JP2002513374A - 高い強度と応力破断抵抗を有するガス圧焼結された窒化ケイ素 - Google Patents

高い強度と応力破断抵抗を有するガス圧焼結された窒化ケイ素

Info

Publication number
JP2002513374A
JP2002513374A JP53219798A JP53219798A JP2002513374A JP 2002513374 A JP2002513374 A JP 2002513374A JP 53219798 A JP53219798 A JP 53219798A JP 53219798 A JP53219798 A JP 53219798A JP 2002513374 A JP2002513374 A JP 2002513374A
Authority
JP
Japan
Prior art keywords
silicon nitride
weight
sintered body
temperature
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53219798A
Other languages
English (en)
Inventor
リ,チェン−ウェイ
ポリンジャー,ジョン
ヤマニス,ジーン
ゴールダッカー,ジェフリー・エイ
Original Assignee
アライドシグナル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アライドシグナル・インコーポレーテッド filed Critical アライドシグナル・インコーポレーテッド
Publication of JP2002513374A publication Critical patent/JP2002513374A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics

Abstract

(57)【要約】 本窒化ケイ素焼結体は、(a)80〜93重量%のβ窒化ケイ素;(b)7〜20重量%の粒界相であって、(i)少なくとも2種の稀土類元素、及びSrOとして計算されたときに0.5〜5重量%であるストロンチウム、及び(ii)Si、N、O及びCの少なくとも2種から本質的になる、イットリウムが稀土類として考慮される粒界相;及び(c)成分(a)と(b)を合わせて100重量部当たり約5〜35重量部の量で存在する炭化ケイ素粒子であって、前記炭化ケイ素が前記焼結体内に実質的に均一に分散されている粒子から本質的になる組成を有する。そのようなセラミックは、高い強度と長い期間耐久性を有するので、特にガスタービン及び自動車エンジンの部材のような工業用途に適している。

