JP2003523624A - Cvd蒸着膜の電子ビーム改質による低誘電率材料の形成 - Google Patents

Cvd蒸着膜の電子ビーム改質による低誘電率材料の形成

Info

Publication number
JP2003523624A
JP2003523624A JP2001560432A JP2001560432A JP2003523624A JP 2003523624 A JP2003523624 A JP 2003523624A JP 2001560432 A JP2001560432 A JP 2001560432A JP 2001560432 A JP2001560432 A JP 2001560432A JP 2003523624 A JP2003523624 A JP 2003523624A
Authority
JP
Japan
Prior art keywords
electron beam
layer
substrate
chemical vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001560432A
Other languages
English (en)
Japanese (ja)
Other versions
JP2003523624A5 (enExample
Inventor
エフ ロス マシュー
トンプソン ヘーク
ヤン ジングジュン
Original Assignee
エレクトロン ビジョン コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレクトロン ビジョン コーポレーション filed Critical エレクトロン ビジョン コーポレーション
Publication of JP2003523624A publication Critical patent/JP2003523624A/ja
Publication of JP2003523624A5 publication Critical patent/JP2003523624A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02131Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being halogen doped silicon oxides, e.g. FSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02351Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
JP2001560432A 2000-02-17 2001-02-02 Cvd蒸着膜の電子ビーム改質による低誘電率材料の形成 Pending JP2003523624A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/506,515 US6582777B1 (en) 2000-02-17 2000-02-17 Electron beam modification of CVD deposited low dielectric constant materials
US09/506,515 2000-02-17
PCT/US2001/003440 WO2001061737A1 (en) 2000-02-17 2001-02-02 Electron beam modification of cvd deposited films, forming low dielectric constant materials

Publications (2)

Publication Number Publication Date
JP2003523624A true JP2003523624A (ja) 2003-08-05
JP2003523624A5 JP2003523624A5 (enExample) 2008-03-21

Family

ID=24014904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001560432A Pending JP2003523624A (ja) 2000-02-17 2001-02-02 Cvd蒸着膜の電子ビーム改質による低誘電率材料の形成

Country Status (5)

