JP2003123749A - 非水系電解質二次電池用正極活物質 - Google Patents

非水系電解質二次電池用正極活物質

Info

Publication number
JP2003123749A
JP2003123749A JP2001310165A JP2001310165A JP2003123749A JP 2003123749 A JP2003123749 A JP 2003123749A JP 2001310165 A JP2001310165 A JP 2001310165A JP 2001310165 A JP2001310165 A JP 2001310165A JP 2003123749 A JP2003123749 A JP 2003123749A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001310165A
Other languages
English (en)
Other versions
JP3876673B2 (ja
Inventor
Riyuuichi Kuzuo
竜一 葛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001310165A priority Critical patent/JP3876673B2/ja
Publication of JP2003123749A publication Critical patent/JP2003123749A/ja
Application granted granted Critical
Publication of JP3876673B2 publication Critical patent/JP3876673B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

(57)【要約】 【課題】 初期容量をほとんど犠牲にすることなく、熱
安定性の高い非水系電解質二次電池用正極活物質とその
製造方法を提供する。 【解決手段】 主成分が、LiNi1-xx2(但し、
MはCo、Mn、Fe、Cu、Zn、Mg、Ti、Al
およびGaからなる群より選ばれた少なくとも1種以上
の金属元素で、0.2>x≧0)で表されるLi−Ni
複合酸化物で、さらに酸素吸収化合物を含む。ニッケル
と元素Mの合計に対する酸素吸収化合物のモル比が2%
以下である。前記酸素吸収化合物が、バナジウム化合
物,インジウム化合物、錫化合物およびタンタル化合物
から選ばれた1種以上である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、非水系電解質二次
電池用正極活物質に関し、特に、正極材料として用いた
ときに、電池の初期容量を損なうことなく、熱安定性を
向上させることが可能となる非水系二次電池用正極活物
質に関する。
【0002】
【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及にともない、高いエネルギー密度を有
する小型、軽量な二次電池の開発が強く望まれている。
このようなものとしてリチウム、リチウム合金、金属酸
化物あるいはカーボンを負極として用いるリチウムイオ
ン二次電池があり、研究開発が盛んに行われている。
【0003】リチウム複合酸化物、特に、合成が比較的
容易なリチウムコバルト複合酸化物(LiCoO2)を
正極材料に用いたリチウムイオン二次電池は、4V級の
高い電圧が得られるため、高エネルギー密度を有する電
池として期待され、実用化が進んでいる。リチウムコバ
ルト複合酸化物を用いた電池では、優れた初期容量特性
やサイクル特性を得るための開発が、これまで数多く行
われてきており、すでにさまざまな成果が得られてい
る。
【0004】しかし、リチウムコバルト複合酸化物は、
原料に希産で高価なコバルト化合物を正極活物質に用い
るため、正極活物質のコストアップ、さらには電池のコ
ストアップの原因となり、正極活物質の改良が望まれて
いる。正極活物質のコストを下げ、より安価なリチウム
イオン二次電池の製造が可能となることは、現在普及し
ている携帯機器の軽量、小型化において、工業的に大き
な意義を持つ。
【0005】リチウムイオン二次電池用正極活物質の新
たな材料としては、コバルトよりも安価なマンガンを用
いたリチウムマンガン複合酸化物(LiMn24)や、
ニッケルを用いたリチウムニッケル複合酸化物(LiN
iO2)を挙げることができる。
【0006】リチウムマンガン複合酸化物は、原料が安
価である上、正極材料として熱安定性に優れるため、リ
チウムコバルト複合酸化物の有力な代替材料であるとい
えるが、理論容量がリチウムコバルト複合酸化物のおよ
そ半分程度しかなく、年々高まるリチウムイオン二次電
池の高容量化の要求に応えるのが難しいという欠点を持
