JP2004010857A - 重質炭化水素油の水素化処理方法 - Google Patents

重質炭化水素油の水素化処理方法 Download PDF

Info

Publication number
JP2004010857A
JP2004010857A JP2002169868A JP2002169868A JP2004010857A JP 2004010857 A JP2004010857 A JP 2004010857A JP 2002169868 A JP2002169868 A JP 2002169868A JP 2002169868 A JP2002169868 A JP 2002169868A JP 2004010857 A JP2004010857 A JP 2004010857A
Authority
JP
Japan
Prior art keywords
treatment
catalyst
hydrotreating
reactor
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169868A
Other languages
English (en)
Inventor
Aiko Miyauchi
宮内 愛光
Toshiyuki Ato
阿戸 利行
Takeshi Hashiguchi
橋口 岳司
Naoto Kanehara
金原 尚登
Katsuhisa Fujita
藤田 勝久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KECCHEN KK
Original Assignee
NIPPON KECCHEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KECCHEN KK filed Critical NIPPON KECCHEN KK
Priority to JP2002169868A priority Critical patent/JP2004010857A/ja
Priority to AU2003236725A priority patent/AU2003236725A1/en
Priority to KR10-2004-7020075A priority patent/KR20050010878A/ko
Priority to US10/517,100 priority patent/US20060060509A1/en
Priority to CNA038165295A priority patent/CN1668723A/zh
Priority to CA002489184A priority patent/CA2489184A1/en
Priority to EP03735587A priority patent/EP1511825A1/en
Priority to PCT/EP2003/006033 priority patent/WO2003104359A1/en
Publication of JP2004010857A publication Critical patent/JP2004010857A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

【課題】本発明は、重質炭化水素油の水素化処理において、高度な水素化処理(脱硫、脱金属、脱窒素、脱残留炭素)を達成しつつ、同時にスラッジの発生を極力低減できる水素化処理方法を提供することである。
【解決手段】断熱型反応器を用いた水素化処理触媒による重質炭化水素油の水素化処理において、重質炭化水素油に対し、最初に水素化脱金属処理を行ない、次いで前記脱金属処理よりも高温度の条件下にて水素化脱硫処理を行ない、更に前記脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行なうことを特徴とする重質炭化水素油の水素化処理方法である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、重質炭化水素油を原料油とし、これを水素化処理触媒を用いて水素化処理する方法に関する。詳しくは原料油中の硫黄、金属、窒素、更には残留炭素(Conradson Carbon Residue ; CCR)を効率的に低減する水素化処理方法に関する。
【0002】
【従来の技術】
原油の精製によって生じる常圧残油や減圧残油等の重質炭化水素油には、硫黄、金属、窒素や残留炭素といった各種不純物が多量に含まれているが、近年、このような重質炭化水素油を原料油として水素化処理を行い硫黄等の夾雑物を除去し、燃料油に供すると共に、より経済性の高い軽質油への転換も行なわれている。
【0003】
水素化処理装置の運転によって除去される原料油中の不純物としては、硫黄、残留炭素(CCR)、各種金属、窒素、アスファルテンが挙げられるが、原料油の種類に応じて主として除去すべき不純物は異なる。特に残留炭素の除去を主目的とした装置の運転においては、運転中に不可避的に発生する不溶解性の粒子状物質であるスラッジへの対策が重要となる。
残留炭素の主要な成分はアスファルテン(asphaltene)であると考えられているが、アスファルテンはアスファルト中の主要成分で、n−ヘキサンに不溶かつ二硫化炭素やベンゼンに可溶な成分で縮合多環芳香族を核とし、これに飽和炭化水素鎖やナフテン環が結合し、硫黄や窒素、酸素をも中に含まれる複雑な高分子量物質であり、周囲の溶媒成分により、原料油中に分散している。このため、通常の水素化反応で溶媒成分やアフファルテンが過度に水素化された場合、アスファルテンの凝集が起こることによって粒子状物質(スラッジ; sludge)や堆積物(セディメント; sediment)が生成する。
