JP2002329852A - Solid-state image pickup apparatus and its manufacturing method - Google Patents
Solid-state image pickup apparatus and its manufacturing methodInfo
- Publication number
- JP2002329852A JP2002329852A JP2001134543A JP2001134543A JP2002329852A JP 2002329852 A JP2002329852 A JP 2002329852A JP 2001134543 A JP2001134543 A JP 2001134543A JP 2001134543 A JP2001134543 A JP 2001134543A JP 2002329852 A JP2002329852 A JP 2002329852A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- state imaging
- imaging device
- semiconductor substrate
- transparent substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 201
- 239000004065 semiconductor Substances 0.000 claims abstract description 175
- 239000000853 adhesive Substances 0.000 claims abstract description 52
- 230000001070 adhesive effect Effects 0.000 claims abstract description 52
- 238000007789 sealing Methods 0.000 claims abstract description 14
- 238000003384 imaging method Methods 0.000 claims description 128
- 125000006850 spacer group Chemical group 0.000 claims description 39
- 229920005989 resin Polymers 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 17
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 239000012790 adhesive layer Substances 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 abstract description 10
- 239000007787 solid Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 59
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000012811 non-conductive material Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14687—Wafer level processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14618—Containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14623—Optical shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14627—Microlenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体撮像装置及び
その製造方法に関し、特に、マイクロレンズを備えた固
体撮像素子をパッケージ化した固体撮像装置とその製造
方法とに関する。The present invention relates to a solid-state imaging device and a method of manufacturing the same, and more particularly, to a solid-state imaging device in which a solid-state imaging device having a microlens is packaged and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来、CCD(Charge Coupled Device)
等を含む固体撮像素子を形成した半導体チップは、図2
1に示すようにパッケージ化されて、CCDエリアセン
サ、CCDラインセンサ等の固体撮像装置として市販さ
れている。この固体撮像装置では、パッケージ100の
表面には段差が設けられ、その中央部分には半導体チッ
プ102を落とし込むための収納部104が設けられて
いる。半導体チップ102はこの収納部104に落とし
込まれ、収納部104の底面に固定されている。半導体
チップ102の端子は、ボンディングワイヤ106によ
ってパッケージ100の段差部108に設けられた端子
と接続されている。また、パッケージ100の上部には
カバーガラス110が取り付けられ、パッケージ100
及びカバーガラス110により形成された内部空間には
窒素ガスが封入されて、半導体チップ102が気密封止
されている。更に、パッケージ100の裏面には、信号
線と接続するためのピン112が設けられている。2. Description of the Related Art Conventionally, CCD (Charge Coupled Device)
A semiconductor chip on which a solid-state imaging device including
As shown in FIG. 1, they are commercially available as solid-state imaging devices such as CCD area sensors and CCD line sensors. In this solid-state imaging device, a step is provided on the surface of the package 100, and a storage portion 104 for dropping the semiconductor chip 102 is provided at the center thereof. The semiconductor chip 102 is dropped into the storage section 104 and fixed to the bottom of the storage section 104. The terminals of the semiconductor chip 102 are connected to the terminals provided on the steps 108 of the package 100 by bonding wires 106. A cover glass 110 is attached to the top of the package 100, and the package 100
A nitrogen gas is sealed in the internal space formed by the cover glass 110 and the semiconductor chip 102 is hermetically sealed. Further, pins 112 for connecting to signal lines are provided on the back surface of the package 100.
【0003】しかしながら、上記のように半導体チップ
をワイヤボンディングにより電気的に接続してパッケー
ジ化すると、固体撮像装置が大型化すると共に、個々の
半導体チップについてワイヤボンディングを行わなくて
はならず実装コストが高くなる、という問題があった。However, when the semiconductor chips are electrically connected and packaged by wire bonding as described above, the solid-state image pickup device becomes large, and the wire bonding must be performed for each semiconductor chip, resulting in a low mounting cost. Has been raised.
【0004】[0004]
【発明が解決しようとする課題】近年、LSIの高集積
化、高性能化に伴い、携帯電話やノートパソコンなど種
々の携帯用電子機器が市販されている。同時に、半導体
デバイスの小型パッケージ化も進み、ウエハ・レベルC
SP(Chip Size Package)と呼ばれる超小型パッケージ
も登場している。このウエハ・レベルCSPでは、ウエ
ハから切り出したチップサイズがパッケージサイズとな
る。In recent years, various portable electronic devices such as portable telephones and notebook personal computers have been marketed with the increasing integration and performance of LSIs. At the same time, the miniaturization of semiconductor devices is progressing, and wafer level C
An ultra-small package called SP (Chip Size Package) has also appeared. In this wafer level CSP, the chip size cut out from the wafer becomes the package size.