つ。
【0007】一方、リチウムニッケル複合酸化物は、リ
チウムコバルト複合酸化物よりも低い電気化学ポテンシ
ャルを示すため、より高容量が期待でき、コバルト系と
同様に高い電池電圧を示すことから、開発が盛んに行わ
れている。しかし、純粋にニッケルのみで合成したリチ
ウムニッケル複合酸化物を正極活物質としてリチウムイ
オン二次電池を作製した場合、コバルト系に比べサイク
ル特性が劣り、また、高温環境下での使用や保存で、比
較的電池性能を損ないやすい。
【0008】このような欠点を解決するためにニッケル
の一部を他の金属で置換したリチウムニッケル複合酸化
物、例えば特開平8−213015号では、リチウムイ
オン二次電池の自己放電特性やサイクル特性を向上させ
ることを目的として、LixNiaCobc2(0.8
≦x≦1.2、0.01≦a≦0.99、0.01≦b
≦0.99、0.01≦c≦0.3、0.8≦a+b+
c≦1.2、MはAl、V、Mn、Fe、Cu及びZn
から選ばれる少なくとも1種の元素)で表されるリチウ
ムニッケル複合酸化物が提案されている。
【0009】また、特開平8−45509号では、高温
環境下での保存や使用に際して良好な電池性能を維持で
きる正極活物質として、LiwNixCoyz2(0.
05≦w≦1.10、0.5≦x≦0.995、0.0
05≦z≦0.20、x+y+z=1)で表されるリチ
ウムニッケル複合酸化物が提案されている。
【0010】さらに、特開平8−321299号では、
サイクル特性や耐過充電性を向上させることを目的とし
て、ニッケルの5at%以下をガリウムで置換したリチ
ウム含有複合酸化物が提案されている。
【0011】しかしながら、これらのような従来の製造
方法によって得られたリチウムニッケル複合酸化物で
は、リチウムコバルト複合酸化物に比べて充電容量、放
電容量がともに高く、サイクル特性も改善されている
が、満充電状態で高温環境下に放置しておくと、リチウ
ムコバルト複合酸化物に比べて低い温度から酸素放出を
伴う分解が始まり、その結果、電池の内部圧力が上昇し
て、最悪の場合、電池が爆発する危険を有している。
【0012】このような問題を解決するために、例えば
特開平5−242891号では、リチウムイオン二次電
池の正極材料の熱的安定性を向上させることを目的とし
て、LiabNicCode(MはAl、Mn、Sn、
In、Fe、V、Cu、Mg、Ti、Zn、Moからな
る群から選択される少なくとも一種の金属であり、かつ
0<a<1.3、0.02≦b≦0.5、0.02≦d
/c+d≦0.9、1.8<e<2.2、b+c+d=
1である)で表されるリチウム含有複合酸化物が提案さ
れている。しかし、熱安定性の向上に有効な量のM元素
でニッケルを置換すると、電池性能として最も重要であ
る初期容量が大きく低下するという問題がある。
【0013】このように、これまで報告されてきたよう
な、熱安定性の向上のために、ニッケルの一部を別の元
素で置換したリチウムニッケル複合酸化物を正極活物質
とした非水系電解質二次電池は、確かに熱安定性の向上
の効果があるものの、置換した分だけ初期容量が低下す
るという問題点を有していた。
【0014】
【発明が解決しようとする課題】本発明は、このような
問題点に着目してなされたもので、本発明の課題は、初
期容量をほとんど犠牲にすることなく、熱安定性の高い
非水系電解質二次電池用正極活物質を提供することにあ
る。
【0015】
【課題を解決するための手段】リチウムニッケル複合酸
化物を正極活物質として考えた場合、リチウムの脱離挿
入によって充放電が行われる。200mAh/g程度の
満充電状態は、LiNiO2から約7割のリチウムが脱
離した状態である。すなわち、Li0.3NiO2となって
いるわけであるが、このとき、ニッケルはその一部が3
価および4価となっている。4価のニッケルは熱的に非
常に不安定で、高温にすると容易に酸素を放出して2価
(NiO)となりやすい。
【0016】なお、正極活物質の熱的挙動は、充電状態
にある正極材料を電解液の存在下で示差走査熱量測定を
行い、その発熱量を見ることで評価できる。また、質量
分析法を用いて、発生するガス種を調べることによっ
て、熱的挙動をより具体的に考察することが可能とな
る。
【0017】リチウムニッケル複合酸化物が正極材料と
して熱安定性に劣る理由として、酸素を放出して分解す
る分解開始温度が、リチウムコバルト複合酸化物と比較
して低く、このとき放出された酸素が電解液と反応して
燃焼反応が起こることや、ニッケル自体が触媒となっ
て、電解液の分解反応を促進することなどが原因と考え
られている。
【0018】従って、リチウムニッケル複合酸化物の正
極材料としての熱安定性を改善するには、リチウムニッ
ケル複合酸化物を組成面から改良して、分解開始温度を
高くする方法が考えられる。