【0004】
不溶解性のスラッジが生成すると、石油精製工程中における装置(熱交換器や反応器等)の内部に沈殿、堆積して配管等の閉塞を招くため、装置の運転にとって大きな障害となる。
また、生成したスラッジによる触媒のコーク失活のため触媒性能が大きく損なわれ、その結果、反応性を高めるため反応温度を上昇させて装置を運転せざるを得ないという問題も生じる。
従って、高度な水素化処理を達成しつつ、同時にスラッジの生成を極力低減する水素化処理方法、水素化触媒の改良や使用法が要望され、安定した装置の運転のために重要な課題となっている。
【0005】
重質炭化水素油を効率的に水素化処理することを目的として下記の技術が提案されている。
特開2000−351978号公報には、水素化脱金属処理、水素化脱硫処理および異性化脱硫処理を組合せて順次実施する重質油の水素化処理方法が開示されている。この方法では、最後の異性化脱硫処理工程で固体酸であるゼオライトを含む触媒を用いているが、元々パラフィンに富む原料油等を処理した場合、かえってアスファルテンの急激な凝集を招き、触媒の急激なコーク失活やスラッジの生成をもたらす恐れがある。
【0006】
特開2001−3066号公報では、細孔径の異なる3種類の触媒の組み合わせを用いた脱硫燃料油の製造方法が開示されている。特に第3の水素化処理工程では、全細孔容量に対する細孔径40〜120Å(記号Åはオングストロームを表し1Å=10−10mである)の細孔容量が占める割合が20〜80%かつ全細孔容量に対する500Å以上の細孔容量が占める割合が20〜80%であり、細孔分布が少なくとも2つの極大値を示す水素化処理触媒を用いている。
しかしながら、500Å以上のマクロ細孔容積の割合が高すぎるため、有効なアスファルテン分解は困難と予想され、スラッジ低減の可否に関する示唆はない。以上のように、上記の技術を含めてこれまでの先行技術では、重質油の水素化処理に際して、脱硫、脱金属、脱窒素、脱残留炭素も行ないつつ、更にスラッジの発生を低減できるような水素化処理方法、或いは水素化触媒の使用法を提供するに至っていない。
【0007】
【発明が解決しようとする課題】
本発明は、重質炭化水素油の水素化処理において、高度な水素化処理(脱硫、脱金属、脱窒素、脱残留炭素)を達成しつつ、同時にスラッジの発生を極力低減できる水素化処理方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、重質炭化水素油の水素化処理において、脱金属及び脱硫処理に続いて更に水素化脱アスファルテン処理を特定の温度域で、好ましくは特定の性状の触媒を使用して行うことによって、脱硫、脱窒素、脱金属、更には優れた脱残留炭素を達成しつつ、且つスラッジ発生を低減でき、装置の安定的運転を可能とする水素化処理方法を見い出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、断熱型反応器を用いた水素化処理触媒による重質炭化水素油の水素化処理において、重質炭化水素油に対し、最初に水素化脱金属処理を行ない、次いで前記脱金属処理よりも高温度の条件下にて水素化脱硫処理を行ない、更に前記脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行なうことを特徴とする重質炭化水素油の水素化処理方法である。
【0010】
また、本発明は、直列に連結された複数の断熱型反応器を用いた水素化処理触媒による重質炭化水素油の水素化処理において、重質炭化水素油に対し、
1)第1の反応器で、最初に水素化脱金属処理を行ない、次いで前記脱金属処理よりも高温度の条件下にて水素化脱硫処理を行ない、更に前記脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行ない、
続いて第1の反応器で処理され得られた生成油に対し、
2)第2以降の反応器の各々において、水素化脱硫処理を行い、場合によっては更に当該脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行なうことを特徴とする重質炭化水素油の水素化処理方法である。
【0011】
また、上記方法において、水素化脱金属処理を行なう温度条件が300〜400℃、次いで水素化脱硫処理を行なう温度条件が320〜420℃、更に水素化脱アスファルテン処理を行なう温度条件が350〜450℃であることを特徴とし、さらに、水素化脱アスファルテン処理を下記性状の触媒を用いて行なうことを特徴とする;
触 媒:無機耐熱性担体上にモリブデンが担持され、触媒の
a)全細孔容積が0.4ml/g以上、
b)直径が1,000Å以上の細孔容積が0.3ml/g以下、
c)平均細孔直径が100Å以上、
d)比表面積が200m/g以下、
である水素化処理触媒。
【0012】
【発明の実施の形態】
以下、上記発明について詳説する。
(1)原料油
本発明の処理方法の対象とされる原料油、すなわち重質炭化水素油としては、減圧軽油、コーカー軽油、石油系残渣油、溶剤脱瀝油、石炭液化油、頁岩油、タールサンド油等であるが、典型的には原油精製によって生じる常圧残渣油、減圧残渣油やこれらの混合油である。本発明方法は、従来の水素化処理方法では支障が生じるような残留炭素分に富んだ重質炭化水素油であっても処理の対象とすることができる。
