JP2003524875A - ラテラル・バイポーラ・トランジスタとその製造方法 - Google Patents
ラテラル・バイポーラ・トランジスタとその製造方法Info
- Publication number
- JP2003524875A JP2003524875A JP2000570839A JP2000570839A JP2003524875A JP 2003524875 A JP2003524875 A JP 2003524875A JP 2000570839 A JP2000570839 A JP 2000570839A JP 2000570839 A JP2000570839 A JP 2000570839A JP 2003524875 A JP2003524875 A JP 2003524875A
- Authority
- JP
- Japan
- Prior art keywords
- region
- conductivity type
- forming
- active base
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 claims abstract description 50
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 50
- 229920005591 polysilicon Polymers 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 32
- 239000007943 implant Substances 0.000 claims description 28
- 150000004767 nitrides Chemical class 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910021332 silicide Inorganic materials 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 12
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 11
- 239000011630 iodine Substances 0.000 claims description 11
- 229910052740 iodine Inorganic materials 0.000 claims description 11
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 7
- 239000002019 doping agent Substances 0.000 claims description 6
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 230000009977 dual effect Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 79
- 238000012545 processing Methods 0.000 description 23
- 230000004044 response Effects 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 206010010144 Completed suicide Diseases 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910008484 TiSi Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 102100033007 Carbonic anhydrase 14 Human genes 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000867862 Homo sapiens Carbonic anhydrase 14 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/735—Lateral transistors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3442—Mixing, kneading or conveying the foamable material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/74—Bypassing means, i.e. part of the molten material being diverted into downstream stages of the extruder
- B29C48/745—Bypassing means, i.e. part of the molten material being diverted into downstream stages of the extruder for plasticising or homogenising devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8248—Combination of bipolar and field-effect technology
- H01L21/8249—Bipolar and MOS technology
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
ル・バイポーラ・トランジスタの製造方法に関し、また、より詳しくはラテラル
・バイポーラ・トランジスタを使用するバイポーラおよび相補型MOSトランジ
スタ(BiCMOS)回路およびその製造方法に関する。
ケーションにおいて大きい需要がある。従来のBiCMOS回路は、バイポーラ
・トランジスタとMOSトランジスタの両方を共通基板上の単一回路に有してい
る。MOSトランジスタは、一般的にデジタル回路に使用され、一方バイポーラ
・トランジスタは一般的にアナログ回路に使用され、BiCMOS回路はこれら
のトランジスタを組み合わせ、一体化して共通のモノリシック半導体構造として
いる。従って、BiCMOS回路の製造において、MOSトランジスタおよびバ
イポーラ・トランジスタの形成は、共通の処理スキームに一体化されるべく互換
性がなければならない。さらに、製造経費、時間および複雑さを管理するために
、全処理工程数を制限し、縮小する新規な設計アプローチに対する一定した必要
性がBiCMOS処理分野に残されている。
大量生産に耐え得るようなBiCMOSデバイスに使用される。ラテラル・バイ
ポーラ・トランジスタは通常、基板の共通表面域に沿って延長し、それぞれラテ
ラルPNP(LPNP)またはラテラルNPN(LNPN)を形成する、例えば
PNPまたはNPNの可変導電性である3つの別個の半導体領域を含んでいる。
同じエリアにBiCMOS回路のためのラテラル・バイポーラ・トランジスタ(
例えばLPNP)の形成を収容する処理シーケンスが必要である。さもなければ
、BiCMOS処理中に垂直バイポーラ・デバイスを形成するのに必要とされる
処理と比較して付加的な処理工程を必要とせずに垂直バイポーラ・デバイス(す
なわち、垂直NPNデバイス)を規定できる。BiCMOSデバイスのLPNP
中のエミッタとコレクタ間のラテラル空間を減じることも望ましい。LPNP中
のエミッタとコレクタ間のより狭い空間は導電性でであり、デバイス内の利得と
周波数応答性を高める。
電流利得の大きさ、最大作動周波数および初期電圧特性は一般に、回路の高速能
力の指示を提供する。さらに、トランジスタのベータ(β)値(すなわち、電流
利得)と初期電圧との積のより大きい値は、回路の高い動作能力の指示を提供す
る。既知のように、トランジスタのベータ(β)値は、トランジスタのコレクタ
とエミッタ間の電圧(VCE)を一定に保持した状態で決定された入力電流(I B )に対するその出力電流(IC)の比である。トランジスタ回路の電流利得は
、エミッタ接地トランジスタ回路と同様に対応している。
ジスタのコレクタ電流対異なるベース電流のためのコレクタ電圧の測定データを
プロットしたものが、ゼロ・コレクタ電流のポイントに戻って補外され、曲線が
全て接地(共通)負電圧において交差することは実験的観察に基づいている。こ