【0019】すなわち、前述のように4価のニッケルが
熱的に不安定であることに原因があるので、ニッケルの
価数を下げるような元素をリチウムニッケル複合酸化物
に固溶させることによって、分解開始温度を高くするこ
とができる。または、価数変化の起こりにくい安定な元
素を固溶させる方法でも、分解開始温度を高くすること
ができる。いずれの方法でも、酸素放出を伴う分解開始
温度を高温側へシフトさせることが可能で、結果とし
て、リチウムニッケル複合酸化物の正極材料としての熱
安定性が増大する。
【0020】しかしながら、これらの方法では、結果的
にリチウムニッケル複合酸化物からある程度以上にリチ
ウムを引き抜くことができないのであり、リチウムの脱
離が不充分な結果、必然的に容量を犠牲にする。すなわ
ち、リチウムニッケル複合酸化物の正極材料としての熱
安定性の増大は、一定電位までに引き抜けるリチウム量
の低減をともなう。
【0021】正極活物質自体の熱安定性だけに目を向け
るのではなく、電池の熱安定性という観点で見た場合、
正極活物質の分解開始温度を高くすること以外に、改善
を求めることができる。
【0022】リチウムニッケル複合酸化物が熱安定性に
劣るのは、前述したように分解によって放出される酸素
が電解液と反応する(燃焼する)ためであるから、たと
え分解開始温度が同じであっても、放出される酸素が少
なければ、電解液との反応はマイルドになり、熱安定性
が改善されたといえる。
【0023】本発明者らは、このような観点からリチウ
ムニッケル複合酸化物を正極材料に使用した電池の熱安
定性に関する種々研究を進めた結果、ニッケルの一部を
他の元素で置換するのではなく、酸素を吸収する能力を
持つ化合物(以下、酸素吸収化合物という)を添加する
ことによって、熱安定性に優れた非水系電解質二次電池
が得られることを見いだし、本発明を完成するに至っ
た。
【0024】本発明の非水系電解質二次電池用正極活物
質の第1の態様としては、主成分が、LiNi1-xx
2(但し、MはCo、Mn、Fe、Cu、Zn、Mg、
Ti、AlおよびGaからなる群より選ばれた少なくと
も1種以上の金属元素で、0.2>x≧0)で表される
Li−Ni複合酸化物で、さらに酸素吸収化合物を含
む。
【0025】酸素吸収化合物の添加に際しては、酸素吸
収能力に応じて添加量を決定する必要があり、酸素吸収
能力が十分大きければ、添加量は十分少なくすることが
可能である。必要以上に添加量を多くしても、その質量
分だけ質量当たりの初期容量が減少するだけで、電池の
熱安定性に対する効果はほとんど変化しない。
【0026】本発明者らが研究を深めた結果、酸素吸収
化合物は、ニッケルと元素Mの合計に対するモル比で2
%を超えると、質量当たりの初期容量の低下が大きくな
るため、望ましくないことを見いだした。
【0027】すなわち、本発明の非水系電解質二次電池
用正極活物質の第2の態様としては、ニッケルと元素M
の合計に対する酸素吸収化合物のモル比が2%以下であ
る。
【0028】さらに、本発明の非水系電解質二次電池用
正極活物質の第3の態様としては、該酸素吸収化合物
が、バナジウム化合物,インジウム化合物、錫化合物お
よびタンタル化合物から選ばれた1種以上である。ただ
し、配合時と、正極活物質とでは、その存在形態が異な
りうる。
【0029】本発明による正極活物質には、熱安定性に
劣るLiNiO2を用いても、効果があることはもちろ
んであるが、サイクル特性を改善するために、Niの一
部をCoなどの別元素で置換したり、導電率改善のため
にNiの一部をMgなどの別元素で置換することも可能
である。また、Niの一部をMn、Ti、Al、Gaな
どの別元素で置換することによって、正極活物質自身に
熱安定性効果を持たせて、さらに熱安定性に優れた正極
活物質を得ることができる。これらの場合、置換率はモ
ル比で0.2未満である。
【0030】
【発明の実施の形態】本発明の正極活物質は、酸素を吸
収する能力を持った化合物(酸素吸収化合物)を含有し
たリチウムニッケル複合酸化物であり、リチウムイオン
二次電池の正極活物質として用いる。これにより、電池
の初期容量をほとんど低下させることなく、熱安定性を
向上させることができる。
【0031】以下、本発明の一実施例を、好適な図面に
基づいて詳述する。
【0032】
【実施例】(実施例1)市販の水酸化リチウム一水和物
と、ニッケルとコバルトとアルミニウムとのモル比が8
3:14:3で固溶した複合水酸化物を、リチウムとニ
ッケル+コバルト+アルミニウムとのモル比が1.0
3:1.00となるようにそれぞれ秤量し、十分に混合
した。この混合粉末を、酸素流量3000cm3/mi
nの気流中で、350℃で2時間仮焼した後、750℃
で20時間焼成し、室温まで炉冷してLiNi0.83Co
0.14Al0.032を得た。
【0033】酸素吸収化合物としてバナジウム化合物を