Description

【発明の詳細な説明】 高い強度と応力破断抵抗を有するガス圧焼結された窒化ケイ素関連出願への相互参照 本願は、1993年7月23日に出願された米国特許出願第08/096,2 03号の一部継続出願であり、その第08/096,203号は、1992年4 月9日に出願された米国特許出願第865,581号の包袋継続出願であり、そ して、その第865,581号は、1991年6月17日に出願された、“High Toughness-High Strength Sintered Si1icon Nitride”と題された米国特許出願 第716,142号の一部継続出願である。 発明の背景 1.発明の分野 この発明は、高温で高い破壊靱性、強度、及び応力破断抵抗を有する焼結され た窒化ケイ素セラミック、及びそれを製造する方法に関する。 2.先行技術の説明 窒化ケイ素セラミックは、1000℃を越える温度での強度が優れていること でよく知られている。しかしながら、進歩したタービンエンジン用途での120 0℃を越える温度では、その強度、信頼性、及び応力破断抵抗の要件を満たす窒 化ケイ素セラミックは殆どない。更には、慣用的な窒化ケイ素セラミックは、典 型的には、4〜6MPa・m0.5の破壊靱性しか有さず、そのような低い靱性の ために、エンジン運転中に起こる損傷から大きな強度低下を受けやすい。6MP a・m0.5より大きな破壊靱性、従って、高温での損傷に対する強い抵抗性、高 い強度、及び応力破断抵抗を有する窒化ケイ素を提供することが望ましい。更に は、この優れた特性の組合せを有する窒化ケイ素材料であって、複雑な幾何的形 状に近い最終形状の部品に容易に成形され得る窒化ケイ素材料を有することが最 も望まれる。 窒化ケイ素を焼結するには、粒界相を形成する焼結助剤が必要である。稀土類 酸化物は有効な焼結助剤であり、良好な高温特性を有する窒化ケイ素セラミック を生ずる耐火性粒界相を形成する。しかしながら、それらは、しばしば高い焼結 温度及び/又は完全な緻密化のための高い外圧の適用を必要とする。 ホットポレスは、一般に、優れた強度特性を有する窒化ケイ素セラミックを生 成する。Andersonへの米国特許第4,234,343号は、焼結助剤として異なる 稀土類酸化物を含有するホットポレスされた窒化ケイ素が、1400℃で250 〜550MPaの強度を有することができ、その高い1400℃強度をもたらす 稀土類酸元素の割合は少なくてよいことを開示している。UenoとToibanaは、Yog yo-Kyokai-Shi,vol.9,409-414(1983)において、酸化イットリウム(Y23 )を他の稀土類酸化物と一緒に含有するホットポレスされた窒化ケイ素が、13 00℃で600MPaを越える強度を示すことを報告している。米国特許第5, 021,372号は、ホットポレスにより形成された窒化ケイ素をベースとする セラミックが、室温で約600〜1200MPaの4点曲げ強さと6MPa・m0.5 より大きな破壊靱性を有するが、その製造に使用された添加剤が、比較的低 い温度をこの窒化ケイ素にかけるのを制限することを開示している。更には、ホ ットポレスの過程が、その形状及びサイズ限界のために、構造用セラミックの製 造において限られた意義しか有さないことは、当該技術分野で周知である。ホッ トポレスが、殆どの用途で望ましくない異方性ミクロ構造と機械的特性しか有さ ない生成物をもたらすに過ぎないことも周知である。 等圧ホットポレス(hot isostatic pressing)はホットポレスと同じ利点を有 しているが、形状、サイズ、及び異方性限界がない。Yeckleyへの米国特許第4 ,904,624号は、ガラス封入等圧ホットポレスを用いて、稀土類焼結助剤 を含有し1370℃で525MPaを越える曲げ強さを有する窒化ケイ素部品を 製造することを教示している。しかしながら、このSi34の破壊靱性は4〜5 MPa・m0.5に過ぎない。同じく、Yehへの米国特許第4,870,036号は、 どのようにして、等圧ホットポレスを用いて、酸化イットリウム及びストロンチ ウム化合物を含有し1375℃で465MPaより大きな曲げ強さを有する窒化 ケイ素セラミックを製造するかを教示しているが、このSi34の破壊靱性は5 〜6MPa・m0.5である。従って、等圧ホットポレスは優れた強度を有する窒 化ケイ素セラミックを製造できるとはいえ、そのような材料の破壊靱性は低い。 ガス圧焼結(gas pressure sintering)は、高温燃焼の間に中程度の窒素圧を 用いる窒化ケイ素の製造方法である。それは、形状及びサイズ限界のない耐火性 窒化ケイ素部品を製造するのに用いられ得る。Mizutaniらへの米国特許第4,6 28,039号は、1300℃で優れた4点曲げ強さを有する窒化ケイ素セラミ ックを製造するのに、ガス圧焼結を用いることを記載している。その窒化ケイ素 セラミックは、それぞれ0.97Åより大きな及び小さなイオン半径を有する2 種の稀土類元素の酸化物からなる焼結助剤と周期律表の第IIa族からの元素の酸 化物のような他の微量の添加剤とを含有する。Somaらへの米国特許第4,795, 724号は、Y、Er、Tm、Yb、及びLuから選択される少なくとも2種の 焼結助剤を含有し、かつ少なくとも500MPaの1400℃曲げ強度を有する 、ガス圧焼結された窒化ケイ素を記載しており、この特許に示された実施例は、 Y23及びLa23を含有するガス圧焼結された窒化ケイ素セラミックが、14 00℃で230MPaの強度しか有さないことを示している。上記の発明では、 独特のミクロ構造、靱性、傷許容性、及び応力破断抵抗の窒化ケイ素を製造する ための努力はなされなかった。 米国特許第3,890,250号に従って10〜50容量%の炭化ケイ素、及び 米国特許第4,184,882号に従って40容量%までの炭化ケイ素を含有する 窒化ケイ素が1400℃での強度を向上させたことが報告されている。それら特 許により教示されたこれらセラミックは、ホットポレスによって製造されたもの であるが、それらの破壊靱性は報告されなかった。 Izakiらへの米国特許第4,800,182号は、ある格別なナノサイズのSi −N−C粉末から製造された、5〜30重量%の炭化ケイ素を含むホットポレス された窒化ケイ素/炭化ケイ素複合材料であって、炭化ケイ素含有量に依存して 、室温で少なくとも930MPaの3点曲げ強さと5.3〜7MPa・m0.5の破 壊靱性(押込法で測定されたもの)を有する複合材料を開示している。