の電圧は初期電圧であり、また一般的にVAで表される。高い初期電圧がアナロ
グ回路で所望され、コレクタ電流中の強いスイングの発生を阻止する。
能を改善するための過去における障害は、一方では初期電圧と他方では電流利得
または作動周波数との間に存在するトレードオフ関係にある。すなわち、先行の
バイポーラ・トランジスタ設計における電流利得または初期電圧のいずれかに提
供される改良(増大)は、回路の全体としての正味の性能が著しく改善されるよ
うに他の特性のオフセット縮減を伴う傾向にある。例えば、性能能力の測定値と
しての電流利得(またはベータ)と初期電圧との積が、実質的に同値に維持され
る。これは、もし一つの特性が高まると、他の特性がその量を相殺するようにシ
ーソー・ダウンする。従って、改善が他のトランジスタ特性に発生するオフセッ
ト縮減のために効果的に相殺することなく、初期電圧または電流利得(あるいは
作動周波数)のいずれかを高揚し得る、ラテラル・バイポーラ・トランジスタ・
アーキテクチャに対する必要性が存在する。このようにして回路性能の意味のあ
る正味の改善は設計レベルで提供されなければならない。
タを使用する従来の半導体デバイスに関連し、また特に従来のBiCMOS技術
に関連する一つまたはそれ以上の上述の必要性および問題を十分に扱い、満たす
ことができない。
よびMOSトランジスタを含むBiCMOS集積回路を製造するためのプロセス
を開示している。エミッタおよびコレクタが、埋め込みN領域となる、リモート
・ベース接点を伴う同じ活性領域内に配備されている。エミッタはP+多結晶シ
リコンの層からの拡散によって形成され、またP+多結晶シリコン層はMOSト
ランジスタのゲートとしても作用する。ベース領域は、エミッタを形成するのに
使用されたP+多結晶層によってカバーされた絶縁物の直下に配備されている。
PMOSのP+S/Dがコレクタであり、またベースに自己アラインされている
。エミッタ・フィールド・プレートが、コレクタに自己アラインされ、E−C容
量が最小になるように使用される。このデバイスはカソードに埋め込みN接続で
絶縁されている。多結晶層が、深く埋め込まれたN領域と接触するように使用さ
れており、また、CMOSスペーサがアノードとの短絡を阻止するのに使用され
ている。しかし、米国特許第5187109号明細書は、電流利得または初期電
圧が、比例関係で他の特性を犠牲することなく高められるラテラル・バイポーラ
・トランジスタ・アーキテクチャを教示していない。
992年12月、第2733−2739ページや、また米国特許第582456
0号明細書は、ポリシリコン電極表面上に、かつ、基板に設けられた、隣接する
P+面領域上に配備された金属ケイ化物接点を有するゲート付きラテラルPNP
を提供するBiCMOS処理技術を開示している。この基板において、次の金属
ケイ化物処理が実行される前に、従来のラテラル絶縁部分または酸化スペーサが
ポリシリコン電極の側部上に形成され、また酸化スペーサが横方向に介在し、ポ
リシリコン電極をP+面領域から横方向に隔置し、これによって隣接するポリシ
リコン電極間のスペースが増大している。従って、サン他の刊行物と米国特許第
5824560号明細書に記述されたデバイス中の利得と周波数応答性は、最良
のものを期待することができない。加えて、米国特許第5197109号明細書
のように、サン他の刊行物および米国特許第5824560号明細書もまた、電
流利得または初期電圧が比例関係で他の特性を犠牲にすることなく好適に改善で
きるラテラル・バイポーラ・トランジスタ・アーキテクチャを教示していない。
・バイポーラ・トランジスタ・アーキテクチャの形成を、付加的な処理工程を必
要とせずにBiCMOS処理に吸収する技術とを支持し、これらを可能にするラ
テラル・バイポーラ・トランジスタ・アーキテクチャに対する必要性が存在する
。本発明は上述のまた他の必要性を満たすものである。
波数能力を維持するラテラル・バイポーラ・トランジスタが提供される。より詳
しく説明すると、ラテラル・バイポーラ・トランジスタは、バイポーラ・デバイ
スとCMOSデバイスの両者を有する集積回路上に形成され、このラテラル・バ
イポーラ・トランジスタはBiCMOS方法に基づき、また同じエリアにあると
すれば垂直バイポーラ・デバイスの形成に相対する付加的な工程なしに形成され
る。
たラテラル・バイポーラ・トランジスタは、一般に次の特徴を有している。活性
ベース領域が逆導電型の基板上に形成される。この活性ベース領域は、基板上に
設けられた同じ導電型の介在埋め込み領域上に形成されるのが好ましい。活性ベ
ース領域は、ラテラル・バイポーラ・トランジスタの活性ベースとして適切な導
電性を有する不純物でドープされた単結晶半導体材料のエピタキシャル層として
形成されるのが有利である。エミッタ領域に沿った、ラテラル・バイポーラ・ト
ランジスタ・アプリケーションのための独自のアーキテクチャを有するコレクタ
領域が、この同じ活性ベース領域に形成される。
方向に結合された活性ベース領域の導電性とは逆型の導電性を有する適度にドー
プされたコレクタ・ウエル領域を形成して、LPNPを生成することよって提供
される。コレクタ・ウエル領域は一般に、埋め込み領域に達するまで活性ベース
領域の全厚みに渡ってほぼ延長する深さを有して形成されるが、それは必然的で
はない。エミッタは、コレクタ・ウエル領域間に横方向に、また、そこから隔置
された位置に活性ベース領域の表面に形成されたエミッタ・ウエル領域を含むよ
うに提供される。コレクタとエミッタは、それぞれのコレクタとエミッタ・ウエ
ル領域の上方の活性ベース領域の表面に配備された同じ導電型の導電層をさらに
含んでいる。好ましくはポリシリコンでドープされたドープ導電層は、コレクタ
とエミッタのための接触層として作用し、この層上に金属ケイ化物のようなさら
なる接触層が形成され得る。ドープされたポリシリコン型の導電層は有利にはド
ーパントのソースとして使用することができ、このドーパントは活性ベース領域
に拡散してエミッタ・ウエル領域をコレクタ・ウエル領域間に横方向の位置に形
成するとともに、コレクタ・ウエル領域で大きくドープされた浅い表面ウエル領
域を形成してポリシリコン導電層と低抵抗接触を行う。
、重要な性能の高揚が観察され、特に本発明がLPNPの製造に適用される場合
にこれが言える。すなわち、本発明の一実施形態の集積回路は、LPNPのコレ
クタのPウエル領域としての独自に適度にドープされたコレクタ・ウエル領域構
造を形成し、得られた回路は著しく高揚した性能能力を付与される。より詳しく
説明すると、電流利得と初期電圧との積が、Pウエル領域が存在するために著し
く増大する。本発明のPウエル領域のあることにより生ずる他の利点は、エミッ
タとコレクタ間のスペース、すなわち、ベース幅を効果的に狭くでき、利得と周
波数応答性を高めることができることである。付加的に、従来のLOCOS領域
または酸化物スペーサの代わりに、エミッタとコレクタのドープされたポリシリ
コン部分間の横方向スペースは、本発明においては、ポリシリコン部分上に形成
されたケイ化物保護層によって規定され、横方向スペース、従ってベース幅がさ
らに縮小される。本発明のLPNPのベータ値は、約100、一般に約100−
150、またこれより大きい。いずれの場合も、コレクタ中に単独Pエウル領域
を組込むLPNPは、電流利得と初期電圧の積において著しい増大を示す。この
初期電圧と電流利得との積の増大は、本発明に基づくコレクタ中に設けられたP
ウエル構造を欠く以外は同様の構造に関する値の約6倍もの高い要素が観察され
ている。
明はバイポーラ・トランジスタ回路の電流利得と初期電圧の変化間に発生するこ
とが予想されるオフセット・トレードオフ関係に関する従来の知識を無視してい
る。例えば、これは発明のラテラル・バイポーラ・トランジスタによって達成さ
れる電流利得の増大が、初期電圧中の損失によって効果的に相殺することができ
ないことを意味する。なぜなら、相対的に小さい縮小が、電流利得に大きい増大
があるにもかかわらず実際に初期電圧に生じるからである。従って、本発明のラ
テラル・バイポーラ・トランジスタ内で達成された電流利得と初期電圧との積の
高い値が、リニア回路の構築を容易にする。さらに、電流利得、初期電圧および
周波数応答性の全てが、発明のラテラル・バイポーラ・トランジスタ中の相対的
に高い値で提供され、それにより高速性能が提供される。
エピタキシャル層の厚みが、回路の周波数応答に著しい影響を与える。この関係
の識別において、エピタキシャル層の厚みの正関数となることが分かっている。