用いた。すなわち、市販の水酸化リチウム一水和物を純
水に溶解し、リチウムとバナジウムとのモル比が3:1
になるように五酸化バナジウムを投入し、溶解した。こ
の水溶液に、バナジウムとニッケル+コバルト+アルミ
ニウムとのモル比が0.010:1.00となるように
前記LiNi0.83Co0.14Al0.032を投入し、加熱
攪拌して、乾燥した。得られた乾燥物を、酸素流量30
00cm3/minの気流中で、750℃で20時間焼
成し、室温まで炉冷して、バナジウム含有リチウムニッ
ケル複合酸化物からなる正極活物質を得た。
【0034】得られた正極活物質を、CuのKα線を用
いた粉末X線回折(理学電機社製、型式RAD−γV
B)で分析したところ、六方晶に帰属されるリチウムニ
ッケル複合酸化物の他に、酸素吸収材としてのLi3
4のピークが確認できた。X線回折パターンから計算
したリチウムニッケル複合酸化物の格子定数は、バナジ
ウムを添加する前のリチウムニッケル複合酸化物の格子
定数とほぼ一致しており、バナジウムはリチウムニッケ
ル複合酸化物には固溶していないと推定された。当該正
極活物質の組成を分析したところ、バナジウムとニッケ
ル+コバルト+アルミニウムとのモル比は0.01:
1.00であり、バナジウムは固溶していなかったこと
と考え合わせると、リチウムニッケル複合酸化物に対す
る酸素吸収材としてのLi3VO4のモル比は1%であっ
たといえる。
【0035】得られた正極活物質を用いて以下のように
電池を作製し、充放電容量を測定した。
【0036】前記正極活物質の粉末87質量%に、アセ
チレンブラック5質量%およびPVDF(ポリ沸化ビニ
リデン)8質量%を混合し、NMP(n−メチルピロリ
ドン)を加えペースト化した。これを20μm厚のアル
ミニウム箔に、乾燥後の活物質質量が0.025g/c
2になるように塗布し、120℃で真空乾燥を行い、
1cmφの円板状に打ち抜いて正極とした。負極として
リチウム金属を、電解液には1MのLiClO4を支持
塩とするエチレンカーボネート(EC)とジエチルカー
ボネート(DEC)の等量混合溶液を用いた。ポリエチ
レンからなるセパレータに電解液を染み込ませ、露点が
−80℃に管理されたAr雰囲気のグローブボックス中
で、図1に示したような2032型のコイン電池を作製
した。作製した電池は24時間程度放置し、OCVが安
定した後、正極に対する電流密度を0.5mA/cm2
とし、カットオフ電圧4.3−3.0Vで充放電試験を
行った。得られた1サイクル目の質量あたりの放電容量
(初期容量)を表1に示す。
【0037】また、同様な方法でもう一つ電池を作製
し、正極に対する質量当たりの電流密度を6mA/gと
して196mAh/gまで充電した。充電終了後、この
電池を分解して、取り出した正極材料2.4mgに対し
て、電解液として1MのLiClO4を支持塩とするエ
チレンカーボネート(EC)とジエチルカーボネート
(DEC)の等量混合溶液2.0mgを加えて、アルミ
ニウム製の密閉容器に封入し、示差走査熱量測定を行っ
た。また、取り出した正極材料のTG−MS測定(マッ
クサイエンス社製、型式IG−DTA 2020s)を
実施し、加熱にともなう発生ガスを調べた。
【0038】測定結果を、表1、図2および図3に示
す。
【0039】(実施例2)ニッケルとコバルトとアルミ
ニウムとのモル比が83:14:3で固溶した複合水酸
化物を、五酸化バナジウムを溶解した30%アンモニア
水溶液に、バナジウムとニッケル+コバルト+アルミニ
ウムとのモル比が0.01:1.00となるように投入
し、加熱攪拌して、乾燥した。得られた乾燥物と市販の
水酸化リチウム一水和物とを、リチウムとニッケル+コ
バルト+アルミニウムとのモル比が1.060:1.0
00となるように秤量し、十分に混合した。この混合粉
末を、酸素流量3000cm3/minの気流中で、3
50℃で2時間仮焼した後、750℃で20時間焼成
し、室温まで炉冷して、バナジウムが添加されたリチウ
ムニッケル複合酸化物からなる正極活物質を得た。
【0040】得られた正極活物質を、CuのKα線を用
いた粉末X線回折で分析したところ、六方晶に帰属され
るリチウムニッケル複合酸化物の他に、酸素吸収材とし
てのLi3VO4のピークが確認できた。X線回折パター
ンから計算したリチウムニッケル複合酸化物の格子定数
は、バナジウムを添加する前のリチウムニッケル複合酸
化物の格子定数とほぼ一致しており、バナジウムはリチ
ウムニッケル複合酸化物には固溶していないと推定され
た。当該正極活物質の組成を分析したところ、バナジウ
ムとニッケル+コバルト+アルミニウムとのモル比は
0.01:1.00であり、バナジウムは固溶していな
かったことと考え合わせると、リチウムニッケル複合酸
化物に対する酸素吸収材としてのLi3VO4のモル比は
1%であったといえる。