Country Link
US (3) US6582777B1 (enExample)
EP (1) EP1256125A1 (enExample)
JP (1) JP2003523624A (enExample)
KR (1) KR20020075412A (enExample)
WO (1) WO2001061737A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274052A (ja) * 2003-03-04 2004-09-30 Air Products & Chemicals Inc Uv照射による高密度及び多孔質有機ケイ酸塩材料の機械的強化
JP2005064516A (ja) * 2003-08-14 2005-03-10 Asm Japan Kk 低誘電率を有するシリコン系絶縁膜の形成方法及び装置
JP2006056741A (ja) * 2004-08-19 2006-03-02 Sumitomo Electric Ind Ltd 水素化炭素膜の改質方法および水素化炭素膜
WO2009153857A1 (ja) * 2008-06-17 2009-12-23 富士通株式会社 半導体装置及びその製造方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303523B2 (en) * 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6660656B2 (en) * 1998-02-11 2003-12-09 Applied Materials Inc. Plasma processes for depositing low dielectric constant films
US6902771B2 (en) * 2000-02-01 2005-06-07 Jsr Corporation Process for producing silica-based film, silica-based film, insulating film, and semiconductor device
US6582777B1 (en) * 2000-02-17 2003-06-24 Applied Materials Inc. Electron beam modification of CVD deposited low dielectric constant materials
CN1279589C (zh) * 2001-01-19 2006-10-11 东京毅力科创株式会社 基板的处理方法和基板的处理装置
US7026053B2 (en) * 2001-01-29 2006-04-11 Jsr Corporation Process for producing silica-based film, silica-based film, insulating film, and semiconductor device
US7095460B2 (en) 2001-02-26 2006-08-22 Samsung Electronics Co., Ltd. Thin film transistor array substrate using low dielectric insulating layer and method of fabricating the same
US7091137B2 (en) * 2001-12-14 2006-08-15 Applied Materials Bi-layer approach for a hermetic low dielectric constant layer for barrier applications
US6890850B2 (en) * 2001-12-14 2005-05-10 Applied Materials, Inc. Method of depositing dielectric materials in damascene applications
US6838393B2 (en) * 2001-12-14 2005-01-04 Applied Materials, Inc. Method for producing semiconductor including forming a layer containing at least silicon carbide and forming a second layer containing at least silicon oxygen carbide
US20030211244A1 (en) * 2002-04-11 2003-11-13 Applied Materials, Inc. Reacting an organosilicon compound with an oxidizing gas to form an ultra low k dielectric
US6815373B2 (en) * 2002-04-16 2004-11-09 Applied Materials Inc. Use of cyclic siloxanes for hardness improvement of low k dielectric films
EP1504138A2 (en) * 2002-05-08 2005-02-09 Applied Materials, Inc. Method for using low dielectric constant film by electron beam
US7060330B2 (en) * 2002-05-08 2006-06-13 Applied Materials, Inc. Method for forming ultra low k films using electron beam
US6936551B2 (en) * 2002-05-08 2005-08-30 Applied Materials Inc. Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
US7056560B2 (en) * 2002-05-08 2006-06-06 Applies Materials Inc. Ultra low dielectric materials based on hybrid system of linear silicon precursor and organic porogen by plasma-enhanced chemical vapor deposition (PECVD)
US20040266123A1 (en) * 2002-05-08 2004-12-30 Applied Materials, Inc. Electron beam treatment of SixNy films
US20040101632A1 (en) * 2002-11-22 2004-05-27 Applied Materials, Inc. Method for curing low dielectric constant film by electron beam
US7749563B2 (en) * 2002-10-07 2010-07-06 Applied Materials, Inc. Two-layer film for next generation damascene barrier application with good oxidation resistance
US6790788B2 (en) * 2003-01-13 2004-09-14 Applied Materials Inc. Method of improving stability in low k barrier layers
US6914014B2 (en) * 2003-01-13 2005-07-05 Applied Materials, Inc. Method for curing low dielectric constant film using direct current bias
US6897163B2 (en) * 2003-01-31 2005-05-24 Applied Materials, Inc. Method for depositing a low dielectric constant film
US7011890B2 (en) * 2003-03-03 2006-03-14 Applied Materials Inc. Modulated/composited CVD low-k films with improved mechanical and electrical properties for nanoelectronic devices
US7098149B2 (en) * 2003-03-04 2006-08-29 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
US6913992B2 (en) 2003-03-07 2005-07-05 Applied Materials, Inc. Method of modifying interlayer adhesion
US7288292B2 (en) * 2003-03-18 2007-10-30 International Business Machines Corporation Ultra low k (ULK) SiCOH film and method
JP4372442B2 (ja) * 2003-03-28 2009-11-25 東京エレクトロン株式会社 電子ビーム処理方法及び電子ビーム処理装置
US7091126B2 (en) * 2003-04-24 2006-08-15 Taiwan Semiconductor Manufacturing Company Method for copper surface smoothing
US20040253378A1 (en) * 2003-06-12 2004-12-16 Applied Materials, Inc. Stress reduction of SIOC low k film by addition of alkylenes to OMCTS based processes
US20050037153A1 (en) * 2003-08-14 2005-02-17 Applied Materials, Inc. Stress reduction of sioc low k films
US7030041B2 (en) 2004-03-15 2006-04-18 Applied Materials Inc. Adhesion improvement for low k dielectrics
US7060638B2 (en) * 2004-03-23 2006-06-13 Applied Materials Method of forming low dielectric constant porous films