概念中にある上述した発明の設計規則によるラテラルPNPを製造することによ
り、本発明に基づくラテラルPNPは1GHzまでの周波数で利得を有する。
処理工程の数を増やすことなしに、従来の垂直PNPデバイスのために規定され
たのとは別の方法で、活性エリア内でBiCMOS処理の過程で形成することが
できる。
細な説明からよりよく理解される。
ではないことを理解されたい。
の処理シーケンスを含む二重CMOS処理スキームに基づいて実行できる。
10に設けられ、基板の領域に露呈されて高いドースのひ素(約5.1015/
cm2)またはPまたはSbのような他のN−型の不純物をインプラントし、基
板10の露出領域中に高いN−型の濃度を有する埋め込みN領域11を形成する
。例えば、単結晶基板10は、シリコンまたはGaAsウエハまたはSOL等と
することができる。基板とこの上に形成された上乗せ層の横ないし水平方向は方
向32で示される。このインプラント工程は、LPNPのための埋め込みN領域
を形成するのに使用され、基板上のあらゆるところに配置されるPMOSデバイ
スだけでなくNPNデバイスも製造できる。これについては図6−7に関する以
下の説明から明白となろう。このマスクは基板10からはぎ取られ、基板は酸素
で焼きなましされる。
域を露呈して、ヨウ素(約4.1313/cm2)の中庸のドースでインプラン
トされ、露呈領域中で従来の中庸P型濃度を有する埋め込みP領域27が形成さ
れる。この埋め込みP領域27は、完成されたLPNPを隣接デバイスから絶縁
する絶縁構造の一部を形成する。P−型の埋め込み領域も、基板上のあらゆると
ころに位置付けされるNMOSデバイスのためにこの工程中に形成される。これ
についてはまた図6−7に関する以下の説明から明白となろう。第2マスクおよ
び酸化層が基板10の表面から標準HFエッチによってはぎ取られる。
ドープされた(約1016/cm3)Nエピタキシャル層(エピ層(epi−l
ayer))12が、基板10の露呈面上に成長される。得られた中間構造を図
1に示す。この得られた構造は、さらなる処理のために利用できる上面102を
有する基板アセンブリ101として効果的に作用する。エピ層12の厚みは、完
成されたLPNPの周波数応答性に衝撃を与えるときが限界であることが発見さ
れている。ここでより優れた応答性がエピ層の厚みを大きくする直接関数(di
rect function)であることが分かっている。従って、約1000
nmまたはこれより大きいエピ層12の厚みが好ましい。
ールドを提供するために、次の工程が続行される。約15nm厚の薄いパッド酸
化物層33が、N型のエピタキシャル層12上に成長され、続いて低圧化学蒸着
(LPCVD)によって170nm厚の窒化シリコン層34が蒸着される。第3
マスク35が、実行されるべきフィールド酸化から保護されるべき将来の活性領
域を規定するのに適用される。この保護された活性領域は、デバイスの下方で低
抵抗経路を提供するのに使用される埋め込みN領域11のエリアである。いずれ
にしても、第3マスク内の開口部によって露呈された窒化物エリアは反応性イオ
ン・エッチング(RIE)に課せられ、これは露呈窒化物層とその下にある酸化
物層を、エッチが停止される前に、その厚みの約半分までエッチングする。得ら
れた中間構造を図2に示す。
ンを残したままで、はぎ取られる。酸化物フィールドの550nm層が、残って
いるパターン化窒化物層によってカバーされていない全エリア上を1050℃の
蒸気内で酸化することによって熱的に成長させ、LOCOS領域22を提供する
。この領域22は活性エリアを規定し、この中にLPNPのコレクタおよびエミ
ッタが形成され、埋め込みP領域27上に酸化物フィールド領域26が形成され
る。湿式エッチングを使用することにより、酸化中に窒化物層上に形成された酸
化物の表面層、窒化物層34およびパッド酸化物層33が、活性エリアからはぎ
取られる。得られた中間構造を図3に示す。
25nm厚の薄い酸化物フィールド層(図示省略)が形成される。
PNPの接点が最終的に所望されるとともに、活性エリアの残りの部分が保護さ
れる。燐が埋め込みN領域11の上部に位置付けされたN型のエピタキシャル層
12の露呈活性エリア中にインプラントされ、エピ層12中に深いN型にドープ
された領域23が形成される。N型領域23が、埋め込みN領域11に低抵抗の
領域を形成する。深いN型領域23の形成に使用されるマスクははぎ取られ、窒
素雰囲気内で1000℃で焼きなましが実行され、インプラントされた燐により
、埋め込みN領域11中に拡散され、深いN領域23を埋め込みN領域11にリ
ンクする。
フィールド26の露呈エリアにパターン化されるように設けられ、コレクタ領域
が所望されているOCOS22によって規定された活性エリア内の位置も配備さ
れる。図4に示したように、それぞれ180、90および25keVのエネルギ
ーによるヨウ素の3工程インプラントが、マスク36によって規定されたnエピ
層12(および酸化物フィールド26)の露呈エリアで実行される。第1インプ
ラント・エネルギーで不純物をインプラントする工程は6.1012原子/cm 2 のヨウ素ドースを使用して約180keVで実行される。第2インプラント・
エネルギーで不純物をインプラントする工程は1.1012原子/cm2のヨウ
素ドースを使用して約90keVで実行される。3インプラント工程の完了後、
インプラント・マスク36がはぎ取られ、犠牲的酸化物層が湿式エッチングによ
って除去される。このインプラント手順は、基板上のあらゆるところに位置付け
されたNMOSトランジスタのためのP−ウエルを同時に形成するのに使用され
る。
方にP型のウエル領域28の形成を生じることになり、また隣接するN型領域(
N型のエピタキシャル層12内)を互いに分離するPウエル領域18も形成され
る。Pウエル領域18は、エピ層12の厚みを通って延長する深さを有し、これ
は埋め込み領域11に達して終わる。nエピ層12の部分12’はPエウル28
と深いN領域23間にある。埋め込みPウエル領域28は隣接するLPNPデバ
イスを絶縁する作用をし、一方埋め込みN領域はNPNデバイスとラテラルPN
Pのために使用される。
ゆるところに形成されたNMOSトランジスタのソースに対してドレインが短絡
するのを抑制する。25keVインプラントは、基板上のあらゆるところに配置
されたNMOSトランジスタの閾値電圧、すなわち、トランジスタを作動させる
のに必要なゲート電圧をセットするのに使用される。3つの全てのインプラント
が実行された後、図5に示したようにPウエル領域18が、約1.1017原子
/cm3の最高ドパント濃度のヨウ素でドープされる。Pウエル・インプラント
18はnエピ層12の介在領域120に横方向で結合されラテラルPNP構造を
形成する。
、初期電圧と電流利得との積を著しく増大させる。この増大は、コレクタ領域に
提供されたPウエル・インプラントのないこと以外は同様のデバイスと比較して
、本発明に基づいて製作されたLPNPでほぼ6個の要素が観測される。BiC
MOS処理シーケンスの重大時に、また図6と7に示したように、CMOSデバ
イスが、LPNP活性エリア1がマスクされている間、従来のCMOS処理フロ
ーによって同じ基板10上の他の活性エリア2と3に形成される。図6に示した
ように、NMOS Pウエルが上述の3インプラント工程中に形成された後、N
MOSポリ・ゲート50が、酸化物ゲート上に蒸着され、NMOS N−LDD
52の形成に続いて、活性エリア2における従来のNMOS処理によってパター
ン化され、次いでマスク37が活性エリア2の露呈エリアに適用され、ここで大
きくドープされたN型の外部ソース/ドレイン(S/D)領域57がインプラン
トによって形成されることになる。このマスク37はLPNPの深いN領域23
(これのみ)が露呈される。ひ素のインプラントは、NMOSトランジスタの外
部S/D領域57を形成しているマスク37の露呈エリアによって実行される。
マスク37を介するひ素のインプラントは、また深いN型領域23上部に配備さ
れた、外部の深くドープされた(N+)ベース活性領域24も形成する。これは
低抵抗経路を埋め込みN領域11に提供するとともにコレクタ直列抵抗を小さく
するためである。マスク37は除去され、焼きなましが実行される。図6は従来
の手順で形成された2kΩ/平方のポリシリコン抵抗器59を示す。一般的には
、酸化物側壁がCMOSゲート上に成長する前に、NMOSとCMOSのために
蒸着された同じポリシリコン層内にRIEによって規定される。