しかしな がら、その材料は、緻密化のためにホットポレスを必要とするだけでなく、低溶 融性焼結助剤が使用されたために、高温での乏しい応力破断抵抗特性しか示さな いに違いない。Steinmannらへの米国特許第4,814,301号は、結晶性シリ ケ ート及び1200℃で高い保持強度を有する金属炭化物を用いる焼結された窒化 ケイ素の製造を開示している。1375℃でのそれら窒化ケイ素セラミックの強 度は、Na、Ca、Mg、Al及びFe等を含有するシリケートが用いられるの で、高くないであろう。 米国特許第5,177,038号は、主にYb23、Y23及びSiCを焼結添 加剤として有する、焼結されたSi34を開示し、そして1400℃で高い強度 を有することを特許請求している。しかしながら、このタイプの材料は、乏しい 中間温度酸化抵抗性を有するに過ぎないと考えられる。というのは、そうした問 題を伴うことが知られている粒界相を形成する純粋な稀土類酸化物焼結助剤が大 量に添加されるからである。 Tanakaらへの米国特許第5,523,257号は、炭化ケイ素を約50重量%ま で含有する、高温で高い強度の焼結された窒化ケイ素を特許請求している。しか しながら、0.5%未満のAl、Mg及びCa不純物という厳しい純度コントロ ールがその材料を加工するのに必要とされ、かつ、その材料を加工し難くし得る シリカ添加剤が使用されている。実際、ホットポレス及び等圧ホットポレス法が その組成物を加工するのに使用された。加えて、この材料の破壊靱性は、その材 料の靱性を高めるβ窒化ケイ素粒子の数を有意に減少させる大量のSiCがその 焼結体中にあるので、高くないと考えられる。 発明の要旨 本発明は、最終形状部品に容易に加工される、高い靱性、強度、及び応力破断 抵抗の窒化ケイ素セラミックを提供する。そのような有益な特性は、その焼結体 中に存在する独特のミクロ構造と組成の直接の結果である。特に、この発明の窒 化ケイ素セラミックは、6MPa・m0.5より大きな破壊靱性、室温で700M Paより大きくて1370℃で550MPaより大きな4点曲げ強さ、及び13 70℃で450MPaの4点曲げ強さのもとで100時間より長い応力破断寿命 を示す。この発明の生成物は、ガス圧焼結法を用いて加工されるので、容易にか つ経済的に複雑な形状に製造されることができる。 この発明の一側面によれば、少なくとも97%理論密度の窒化ケイ素焼結体で あって、 (a)約80〜93重量%のβ窒化ケイ素; (b)少なくとも2種の稀土類元素から本質的になる約7〜20重量%の粒界 相であって、イットリウムが稀土類として考慮され、ストロンチウムがSrOと して計算されたときに0.5〜5重量%の量で存在し、そして、Si、N、O及 びCの少なくとも2種が存在する粒界相;及び (c)成分(a)と(b)の100重量部当たり約5〜35重量部の量で存在 する炭化ケイ素粒子であって、該炭化ケイ素が前記焼結体内に実質的に均一に分 散されている粒子 から本質的になる組成及びミクロ構造を有する窒化ケイ素焼結体を提供する。 本発明のもう一つの側面によれば、約1500〜2100℃の温度で窒化ケイ 素体を焼結する方法であって、(a)初期焼結が約1500〜1850℃の温度 で1〜8時間行われ;(b)中間焼結が1850〜2000℃の温度で30分〜 5時間行われ;(c)最終焼結が約2000〜2100℃の温度で約1〜5時間 行われ;(d)これら工程の各々が窒化ケイ素の分解を避けるのに十分に高い窒 素圧下で行われ、かつこれら連続工程の温度がその前の工程の温度よりも少なく とも25℃高い方法が提供される。 この発明の最後の側面によれば、この窒化ケイ素体の焼結後熱処理であって、 その高い破壊靱性を保存する処理が提供される。この処理は、焼結温度からの冷 却工程の間又は再加熱工程の間の結晶化熱処理であっても、主として結晶性の粒 界相を含有する窒化ケイ素についてのアニーリング熱処理であってもよい。この 処理の結果として、粒界相は実質的に結晶性となり、そしてこのアニーリングに よって形成されるか又は再結晶化される。このような焼結後結晶化又はアニーリ ングは、少なくとも1375℃、好ましくは少なくとも145O℃、より好まし くは少なくとも1500℃の温度で行われる。 本発明によれば、6MPa・m0.5より大きな破壊靱性、室温で少なくとも7 00MPaで1370℃で少なくとも550MPaの4点曲げ強さ、及び137 0℃で450MPaの4点曲げ強さのもとで100時間より長い応力破断寿命を 有する窒化ケイ素セラミック体が提供される。有利なことには、この発明の窒化 ケイ素は、ホットプレスの形状及びサイズ限界を有さずかつ等圧ホットプレスの 封入及び開封工程や高いガス圧を必要としないところのガス圧焼結法により製造 される。この優れた特性の組合せ及び製造の容易さは、本発明の窒化ケイ素セラ ミックを、ガスタービンや自動車エンジン用の部材及び切断具のような工業用途 に最も適したものにする。 好ましい態様の詳細な説明 高い靱性、高い強度(室温及び1370℃でのもの)、信頼性、及び応力破断 抵抗の窒化ケイ素セラミックを製造するには、次の3要件が同時に満たされなけ ればならない:(1)1370℃強度が高くなるように、粒界相が耐火性でなけ ればならない;(2)そのセラミックは緻密でありかつウィスカー様β−Si3 4粒子からなる最適なミクロ構造を有さなければならない;そして(3)その 粒界は、これらウィスカー様β−Si34粒子の粒界に沿って十分な剥離が起こ るように弱くなければならない。これら全ての要件を満たす窒化ケイ素を製造す るための条件を選択するための委細を以下に記載する。 原則として、本発明の焼結体は、(a)窒化ケイ素、(b)焼結助剤としての 少なくとも2種の稀土類化合物及びストロンチウム化合物、及び(c)炭化ケイ 素を含む組成物を焼結することによって形成される。この組成物中には、成分( a)は約80〜93重量%の量で存在すべきであり、そして成分(b)は全体を 100%にするために約7〜20重量%の量で存在すべきであり、そして成分( c)は成分(a)と(b)の100重量部当たり約5〜35重量部の量で存在す べきである。 この発明の生成物は、粒界相の体積分率を十分に低くしかつその材料の破壊靱 性及び高温特性を劣化させないように、80重量%以上の窒化ケイ素を含むべき である。加えて、十分な数の針状のβ窒化ケイ素粒子が存在してその焼結体を靱 性にする結果、その焼結体は6MPa・m0.5より大きな破壊靱性を示す。しか しながら、窒化ケイ素の量は、焼結添加剤の量がその焼結体を理論密度の少なく とも97%に焼結するのに十分となるように、93重量%以下であるべきである 。 