【0041】初期容量の測定、示差走査熱量測定、およ
びTG−MS測定を、実施例1と同様に行った。測定結
果を、表1、図2および図4に示す。
【0042】(実施例3)バナジウムとニッケル+コバ
ルト+アルミニウムとのモル比が0.02:1.00と
なるように、リチウムとニッケル+コバルト+アルミニ
ウムとのモル比が1.090:1.000となるように
した以外は、実施例2と同様にして正極活物質を得た。
【0043】得られた正極活物質を、CuのKα線を用
いた粉末X線回折で分析したところ、六方晶に帰属され
るリチウムニッケル複合酸化物の他に、酸素吸収材とし
てのLi3VO4のピークが確認できた。X線回折パター
ンから計算したリチウムニッケル複合酸化物の格子定数
は、バナジウムを添加する前のリチウムニッケル複合酸
化物の格子定数とほぼ一致しており、バナジウムはリチ
ウムニッケル複合酸化物には固溶していないと推定され
た。当該正極活物質の組成を分析したところ、バナジウ
ムとニッケル+コバルト+アルミニウムとのモル比は
0.02:1.00であり、バナジウムは固溶していな
かったことと考え合わせると、リチウムニッケル複合酸
化物に対する酸素吸収材としてのLi3VO4のモル比は
2%であったといえる。
【0044】初期容量の測定、示差走査熱量測定、およ
びTG−MS測定を、実施例1と同様に行った。測定結
果を、表1、図2および図5に示す。
【0045】(実施例4)市販の水酸化リチウム一水和
物を純水に溶解し、リチウムとインジウムとのモル比が
1:1になるように三酸化二インジウムを投入し、攪拌
した。この水溶液に、インジウムとニッケル+コバルト
+アルミニウムとのモル比が0.010:1.00とな
るように、実施例1と同様にして得たLiNi0.83Co
0.14Al0. 032を投入し、加熱攪拌して、乾燥した。
得られた乾燥物を、酸素流量3000cm3/minの
気流中で、750℃で20時間焼成し、室温まで炉冷し
て、インジウム含有リチウムニッケル複合酸化物からな
る正極活物質を得た。
【0046】得られた正極活物質を、CuのKα線を用
いた粉末X線回折で分析したところ、六方晶に帰属され
るリチウムニッケル複合酸化物の他に、酸素吸収材とし
てのLiInO2のピークが確認できた。X線回折パタ
ーンから計算したリチウムニッケル複合酸化物の格子定
数は、インジウムを添加する前のリチウムニッケル複合
酸化物の格子定数とほぼ一致しており、インジウムはリ
チウムニッケル複合酸化物には固溶していないと推定さ
れた。当該正極活物質の組成を分析したところ、インジ
ウムとニッケル+コバルト+アルミニウムとのモル比は
0.01:1.00であり、インジウムは固溶していな
かったことと考え合わせると、リチウムニッケル複合酸
化物に対する酸素吸収材としてのLiInO2のモル比
は1%であったといえる。
【0047】初期容量の測定、示差走査熱量測定、およ
びTG−MS測定を、実施例1と同様に行った。測定結
果を、表1、図2および図6に示す。
【0048】(実施例5)市販の水酸化リチウム一水和
物を純水に溶解し、リチウムとインジウムとのモル比が
1:1になるように三酸化二インジウムを投入し、攪拌
した。この水溶液に、インジウムとニッケル+コバルト
+アルミニウムとのモル比が0.020:1.00とな
るように、実施例1と同様してに得たLiNi0.83Co
0.14Al0. 032を投入し、加熱攪拌して、乾燥した。
得られた乾燥物を、酸素流量3000cm3/minの
気流中で、750℃で20時間焼成し、室温まで炉冷し
て、インジウム含有リチウムニッケル複合酸化物からな
る正極活物質を得た。
【0049】得られた正極活物質を、CuのKα線を用
いた粉末X線回折で分析したところ、六方晶に帰属され
るリチウムニッケル複合酸化物の他に、酸素吸収材とし
てのLiInO2のピークが確認できた。X線回折パタ
ーンから計算したリチウムニッケル複合酸化物の格子定
数は、インジウムを添加する前のリチウムニッケル複合
酸化物の格子定数とほぼ一致しており、インジウムはリ
チウムニッケル複合酸化物には固溶していないと推定さ
れた。当該正極活物質の組成を分析したところ、インジ
ウムとニッケル+コバルト+アルミニウムとのモル比は
0.02:1.00であり、インジウムは固溶していな
かったことと考え合わせると、リチウムニッケル複合酸
化物に対する酸素吸収材としてのLiInO2のモル比
は2%であったといえる。
【0050】初期容量の測定、示差走査熱量測定、およ
びTG−MS測定を、実施例1と同様に行った。測定結
果を、表1、図2および図7に示す。
【0051】(比較例1)市販の水酸化リチウム一水和
物と、ニッケルとコバルトとアルミニウムとのモル比が
83:14:3で固溶した複合水酸化物とを、リチウム
とニッケル+コバルト+アルミニウムとのモル比が1.
