化酸化層4がトレンチ2内壁から離隔しており、また上述のようにシリコン基板1が窒化されないので、トレンチ2の内壁上端部近傍に位置する素子形成領域が窒化されることはない。したがって、素子形成領域上にゲート酸化膜6を形成した場合においても、ゲート酸化膜6がトレンチ2の内壁上端部近傍で局所的に薄膜化するのを阻止することができる。具体的には、図3の領域10、11内におけるゲート酸化膜6の薄膜化を抑制することができる。
【0027】
分離酸化膜5は、トレンチ2への埋込特性を向上させるリン(P)、ボロン(B)、フッ素(F)等の不純物を含むことが好ましい。それにより、トレンチ2の開口幅が縮小された場合でも、トレンチ2内に分離酸化膜5を埋め込むことができ、分離酸化膜5の埋込不良をも効果的に抑制することができる。
【0028】
また、分離酸化膜5に上述のような不純物が添加されている場合でも、窒化酸化層4を形成することにより、分離酸化膜5からシリコン基板1へ不純物が拡散するのを抑制することができる。つまり、本発明の窒化酸化層4は、不純物拡散を抑制するバリア層として機能する。
【0029】
次に、本発明に係る半導体装置の製造方法について図5〜図16を用いて説明する。
【0030】
たとえば比抵抗が8.5〜11.5Ω・cm、面方位が(100)、厚さ725μmのp型シリコン基板1を、750℃でO2ガスとH2ガスの混合ガス中で熱酸化する。それにより、図5に示すように、p型シリコン基板1の主表面上に150nmの厚みの酸化膜(シリコン酸化膜)12を形成する。この酸化膜12上に、たとえば熱CVD法により、厚さ100nm〜200nmのシリコン窒化膜13を堆積する。
【0031】
次に、シリコン窒化膜13上にレジスト(図示せず)を塗布し、フォトリソグラフィ技術により露光、現像してレジストをパターニングし、素子分離領域パターンに対応した開口を有するレジストパターンを形成する。このレジストパターンをマスクとして異方性エッチングを行い、図6に示すように、シリコン窒化膜13に開口14を形成する。その後、レジストパターンを除去する。
【0032】
次に、シリコン窒化膜13をマスクとして、たとえば塩化炭素系のガスを用いたRIE(Reactive Ion Etching)により酸化膜12およびp型シリコン基板1をエッチングし、図7に示すように、深さ約0.6μmのトレンチ2を形成する。
【0033】
その後、たとえばランプアニール装置によってドライO2ガスを用いて、1000℃、30秒間の酸化処理を行い、トレンチ2の内壁を酸化する。それにより、図8に示すように、1nm〜50nm程度の厚みの内壁酸化膜3を形成する。
【0034】
その後、たとえば図16に示すラジカル窒化装置を用いて、内壁酸化膜3の表面上に2nm程度の厚みの窒化酸化層4を形成する。
【0035】
ここで、ラジカル窒化装置の構成例について説明する。図16に示すように、ラジカル窒化装置は、チャンバ15と、ヒータ17と、石英プレート20と、スロットプレーンアンテナ21とを備える。
【0036】
チャンバ15内壁には石英ライナー16が設けられる。チャンバ15の近傍には、マイクロパルスジェネレータ(図示せず)が配置され、該マイクロパルスジェネレータにより2.45GHz,5kWのマイクロ波が生成される。マイクロパルスジェネレータとチャンバ15は、導波管を介して接続される。
【0037】
ヒータ17は、たとえばAlNヒータであり、400℃程度の加熱が可能である。このヒータ17上にウェハ(シリコンウェハ)18が載置され加熱される。スロットプレーンアンテナ21は、チャンバ15の上端に設置され、円状の銅板に多数の孔が設けたもので構成される。石英プレート20は、スロットプレーンアンテナ21下に設置される。
【0038】
次に、上述のラジカル窒化装置を用いた窒化法(ラジカル窒化法)について説明する。まずマイクロパルスジェネレータにより生成されたマイクロ波は、導波管内を伝搬してチャンバ15の上端に達する。このマイクロ波は、スロットプレーンアンテナ21を通過し、チャンバ15内に入る。
【0039】
チャンバ15内部にはArガスとN2ガスの混合ガスが導入されており、チャンバ15内の圧力は、たとえば66.5Pa(500mTorr)〜133Pa(1000mTorr)とされる。上記のマイクロ波により窒素が励起され、チャンバ15内にはプラズマ19とともに窒素ラジカルが発生する。このとき、窒素ラジカルを発生させるプラズマの電子温度をたとえば1eV以上1.5eV以下とする。
【0040】
そして、p型シリコン基板1をヒータ17によって所定温度に加熱しながら上述の窒素ラジカルにより内壁酸化膜3の表面を窒化し、本発明の窒化酸化層4を形成する。
【0041】
このようにラジカル窒化法を行った場合、上述のように内壁酸化膜3の表面におけるSi−O結合のO(酸化原子)がN(窒素原子)に置換されてSi−N結合を主として有する窒化酸化層4が得られるので、理論的には内壁酸化膜3の表面に存在するSi−O結合のみをN(窒素原子)に置換することが可能であると考えられる。したがって、窒化酸化層4を極めて薄く形成することができる。また、窒化酸化層4の厚みの制御を容易に行える。
【0042】
また、窒素ラジカルを発生させるプラズマの電子温度を1eV以上1.5eV以下と低くすることにより、プラズマによるp型シリコン基板1へのダメージを低減することができる。
【0043】
以上のようにして窒化酸化層4を形成した後、図10に示すように、CVD法により、たとえば8%フッ素を含む酸化膜(F−SiO2)を形成し、該酸化膜をトレンチ2内に埋め込む。その後、CMP(Chemical Mechanical Polishing)処理を行い、図11に示すように、酸化膜を研磨する。このとき、ストッパとしてシリコン窒化膜13を用い、シリコン窒化膜13が10nm程度残るまで研磨を行う。