リ・ゲート54およびPMOS P−LDD55が従来のPMOS処理によって
形成され、NMOS処理で集積され、一方でLPNP活性エリアがマスクされた
後、マスク38が活性エリア3の露呈エリアに適用され、ここで深くドープされ
たP型の外部ソース/ドレイン(S/D)領域58が形成されることになる。ヨ
ウ素によるPインプラントが実行され、P+S/D領域が形成され、PMOSゲ
ートがドープP+になる。マスク38が除去され、焼きなましが実行される。C
MOSデバイスが形成され、一方LPNP活性エリア1がマスクされた後、処理
フローがLPNPの製造を続行するために復帰する。
OSからLPCVDによって形成された、約20nmの厚みの二酸化シリコン層
15aと、LPCVDによって形成された、約30nmの厚みの窒化物シリコン
層15bが基板アセンブリの表面上にこの順序で逐次成長される。このアセンブ
リにはNエピタキシャル層12の面を含み、窒化物/酸化物スタック15(例え
ば、Si3N4/SiO2層スタック)、すなわち、誘電体スタック15を形成
する。マスク39がLPNPおよびCMOSデバイスのエリア(23、24)を
カバーするように適用される。このマスク39はパターン化され、所望のコレク
タとエミッタ・エリアの上方の位置で窒化物/酸化物スタック15を露呈する。
得られた構造を図8に示す。こうして、下敷きされた二酸化シリコン層15aは
、露呈された窒化シリコン層15bを除去するのに使用される。次いで、二酸化
シリコン層15aの露呈部分が湿式エッチによって除去され、活性ベース領域1
2の露呈表面部分40と41が提供され、これが完成されたLPNP中のコレク
タとエミッタの位置にそれぞれ対応することになる。マスク39が除去される。
次の説明はLPNPデバイスの製造を完成するのに使用される処理工程に主とし
て焦点が合わされ、また、CMOSデバイスは一般に、次に説明のない限り少な
くとも酸化物/窒化物スタック15によって、これらの最終LPNP製造工程中
に保護される。
厚のポリシリコン層(16、17)がLPCVD方法によって基板アセンブリ上
にブランケット蒸着される。このポリシリコン層(16、17)は、活性ベース
領域(エピ層12)および露呈表面領域40と41におけるP−ウエル領域18
は直接接触し、ここで開口部は直前の工程で酸化物/窒化物スタック15中に形
成される。次に蒸着ポリシリコン層(16、17)が、十分に低いエネルギーに
よるインプラントによってヨウ素によって強くドープされてP+に形成され、こ
れによってPウエル領域18のモノシリコン材料中のドーピング濃度が高まるこ
とはない。約200nm厚の一時的二酸化シリコン層(図示省略)が、反応剤と
してのTEOSを使用してLPCVDによってポリシリコン層(16、17)上
に成長される。この一時的二酸化シリコンは、NPNエミッタ・ポリが規定され
、基板上のあらゆるところにエッチングされた後で除去される。こうしてウエハ
10が炉内で酸素雰囲気中で850℃の加熱により焼きなましされ、続いて10
秒間1050℃で急速熱処理(RTP)される。これはヨウ素ドーパントを活性
化させ、ヨウ素ドーパントをポリシリコン層(16、17)内に分配させ、また
ポリシリコン層(16、17)からのヨウ素ドーパントを、スタック15を介し
て露呈されているn−エピ層12に拡散させる。この拡散が、ポリシリコン層部
分17の直下にある露呈領域でエピ層12内のP+エミッタ領域13を形成し、
同時にポリシリコン層部分16の直下にある露呈領域でP型のウエル領域18内
の強くドープされた(P+)浅い表面領域14を形成する。
用され、LPNPのコレクタとエミッタ中に使用されるべきポリシリコン層パタ
ーン(16、17)の横方向境界線を規定する。このポリシリコン層は、マスク
されないで残されていた基板上のどの個所も除去される。
構成工程で残され、NPN、CMOSまたはポリ・ラインのような下敷き構造の
周辺の形状に曲げなければならないレジスト・マスクのある個所にはどこにでも
酸化物スペーサが必ず生じる傾向にある。従って、まず、酸化物エッチが実行さ
れ、これらの酸化物スペーサがポリシリコン層(16、17)から除去され、一
方基板上のどの個所にも形成されたCMOSおよびNPNデバイスがレジスト・
マスクによって保護される。この工程は、ポリシリコン層16と17の横方向サ
イドにおける酸化物スペーサの発生を阻止するとともに、これを排除する。
ポリシリコン層の全体に渡ってエッチングされ、またこのエッチは残りの窒化物
層15bで停止される。高い微細構成工程のために、約100%のオーバーエッ
チが、ポリシリコン・スペーサの除去を保証するのに必要である。コレクタ・ウ
エル18とエミッタ・ウエル13の上方のポリシリコン領域(16、17)を残
してエッチした後でレジスト・マスクがはぎ取られる。得られた構造を図9に示
す。
スクは、図9に見られるように窒化物/酸化物スタック15の下敷き横方向側部
で異方性エッチングの完了時に保持されたポリシリコンの側部(16’、17’
)間の部分的横方向オーバーラップ103が形成されるように適当に規定される
。このように、横方向スペース104、すなわち、コレクタ(18)とエミッタ
(13)間のベース幅は、完成されたデバイス内でパターン化されたポリシリコ
ン層部分の横方向サイド上の酸化物スペーサを保持しているラテラル・バイポー
ラ・PNPトランジスタと比較して、本発明において効果的に減じられる。残さ
れたP+ポリシリコンがベース接点開口部にオーバーラップするので、エミッタ
−ベース結合部がフィールドメッキされる。
エリアを規定するのに使用される。すなわち、金属ケイ化物形成は、LPNPベ
ース、コレクタおよびエミッタに低抵抗接点を提供するのに使用されるのが好ま
しい。レジスト・マスクはコレクタ(14、16、18)とエミッタ(13、1
7)間のエリアに適用され、また、コレクタ領域を部分的にオーバーラップする
ように適用されなければなない。このレジスト・マスクは、エミッタP+ポリ1
7の各側部上で酸化物/窒化物スタック15がエッチされるのを阻止し、これは
LPNPの活性ベース領域12内のケイ化物形成をブロックするように作用する
。これによりコレクタとエミッタ間に発生する短絡を阻止する。反応性イオン・
エッチが、製造中のLPNPのマスクされた活性エリアの外部に配備された残り
のマスクされていない窒化物15bを異方性エッチし、スタック15の下方にあ
る二酸化シリコン層15a内で停止するように実行される。レジスト・マスク4
2のはぎ取り後、希釈HF内の湿式エッチが、二酸化シリコン15aとP+ポリ
17上の負性酸化物の露呈部分を除去するのに使用される。ケイ化物されてはな
らない全エリアが、窒化物エッチの後に残っている窒化物層15bによるこのエ
ッチから保護される。Ti/TiN層がスパッタされ、続いて約700℃の急速
熱処理(RTP)がTiSi2(19、20、25)を、ポリシリコン・エリア
(16、17)とN+ベース領域24(CMOSゲートとそのS/D領域も含め
て)形成するのに使用される。強くドープされたN型領域24の頂部に形成され
たケイ化物25が、深いN型領域23と共に、LPNPデバイスのベース端子2
1を提供する。
または2ケイ化物コバルトが含まれる。酸化物によってカバーされたエリア上で
、Tiは酸素と反応しない。この反応しないTiは、湿式エッチング(すなわち
、NH4OH、H2O2)によって除去され、反応したTi/TiN層がそのま
まで残される。このようにして、いわゆるケイ化物(自己アラインされた「ケイ
化物」)が全露呈ポリシリコンとモノシリコンエリア上に形成される。別の方法
として、Ti/TiNスタックの代わりに、Tiの単一層を使用することもでき
る。同様のケイ化物がPtをスパッタし、異なる温度と湿式エッチング剤を使用
することによって得ることができる。TiSi2の場合において、約830℃に
おける第2RTP工程が、C49相からC54相に移るのに広範に使用される。
これはシート抵抗のほんの25%に過ぎない。コレクタ(14、16、18)と
エミッタ(13、17)間の横方向スペーシング104は、発明の処理スキーム
の使用によって減じられる。このスペーシングはLOCOSの代わりとなるケイ
化物保護層によって規定されている。
、LPNPバイポーラ・トランジスタが本質的に完成される。基板上のLPNP
および他のICデバイスに金属相互連結を形成するための「バック・エンド」処
理に関して、標準的なまたは他の適当な金属化操作が実行でき、BiCMOSデ
バイスに必要とされる多段金属化レベルを提供する。金属化が実行される前に、