本発明の生成物は、粒界相を形成する焼結助剤を約7〜20重量%添加するこ とにより製造される。Y23、La23、及びSrOからなる焼結助剤を、緻密 化を促進するために使用することができる。ここに挙げた2種の稀土類酸化物は 有効な焼結助剤であるので本発明に使用されるが、全ての稀土類酸化物が有効で 耐火性の焼結助剤であり得ることは当該技術分野で周知であり、従って、この発 明の生成物を製造するのに用いることができる。少なくとも2種の稀土類化合物 及びストロンチウム化合物の組成を選択する1つの理由は、ホットプレス又は等 圧ホットプレスとは別の方法によって緻密化及びミクロ構造の成長を達成できる ように、その系の液体温度を下げるためである。酸化ストロンチウムは、実質的 に焼結挙動を改善することができ、ミクロ構造の成長を促進することができ、そ してこの発明の生成物の中間温度酸化抵抗性を向上させることができる。SrO として計算したときの添加されるストロンチウムの量は、有効であるために少な くとも0.5重量%であり、そして高温特性を劣化させないように5重量%以下 であるべきである。前記の組成を選択するもう1つの理由は、得られる粒界相が 良好な剥離特性を有しかつ高い破壊靱性を有するセラミックスを産することであ る。 この発明の生成物を製造するに際してのもう1つの要件は、粉末混合物中にS iCを添加することである。SiCの量は、ガス圧焼結法を用いて十分な緻密化 を可能にするためには、窒化ケイ素粉末と焼結助剤の全量100重量部当たり3 5重量部を越えるべきではないが、有効であるためには少なくとも5重量%であ るべきである。このSiC添加物は、結晶質であっても非晶質であってもよく、 β型であってもα型であってもよい。ナノに分粒したものでもミクロン以下に分 粒したものでもミクロンに分粒したものでもよく、また、窒化ケイ素セラミック ス中で最終的にSiC化合物を形成する、炭素帯有種とSi含有種との、気体、 液体又は固体状態での化学反応を介して導入されてもよい。 このSiC添加は、焼結中の粒子成長速度を緩和することで、より均一で微細 なミクロ構造をもたらすことにより、及び粒界特性の修飾により、強度特性を向 上させる。焼結中、SiCの添加によってこの発明の生成物中で3種の反応が起 こり得る。第1に、SiCが焼結温度で部分的に液相中に溶解してその液体の粘 度を増加させる。第2に、粒界における過剰なSiC化合物粒子が粒界移動を阻 害し得る。第3に、小さなSiC粒子がβ窒化ケイ素粒子の成長のための成核剤 として働き得る。これら作用の組合せは、誇大な粒子の成長を抑制するので、S iCを含有しないで同じように加工された窒化ケイ素のミクロ構造に比較して、 より均一で微細なミクロ構造をもたらす。このより均一で微細なミクロ構造で、 高い強度と高い応力破断抵抗を有するセラミックス部品が生成するのである。加 えて、Si34粒子の内部並びに粒界領域内に存在するSiC粒子は、そのクリ ープ変形速度を減じることにより、その焼結体の高温応力破断特性を向上させる ことができる。粒界ガラス相内に炭素を組み入れることは、その硬度を向上させ る結果、その焼結された窒化ケイ素の高温強度を向上させる。オキシカーボニト ライド及びオキシカーバイドガラスの特性への炭素の類似の作用が、例えば、J. Homenyら,J.Am.Ceram.Soc.,70[5]C114(1987)により報告されている。 この発明によれば、少なくとも2の温度工程からなる格別な方法により前述の 組成の窒化ケイ素粉末圧縮物を焼結することによって、高い靱性、高い強度、及 び高い応力破断抵抗をもたらす所望のミクロ構造と粒界特性を生じさせることが できる。 第1燃焼工程の目的は、気相及び液相を介する原子の輸送によりin situで成 核され成長させられた高密度で均一サイズのウィスカー様β−Si34粒子を含 む約70〜95%理論密度の中間体セラミックを調製することである。この中間 ミクロ構造の形成は、粉末圧縮物が初めは高い気孔容積を有し、これがβ−Si34粒子がそのc軸に沿って異方性表面エネルギー推進力のもとで成長するため の室を提供するので、可能となる。こうして高密度のウィスカーをセラミック体 に組み入れることは、品質の低い焼結部品に直結する凝集や乏しいグリーン密度 といった問題なしには、伝統的なセラミック加工手段によって達成されることは ない。燃焼温度は、ウィスカー様β−Si34粒子についての成核及び成長速度 が適切であるように、1500〜2000℃であるべきである。それは、約20 00℃より高くあるべきではない。というのは、この工程中のより高い温度は、 望ましくないミクロ構造のセラミック体を最終的に生ずるところの、Si34粒 子の誇大な成長をもたらすからである。加えて、粒子が粗雑になるのを制御しな がら、十分な量のウィスカー様β−Si34粒子を成長させるためには、燃焼時 間は約1〜10時間であるべきである。そうすれば、所望のミクロ構造の緻密化 と成長が進行する。 次いで、理論密度の少なくとも97%の最終セラミック体を形成しかつin sit uで成長したウィスカー様β−Si34粒子を更に成長させるために、この中間 体セラミックを2000〜2100℃の温度で1〜10時間更に焼結する。セラ ミックの緻密化を完結させかつ大量のウィスカー様β−Si34粒子を生じさせ るために、2000℃より高くかつ第1工程よりも少なくとも25℃高い温度が 選択される。この温度は2100℃以下に制限される。というのは、2100℃ を越える温度では、粒子の粗雑化の過程が大きくなり、特性に望ましくない影響 を及ぼすからである。この熱処理時間は、望ましいミクロ構造の形成のために十 分な緻密化と粒子成長が起こるように、1〜10時間であるべきである。 焼結及び熱処理工程は、窒素ガス又は、窒素とAr又はHeのような不活性ガ スとの混合ガスでの高圧下で行われる。更に、焼結及び熱処理工程中の窒化ケイ 素の過剰な分解を阻止するために、窒素圧は、1800、1900、2000、 2050及び2100℃で、それぞれ、3.3、8、23、30及び50気圧以 上であるのが好ましい。 ここまで及びここに記載の条件を用いて製造される窒化ケイ素が焼結温度から 比較的速く冷却されて、その液相がSi34粒子間でガラスを形成できるならば 、そのミクロ構造と粒界相特性は、6MPa・m0.5より大きな押込強度(inden tation-strength)破壊靱性と損傷抵抗特性とを有するセラミック体を生ずるの に十分である。