【0044】
次に、上記のシリコン窒化膜13をたとえば160℃の燐酸によるウェットエッチングにより除去し、図12に示すように、酸化膜12を露出させる。その後イオン注入機を用いて、たとえば250keV,1×1013/cm2、140keV,3×1012/cm2、50keV,2×1012/cm2のようなエネルギーとドーズ量でボロン注入を3回行い、p型シリコン基板1中にpウェルを形成する。
【0045】
次に、10:1の弗酸(HF)によって35秒間ウェットエッチングを行い、酸化膜12を除去し、図13に示すように、p型シリコン基板1の主表面(素子形成領域)を露出させる。
【0046】
その後、たとえば硫酸処理、アンモニア加水、塩酸処理を順次行い、p型シリコン基板1の主表面上にケミカルオキサイドを形成し、50:1の弗酸(HF)によりエッチングを行うことで自然酸化膜を除去する。
【0047】
次に、たとえばランプアニール装置で、ドライO2ガスを用いて1000℃、30秒の条件でp型シリコン基板1の主表面(素子形成領域)を熱酸化し、図14に示すように、10nm〜100nmのゲート酸化膜6を形成する。
【0048】
その後、図15に示すように、CVD法により、650℃の温度で200nmの厚みのポリシリコン膜7aを堆積する。このポリシリコン膜7aに、たとえば30keV,4×1015/cm2の条件でリンを注入する。
【0049】
この後、ポリシリコン膜7a上にTEOS(Tetra Ethyl Ortho Silicate)酸化膜を700nm堆積する。このTEOS酸化膜を所定形状にパターニングし、該パターニングされたTEOS酸化膜をマスクとしてポリシリコン膜7aをパターニングする。それにより、ゲート電極7を形成する。
【0050】
その後、砒素を50keV,5×1014/cm2の条件でp型シリコン基板1の主表面(素子形成領域)に注入し、ソース/ドレイン領域となるn型不純物領域8,9を形成する。それにより、図1,2に示す構造が得られる。その後、ゲート電極7上に層間絶縁膜を形成し、AlCu等の配線工程を経てトランジスタが完成する。なお、ゲート電極7の側壁上にサイドウォール絶縁膜を形成し、n型不純物領域8,9をLDD(Lightly Doped Drain)構造としてもよい。
【0051】
なお、上述の実施の形態では、トレンチ2へ埋め込まれる酸化膜の一例としてF添加酸化膜を挙げたが、PSG(Phospho Silicate Glass),BPSG(Boro Phospho Silicate Glass),TEOS,HDP(High Density Plasma)酸化膜等も使用可能である。
【0052】
また、シリコン窒化膜13の代わりにポリシリコン膜やシリコン酸化膜を使用することも可能である。さらに、上述の例では内壁酸化膜3をドライO2酸化により形成したが、RTO(H2/O2)酸化、WET酸化、ラジカル酸化、プラズマ酸化で形成することも可能である。
【0053】
以上のように本発明の実施の形態について説明を行なったが、今回開示した実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0054】
【発明の効果】
本発明の半導体装置によれば、トレンチ内に窒化酸化層を形成しているので、後工程の酸化時に酸化剤がトレンチ内壁に達するのを抑制することができ、該酸化剤でトレンチ内壁が酸化されることに起因する酸化膜の体積増加を抑制することができる。よって、該体積増加に起因して生じる接合リーク電流の発生を効果的に抑制することができる。また、分離酸化膜に不純物が添加されている場合でも、窒化酸化層によって分離酸化膜から半導体基板へ不純物が拡散するのを抑制することができるので、該不純物拡散により素子形成領域における不純物プロファイルが変化するのを抑制することができる。さらに、上記窒化酸化層の厚みを薄くできるので、分離酸化膜の埋込不良をも効果的に抑制することができる。したがって、信頼性の高い半導体装置が得られる。
【0055】
窒化酸化層形成の際には内壁酸化膜の表面のみが窒化されるので、上記窒化酸化層はトレンチ内であってトレンチ内壁から離隔してトレンチ内壁に沿って延在し、素子形成領域の表面の一部が窒化されるのを回避することができる。したがって、素子形成領域上にゲート酸化膜を形成した場合においても、ゲート酸化膜がトレンチ近傍において局所的に薄膜化するのを阻止することができる。
【0056】
上記窒化酸化層の厚みが薄い場合でも、酸化剤や不純物が分離酸化膜から半導体基板へ拡散するのを抑制することができる。具体的には、窒化酸化層の厚みが0.2nm以上4nm以下であれば上記効果が得られる。
【0057】
分離酸化膜がたとえばリンやボロン等の不純物を含む場合には、トレンチへの埋込特性を向上することができる。この場合には、埋込特性を向上しながら上述の効果が得られる。
【0058】
本発明の半導体装置の製造方法によれば、ラジカル窒化法により内壁酸化膜の表面を窒化して窒化酸化層を形成しているので、内壁酸化膜の表面に極めて薄い窒化酸化層を精度良く形成することができる。また、該窒化酸化層を内壁酸化膜の表面に形成することにより、上述のように信頼性の高い半導体装置を製造することができる。
【0059】
窒素ラジカルを発生させるプラズマの電子温度を1eV以上1.5eV以下と低く制御しながら上記窒化酸化層を形成した場合には、プラズマによる半導体基板へのダメージを低減することができる。
【図面の簡単な説明】
【図1】本発明の1つの実施の形態における半導体装置の断面図であり、図3のI−I線に沿う断面図である。
【図2】本発明の1つの実施の形態における半導体装置の断面図であり、図3のII−II線に沿う断面図である。
【図3】本発明の半導体装置の平面図である。