LPNPおよびCMOSデバイスが、平上面を提供している一つまたはそれ以上
の誘電体層でコーティングされる。例えば、金属ケイ化物形成の後、高い屈折率
ガラスのフィルムが、PECVDによって蒸着でき、これに続いて水素イソロイ
シンキオキサン(hydrogensilesquioxane)のような流動性酸化物(FOX)の
層上でスピニングされ、また、PECVD TEOSの層でキャッピングされる
。導電性相互連結が、ケイ化物化ポリシリコン領域16と17とLPNPのベー
ス接点25と、この種のデバイスのための標準のまたは他の適切な金属化処理手
順を使用して電気的に連絡して形成される。金属化デバイスは標準的アプローチ
によって不動化される。この不動化は、第4金属層上で低温度で燐ドープ・ガラ
スと窒化物シリコンのスタックを蒸着することによって実行できる。当該技術の
習熟者であれば、ケイ化物化処理後実行されるバック・エンド処理のための他の
適当な技術を容易に理解できる。
クタ領域と同心形態で形成される。コレクタ領域は外リングの形態に形成され、
活性ベース領域が、コレクタ領域の内側の中間リングの形態に形成され、またエ
ミッタが活性ベース領域の中間リングの内側に配備されたエリアに形成される。
例えば、これらのリングは同心スクエア、角の丸いスクエア等を形成しうる。警
告として、本発明のLPNPデバイスのコレクタは、その動作中、順方向にバイ
アスされることはない。逆バイアス下で、エミッタの電位は表面からホット・キ
ャリアを推進する。これはLPNPの信頼性のためには重要である。なぜなら、
このホット・キャリアが、インターフェイス状態を形成し、電流利得を減じ、ま
た順方向動作下でl/fのノイズを増大するからである。一般的に、アプリケー
ションに依存して必ずしも必要ではないが、本発明に基づいて製造されたLPN
Pは、エミッタ接地トランジスタとして作動する。
電圧との積を著しく大きく、例えば6ないしそれ以上のファクタにする責務があ
ることが分かっている。本発明のLPNPのためのベータ値は、約100より大
きく、一般には100−150である。Pウエル領域はエミッタとコレクタ間の
スペーシング、すなわち、ベース幅を効果的に狭くする。これは利得と周波数応
答性を高める働きをする。付加的に、エミッタとコレクタのドープされたポリシ
リコン部分間の横方向スペーシングは、本発明においては、従来のLOCOS領
域または酸化物スペーサの代わりに、ポリシリコン部分上に形成されたケイ化物
保護層によって規定されるが、これはさらに横方向スペーシング、従って、ベー
ス幅を減少する。本発明に基づくラテラルPNPは、1GHzまでの周波数にお
いて利得が得られる。本発明のラテラル・バイポーラ・トランジスタを組込んで
いるBiCMOS回路は、NMOSとPMOSトランジスタを含むCMOSトラ
ンジスタだけでなく、PNPとNPNバイポーラ・トランジスタの両方をも含み
、共通の基板の上方に規定された別の活性エリアに形成される。
説明したが、本発明はこれに限定するのもではない。当該技術の習熟者、および
ここに提供した技術にアクセスする者にとっては、付加的な修正、アプリケーシ
ョンおよびその範囲内、さらに付加的な分野にある実施形態も容易に理解できる
であろうし、本発明が著しい有効性を有することが理解できよう。例えば、領域
、層および基板の導電型を逆にし、図示したラテラルP−N−Pバイポーラ・ト
ランジスタの代わりにラテラルN−P−Nを形成することもできる。
ョン、修正例および実施形態も添付の請求の範囲によって意図されるものである
。
化する二重CMOS半導体構造の初期工程における代表的な部分を拡大して示す
断面図。
バイスをも示す断面図。
Claims (17)
- 【請求項1】 ラテラル・バイポーラ・トランジスタを有する集積回路であって、 第1導電型の基板と、 前記第1導電型と逆である、前記基板上の第2導電型の活性べース領域と、 前記活性ベース領域内に配備され、活性ベース領域の介在領域と横方向に結合
する第1導電型の第1ウエル領域、および第1ウエル領域上の第1導電型の第1
導電層からなり、前記第1ウエル領域は、より高い導電性を有する第1導電型の
各浅い表面ウエル領域を含んでいるコレクタと、 前記第1ウエル領域間に横方向に、またこれから隔置された位置で活性ベース
領域中に配備された第2ウエル領域、および前記第2ウエル領域上の第1導電型
の第2導電層からなるエミッタと、 を具備するラテラル・バイポーラ・トランジスタを有する集積回路。 - 【請求項2】 前記第1導電型および第2導電型はそれぞれP型およびN型である請求項1に
記載の集積回路。 - 【請求項3】 ラテラル・バイポーラ・トランジスタは、外リング構造に形成されたコレクタ
領域と同心構造に形成され、前記活性ベース領域は前記コレクタ領域の内側の中
央リング構造に形成され、前記エミッタは前記活性ベース領域の中央リングの内
側に配備されたエリアに形成されている請求項1に記載の集積回路。 - 【請求項4】 より高い導電性の表面領域以外の部分における第1ウエル領域は約1017原
子/cm3の最高ドーパント濃度のヨウ素でドープされている請求項1に記載の
集積回路。 - 【請求項5】 前記活性ベース領域は、ひ素、アンチモニおよび燐からなる群から選択された
不純物でドープされたエピタキシャル層からなり、前記第1ウエル領域はヨウ素
でドープされている請求項1に記載の集積回路。 - 【請求項6】 前記活性ベース領域は約1000nmまたはこれより大きい厚みを有するエピ
タキシャル層である請求項1に記載の集積回路。 - 【請求項7】 前記第1導電層および第2導電層はドープされたポリシリコン層からなる請求
項1に記載の集積回路。 - 【請求項8】 前記活性ベース領域と基板間に配備された第2導電型の高い導電性を有する埋
め込み領域をさらに含み、前記第1ウエル領域は埋め込み領域にほぼ達するよう
に下方向に延長している請求項1に記載の集積回路。 - 【請求項9】 ラテラル・バイポーラ・トランジスタを有する集積回路を製造する方法であっ
て、 前記第1導電型の基板を用意する工程と、 前記第1導電型と逆である、前記基板上の第2導電型の活性べース領域を形成
する工程と、 前記活性ベース領域上にコレクタ・ウエル・インプラント・マスクを形成する
工程であって、このインプラント・マスクは前記活性ベース領域の部分を露呈す
るように設けられたマスク開口部を有している工程と、 前記マスク開口部を介して第1インプラント・エネルギーで前記第1導電型の
不純物を前記活性ベース領域にインプラントし、前記活性ベース領域の介在領域
と横方向に結合する第1ウエル領域を規定する工程と、 前記コレクタ・ウエル・インプラント・マスクを除去する工程と、 前記活性ベース領域上に誘電体スタックを形成する工程であって、このスタッ
クは第1ウエル領域を露呈するように設けられた開口部を有し、さらに第1ウエ
ル領域間に横方向に、かつ、これから隔置された活性ベース領域の表面領域を形
成する工程と、 前記第1ウエル領域上に第1導電型の不純物でドープされた第1ポリシリコン
層を形成し、また、活性ベース領域の前記露呈された表面領域上に第1導電型の
不純物でドープされた第2ポリシリコン層を形成する工程と、 前記活性ベース領域内であって、前記第2ポリシリコン層の下方にある第1導
電型の第2ウエル領域、および第1ポリシリコン層の下方に配備された第1ウエ
ル領域内の浅い表面領域からなり、浅い表面領域が第1ウエル領域の残りの部分
よりも高い不純物濃度を有しているエミッタを形成する工程と、 を含むラテラル・バイポーラ・トランジスタを有する集積回路を製造する方法
。 - 【請求項10】 前記第1インプラント・エネルギーで不純物をインプラントする工程は、約6
.1012原子/cm2のヨウ素ドースを使用して約180KeVで実行される
請求項9に記載の方法。 - 【請求項11】 前記第1インプラント・エネルギーをインプラントした後で、かつ、コレクタ
・ウエル・インプラント・マスクを除去する前に、続いてそれぞれ約90KeV
と25KeVで第1導電型の不純物の第2インプラントおよび第3インプラント
を実行する工程をさらに含む請求項9に記載の方法。 - 【請求項12】 前記活性ベース領域が約1000nmまたはこれより大きい厚みを有するよう
に形成される請求項9に記載の方法。 - 【請求項13】 前記基板上に第2導電型の高い導電性を有する埋め込み領域を形成するととも
に活性ベース領域を形成する工程をさらに含み、第1インプラント・エネルギー
・レベルでのインプラント工程によって形成された第1ウエル領域がほぼ埋め込