【0013】
(2)水素化処理
本発明で使用する反応器は、石油精製で一般的に用いられる断熱型反応器である。反応器には内部の反応温度を制御するため、クエンチライン等で水素を供給する手段を備えていることが好ましい。
本発明の水素化処理を行なうにあたっては、水素化脱金属、水素化脱硫黄、水素化脱アスファルテンの各処理をそれぞれ特定の反応温度領域で、それぞれ機能を異にする水素化処理触媒を用いて行う必要がある。
【0014】
最初に行われる水素化脱金属処理は、好ましくは300〜400℃、特に好ましくは350〜380℃である反応器内の低温度領域で行う。
次に行われる水素化脱硫処理は前記水素化脱金属処理よりも高温度の条件でなされるが、好ましくは320〜420℃、特に好ましくは360〜410℃である当該反応器内の中温度領域でなされる。
最後に行われる脱アスファルテン処理は前記水素化脱硫処理よりも高温度の条件でなされるが、好ましくは350〜450℃、特に好ましくは370〜420℃である反応器内の高温度領域でなされる。
【0015】
図1は、1つの反応器を使用する本発明方法の工程図である。図1に示すように、原料油(Oc)は反応器(1)上部から供給され、水素化脱金属触媒(HDM)が充填された低温度領域(11)、水素化脱硫触媒(HDS)が充填された中温度領域(12)、水素化脱アスファルテン触媒(HDA)が充填された高温度領域(13)の順に通過して水素化処理され反応器下部から生成油(Op)が排出される。
なお、反応器内における水素化脱金属触媒層、水素化脱硫触媒層、水素化脱アスファルテン触媒層は、体積比で3〜50:30〜95:2〜30が好ましい。
なお、最初に行われる水素化脱金属処理された炭化水素油中には、当該処理によって除去できなかった微量の金属成分が含まれていることもあるが、こうした残留成分は続く水素脱硫処理やさらに続く水素化脱アスファルテン処理の際に水素化され除去される。硫黄成分についても同様であり、水素化できなかった微量の硫黄分は後続の水素化脱アスファルテン処理の際に水素化される。
【0016】
水素化処理反応を行なうに際しては、上記のように1つの断熱型反応器で実施することもできるが、下記のように複数の断熱型反応器を直列に連結して水素化処理を行なうことができる。こうした実施態様は、水素化脱硫を高度に行う場合や反応器を小型化する必要がある場合に有用である。
なお、各反応器の間には硫化水素やアンモニア等を除去するストリッピング設備を設けてもよい。
【0017】
複数の断熱型反応器を使用する場合は、原料油を第1の反応器に供給し、最初に水素化脱金属処理を行ない、次いで前記脱金属処理よりも高温度の条件下にて水素化脱硫処理を行ない、更に前記脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行なう。かかる第1の反応器における処理条件並びに触媒は、上記の1つの断熱型反応器で実施する場合と同様である。
続いて第1の反応器で処理され排出された生成油は、第2の反応器に供給され、水素化脱硫処理だけを行って当該反応器外に排出されるか、或いは当該水素化脱硫処理を行った後に更に当該脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行って当該反応器外に排出される。第1に続き第2の反応器で処理された生成油は、さらに第3の反応器に供給され第2の反応器における処理と同様に、水素化脱硫処理だけを行って当該反応器外に排出されるか、或いは当該水素化脱硫処理を行った後に更に当該脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行って当該反応器外に排出される。さらに、第4以降の反応器を連結して第2の反応器におけると同様の処理を繰り返すことができる。
【0018】
図2と図3は、本発明方法において3つの反応器を連結して使用する場合の工程図である。
図2に示される工程において原料油(Oc)は第1の反応器(1)の上部から供給され、水素化脱金属触媒(HDM)が充填された低温度領域(11)、水素化脱硫触媒(HDS)が充填された中温度領域(12)、水素化脱アスファルテン触媒(HDA)が充填された高温度領域(13)の順に通過して水素化処理され反応器の下部から生成油が排出される。続いて当該生成油が第2の反応器(2)の上部から供給され、水素化脱硫触媒(HDS)が充填された中温度領域(21)、水素化脱アスファルテン触媒(HDA)が充填された高温度領域(13)の順に通過して水素化処理され第2の反応器(2)下部から生成油が排出される。続いて、当該生成油が第3の反応器(3)の上部から供給され、水素化脱硫触媒(HDS)が充填された中温度領域、水素化脱アスファルテン触媒(HDA)が充填された高温度領域の順に水素化処理され第3の反応器(3)下部から生成油(Op)が排出される。
【0019】
図3に示される工程において、原料油(Oc)は第1の反応器(1)上部から供給され、水素化脱金属触媒(HDM)が充填された低温度領域(11)、水素化脱硫触媒(HDS)が充填された中温度領域(12)、水素化脱アスファルテン触媒(HDA)が充填された高温度領域(13)の順に通過して水素化処理され反応器下部から生成油が排出される。続いて当該生成油が第2の反応器(2)の上部から供給され、水素化脱硫触媒(HDS)が充填された中温度領域(21)を通過して水素化処理され第2の反応器(2)の下部から生成油が排出される。続いて、当該生成油が第3の反応器(3)の上部から供給され、水素化脱硫触媒(HDS)が充填された中温度領域(31)を通過して水素化処理され第3の反応器(3)の下部から生成油(Op)が排出される。