03:1.00となるようにそれぞれ秤量し、十分に混
合した。この混合粉末を、酸素流量3000cm3/m
inの気流中で、350℃で2時間仮焼した後、750
℃で20時間焼成し、室温まで炉冷してリチウムニッケ
ル複合酸化物からなる正極活物質を得た。
【0052】得られた正極活物質を、CuのKα線を用
いた粉末X線回折で分析したところ、六方晶に帰属され
るリチウムニッケル複合酸化物のみが確認できた。
【0053】当該正極活物質の組成を分析したところ、
リチウムとニッケル+コバルト+アルミニウムとのモル
比は1.03:1.00であった。
【0054】初期容量の測定、示差走査熱量測定、およ
びTG−MS測定を、実施例1と同様に行った。測定結
果を、表1、図2および図8に示す。
【0055】(比較例2)バナジウムとニッケル+コバ
ルト+アルミニウムとのモル比が0.04:1.00と
なるように、またリチウムとニッケル+コバルト+アル
ミニウムとのモル比が1.150:1.000となるよ
うにした以外は、実施例2と同様にして正極活物質を得
た。
【0056】得られた正極活物質を、CuのKα線を用
いた粉末X線回折で分析したところ、六方晶に帰属され
るリチウムニッケル複合酸化物の他に、酸素吸収材とし
てのLi3VO4のピークが確認できた。X線回折パター
ンから計算したリチウムニッケル複合酸化物の格子定数
は、バナジウムを添加する前のリチウムニッケル複合酸
化物の格子定数とほぼ一致しており、バナジウムはリチ
ウムニッケル複合酸化物には固溶していないと推定され
た。当該正極活物質の組成を分析したところ、バナジウ
ムとニッケル+コバルト+アルミニウムとのモル比は
0.04:1.00であり、バナジウムは固溶していな
かったことと考え合わせると、リチウムニッケル複合酸
化物に対する酸素吸収材としてのLi3VO4のモル比は
4%であったといえる。
【0057】初期容量の測定を、実施例1と同様に行っ
た。測定結果を、表1に示す。
【0058】
【表1】
【0059】表1から、実施例1〜5の電池の初期容量
は、比較例1、2の電池の初期容量と比較して、酸素吸
収化合物の添加量に応じてわずかに初期容量が減少して
いるものの、2at%以下の酸素吸収化合物の添加で
は、初期容量の減少が、実用上まったく問題ない程度に
抑えられる。
【0060】また、図2に示した示差走査熱量測定によ
り、実施例1〜5の正極材料は、比較例1の正極材料に
見られるような急激な発熱が緩和され、比較的マイルド
な反応となっており、いずれも熱安定性の改善に大きな
効果があることがわかる。
【0061】図3〜図7のTG−MS測定結果を見る
と、通常、正極材料が分解すると放出される酸素が見ら
れないのは、この酸素が電解液と反応(燃焼)して二酸
化炭素に変化しているためである。正極活物質の分解に
対応する250℃以上の二酸化炭素の挙動を見てみる
と、図8に示した比較例1の正極材料では、電解液の反
応による二酸化炭素の放出が見られるが、図3〜7に示
した実施例1〜5の正極材料では、二酸化炭素の放出が
見られない。これは、正極活物質から放出される酸素が
酸素吸収化合物によって吸収されているためであり、電
解液との反応が抑えられ、結果として二酸化炭素の発生
が抑えられたと考えられる。このように、正極材料に、
酸素を吸収する化合物を共存させることによって、電解
液の燃焼反応が緩和され、熱安定性改善に効果のあるこ
とがわかる。
【0062】
【発明の効果】本発明による非水系電解質二次電池用正
極活物質を使用した電池は、高い初期容量がほとんど損
なわれずに、熱安定性が向上する。
【図面の簡単な説明】
【図1】 2032型コイン電池を示す一部破断斜視図
である。
【図2】 実施例1〜5、比較例1における示差走査熱
量測定の測定結果を示すグラフである。
【図3】 実施例1におけるTG−MS測定の測定結果
を示すグラフである。
【図4】 実施例2におけるTG−MS測定の測定結果
を示すグラフである。
【図5】 実施例3におけるTG−MS測定の測定結果
を示すグラフである。
【図6】 実施例4におけるTG−MS測定の測定結果
を示すグラフである。
【図7】 実施例5におけるTG−MS測定の測定結果
を示すグラフである。
【図8】 比較例1におけるTG−MS測定の測定結果
を示すグラフである。
【符号の説明】
1 リチウム金属負極 2 セパレータ(電解液含浸) 3 正極(評価用電極) 4 ガスケット 5 負極缶 6 正極缶
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD03 AE05 5H029 AJ03 AK03 AL12 AM03 AM05 AM07 BJ03 BJ12 CJ02 CJ08 DJ16 HJ02 HJ13 5H050 AA08 BA16 BA17 CA08 CB12 FA02 GA02 GA10 HA02 HA13