み領域に下方向に延長している請求項9に記載の方法。 - 【請求項14】 前記第1ポリシリコン層および第2ポリシリコン層の表面上に金属ケイ化物を
形成する工程をさらに含む請求項9に記載の方法。 - 【請求項15】 前記第1ポリシリコン層および第2ポリシリコン層の側部から酸化物スペーサ
を除去する工程と、前記第1ポリシリコン層および第2ポリシリコン層の表面上
に金属ケイ化物を形成する工程をさらに含む請求項9に記載の方法。 - 【請求項16】 前記誘電体スタックを形成する工程は、前記活性ベース領域上に酸化シリコン
サブ層を形成する工程と、前記酸化シリコンサブ層上に窒化サブ層を形成する工
程を含む請求項9に記載の方法。 - 【請求項17】 ベース端子をLOCOS領域によって前記コレクタと前記エミッタから水平方
向に隔置して形成し、前記ベース端子は前記埋め込み領域上に形成された第2導
電型の深い層からなり、また第2導電型のより高い導電性ベース接触領域が前記
深い層上に形成され、電気的導電性接点が前記より高い導電性ベース接点領域を
介して前記ベース端子に形成される工程と、 前記基板上の埋め込み領域から横方向に隔置され、前記ベース端子の横方向外
部の位置に第1導電型の埋め込み領域を形成する工程と、 前記第1ウエル領域が形成されると同時に前記埋め込みP領域上に第1導電型
の第3ウエル領域を形成する工程と、 前記第3ウエル領域上に酸化フィールド層を形成する工程と、 の付加的工程をさらに含む請求項9に記載の方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9988498P | 1998-09-11 | 1998-09-11 | |
US60/099,884 | 1998-09-11 | ||
US09/383,816 US6611044B2 (en) | 1998-09-11 | 1999-08-26 | Lateral bipolar transistor and method of making same |
US09/383,816 | 1999-08-26 | ||
PCT/EP1999/006668 WO2000016404A1 (en) | 1998-09-11 | 1999-09-09 | Lateral bipolar transistor and method of making same. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003524875A true JP2003524875A (ja) | 2003-08-19 |
JP2003524875A5 JP2003524875A5 (ja) | 2009-11-12 |
Family
ID=26796589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000570839A Pending JP2003524875A (ja) | 1998-09-11 | 1999-09-09 | ラテラル・バイポーラ・トランジスタとその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US6611044B2 (ja) |
EP (1) | EP1048078B1 (ja) |
JP (1) | JP2003524875A (ja) |
KR (1) | KR100691036B1 (ja) |
DE (1) | DE69942333D1 (ja) |
WO (1) | WO2000016404A1 (ja) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6534357B1 (en) * | 2000-11-09 | 2003-03-18 | Micron Technology, Inc. | Methods for forming conductive structures and structures regarding same |
US6465870B2 (en) * | 2001-01-25 | 2002-10-15 | International Business Machines Corporation | ESD robust silicon germanium transistor with emitter NP-block mask extrinsic base ballasting resistor with doped facet region |
SE0103036D0 (sv) * | 2001-05-04 | 2001-09-13 | Ericsson Telefon Ab L M | Semiconductor process and integrated circuit |
JP2003197908A (ja) * | 2001-09-12 | 2003-07-11 | Seiko Instruments Inc | 半導体素子及びその製造方法 |
US6885078B2 (en) * | 2001-11-09 | 2005-04-26 | Lsi Logic Corporation | Circuit isolation utilizing MeV implantation |
US20060043528A1 (en) * | 2004-09-01 | 2006-03-02 | Chong Ren | Lateral PNP transistor and the method of manufacturing the same |
US7662698B2 (en) * | 2006-11-07 | 2010-02-16 | Raytheon Company | Transistor having field plate |
US7859082B2 (en) * | 2007-05-23 | 2010-12-28 | Infineon Technologies Ag | Lateral bipolar transistor and method of production |
US8242566B2 (en) * | 2010-01-19 | 2012-08-14 | Freescale Semiconductors, Inc. | Stacked ESD protection |
US8390071B2 (en) | 2010-01-19 | 2013-03-05 | Freescale Semiconductor, Inc. | ESD protection with increased current capability |
US9312335B2 (en) | 2011-09-23 | 2016-04-12 | Alpha And Omega Semiconductor Incorporated | Lateral PNP bipolar transistor with narrow trench emitter |
US8916951B2 (en) | 2011-09-23 | 2014-12-23 | Alpha And Omega Semiconductor Incorporated | Lateral PNP bipolar transistor formed with multiple epitaxial layers |
US8958187B2 (en) | 2012-11-09 | 2015-02-17 | Analog Devices, Inc. | Active detection and protection of sensitive circuits against transient electrical stress events |
TWI506785B (zh) * | 2012-12-03 | 2015-11-01 | Macronix Int Co Ltd | 半導體元件及其製造方法 |
US9231078B2 (en) | 2012-12-05 | 2016-01-05 | Macronix International Co., Ltd. | Semiconductor and manufacturing method thereof |
US9455338B1 (en) | 2012-12-14 | 2016-09-27 | Altera Corporation | Methods for fabricating PNP bipolar junction transistors |
US9293912B2 (en) | 2013-09-11 | 2016-03-22 | Analog Devices, Inc. | High voltage tolerant supply clamp |