しかしながら、その窒化ケイ素がゆっくり冷却されたり焼結後に 熱処理されて主に結晶性の粒界相を含有することになると、その窒化ケイ素セラ ミックの破壊靱性特性は、意外にも、主要な結晶化現象が起こった温度に強く依 存することが見出される。この現象が冷却中又は1375℃若しくはそれより低 い温度での再加熱過程に起こるなら、その粒界特性が変化して、破壊靱性の有意 な低下をもたらす。一方、主要な結晶化過程が、少なくとも1375℃、好まし くは少なくとも1450℃、より好ましくは少なくとも1500℃で起こるなら 、破壊靱性は、結晶化熱処理がなされなかった窒化ケイ素セラミックの破壊靱性 と凡そ同じ破壊靱性のままである。更には、本発明者らは、意外にも、1 375℃若しくはそれより低い温度での粒界相結晶化の結果としてそれらの破壊 靱性が少なからず失われた窒化ケイ素セラミックについて、1375℃より高い 温度でアニーリング過程を行うと、その材料の破壊靱性が戻り得ることを見出し た。 以下の記載は、本発明の最終窒化ケイ素セラミックを製造する一般的手順の簡 単な説明である。 まず、諸粉末の均一混合物を既知の方法により形成する。この混合物は、(a )Si34(80〜93重量%)及び(b)少なくとも2種の稀土類元素の化合 物及びSrの化合物から主としてなる焼結助剤(7〜20重量%)、及び成分( a)と(b)の全量100重量部当たり5〜35重量部の量のSiCの諸粉末を ブレンドして磨砕することにより調製される。そのような稀土類元素の化合物は 、好ましくは酸化物である。次いで、この粉末混合物を、スリップキャスティン グ(slip casting)、等圧コールドプレス(cold isostatic pressing)、ダイ成形( die forming)、又は他のセラミック製造技術により、望まれる形状に成形する。 次いで、このグリーンセラミック体をは、1500〜2100℃の温度範囲で 燃焼する。その場合、(1)初期焼結が、1500〜1850℃、好ましくは1 650〜1850℃の温度で、1〜8時間、好ましくは2〜6時間行われ;(2 )中間焼結が、1850〜2000℃、好ましくは1900〜1975℃の温度 で、30分〜5時間、好ましくは60分〜3時間行われ;(c)最終焼結が、約 2000〜2100℃、好ましくは約2010〜2050℃の温度で、約1〜5 時間、好ましくは約1〜3時間行われ;(d)これら工程の各々がSi34の分 解を避けるのに十分に高い窒素圧下で行われ、かつこれら連続工程の温度がその 前の工程の温度よりも少なくとも25℃高い。 焼結及び粒子成長過程が完結したら、そのSi34焼結体を、大部分の粒界相 が非晶質のままとなるように比較的速く冷却し、次いで1500℃に再加熱して 、その粒界相を結晶化させるために窒素雰囲気下で10時間保持する。少なくと も90%の粒界相が1500℃で結晶化するような制御されたやり方で、それを 焼結温度から冷却してもよい。この結晶化温度は、少なくとも1375℃、好ま し くは少なくとも1450℃、より好ましくは少なくとも1500℃であるべきで あり、そして結晶化時間は少なくとも1時間であるべきである。まず、1375 ℃を下回る温度で粒界相を結晶化させてから、1375℃を上回る温度、好まし くは少なくとも1450℃の温度、より好ましくは少なくとも1500℃の温度 でアニーリングすることもできる。結晶化処理の後は、大部分の粒界結晶相がア パタイト構造のH相である。少量の他の結晶相は、K相、J相及びメリライト相 となる。 本窒化ケイ素セラミックの機械的特性は、標準的試験を用いて容易に測定する ことができる。特に、強度測定は、合衆国軍事B型標準(US Military Standard B)形式に従って行われる。この形式は、3mm×4mm×50mmのバー、2 0mm内幅及び40mm外幅の4点曲げ固定具、及び5mm/分の荷重速度を用 いる。この強度測定を3点曲げ形式で行うと、得られる強度は4点曲げ強度より も少なくとも10%高くなり得る。応力破断試験は、上記の4点曲げ測定と同じ 形式で荷重を受けた試験片に、その試験片が試験に落ちるか又は試験時間が10 0時間に達するまで高温で一定の応力をかけることにより行われる。破壊靱性測 定は、曲げたバーの引っ張られた表面を1μm仕上げでダイヤモンド研磨に付し 、その研磨された表面の中程に50kg荷重のVickers押込機で窪みを生じさせ 、そのうちの2本がそのバーの縁と平行になるように数本の亀裂を生じさせ、次 いでその窪んだバーを破壊することにより行われる。その破壊靱性値は、Chanti kulら(J.Am.Ceram.Society,Vol.64,p.539,1981)により提供された式を 使用して計算される。 以下の実施例は、本発明のより完全な理解のために提供される。本発明の原理 及び実施を説明するために記載されたこれら具体的な技術、条件、材料、割合、 及び報告されたデータは例示的なものであって、本発明の範囲を限定するものと して解釈されるべきではない。 実施例 この実施例で使用される窒化ケイ素セラミックの出発組成物及びそれらの焼結 条件を表1(a)に示す。約96%のα含量を有し、0.6μmの平均粒度と約 10m2/gの比表面積とを有するSi34(UBE E−10)の原末を使用し た。酸化イットリウム(Y23)及び酸化ランタン(La23)は、99%純度 で10μm未満の平均粒度を有した。この実施例では、炭酸ストロンチウム(9 9%純度,〜1μm平均粒度)を酸化ストロンチウム(SrO)の前駆体として 用いた。100重量部の炭酸ストロンチウムは、70重量部のSrOを生成する 。この実施例で用いた微細グレードのSiC粉末は、Starckにより製造されたも ので、約0.5μmの平均粒度を有した。α型及びβ型の両方のSiCを用いた が、この実施例で用いた粗製βSiC粉末は、約10μmの平均粒度を有し、Su perior Graphiteにより製造されたものであった。 この実施例で用いたグリーン体はスリップキャスティングにより製造された。 こうして配合されたバッチ当たり1000gの粉末混合物を、水及びSi34粉 砕用媒体と一緒に、ポリウレタンでライニングされた1ガロンの微粉砕ジャーの 中で24時間湿式微粉砕した。NH4OHを添加することにより水のpHレベル を9.8に調節した。水の中に添加した分散剤は約0.3重量%の量のDarvan Cで あった。微粉砕後に、そのスラリーを40psiのガス圧下で約2.6"×2.6" ×0.8"(6.6cm×6.6cm×2.0cm)のビレットに加圧スリップキャ スティングして加湿チャンバーの中で乾燥した。 