【図4】内壁酸化膜表面からシリコン基板までの窒素量分布を示す図である。
【図5】本発明の半導体装置の製造工程の第1工程を示す断面図である。
【図6】本発明の半導体装置の製造工程の第2工程を示す断面図である。
【図7】本発明の半導体装置の製造工程の第3工程を示す断面図である。
【図8】本発明の半導体装置の製造工程の第4工程を示す断面図である。
【図9】本発明の半導体装置の製造工程の第5工程を示す断面図である。
【図10】本発明の半導体装置の製造工程の第6工程を示す断面図である。
【図11】本発明の半導体装置の製造工程の第7工程を示す断面図である。
【図12】本発明の半導体装置の製造工程の第8工程を示す断面図である。
【図13】本発明の半導体装置の製造工程の第9工程を示す断面図である。
【図14】本発明の半導体装置の製造工程の第10工程を示す断面図である。
【図15】本発明の半導体装置の製造工程の第11工程を示す断面図である。
【図16】本発明において使用可能なラジカル窒化装置の断面図である。
【符号の説明】
1 p型シリコン基板、2 トレンチ、3 内壁酸化膜、4 窒化酸化層、5分離酸化膜、6 ゲート酸化膜、7 ゲート電極、7a ポリシリコン層、8,9 n型不純物領域、10,11 領域、12 酸化膜、13 シリコン窒化膜、14 開口、15 チャンバ、16 ライナー、17 ヒータ、18 ウエハ(半導体ウェハ)、19 プラズマ、20 石英プレート、21 スロットプレートアンテナ。
Claims (6)
- 主表面を有する半導体基板と、
前記半導体基板の主表面における素子分離領域に形成されたトレンチと、
前記トレンチの内壁上に形成された内壁酸化膜と、
前記内壁酸化膜の表面に形成された窒化酸化層と、
前記トレンチ内に埋め込まれた分離酸化膜と、
を備えた、半導体装置。 - 前記窒化酸化層は、前記トレンチ内であって前記トレンチ内壁から離隔して前記トレンチ内壁に沿って延在する、請求項1に記載の半導体装置。
- 前記窒化酸化層の厚みは、0.2nm以上4nm以下である、請求項1または請求項2に記載の半導体装置。
- 前記分離酸化膜は不純物を含む、請求項1から請求項3のいずれかに記載の半導体装置。
- 半導体基板の素子分離領域にトレンチを形成する工程と、
前記トレンチの内壁を酸化して内壁酸化膜を形成する工程と、
前記内壁酸化膜の表面をラジカル窒化法により窒化して窒化酸化層を形成する工程と、
前記トレンチ内に分離酸化膜を埋め込む工程と、
を備えた、半導体装置の製造方法。 - 窒素ラジカルを発生させるプラズマの電子温度を1eV以上1.5eV以下として前記窒化酸化層を形成する、請求項5に記載の半導体装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002200882A JP2004047599A (ja) | 2002-07-10 | 2002-07-10 | 半導体装置およびその製造方法 |
TW091135511A TW200401394A (en) | 2002-07-10 | 2002-12-09 | Semiconductor device and fabrication method therefor |
US10/339,325 US20040007756A1 (en) | 2002-07-10 | 2003-01-10 | Semiconductor device and fabrication method therefor |
KR1020030015979A KR20040005575A (ko) | 2002-07-10 | 2003-03-14 | 반도체 장치 및 그 제조 방법 |
CNA031199607A CN1467813A (zh) | 2002-07-10 | 2003-03-14 | 半导体器件及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002200882A JP2004047599A (ja) | 2002-07-10 | 2002-07-10 | 半導体装置およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004047599A true JP2004047599A (ja) | 2004-02-12 |
Family
ID=29997134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002200882A Withdrawn JP2004047599A (ja) | 2002-07-10 | 2002-07-10 | 半導体装置およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20040007756A1 (ja) |
JP (1) | JP2004047599A (ja) |
KR (1) | KR20040005575A (ja) |
CN (1) | CN1467813A (ja) |
TW (1) | TW200401394A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008098420A (ja) * | 2006-10-12 | 2008-04-24 | Toshiba Corp | 半導体記憶装置およびその製造方法 |
JP2010516060A (ja) * | 2007-01-09 | 2010-05-13 | マックスパワー・セミコンダクター・インコーポレイテッド | 半導体装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003098678A1 (fr) * | 2002-05-16 | 2003-11-27 | Tokyo Electron Limited | Procede de traitement de substrat |