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 主成分が、LiNi1-xx2(但し、
    MはCo、Mn、Fe、Cu、Zn、Mg、Ti、Al
    およびGaからなる群より選ばれた少なくとも1種以上
    の金属元素で、0.2>x≧0)で表されるリチウムニ
    ッケル複合酸化物で、さらに酸素吸収化合物を含む粉末
    混合物を焼成して得たことを特徴とする非水系電解質二
    次電池用正極活物質。
  2. 【請求項2】 ニッケルと元素Mの合計に対する酸素吸
    収化合物のモル比が2%以下であることを特徴とする請
    求項1に記載の非水系電解質二次電池用正極活物質。
  3. 【請求項3】 前記酸素吸収化合物が、バナジウム化合
    物,インジウム化合物、錫化合物およびタンタル化合物
    から選ばれた1種以上であることを特徴とする請求項1
    または2に記載の非水系電解質二次電池用正極活物質。
  4. 【請求項4】 CuのKα線を用いた粉末X線回折によ
    る分析で、リチウムニッケル複合酸化物の他に、Liと
    V、In、Sn、Taのいずれかとの酸化物が検出され
    る請求項1〜3のいずれかに記載の非水系電解質二次電
    池用正極活物質。
JP2001310165A 2001-10-05 2001-10-05 非水系電解質二次電池用正極活物質 Expired - Fee Related JP3876673B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310165A JP3876673B2 (ja) 2001-10-05 2001-10-05 非水系電解質二次電池用正極活物質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001310165A JP3876673B2 (ja) 2001-10-05 2001-10-05 非水系電解質二次電池用正極活物質