US9634482B2 (en) | 2014-07-18 | 2017-04-25 | Analog Devices, Inc. | Apparatus and methods for transient overstress protection with active feedback |
US10199369B2 (en) | 2016-03-04 | 2019-02-05 | Analog Devices, Inc. | Apparatus and methods for actively-controlled transient overstress protection with false condition shutdown |
US10177566B2 (en) | 2016-06-21 | 2019-01-08 | Analog Devices, Inc. | Apparatus and methods for actively-controlled trigger and latch release thyristor |
US10734806B2 (en) | 2016-07-21 | 2020-08-04 | Analog Devices, Inc. | High voltage clamps with transient activation and activation release control |
TWI615965B (zh) | 2016-11-28 | 2018-02-21 | 新唐科技股份有限公司 | 半導體元件 |
US10861845B2 (en) | 2016-12-06 | 2020-12-08 | Analog Devices, Inc. | Active interface resistance modulation switch |
CN108336138B (zh) * | 2017-01-19 | 2021-02-09 | 中芯国际集成电路制造(上海)有限公司 | 半导体装置及其制造方法 |
US11387648B2 (en) | 2019-01-10 | 2022-07-12 | Analog Devices International Unlimited Company | Electrical overstress protection with low leakage current for high voltage tolerant high speed interfaces |
CN112993015B (zh) * | 2021-02-26 | 2023-02-07 | 西安微电子技术研究所 | 一种基于集电区双扩散的高厄利电压横向pnp晶体管及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203265A (ja) * | 1989-12-28 | 1991-09-04 | Sony Corp | 半導体装置 |
JPH08330324A (ja) * | 1995-06-01 | 1996-12-13 | Siemens Ag | pnp形バイポーラトランジスタ |
JPH10144700A (ja) * | 1996-11-06 | 1998-05-29 | Sony Corp | 半導体装置の製造方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3282172B2 (ja) | 1994-07-29 | 2002-05-13 | ソニー株式会社 | BiMOS半導体装置の製造方法 |
US4583106A (en) * | 1983-08-04 | 1986-04-15 | International Business Machines Corporation | Fabrication methods for high performance lateral bipolar transistors |
EP0405045B1 (en) * | 1989-06-28 | 1995-12-13 | STMicroelectronics S.r.l. | A mixed technology integrated circuit comprising CMOS structures and efficient lateral bipolar transistors with a high early voltage and fabrication thereof |
JP2507632B2 (ja) * | 1989-10-18 | 1996-06-12 | 株式会社日立製作所 | 半導体装置 |
JP2625602B2 (ja) | 1991-01-18 | 1997-07-02 | インターナショナル・ビジネス・マシーンズ・コーポレイション | 集積回路デバイスの製造プロセス |
KR940003589B1 (ko) | 1991-02-25 | 1994-04-25 | 삼성전자 주식회사 | BiCMOS 소자의 제조 방법 |
US5134082A (en) | 1991-06-10 | 1992-07-28 | Motorola, Inc. | Method of fabricating a semiconductor structure having MOS and bipolar devices |
US5187109A (en) | 1991-07-19 | 1993-02-16 | International Business Machines Corporation | Lateral bipolar transistor and method of making the same |
JP2859760B2 (ja) * | 1991-07-26 | 1999-02-24 | ローム株式会社 | ラテラルトランジスタおよびその製法 |
WO1993016494A1 (en) * | 1992-01-31 | 1993-08-19 | Analog Devices, Inc. | Complementary bipolar polysilicon emitter devices |
JPH05226589A (ja) | 1992-02-17 | 1993-09-03 | Mitsubishi Electric Corp | C−BiCMOS型半導体装置およびその製造方法 |
US5387553A (en) * | 1992-03-24 | 1995-02-07 | International Business Machines Corporation | Method for forming a lateral bipolar transistor with dual collector, circular symmetry and composite structure |
US5405790A (en) | 1993-11-23 | 1995-04-11 | Motorola, Inc. | Method of forming a semiconductor structure having MOS, bipolar, and varactor devices |
JPH07235550A (ja) * | 1994-02-21 | 1995-09-05 | Toshiba Corp | 半導体装置及びその製造方法 |
US5422290A (en) * | 1994-02-28 | 1995-06-06 | National Semiconductor Corporation | Method of fabricating BiCMOS structures |
US5508551A (en) * | 1994-03-02 | 1996-04-16 | Harris Corporation | Current mirror with saturation limiting |
DE19523536A1 (de) | 1994-07-12 | 1996-01-18 | Siemens Ag | Verfahren zur Herstellung von MOS-Transistoren und Bipolartransistoren auf einer Halbleiterscheibe |
EP0763256B1 (en) | 1995-03-28 | 2001-09-26 | Koninklijke Philips Electronics N.V. | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE WITH BiCMOS CIRCUIT |