【0020】
なお、図示していないが、第2の反応器で水素化脱硫処理と水素化脱アスファルテン処理を行い、続く第3の反応器で水素化脱硫処理のみ行う方法、逆に第2の反応器で水素化脱硫処理のみを行い、続く第3の反応器で水素化脱硫処理と水素化脱アスファルテン処理を行う方法も可能である。要するに第2以降の反応器においては水素化脱硫処理は必須であるが、水素化脱アスファルテン処理については原料油が金属を多量に含み、第1の反応器における脱金属処理が十分でないような場合等、原料油の性状に応じて適宜行われる。
なお、単数または複数の反応器を用いて水素化処理を行う場合、反応器内に通油される原料油の整流を目的として、各反応器の上段の触媒層に形状や大きさの異なる水素化触媒を少量混在させてもよい。
【0021】
本発明の処理方法における水素化処理条件は、反応温度以外は特に限定はされないが、従来から一般に行われている水素化処理反応条件、即ち、2〜22MPaの水素分圧、300〜1500Nl/lの水素原料油比、0.1〜10hr−1の液空間速度(LiquidHourly Space Velocity;LHSV)の条件で重質炭化水素油を通油できる。好適な水素分圧は10〜20MPa、好適な水素原料油比は600〜1000Nl/l、また好適な液空間速度は0.2〜2.0hr−1である。
【0022】
(3)触 媒
本発明の処理方法で使用される触媒は水素化処理触媒である。反応器内の低温度領域(300〜400℃)で脱金属を行なう触媒、中温度領域(320〜420℃)で脱硫処理に使用される触媒は、それぞれ市販の重質油用の脱金属、脱硫触媒を使用することができる。これらの触媒としては、モリブデン、タングステン、コバルト、ニッケル、鉄等から選択される1種以上の金属種をアルミナ、シリカ、アルミナ−シリカ、ボリア、リン酸、マグネシア、酸化亜鉛、ジルコニア、チタニア等又はゼオライト、カオリン等の粘土鉱物又は前記化合物の混合物を担体としたものに担持してなるものである。
水素化脱金属触媒としては「Ketjenfine KFR 20(商品名)」(日本ケッチェン(株)製)を、水素化脱硫触媒としては「Ketjenfine KFR 70(商品名)」(日本ケッチェン(株)製)を例示することができる。
【0023】
一方、反応器内の高温度領域で水素化脱アスファルテン反応を行なう触媒について以下のとおり詳説する。
すなわち、水素化脱アスファルテン触媒は、無機耐熱性担体にモリブデンが担持されたものであるが、必要に応じて、他の周期表第6A族金属(クロム、タングステン等)や鉄、コバルト、ニッケルなどから選ばれる周期表第8族金属金属を担持させることも可能である。完成後の触媒の重量を基準(100重量%)とした場合における上記の各金属酸化物の担持量は次のとおりである。
【0024】
すなわち、モリブデンを含めた6族金属酸化物としては2〜20重量%であり、4〜16重量%が好ましい。かかる金属酸化物が2重量%未満では触媒性能の発現が不十分となり、一方、20重量%を超えても触媒性能の増分はない。一方、第8族金属酸化物は0.5〜6重量%であり、1〜5重量%が好ましい。0.5重量%未満では触媒性能の発現が不十分で、一方6重量%を超えても触媒性能の増分はない。
【0025】
なお、本発明における無機耐熱性担体はアルミナのみを原材料とするものが好ましいが、触媒強度改良の目的並びに担体酸性質改善の目的から完成後の触媒基準で5重量%未満の少量のケイ素、チタン、ジルコニウム、ホウ素、亜鉛、リン、アルカリ金属およびアルカリ土類金属の酸化物や、ゼオライト、粘土鉱物などから選ばれる少なくとも1種を担体中に含有させることができる。
【0026】
担体の製造方法については特に制限はないが、以下の方法も適用できる。
水道水または温水を蓄えたタンクに、アルミン酸ソーダ、水酸化アンモニウムや水酸化ナトリウム等のアルカリ溶液を入れ、次いで硫酸アルミニウムや硝酸アルミニウム等の酸性アルミニウム溶液を用いて加混合し、アルミナ水和物ゲルを生成させる。加混合中の水素イオン濃度(pH)は、反応が進むにつれて変化するが、酸性アルミニウム溶液の添加が終了する時点ではpH7〜9、混合時の温度としいは60〜75℃であることが好ましい。また、適当な大きさの細孔を得るために保持時間は約 0.5〜1.5時間、特に40〜80分間が好ましい。
かかる加混合の条件を適宜調整することにより所望のアルミナ水和物のゲルを得ることができる。得られたアルミナ水和物のゲルは、洗浄、混練の後、所望の形状に成型する。
【0027】
最後に、乾燥及び焼成処理を施し、担体を得ること出来る。乾燥条件は、空気存在下で常温から200℃の温度で、また焼成条件は、空気存在下で300〜950℃、好ましくは600〜900℃の温度条件、30分間から2時間程度で行う。また焼成処理時には水蒸気を導入して、アルミナ結晶子の成長をコントロールすることもできる。なお、前述の混練し成形する工程において、成形助剤として酸、例えば硝酸、酢酸、蟻酸を添加し、あるいは水を添加してアルミナゲル中の水分量を調整することにより、細孔分布の調整を適宜行うこともできる。
【0028】