US20050214457A1 (en) * 2004-03-29 2005-09-29 Applied Materials, Inc. Deposition of low dielectric constant films by N2O addition
US7611996B2 (en) * 2004-03-31 2009-11-03 Applied Materials, Inc. Multi-stage curing of low K nano-porous films
US20050227502A1 (en) * 2004-04-12 2005-10-13 Applied Materials, Inc. Method for forming an ultra low dielectric film by forming an organosilicon matrix and large porogens as a template for increased porosity
US20050233555A1 (en) * 2004-04-19 2005-10-20 Nagarajan Rajagopalan Adhesion improvement for low k dielectrics to conductive materials
US7229911B2 (en) * 2004-04-19 2007-06-12 Applied Materials, Inc. Adhesion improvement for low k dielectrics to conductive materials
US7018941B2 (en) 2004-04-21 2006-03-28 Applied Materials, Inc. Post treatment of low k dielectric films
US20050277302A1 (en) * 2004-05-28 2005-12-15 Nguyen Son V Advanced low dielectric constant barrier layers
US7229041B2 (en) * 2004-06-30 2007-06-12 Ohio Central Steel Company Lifting lid crusher
US7288205B2 (en) 2004-07-09 2007-10-30 Applied Materials, Inc. Hermetic low dielectric constant layer for barrier applications
US7422776B2 (en) * 2004-08-24 2008-09-09 Applied Materials, Inc. Low temperature process to produce low-K dielectrics with low stress by plasma-enhanced chemical vapor deposition (PECVD)
US20060105106A1 (en) * 2004-11-16 2006-05-18 Applied Materials, Inc. Tensile and compressive stressed materials for semiconductors
CN1787186A (zh) * 2004-12-09 2006-06-14 富士通株式会社 半导体器件制造方法
US7588803B2 (en) * 2005-02-01 2009-09-15 Applied Materials, Inc. Multi step ebeam process for modifying dielectric materials
US7425350B2 (en) * 2005-04-29 2008-09-16 Asm Japan K.K. Apparatus, precursors and deposition methods for silicon-containing materials
US7247582B2 (en) * 2005-05-23 2007-07-24 Applied Materials, Inc. Deposition of tensile and compressive stressed materials
US7777197B2 (en) 2005-06-02 2010-08-17 Applied Materials, Inc. Vacuum reaction chamber with x-lamp heater
US20060289795A1 (en) * 2005-06-02 2006-12-28 Dubois Dale R Vacuum reaction chamber with x-lamp heater
JP2008546191A (ja) * 2005-06-03 2008-12-18 シーエスジー ソーラー アクチェンゲゼルシャフト 薄膜シリコン・オン・グラスの水素化装置およびその方法
US20060289966A1 (en) * 2005-06-22 2006-12-28 Dani Ashay A Silicon wafer with non-soluble protective coating
US20070134435A1 (en) * 2005-12-13 2007-06-14 Ahn Sang H Method to improve the ashing/wet etch damage resistance and integration stability of low dielectric constant films
US7601651B2 (en) * 2006-03-31 2009-10-13 Applied Materials, Inc. Method to improve the step coverage and pattern loading for dielectric films
US7780865B2 (en) * 2006-03-31 2010-08-24 Applied Materials, Inc. Method to improve the step coverage and pattern loading for dielectric films
US20070287301A1 (en) * 2006-03-31 2007-12-13 Huiwen Xu Method to minimize wet etch undercuts and provide pore sealing of extreme low k (k<2.5) dielectrics
US7851384B2 (en) * 2006-06-01 2010-12-14 Applied Materials, Inc. Method to mitigate impact of UV and E-beam exposure on semiconductor device film properties by use of a bilayer film
US7297376B1 (en) 2006-07-07 2007-11-20 Applied Materials, Inc. Method to reduce gas-phase reactions in a PECVD process with silicon and organic precursors to deposit defect-free initial layers
US8563095B2 (en) * 2010-03-15 2013-10-22 Applied Materials, Inc. Silicon nitride passivation layer for covering high aspect ratio features
US8574728B2 (en) 2011-03-15 2013-11-05 Kennametal Inc. Aluminum oxynitride coated article and method of making the same
US8765234B2 (en) 2011-07-29 2014-07-01 Applied Materials, Inc. Electron beam plasma chamber
US9138864B2 (en) 2013-01-25 2015-09-22 Kennametal Inc. Green colored refractory coatings for cutting tools
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9017809B2 (en) 2013-01-25 2015-04-28 Kennametal Inc. Coatings for cutting tools
US9427808B2 (en) 2013-08-30 2016-08-30 Kennametal Inc. Refractory coatings for cutting tools
US10217704B1 (en) 2017-01-05 2019-02-26 National Technology & Engineering Solutions Of Sandia, Llc Method for simultaneous modification of multiple semiconductor device features
US20180274100A1 (en) 2017-03-24 2018-09-27 Applied Materials, Inc. Alternating between deposition and treatment of diamond-like carbon
KR102271768B1 (ko) 2017-04-07 2021-06-30 어플라이드 머티어리얼스, 인코포레이티드 반응성 어닐링을 사용하는 갭충전
SE543442C2 (en) 2019-02-01 2021-02-16 Ionautics Ab A method and apparatus for chemical vapor deposition and a Fin field-effect transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121451A (ja) * 1997-10-02 1999-04-30 Samsung Electron Co Ltd 電子ビームを利用した半導体装置の層間絶縁膜形成方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043814A (ja) 1983-08-22 1985-03-08 Toshiba Corp 半導体結晶薄膜の製造方法
JPS6141762A (ja) 1984-08-06 1986-02-28 Res Dev Corp Of Japan 超微細パタ−ンの形成法
US4952175A (en) * 1987-08-31 1990-08-28 Amp Incorporated Key retention system