KR0158065B1 (ko) | 1995-05-29 | 1998-12-01 | 스기야마 가즈히코 | 반도체 집적회로장치 및 그 제조방법 |
JP2708027B2 (ja) | 1995-10-05 | 1998-02-04 | 日本電気株式会社 | 半導体装置およびその製造方法 |
US5943564A (en) | 1996-02-13 | 1999-08-24 | National Semiconductor Corporation | BiCMOS process for forming double-poly MOS and bipolar transistors with substantially identical device architectures |
-
1999
- 1999-08-26 US US09/383,816 patent/US6611044B2/en not_active Expired - Lifetime
- 1999-09-09 WO PCT/EP1999/006668 patent/WO2000016404A1/en active IP Right Grant
- 1999-09-09 DE DE69942333T patent/DE69942333D1/de not_active Expired - Lifetime
- 1999-09-09 JP JP2000570839A patent/JP2003524875A/ja active Pending
- 1999-09-09 EP EP99946153A patent/EP1048078B1/en not_active Expired - Lifetime
- 1999-09-09 KR KR1020007005085A patent/KR100691036B1/ko not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203265A (ja) * | 1989-12-28 | 1991-09-04 | Sony Corp | 半導体装置 |
JPH08330324A (ja) * | 1995-06-01 | 1996-12-13 | Siemens Ag | pnp形バイポーラトランジスタ |
JPH10144700A (ja) * | 1996-11-06 | 1998-05-29 | Sony Corp | 半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1048078B1 (en) | 2010-05-05 |
KR20010031975A (ko) | 2001-04-16 |
KR100691036B1 (ko) | 2007-03-09 |
US20020030244A1 (en) | 2002-03-14 |
DE69942333D1 (de) | 2010-06-17 |
WO2000016404A8 (en) | 2000-05-18 |
WO2000016404A1 (en) | 2000-03-23 |
EP1048078A1 (en) | 2000-11-02 |
US6611044B2 (en) | 2003-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6611044B2 (en) | Lateral bipolar transistor and method of making same | |
US6337262B1 (en) | Self aligned T-top gate process integration | |
US5109256A (en) | Schottky barrier diodes and Schottky barrier diode-clamped transistors and method of fabrication | |
JP2003524875A5 (ja) | ||
JPH04226022A (ja) | 半導体構成体におけるスペーサの形成 | |
US5225359A (en) | Method of fabricating Schottky barrier diodes and Schottky barrier diode-clamped transistors | |
US6461925B1 (en) | Method of manufacturing a heterojunction BiCMOS integrated circuit | |
JP3200169B2 (ja) | Mosデバイスおよびバイポーラ・デバイスを有する半導体構造の製造方法 | |
EP0418670B1 (en) | Process for fabricating high performance BiMOS circuits | |
US20060177986A1 (en) | High fT and fmax bipolar transistor and method of making same | |
US6180478B1 (en) | Fabrication process for a single polysilicon layer, bipolar junction transistor featuring reduced junction capacitance | |
US5045483A (en) | Self-aligned silicided base bipolar transistor and resistor and method of fabrication | |
JP2587444B2 (ja) | Cmos技術を用いたバイポーラ・トランジスタとその製造方法 | |
US6767797B2 (en) | Method of fabricating complementary self-aligned bipolar transistors | |
US20050006724A1 (en) | Bicmos structure, method for producing the same and bipolar transistor for a bicmos structure | |
JPH0645343A (ja) | ボロシリケイトガラススペーサを有する半導体装置及びその製造方法 | |
JP2988461B2 (ja) | Bicmos集積回路製造技術でキャパシタを製造する方法 | |
US5504364A (en) | CMOS locos isolation for self-aligned NPN BJT in a BiCMOS process | |
US5320971A (en) | Process for obtaining high barrier Schottky diode and local interconnect | |
US5298440A (en) | Method of fabrication of transistor device with increased breakdown voltage | |
US6159784A (en) | Method of producing semiconductor device | |
JP3190370B2 (ja) | 密接して離隔したコンタクトを有するBiCMOS装置及びその製造方法 | |
JP3207883B2 (ja) | バイポーラ半導体装置の製造方法 | |
JP3247106B2 (ja) | 集積回路の製法と集積回路構造 | |
JP3004026B2 (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060908 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090317 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20090617 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20090624 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20090917 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100319 |