触媒物質の金属成分を担持させる前のアルミナ担体の比表面積は、完成後の触媒において特定範囲の比表面積や細孔分布をもたらすために、100〜180m/g、特に130〜170m/gが好ましく、また全細孔容積が0.55ml/g以上、特に0.6〜0.9ml/gが好ましい。全細孔容積とは単位重量の触媒に含まれる細孔空間の総和である。
この担体に、モリブデン等の水素化活性金属を担持させて本発明の触媒は製造できる。担持する水素化活性金属成分は、アルカリ性または酸性の金属塩とし、この金属塩を水に溶解して含浸液とし、上記アルミナ担体に含浸担持する。この時、周期表第6A族と第8族の金属塩2種からなる混合水溶液を用いて同時含浸にしてもよいし、あるいは個別に金属塩水溶液を調製して別々に含浸担持してもよい。また、含浸液の安定化のために少量のアンモニア水、過酸化水素水、グルコン酸、洒石酸、クエン酸、リンゴ酸、EDTA(エチレンジアミン四酢酸)等を添加することが好ましい。
【0029】
含浸時間は、熟成時間を含めて30〜60分間程度が好ましく、その後、空気気流下で常温〜200℃の温度で0.5〜16時間程度、乾燥を行い、次いで空気気流下で200〜800℃、好ましくは450〜650℃の加熱条件で1〜3時間程度、焼成(か焼)を行なうことで各金属酸化物が担持された触媒が完成する。
【0030】
上述の製法によって完成した触媒が、重質炭化水素油の水素化処理において所望の目的を達成するためには以下の比表面積や細孔分布を有することが必要である。
触媒の比表面積は200m/g以下、好ましくは100〜180m/gである。比表面積が100m/g未満では触媒性能が不十分となり、一方、200m/gを超えると所望の細孔径分布が得られないことが多い。ここで比表面積は窒素(N)吸着によるBET式で求められる比表面積である。
【0031】
さらに、水銀圧入法で測定される全細孔容積は0.4ml/g以上、0.55ml/g以上、好ましくは0.5〜0.9ml/gである。0.4ml/g未満では触媒性能が不十分となる。
ここで、水銀圧入法による細孔容積および細孔分布とは例えばマイクロメリティクス(Micromeritics)社製の水銀多孔度測定機器「オートポア(Autopore)II」(商品名)を使用し接触角140°、表面張力480dyne/cmの条件下で測定して得られる値である。
【0032】
また、直径が1,000Å以上の細孔容積は0.3ml/g以下、好ましくは、0.2ml/g以下である。0.3ml/gを超えた場合は、アスファルテンとその溶媒であるレジンの分解のバランスが崩れることでスラッジが生成しやすくなる。また、相対的に大細孔の割合が多くなることで触媒の機械的強度の低下を招く。
平均細孔直径は100Å以上、好ましい範囲は、180〜280Åである。100Å未満ではアファルテンの分解が不十分と同時に、比表面積の増加により過度の水素化が進行し、スラッジの発生を招く。また280Åを超えた場合、アスファルテン分解に有効な細孔が相対的に減少することで、スラッジの生成を抑制できない。
【0033】
【実施例】
以下に実施例を示し本発明を具体的に説明するが、本発明はこれにより限定されるものではない。
【0034】
〔I〕水素化脱アスファルテン触媒の製造
(A)担体の製造
水道水を貯えたタンクに、アルミン酸ソーダ溶液、硫酸アルミニウム溶液を同時滴下し加混合を行った。混合時のpHを8.5、温度を65℃、保持時間は70分間とした。かかる加混合によってアルミナ水和物のゲルが生じた。
【0035】
前記工程で得られたアルミナ水和物のゲルを溶液から分離した後、温水を用いて洗浄処理を行い、ゲル中の不純物を除去した。
次いで、混練機を用いて20分ほど混練してゲルの成型性を向上させた後、成型機にて直径0.9〜1mm、長さが3.5mmの円柱形状の粒子に押し出し成型した。
この成型アルミナ粒子を900℃で2時間焼成してアルミナ担体を得た。
【0036】
(B)触媒の製造
三酸化モリブデン8.9g、炭酸ニッケル3.9gをクエン酸水溶液100mlで溶解した含浸液を上記のアルミナ担体100gに含浸した後、25℃で45分間熟成して金属成分が担持された担体を得た。
次いで、この担持担体を、乾燥機を使用して120℃で30分間乾燥した後、620℃で1.5時間、キルンでか焼して触媒を完成させた。
製造した触媒中の各成分の量及び性状は表1に示すとおりである。
【0037】
【表1】
Figure 2004010857
【0038】
〔II〕水素化処理試験
試験に使用した原油の性状は下記表2のとおりである。
【0039】
【表2】
Figure 2004010857
【0040】
市販の水素化脱金属触媒、水素化脱硫触媒および上記のとおり製造した水素化脱アスファルテン触媒を組合わせて水素化処理試験を実施した。
3つの反応器を直列に繋げた小型流通式反応器に、脱金属触媒として日本ケッチェン(株)製「Ketjenfine KFR 20」(商品名)、脱硫触媒として同社製「Ketjenfine KFR 70」(商品名)および上記脱アスファルテン触媒を表3のような構成で充填した。
【0041】
【表3】
Figure 2004010857
【0042】
触媒充填の後、2.5重量%相当のジメチルジスルフィド(以下「DMDS」という)を添加したライトガスオイル(LGO)で予備硫化を行なった後、上記表2に記載の原料油を16.5MPaで、全液空間速度(Liquid Hourly Space Velocity : LHSV) 0.3 hr−1、供給する水素と原料油の比(H/Oil)を850NL/Lとして反応器に通油した。なお、反応温度は生成油中の残留炭素分(残炭分)が3.0重量%となるように調節して200日間の通油試験を行なった。