JP2650930B2 (ja) 1987-11-24 1997-09-10 株式会社日立製作所 超格子構作の素子製作方法
US5003178A (en) 1988-11-14 1991-03-26 Electron Vision Corporation Large-area uniform electron source
US5412568A (en) * 1992-12-18 1995-05-02 Halliburton Company Remote programming of a downhole tool
US5376586A (en) * 1993-05-19 1994-12-27 Fujitsu Limited Method of curing thin films of organic dielectric material
US5639325A (en) * 1995-02-01 1997-06-17 The Whitaker Corporation Process for producing a glass-coated article
US6607991B1 (en) * 1995-05-08 2003-08-19 Electron Vision Corporation Method for curing spin-on dielectric films utilizing electron beam radiation
MY113904A (en) 1995-05-08 2002-06-29 Electron Vision Corp Method for curing spin-on-glass film utilizing electron beam radiation
US6652922B1 (en) 1995-06-15 2003-11-25 Alliedsignal Inc. Electron-beam processed films for microelectronics structures
US5724308A (en) * 1995-10-10 1998-03-03 Western Atlas International, Inc. Programmable acoustic borehole logging
US5609925A (en) 1995-12-04 1997-03-11 Dow Corning Corporation Curing hydrogen silsesquioxane resin with an electron beam
JP3696319B2 (ja) * 1996-01-31 2005-09-14 シュルンベルジェ オーバーシーズ エス.エイ. 検層システム
US5773197A (en) * 1996-10-28 1998-06-30 International Business Machines Corporation Integrated circuit device and process for its manufacture
US6235353B1 (en) * 1998-02-24 2001-05-22 Alliedsignal Inc. Low dielectric constant films with high glass transition temperatures made by electron beam curing
US6114032A (en) * 1998-04-10 2000-09-05 The University Of North Texas Films for use in microelectronic devices and methods of producing same
US6182765B1 (en) * 1998-06-03 2001-02-06 Halliburton Energy Services, Inc. System and method for deploying a plurality of tools into a subterranean well
KR100618304B1 (ko) * 1998-09-25 2006-08-31 쇼꾸바이 카세이 고교 가부시키가이샤 낮은 유전상수를 지니는 실리카-포함 필름을 형성하기위한 코팅 액체 및 그의 필름으로 코팅된 기질
US6228758B1 (en) * 1998-10-14 2001-05-08 Advanced Micro Devices, Inc. Method of making dual damascene conductive interconnections and integrated circuit device comprising same
US6177143B1 (en) * 1999-01-06 2001-01-23 Allied Signal Inc Electron beam treatment of siloxane resins
US6361837B2 (en) * 1999-01-15 2002-03-26 Advanced Micro Devices, Inc. Method and system for modifying and densifying a porous film
US6273189B1 (en) * 1999-02-05 2001-08-14 Halliburton Energy Services, Inc. Downhole tractor
US6172810B1 (en) * 1999-02-26 2001-01-09 3M Innovative Properties Company Retroreflective articles having polymer multilayer reflective coatings
US6207555B1 (en) * 1999-03-17 2001-03-27 Electron Vision Corporation Electron beam process during dual damascene processing
US6204201B1 (en) * 1999-06-11 2001-03-20 Electron Vision Corporation Method of processing films prior to chemical vapor deposition using electron beam processing
US6271146B1 (en) * 1999-09-30 2001-08-07 Electron Vision Corporation Electron beam treatment of fluorinated silicate glass
US6440550B1 (en) * 1999-10-18 2002-08-27 Honeywell International Inc. Deposition of fluorosilsesquioxane films
US6426127B1 (en) * 1999-12-28 2002-07-30 Electron Vision Corporation Electron beam modification of perhydrosilazane spin-on glass
US6902771B2 (en) * 2000-02-01 2005-06-07 Jsr Corporation Process for producing silica-based film, silica-based film, insulating film, and semiconductor device
US6582777B1 (en) * 2000-02-17 2003-06-24 Applied Materials Inc. Electron beam modification of CVD deposited low dielectric constant materials
US6787198B2 (en) * 2000-07-28 2004-09-07 Ekc Technology, Inc. Hydrothermal treatment of nanostructured films
US7384471B2 (en) * 2002-04-17 2008-06-10 Air Products And Chemicals, Inc. Porogens, porogenated precursors and methods for using the same to provide porous organosilica glass films with low dielectric constants
US7404990B2 (en) * 2002-11-14 2008-07-29 Air Products And Chemicals, Inc. Non-thermal process for forming porous low dielectric constant films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121451A (ja) * 1997-10-02 1999-04-30 Samsung Electron Co Ltd 電子ビームを利用した半導体装置の層間絶縁膜形成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274052A (ja) * 2003-03-04 2004-09-30 Air Products & Chemicals Inc Uv照射による高密度及び多孔質有機ケイ酸塩材料の機械的強化
JP2005064516A (ja) * 2003-08-14 2005-03-10 Asm Japan Kk 低誘電率を有するシリコン系絶縁膜の形成方法及び装置
JP2006056741A (ja) * 2004-08-19 2006-03-02 Sumitomo Electric Ind Ltd 水素化炭素膜の改質方法および水素化炭素膜
WO2009153857A1 (ja) * 2008-06-17 2009-12-23 富士通株式会社 半導体装置及びその製造方法
JPWO2009153857A1 (ja) * 2008-06-17 2011-11-24 富士通株式会社 半導体装置及びその製造方法
US8461041B2 (en) 2008-06-17 2013-06-11 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
KR20020075412A (ko) 2002-10-04
WO2001061737A1 (en) 2001-08-23
US20030134039A1 (en) 2003-07-17
US6582777B1 (en) 2003-06-24
US20080095951A1 (en) 2008-04-24
EP1256125A1 (en) 2002-11-13
US7309514B2 (en) 2007-12-18