表1(a)に示した燃焼条件を用いてグラファイト抵抗炉(graphite resista nce furnace)の中でこの実施例のサンプルを焼結した。この燃焼の間に用いた 窒素圧は十分に高いので、Si34サンプルの分解は抑制される。必要とされた 最低窒素圧は、1600℃で10psi、1800℃で50psi、1950℃ で150psi、2000℃で300psi、そして2050℃で500psi であった。表1に掲げた焼結されたサンプルのX線回折試験は、この発明の生成 物中の大部分の結晶性粒界相がアパタイト構造を有するH相であり、次の結晶性 相がK相、J相及びメリライト相であることを示した。注:*この発明の範囲外のサンプル 表1から、この発明の教示に従って製造されたサンプルNo.1〜10が少な くとも700MPaの室温強度と少なくとも550MPaの1370℃強度を示 すことが分かる。本発明のそれら生成物の特性をこの発明の範囲外の組成及び加 工法のサンプルである比較サンプルNo.11〜15と比較すると、サンプルN o.1〜10がずっと向上した高温強度と1370℃での応力破断抵抗を示すこ とが分かる。表1(b)に示した結果から分かるように、サンプルNo.1〜1 0についての応力破断寿命は1370℃で448MPaでの4点曲げ応力下で1 00時間より長いが、サンプルNo.11〜15は同じか又はより低い応力レベ ル下ですらずっと短い時間で壊れた。 比較として、米国特許第4,904,624号に、4重量%の酸化イットリウム を含有し1370℃での350MPaの下で100時間より長い応力破断寿命を 有する等圧ホットプレスされた窒化ケイ素が開示されている。別の比較例をJ.Ma ter.Sci.,25,4361(1990)に発表された報文に見出すことができる。そこか ら、慣用的な窒化ケイ素セラミックの応力破断抵抗がこの発明の生成物と比較し てずっと乏しいことが分かるであろう。このような向上は、高温での亀裂の成長 及びクリープ損傷を遅くするための抵抗力を有意に高めることができる本発明の 生成物の組成及びミクロ構造に起因している。 表1(b)に提示した強度及び応力破断データは、合衆国軍事B型標準に従っ た4点曲げ法及びバーを用いて得られた。3点曲げ形式又はより小さな内幅を用 いると、この発明の生成物について測定される強度は表1(b)に示したものよ りずっと高くなるであろう。同じく、3点曲げ又はより小さな幅を用いると、応 力破断性能は表1(b)に示したものよりずっと高くなるであろう。 更には、この発明の材料は少なくとも6MPa・m0.5の破壊靱性を示す。こ の靱性値は、慣用的な窒化ケイ素セラミックに比べて高い。この発明の生成物に ついてのこの高い破壊靱性は、本発明において開示された配合と焼結法により達 成され、これら配合及び焼結法は、破壊靱性を向上させる長い針状β窒化ケイ素 粒子を作るのに、及びその窒化ケイ素粒子の界面に沿った剥離を促進するのに、 特に有効である。結果として、生成物中のSiCが高濃度である場合でも、その 破壊靱性は依然として>6MPa・m0.5であることができる。 表1(b)に示した破壊靱性は、押込強度を用いて湾曲法(bending techniqu e)で得られた。しかしながら、靱性特性を評価するには、J.Mater.Sci.Lett. ,1982,vol.I,pp.13-16に報告された押込法のような他の一般的な技術を用い ることもできる。20kg Vickers押込荷重を用いることにより、表1(b)に 掲げたこの発明の生成物についてその技術により測定された破壊靱性は、7〜9 .5MPa・m0.5の範囲に入る。即ち、押込法により測定された破壊靱性値は、 表1(b)に示したものよりも少なくとも5%高いといえる。 この発明の生成物についてのこれら優れた特性は、出発粉末としてβ又はαの いずれかのSiCを用いて達成することができる。このことは、αSiC粉末を 用いることにより製造されたサンプルNo.3により証明される。加えて、約1 0μmの平均粒度を有する市販のSiCを用いて製造されたサンプルNo.9に より証明されるように、粗製SiC粉末を用いてこの発明の生成物を製造するこ ともできる。 この発明の材料についての破壊靱性が結晶化温度に依存していることが分かっ た。加えて、焼結された材料中の非晶質粒界相が1375℃より低い温度で結晶 化すると、その材料の破壊靱性が低くなることが分かった。従って、この発明の 生成物は、少なくとも1375℃、好ましくは少なくとも1450℃、より好ま しくは少なくとも1500℃の温度で結晶化されるべきである。 本発明を十分詳細に説明してきたが、そのような詳細に厳格に固執する必要は なく、種々の変更及び修飾が当業者に示唆され得、それら全てが添付の請求の範 囲により規定される本発明の範囲内に入ることは、当業者により理解されるであ ろう。
【手続補正書】 【提出日】平成11年8月3日(1999.8.3) 【補正内容】 請求の範囲 1.窒化ケイ素焼結体であって、 (a)約80〜93重量%のβ窒化ケイ素; (b)少なくとも2種の稀土類元素、SrOとして計算されたときに0.5〜 5重量%の量のストロンチウム、及びSi、N、O及びCの少なくとも2種から 本質的になる約7〜20重量%の粒界相であって、イットリウムが稀土類として 考慮される粒界相;及び (c)成分(a)と(b)を合わせた100重量部当たり約5〜35重量部の 量で存在する炭化ケイ素粒子であって、前記炭化ケイ素が前記焼結体内に実質的 に均一に分散されている粒子 から本質的になる組成を有し、そして理論の少なくとも97%の密度を有する窒 化ケイ素焼結体。 2.イットリウムが2種の稀土類元素のうちの1種である、請求項1記載の窒 化ケイ素焼結体。 3.2種の稀土類元素のうちの1種が、酸化イットリウムとして計算したとき に2〜8重量%の量で存在するイットリウムであり、他の稀土類元素が、酸化ラ ンタンとして計算したときに4〜11重量%の量で存在するランタンである、請 求項1記載の窒化ケイ素焼結体。 4.粒界相が実質的に結晶性であり、少なくとも1375℃の温度でのアニー リングにより形成されるか又は再結晶化される、請求項1記載の窒化ケイ素焼結 体。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ヤマニス,ジーン アメリカ合衆国ニュージャージー州07960, モーリスタウン,レッドウッド・ロード 15 (72)発明者 ゴールダッカー,ジェフリー・エイ アメリカ合衆国ニュージャージー州08876, サマーヴィル,ブルーバード・ドライブ 131,ナンバー2ビー