反応器の高温部に脱アスファルテン触媒を充填した実施例1の処理方法では、通油開始後200日目においても装置の運転に支障は生じることなく200日以後の運転も可能であった。一方、高温部に脱アスファルテン触媒の無い比較例1の処理方法では、通油開始後135日目で反応器がスラッジで閉塞したため装置を継続して運転できず試験不能となった。
実施例1(通油200日)および比較例1(通油135日)における各触媒層の反応温度を表4に示す。
【0043】
【表4】
Figure 2004010857
【0044】
実施例1、比較例1において生成油中の残留炭素分を3.0重量%に保持した一定脱残留炭素運転を行なったときの反応温度の推移を図4に示す。
表4および図4の試験結果から以下のとおり考察される。
実施例1では、高温部に脱アスファルテン触媒を配することで、アスファルテンとその溶媒成分であるレジンの分解がバランスよく進んだと考えられる。この結果、製品油中の残留炭素濃度を一定に保ってもスラッジの生成が抑制され、長期間に亘る安定運転が可能になったと考えられる。一方、高温部分に脱アスファルテン触媒の無い比較例1では、レジン等の溶媒成分への水添が進むことでアスファルテンの不溶化、スラッジ生成を招き、触媒のコーク失活を促進したため、一定脱残炭(残留炭素)運転における反応温度の上昇割合も、実施例に比べて高い。
このように、実施例1、比較例1の比較から、本発明の実施例では、反応温度の上昇割合も抑えられ、スラッジによる反応器の閉塞も起こらず、安定した水素化処理運転が行なわれていることが理解できる。
【0045】
【発明の効果】
本発明による水素化処理方法によれば、重質炭化水素油の水素化処理工程で問題となるスラッジの発生を抑制しつつ、高度に脱硫、脱金属、脱窒素、脱残留炭素された生成油を得ることができる。
また、これまで処理が困難であった残留炭素を特に多く含有する重質油の水素化処理に有効であり、水素化処理の対象となる原料油の幅が広がり、経済的意義も大である。さらに、スラッジ生成の低減と触媒のコーク失活防止により水素化処理装置の運転の安定性に大きく貢献する。
【図面の簡単な説明】
【図1】1つの反応器を使用する水素化処理方法の工程図である。
【図2】3つの反応器を連結して使用する場合の水素化処理方法の工程図である。
【図3】3つの反応器を連結して使用する場合の水素化処理方法の工程図である。
【図4】一定脱残留炭素運転時における反応温度の推移を表したグラフである。
【符号の説明】
1  反応器(第1)
2  反応器(第2)
3  反応器(第3)
11  低温度領域
12, 21, 31  中温度領域
13, 22, 32  高温度領域
Oc 原料油
Op 処理油

Claims (4)

  1. 断熱型反応器を用いた水素化処理触媒による重質炭化水素油の水素化処理において、重質炭化水素油に対し、最初に水素化脱金属処理を行ない、次いで前記脱金属処理よりも高温度の条件下にて水素化脱硫処理を行ない、更に前記脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行なうことを特徴とする重質炭化水素油の水素化処理方法。
  2. 直列に連結された複数の断熱型反応器を用いた水素化処理触媒による重質炭化水素油の水素化処理において、重質炭化水素油に対し
    1)第1の反応器で、最初に水素化脱金属処理を行ない、次いで前記脱金属処理よりも高温度の条件下にて水素化脱硫処理を行ない、更に前記脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行ない、
    続いて第1の反応器で処理され得られた生成油に対し、
    2)第2以降の反応器の各々において、水素化脱硫処理を行い、場合によっては更に当該脱硫処理よりも高温度の条件下にて水素化脱アスファルテン処理を行なうこと、
    を特徴とする重質炭化水素油の水素化処理方法。
  3. 水素化脱金属処理を行なう温度条件が300〜400℃、次いで水素化脱硫処理を行なう温度条件が320〜420℃、更に水素化脱アスファルテン処理を行なう温度条件が350〜450℃である、請求項1又は請求項2記載の水素化処理方法。
  4. 水素化脱アスファルテン処理を下記性状の触媒を用いて行なう請求項1〜3のいずれか1項に記載の水素化処理方法。
    触 媒:無機耐熱性担体上にモリブデンが担持され、触媒の
    a)全細孔容積が0.4ml/g以上、
    b)直径が1,000Å以上の細孔容積が0.3ml/g以下、
    c)平均細孔直径が100Å以上、
    d)比表面積が200m/g以下、
    である水素化処理触媒。
JP2002169868A 2002-06-11 2002-06-11 重質炭化水素油の水素化処理方法 Pending JP2004010857A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002169868A JP2004010857A (ja) 2002-06-11 2002-06-11 重質炭化水素油の水素化処理方法
AU2003236725A AU2003236725A1 (en) 2002-06-11 2003-06-05 A process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