Similar Documents

Publication Publication Date Title
US6582777B1 (en) Electron beam modification of CVD deposited low dielectric constant materials
US6548899B2 (en) Method of processing films prior to chemical vapor deposition using electron beam processing
US7094713B1 (en) Methods for improving the cracking resistance of low-k dielectric materials
US7312524B2 (en) Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made
US6271146B1 (en) Electron beam treatment of fluorinated silicate glass
US6177143B1 (en) Electron beam treatment of siloxane resins
US7132374B2 (en) Method for depositing porous films
US6756085B2 (en) Ultraviolet curing processes for advanced low-k materials
US7381662B1 (en) Methods for improving the cracking resistance of low-k dielectric materials
US20050272220A1 (en) Ultraviolet curing process for spin-on dielectric materials used in pre-metal and/or shallow trench isolation applications
WO2007027165A1 (en) Ultraviolet curing process for spin-on dielectric materials used in pre-metal and/or shallow trench isolation applications
US20080286494A1 (en) Ultralow dielectric constant layer with controlled biaxial stress
KR20100069603A (ko) Pecvd 유동성 유전체 갭 충전
JP2003503849A (ja) 基材上にフィルムを形成する方法及び装置
KR102141670B1 (ko) 저온 경화 모듈러스 강화
CN101053070B (zh) 由铝硅酸盐前体形成的低k值介电层
JP3698885B2 (ja) 強誘電体膜を用いた装置の製造方法
EP1118110A1 (en) Process for optimizing mechanical strength of nanoporous silica
US20040266216A1 (en) Method for improving uniformity in deposited low k dielectric material
Kiyota et al. Characteristics of Shallow Boron‐Doped Layers in Si by Rapid Vapor‐Phase Direct Doping
US20030087534A1 (en) Surface modification for barrier to ionic penetration
Namatsu et al. The Effect of Plasma Cure Temperature on Spin‐On Glass
US20250273456A1 (en) Additives to enhance the properties of dielectric films
JPH07176613A (ja) 半導体装置の製造方法
KR20080058288A (ko) 프리-메탈 및/또는 얕은 트렌치 절연 애플리케이션에서사용되는 스핀-온 유전체 재료에 대한 자외선 경화 공정

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110307