WO2005034650A1 (en) * | 2003-10-17 | 2005-04-21 | Diet Formulations Ltd. | Weight-loss supplement |
US20050093103A1 (en) * | 2003-10-29 | 2005-05-05 | Yoyi Gong | Shallow trench isolation and fabricating method thereof |
JP2006024895A (ja) * | 2004-06-07 | 2006-01-26 | Renesas Technology Corp | 半導体装置およびその製造方法 |
CN103594820A (zh) * | 2013-11-11 | 2014-02-19 | 天津工业大学 | 一种基于共振隧穿机制的锥形缝隙天线 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763315A (en) * | 1997-01-28 | 1998-06-09 | International Business Machines Corporation | Shallow trench isolation with oxide-nitride/oxynitride liner |
JP3583583B2 (ja) * | 1997-07-08 | 2004-11-04 | 株式会社東芝 | 半導体装置及びその製造方法 |
JP3502531B2 (ja) * | 1997-08-28 | 2004-03-02 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
US6727569B1 (en) * | 1998-04-21 | 2004-04-27 | Advanced Micro Devices, Inc. | Method of making enhanced trench oxide with low temperature nitrogen integration |
US6165854A (en) * | 1998-05-04 | 2000-12-26 | Texas Instruments - Acer Incorporated | Method to form shallow trench isolation with an oxynitride buffer layer |
US6153480A (en) * | 1998-05-08 | 2000-11-28 | Intel Coroporation | Advanced trench sidewall oxide for shallow trench technology |
US5976951A (en) * | 1998-06-30 | 1999-11-02 | United Microelectronics Corp. | Method for preventing oxide recess formation in a shallow trench isolation |
US6323106B1 (en) * | 1999-09-02 | 2001-11-27 | Lsi Logic Corporation | Dual nitrogen implantation techniques for oxynitride formation in semiconductor devices |
JP2002170825A (ja) * | 2000-11-30 | 2002-06-14 | Nec Corp | 半導体装置及びmis型半導体装置並びにその製造方法 |
KR100346842B1 (ko) * | 2000-12-01 | 2002-08-03 | 삼성전자 주식회사 | 얕은 트렌치 아이솔레이션 구조를 갖는 반도체 디바이스및 그 제조방법 |
KR100382728B1 (ko) * | 2000-12-09 | 2003-05-09 | 삼성전자주식회사 | 얕은 트렌치 아이솔레이션 구조를 갖는 반도체 디바이스및 그 제조방법 |
KR100346844B1 (ko) * | 2000-12-09 | 2002-08-03 | 삼성전자 주식회사 | 얕은 트렌치 아이솔레이션 구조를 갖는 반도체 디바이스및 그 제조방법 |
KR100346845B1 (ko) * | 2000-12-16 | 2002-08-03 | 삼성전자 주식회사 | 반도체 장치의 얕은 트렌치 아이솔레이션 형성방법 |
US20020146914A1 (en) * | 2001-04-06 | 2002-10-10 | Kuo-Tai Huang | In-situ steam generation process for nitrided oxide |
US20030129839A1 (en) * | 2002-01-04 | 2003-07-10 | Shyh-Dar Lee | Method of forming a liner in shallow trench isolation |
-
2002
- 2002-07-10 JP JP2002200882A patent/JP2004047599A/ja not_active Withdrawn
- 2002-12-09 TW TW091135511A patent/TW200401394A/zh unknown
-
2003
- 2003-01-10 US US10/339,325 patent/US20040007756A1/en not_active Abandoned