KR10-2004-7020075A KR20050010878A (ko) 2002-06-11 2003-06-05 2개 이상의 반응기들을 사용하는, 중질 탄화수소 공급원의수소화 처리 방법
US10/517,100 US20060060509A1 (en) 2002-06-11 2003-06-05 Process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
CNA038165295A CN1668723A (zh) 2002-06-11 2003-06-05 一种使用至少两个反应器的加氢处理重烃原料的方法
CA002489184A CA2489184A1 (en) 2002-06-11 2003-06-05 A process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
EP03735587A EP1511825A1 (en) 2002-06-11 2003-06-05 A process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
PCT/EP2003/006033 WO2003104359A1 (en) 2002-06-11 2003-06-05 A process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169868A JP2004010857A (ja) 2002-06-11 2002-06-11 重質炭化水素油の水素化処理方法

Publications (1)

Publication Number Publication Date
JP2004010857A true JP2004010857A (ja) 2004-01-15

Family

ID=29727749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169868A Pending JP2004010857A (ja) 2002-06-11 2002-06-11 重質炭化水素油の水素化処理方法

Country Status (8)

Country Link
US (1) US20060060509A1 (ja)
EP (1) EP1511825A1 (ja)
JP (1) JP2004010857A (ja)
KR (1) KR20050010878A (ja)
CN (1) CN1668723A (ja)
AU (1) AU2003236725A1 (ja)
CA (1) CA2489184A1 (ja)
WO (1) WO2003104359A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113699A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 超音波診断装置及びカテーテルナビゲーションシステム
KR20180046981A (ko) * 2016-10-28 2018-05-10 에스케이이노베이션 주식회사 중질유분의 수소첨가 처리 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736490B2 (en) 2003-12-19 2010-06-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
FR2904324B1 (fr) * 2006-07-27 2012-09-07 Total France Procede d'hydrotraitement d'une charge gazole, reacteur d'hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante.
WO2009073436A2 (en) * 2007-11-28 2009-06-11 Saudi Arabian Oil Company Process for catalytic hydrotreating of sour crude oils
WO2010009077A2 (en) 2008-07-14 2010-01-21 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent
US20100018904A1 (en) * 2008-07-14 2010-01-28 Saudi Arabian Oil Company Prerefining Process for the Hydrodesulfurization of Heavy Sour Crude Oils to Produce Sweeter Lighter Crudes Using Moving Catalyst System
US8372267B2 (en) * 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil
BRPI1012764A2 (pt) * 2009-06-22 2019-07-09 Aramco Services Co processo alternativo para o tratamento de óleos brutos pesados em uma refinaria de coqueificação.