Claims (1)

  1. 【特許請求の範囲】 1.窒化ケイ素焼結体であって、 (a)約80〜93重量%のβ窒化ケイ素; (b)少なくとも2種の稀土類元素、SrOとして計算されたときに0.5〜 5重量%の量のストロンチウム、及びSi、N、O及びCの少なくとも2種から 本質的になる約7〜20重量%の粒界相であって、イットリウムが稀土類として 考慮される粒界相;及び (c)成分(a)と(b)を合わせた100重量部当たり約5〜35重量部の 量で存在する炭化ケイ素粒子であって、前記炭化ケイ素が前記焼結体内に実質的 に均一に分散されている粒子 から本質的になる組成を有し、そして理論の少なくとも97%の密度を有する窒 化ケイ素焼結体。 2.イットリウムが2種の稀土類元素のうちの1種である、請求項1記載の窒 化ケイ素焼結体。 3.2種の稀土類元素のうちの1種が、酸化イットリウムとして計算したとき に2〜8重量%の量で存在するイットリウムであり、他の稀土類元素が、酸化ラ ンタンとして計算したときに4〜11重量%の量で存在するランタンである、請 求項1記載の窒化ケイ素焼結体。 4.粒界相が実質的に結晶性であり、少なくとも1375℃の温度でのアニー リングにより形成されるか又は再結晶化される、請求項1記載の窒化ケイ素焼結 体。 5.結晶性相の50%より多い部分がアパタイト構造を有するH相である、請 求項4記載の窒化ケイ素焼結体。 6.窒化ケイ素焼結体であって、 (a)約82〜92重量%のβ窒化ケイ素; (b)約8〜18重量%の粒界相であって、(i)少なくとも2種の稀土類元 素であってそのうちの1種がイットリウムである稀土類元素、及びSrOとして 計算されたときに1〜2.5重量%のSr、及び(ii)Si、N、O及びCの少 なくとも2種から主としてなる粒界相;及び (c)成分(a)と(b)を合わせた100重量部当たり約5〜35重量部の 炭化ケイ素粒子であって、前記炭化ケイ素が前記焼結体内に実質的に均一に分散 されている粒子 から本質的になる組成を有し、そして理論の少なくとも97%の密度を有する窒 化ケイ素焼結体。 7.請求項1〜6のいずれか1項の窒化ケイ素焼結体であって、1500〜2 100℃の温度で燃焼させることからなる方法であって: (a)初期焼結が約1500〜1850℃の温度で1〜8時間行われ; (b)中間焼結が約1850〜2000℃の温度で30分〜5時間行われ; (c)最終焼結が約2000〜2100℃の温度で約1〜5時間行われ; (d)これら工程の各々が窒化ケイ素の分解を避けるのに十分に高い窒素圧下 で行われ、かつこれら連続工程の温度がその前の工程の温度よりも少なくとも2 5℃高い方法 により焼結された窒化ケイ素焼結体。 8.少なくとも700MPaの室温4点曲げ強度と少なくとも550MPaの 1370℃強度、及び1370℃での450MPa4点曲げ応力下で少なくとも 100時間の応力破断寿命、及び少なくとも6MPa・m0.5の破壊靱性を有す る、請求項1記載の窒化ケイ素焼結体。
JP53219798A 1997-01-27 1998-01-27 高い強度と応力破断抵抗を有するガス圧焼結された窒化ケイ素 Pending JP2002513374A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/789,699 US5759933A (en) 1991-04-09 1997-01-27 Gas pressure sintered silicon nitride having high strength and stress rupture resistance
US08/789,699 1997-01-27
PCT/US1998/001463 WO1998032711A1 (en) 1997-01-27 1998-01-27 Gas pressure sintered silicon nitride having high strength and stress rupture resistance