Publications (2)

Publication Number Publication Date
JP2003123749A true JP2003123749A (ja) 2003-04-25
JP3876673B2 JP3876673B2 (ja) 2007-02-07

Family

ID=19129188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310165A Expired - Fee Related JP3876673B2 (ja) 2001-10-05 2001-10-05 非水系電解質二次電池用正極活物質

Country Status (1)

Country Link
JP (1) JP3876673B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114256A (ja) * 2004-10-12 2006-04-27 Toyota Motor Corp 二次電池用正極及びその利用
JP2008077847A (ja) * 2006-09-19 2008-04-03 Samsung Sdi Co Ltd 非水二次電池用負極材料及びそれを用いた非水二次電池
JP2010027482A (ja) * 2008-07-23 2010-02-04 Sony Corp 正極活物質の製造方法および正極活物質
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
CN103746143A (zh) * 2013-12-10 2014-04-23 宁波维科电池股份有限公司 高能量密度锂离子动力电池
US20140154593A1 (en) * 2008-02-25 2014-06-05 Ronald A. Rojeski High Capacity Energy Storage
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114256A (ja) * 2004-10-12 2006-04-27 Toyota Motor Corp 二次電池用正極及びその利用
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
JP2008077847A (ja) * 2006-09-19 2008-04-03 Samsung Sdi Co Ltd 非水二次電池用負極材料及びそれを用いた非水二次電池
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US11502292B2 (en) 2008-02-25 2022-11-15 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US20140154593A1 (en) * 2008-02-25 2014-06-05 Ronald A. Rojeski High Capacity Energy Storage
US9705136B2 (en) * 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US11152612B2 (en) 2008-02-25 2021-10-19 Cf Traverse Llc Energy storage devices
US11127948B2 (en) 2008-02-25 2021-09-21 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US10978702B2 (en) 2008-02-25 2021-04-13 Cf Traverse Llc Energy storage devices
US10964938B2 (en) 2008-02-25 2021-03-30 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
JP2010027482A (ja) * 2008-07-23 2010-02-04 Sony Corp 正極活物質の製造方法および正極活物質
US10461324B2 (en) 2009-02-25 2019-10-29 Cf Traverse Llc Energy storage devices
US10741825B2 (en) 2009-02-25 2020-08-11 Cf Traverse Llc Hybrid energy storage device production
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US10673250B2 (en) 2009-02-25 2020-06-02 Cf Traverse Llc Hybrid energy storage device charging
US10714267B2 (en) 2009-02-25 2020-07-14 Cf Traverse Llc Energy storage devices including support filaments
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US10727482B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US10622622B2 (en) 2009-02-25 2020-04-14 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
CN103746143A (zh) * 2013-12-10 2014-04-23 宁波维科电池股份有限公司 高能量密度锂离子动力电池

Also Published As

Publication number Publication date
JP3876673B2 (ja) 2007-02-07

Similar Documents

Publication Publication Date Title
JP4592931B2 (ja) リチウム二次電池用正極材料及び及びその製造方法
JP4582579B2 (ja) リチウム二次電池用正極材料
JP5232631B2 (ja) 非水電解質電池
JP4518865B2 (ja) 非水電解質二次電池およびその製造方法
US20110200880A1 (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery using the same
JP2010064944A (ja) リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池
JP2000077071A (ja) 非水電解液二次電池
JP2010064944A5 (ja)
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP2000133262A (ja) 非水系電解液二次電池
WO2010106768A1 (ja) 非水電解質二次電池用正極、それを用いた非水電解質二次電池、およびその製造方法
JP2003123749A (ja) 非水系電解質二次電池用正極活物質
JP4259393B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2006252940A (ja) リチウム二次電池及びマンガン酸リチウムの製造方法
JP4876371B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2002313337A (ja) 非水系電解質二次電池用正極活物質およびその製造方法
JP2000077072A (ja) 非水電解液二次電池
US9515315B2 (en) Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
JP2003157844A (ja) 非水二次電池用正極活物質、製造方法および非水二次電池
JP5044882B2 (ja) 非水電解液二次電池用正極活物質および非水電解液二次電池
JP3835180B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
US20040208818A1 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP4746846B2 (ja) リチウムイオン電池用負極活物質、その製造方法およびリチウムイオン電池
JP3835235B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
JP4019729B2 (ja) リチウムマンガン複合酸化物粉末

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

LAPS Cancellation because of no payment of annual fees