CN102876372B (zh) * 2011-07-11 2014-10-15 中国石油化工股份有限公司 一种单段串联柴油加氢精制方法
CN103059931B (zh) * 2011-10-21 2014-12-31 中国石油化工股份有限公司 一种渣油加氢处理方法
FR2999453B1 (fr) 2012-12-18 2015-02-06 IFP Energies Nouvelles Catalyseur d'hydrotraitement de residus comprenant du vanadium et son utilisation dans un procede d'hydroconversion de residus
JP6104762B2 (ja) * 2013-08-30 2017-03-29 Jxエネルギー株式会社 炭化水素油の製造方法
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US20180228264A1 (en) * 2017-02-16 2018-08-16 Consuelo Acosta-Conley Device for selectively parting strands of hair
CN109694733B (zh) * 2017-10-23 2021-02-09 中国石油化工股份有限公司 沸腾床渣油加氢裂化的方法和系统
JP2024503110A (ja) * 2021-01-15 2024-01-24 セエルイ フルタフェラク メタノール合成反応器
KR20230078287A (ko) * 2021-11-26 2023-06-02 에스케이이노베이션 주식회사 폐플라스틱 열분해유의 정제 장치 및 정제 방법
FR3141185A1 (fr) 2022-10-25 2024-04-26 Totalenergies Onetech Procédé de traitement d’une composition comprenant une huile issue de déchets plastiques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054508A (en) * 1975-02-21 1977-10-18 Mobil Oil Corporation Demetalation and desulfurization of residual oil utilizing hydrogen and trickle beds of catalysts in three zones
US4431525A (en) * 1982-04-26 1984-02-14 Standard Oil Company (Indiana) Three-catalyst process for the hydrotreating of heavy hydrocarbon streams
US4431526A (en) * 1982-07-06 1984-02-14 Union Oil Company Of California Multiple-stage hydroprocessing of hydrocarbon oil
US4657664A (en) * 1985-12-20 1987-04-14 Amoco Corporation Process for demetallation and desulfurization of heavy hydrocarbons
US5744025A (en) * 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock
JP2001003066A (ja) * 1999-06-24 2001-01-09 Idemitsu Kosan Co Ltd 脱硫燃料油の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113699A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 超音波診断装置及びカテーテルナビゲーションシステム
KR20180046981A (ko) * 2016-10-28 2018-05-10 에스케이이노베이션 주식회사 중질유분의 수소첨가 처리 방법
KR102560963B1 (ko) * 2016-10-28 2023-07-28 에스케이이노베이션 주식회사 중질유분의 수소첨가 처리 방법

Also Published As

Publication number Publication date
US20060060509A1 (en) 2006-03-23
EP1511825A1 (en) 2005-03-09
KR20050010878A (ko) 2005-01-28
CN1668723A (zh) 2005-09-14
CA2489184A1 (en) 2003-12-18
AU2003236725A1 (en) 2003-12-22
WO2003104359A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
JP4638610B2 (ja) 水素化処理用触媒並びに水素化処理方法
JP4839311B2 (ja) 重質炭化水素油のための触媒組合せおよび二工程水素処理方法
JP2004010857A (ja) 重質炭化水素油の水素化処理方法
JP4303820B2 (ja) 水素化処理用触媒並びに水素化処理方法
JP4977299B2 (ja) ナフサ脱硫のための多段水素化処理方法
JP2004518012A (ja) 重質油を品質向上するための担持スラリー触媒を用いるスラリ−水素処理
US4340466A (en) Process for hydrotreating heavy oils containing metals
US20040163999A1 (en) HPC process using a mixture of catalysts
CA2508630C (en) Hydro processing of hydrocarbon using a mixture of catalysts
JP4773634B2 (ja) 重質炭化水素油の2段階水素化処理方法
PT2878651T (pt) Processo de hidrotratamento de destilado sob vácuo mediante utilização de uma sequência de catalisadores
JP5826457B2 (ja) 低硫黄燃料の製造のための改良された水素化分解装置後処理触媒
JP4612229B2 (ja) 重質炭化水素油の水素化処理用触媒並びに水素化処理方法
JP4369871B2 (ja) 触媒の混合物を使用する重質原料のhpc法
JP4773633B2 (ja) 重質炭化水素油の2段階水素化処理方法
EP0590894B2 (en) Hydroconversion process
JPH10296091A (ja) 水素化処理用触媒およびそれを用いる炭化水素油の水素化処理方法
JP3978064B2 (ja) 重質炭化水素油の2段階水素化処理方法
JP4680520B2 (ja) 低硫黄軽油の製造方法および環境対応軽油
CN111849551B (zh) 生产低硫清洁柴油的方法
JP2004358326A (ja) 水素化処理用触媒とその使用方法