Publications (1)

Publication Number Publication Date
JP2002513374A true JP2002513374A (ja) 2002-05-08

Family

ID=25148431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53219798A Pending JP2002513374A (ja) 1997-01-27 1998-01-27 高い強度と応力破断抵抗を有するガス圧焼結された窒化ケイ素

Country Status (5)

Country Link
US (1) US5759933A (ja)
EP (1) EP0963360B1 (ja)
JP (1) JP2002513374A (ja)
DE (1) DE69841520D1 (ja)
WO (1) WO1998032711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090832A1 (ja) * 2018-11-01 2020-05-07 宇部興産株式会社 窒化ケイ素基板の製造方法および窒化ケイ素基板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977233B2 (en) * 2003-07-15 2005-12-20 Honeywell International, Inc. Sintered silicon nitride
FR2917405B1 (fr) * 2007-06-18 2010-12-10 Vibro Meter France Procede de preparation d'une ceramique frittee, ceramique ainsi obtenue et bougie d'allumage la comportant
US8652981B2 (en) * 2010-01-21 2014-02-18 Ceradyne, Inc. Dense silicon nitride body having high strength, high Weibull modulus and high fracture toughness
PL2760807T3 (pl) 2011-09-30 2019-12-31 Saint-Gobain Ceramics & Plastics Inc. Kompozytowy korpus z azotku krzemu
CN112441838B (zh) * 2019-08-29 2022-05-13 中国科学院上海硅酸盐研究所苏州研究院 一种表面晶粒定向生长的氮化硅陶瓷及其制备方法
CN113135762B (zh) * 2021-05-13 2022-03-08 中材高新氮化物陶瓷有限公司 一种大尺寸氮化硅陶瓷球及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184882A (en) * 1976-03-25 1980-01-22 Westinghouse Electric Corp. Silicon nitride-silicon carbide composite material
US4800182A (en) * 1987-01-22 1989-01-24 Mitsubishi Gas Chemical Company, Inc. Silicon nitride-silicon carbide composite material and process for production thereof
US5100847A (en) * 1989-01-17 1992-03-31 Allied-Signal Inc. Super tough monolithic silicon nitride
EP0397464B1 (en) * 1989-05-10 1993-11-24 Ngk Insulators, Ltd. Silicon nitride sintered bodies and method of manufacturing the same
US5096859A (en) * 1990-02-09 1992-03-17 Ngk Insulators, Ltd. Silicon nitride sintered body and method of producing the same
JPH07115933B2 (ja) * 1990-06-29 1995-12-13 日本碍子株式会社 窒化珪素焼結体の製造法
US5637540A (en) * 1991-06-17 1997-06-10 Alliedsignal Inc. Sintered silicon nitride of high toughness, strength and reliability
EP0589997B1 (en) * 1991-06-17 1995-07-19 AlliedSignal Inc. High toughness-high strength sintered silicon nitride
US5494866A (en) * 1991-06-17 1996-02-27 Alliedsignal Inc. Stress-rupture resistant sintered silicon nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090832A1 (ja) * 2018-11-01 2020-05-07 宇部興産株式会社 窒化ケイ素基板の製造方法および窒化ケイ素基板
JPWO2020090832A1 (ja) * 2018-11-01 2021-09-16 宇部興産株式会社 窒化ケイ素基板の製造方法および窒化ケイ素基板
JP7272370B2 (ja) 2018-11-01 2023-05-12 Ube株式会社 窒化ケイ素基板の製造方法および窒化ケイ素基板

Also Published As

Publication number Publication date
WO1998032711A1 (en) 1998-07-30
EP0963360B1 (en) 2010-02-24
EP0963360A1 (en) 1999-12-15
US5759933A (en) 1998-06-02
DE69841520D1 (de) 2010-04-08

Similar Documents

Publication Publication Date Title
JPH06100370A (ja) 窒化ケイ素系焼結体及びその製造方法
EP0589997B1 (en) High toughness-high strength sintered silicon nitride
JPS64349B2 (ja)
US5352641A (en) Silicon nitride composite sintered body and process for producing same
JP2002513374A (ja) 高い強度と応力破断抵抗を有するガス圧焼結された窒化ケイ素
EP0457618B1 (en) Thermal shock-resistant silicon nitride sintered material and process for producing the same
KR102555662B1 (ko) 질화규소 소결체의 제조방법 및 이에 따라 제조된 질화규소 소결체
EP0764142A1 (en) Stress-rupture resistant sintered silicon nitride
JPH09268069A (ja) 高熱伝導性材料およびその製造方法
US5637540A (en) Sintered silicon nitride of high toughness, strength and reliability
JP3328280B2 (ja) 高い靭性、強度及び信頼性を有する焼結窒化ケイ素
JPH09165264A (ja) 窒化珪素質焼結体およびその製造方法
JP2652936B2 (ja) 窒化珪素質焼結体およびその製造方法
JP3216973B2 (ja) 窒化珪素質焼結体及びその製造方法
JPH0559073B2 (ja)
JPH1059773A (ja) 窒化珪素焼結体及びその製造方法
JP2687633B2 (ja) 窒化珪素焼結体の製造方法
JP3124862B2 (ja) 窒化珪素質焼結体の製造方法
JPH0559074B2 (ja)
JPH042664A (ja) 高強度サイアロン基焼結体
JP2695070B2 (ja) 窒化珪素−炭化珪素複合焼結体の製造方法
JPH06100376A (ja) β−サイアロン質焼結体及びその製造方法
JPH0559077B2 (ja)
JPS5884184A (ja) 高強度窒化珪素焼結体の製造方法
JPH0669905B2 (ja) 窒化珪素質焼結体およびその製造方法