- 2003-03-14 KR KR1020030015979A patent/KR20040005575A/ko not_active Application Discontinuation
- 2003-03-14 CN CNA031199607A patent/CN1467813A/zh active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008098420A (ja) * | 2006-10-12 | 2008-04-24 | Toshiba Corp | 半導体記憶装置およびその製造方法 |
JP2010516060A (ja) * | 2007-01-09 | 2010-05-13 | マックスパワー・セミコンダクター・インコーポレイテッド | 半導体装置 |
US8546878B2 (en) | 2007-01-09 | 2013-10-01 | Maxpower Semiconductor, Inc. | Semiconductor device incorporating charge balancing |
US8618599B2 (en) | 2007-01-09 | 2013-12-31 | Maxpower Semiconductor, Inc. | Method of manufacture for a semiconductor device |
US8659074B2 (en) | 2007-01-09 | 2014-02-25 | Maxpower Semiconductor, Inc. | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR20040005575A (ko) | 2004-01-16 |
US20040007756A1 (en) | 2004-01-15 |
CN1467813A (zh) | 2004-01-14 |
TW200401394A (en) | 2004-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4984558B2 (ja) | 半導体装置の製造方法 | |
US7442620B2 (en) | Methods for forming a trench isolation structure with rounded corners in a silicon substrate | |
US7501691B2 (en) | Trench insulation structures including an oxide liner and oxidation barrier | |
US7858492B2 (en) | Method of filling a trench and method of forming an isolating layer structure using the same | |
US7682927B2 (en) | Method of manufacturing semiconductor device | |
US7238587B2 (en) | Semiconductor device fabrication method | |
US20060099771A1 (en) | Selective nitride liner formation for shallow trench isolation | |
JP2010263129A (ja) | 半導体装置およびその製造方法 | |
JP2007258266A (ja) | 半導体装置の製造方法 | |
JP5121102B2 (ja) | 半導体装置の製造方法 | |
TW200529317A (en) | Semiconductor device with trench isolation structure and method for fabricating the same | |
US20080081433A1 (en) | Method for Forming a Shallow Trench Isolation Structure | |
JP2000133700A (ja) | 半導体装置およびその製造方法 | |
JP2004047599A (ja) | 半導体装置およびその製造方法 | |
JP2007048941A (ja) | 半導体装置の製造方法 | |
JPH11121607A (ja) | 半導体装置の製造方法 | |
JP2004022718A (ja) | 半導体装置の製造方法 | |
JP2003229577A (ja) | 半導体装置の製造方法。 | |
TWI244116B (en) | Method for manufacturing semiconductor device | |
JP2004152851A (ja) | 半導体装置の製造方法 | |
US20020197821A1 (en) | Method of forming shallow trench isolation | |
US20080227266A1 (en) | Method of STI corner rounding using nitridation and high temperature thermal processing | |
KR20010019185A (ko) | 트렌치 격리 제조 방법 | |
JP3842869B2 (ja) | 半導体装置の製造方法 | |
JP3601334B2 (ja) | トレンチ素子分離領域を有する半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20051004 |