【0005】ここで、シェル・ケース(Shell Case)方
式CSPと呼ばれるウエハ・レベルCSPの例について
説明する。このCSPは電気リードの形成方法に特徴が
あるため、CSPの製造工程に従いその構造を説明す
る。まず、図22(A)に示すように、2枚のガラス基
板220、224により挟持されたウエハ214を用意
する。ウエハ214の一主面には半導体デバイスと共に
半導体デバイスと電気的に接続された電極パッド216
が形成されている。このウエハ214の電極パッド21
6が形成された主面には、接着剤218によりガラス基
板220が接着されており、ウエハ214の反対側の主
面には、接着剤222によりガラス基板224が接着さ
れている。Here, an example of a wafer level CSP called a Shell Case CSP will be described. This CSP is characterized by a method of forming an electric lead, and therefore, its structure will be described in accordance with the CSP manufacturing process. First, as shown in FIG. 22A, a wafer 214 sandwiched between two glass substrates 220 and 224 is prepared. An electrode pad 216 electrically connected to the semiconductor device together with the semiconductor device is provided on one main surface of the wafer 214.
Are formed. Electrode pad 21 of this wafer 214
The glass substrate 220 is adhered to the main surface on which 6 is formed by an adhesive 218, and the glass substrate 224 is adhered to the main surface on the opposite side of the wafer 214 by an adhesive 222.
【0006】次に、図22(B)に示すように、ガラス
基板224側から電極パッド216の端面が露出するま
でダイシング・ソーを用いて切り込みを入れ、溝226
を形成する。そして、図22(C)に示すように、電極
パッド216の端面に接触すると共に溝226の斜面2
28を被覆するように、スパッタリングにより金属膜を
蒸着し、リード配線230を形成する。リード配線23
0は、その端部が斜面228に連続するガラス基板22
4の裏面に露出するように形成される。そして、ダイシ
ング・ソーを用いて半導体チップ毎に切り離し、図23
に示すCSPが完成する。このようにウエハ・レベルC
SPでは、パッケージ化を含む全製造工程をウエハの状
態で行えるため、従来に比べて製造コストが大幅に低減
されるという利点もある。Next, as shown in FIG. 22B, a cut is made using a dicing saw until the end surface of the electrode pad 216 is exposed from the glass substrate 224 side, and a groove 226 is formed.
To form Then, as shown in FIG. 22C, the end surface of the electrode pad 216 is brought into contact with the slope 2 of the groove 226.
A metal film is vapor-deposited by sputtering so as to cover 28, and lead wiring 230 is formed. Lead wiring 23
0 is the glass substrate 22 whose end is continuous with the slope 228.
4 so as to be exposed on the back surface. Then, using a dicing saw, the semiconductor chips are cut into individual semiconductor chips.
Is completed. Thus, wafer level C
In the SP, since all the manufacturing steps including packaging can be performed in a wafer state, there is also an advantage that the manufacturing cost is greatly reduced as compared with the related art.
【0007】しかしながら、上記のシェル・ケース方式
CSPでは、半導体デバイスが形成された主面に接着剤
218によりガラス基板220が接着されるため、マイ
クロレンズを備えた固体撮像素子のパッケージ化には適
用できない、という問題がある。即ち、マイクロレンズ
を備えた固体撮像素子のパッケージ化にシェル・ケース
方式をそのまま適用した場合には、マイクロレンズが接
着剤である光硬化性樹脂により被覆され、マイクロレン
ズと周囲の樹脂との屈折率差が小さいことから、レンズ
としての機能(集光機能)を失ってしまう、という問題
がある。However, in the above-mentioned shell case type CSP, since the glass substrate 220 is adhered to the main surface on which the semiconductor device is formed by the adhesive 218, it is applied to packaging of a solid-state imaging device having microlenses. There is a problem that can not be. In other words, when the shell / case method is directly applied to packaging of a solid-state imaging device having a microlens, the microlens is coated with a photo-curable resin as an adhesive, and the microlens and the surrounding resin are refracted. Since the rate difference is small, there is a problem that the function as a lens (light collecting function) is lost.
【0008】本発明は上記問題点に鑑みなされたもので
あり、本発明の目的は、マイクロレンズを備えた固体撮
像素子をマイクロレンズの機能を損なうことなくパッケ
ージ化した固体撮像装置であって、小型で低価格の固体
撮像装置を提供することにある。また、本発明の他の目
的は、マイクロレンズを備えた固体撮像素子をマイクロ
レンズの機能を損なうことなくパッケージ化すると共
に、小型化された固体撮像装置を低コストで製造する、
固体撮像装置の製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid-state imaging device in which a solid-state imaging device having a microlens is packaged without impairing the function of the microlens. An object of the present invention is to provide a small-sized and low-cost solid-state imaging device. Another object of the present invention is to package a solid-state imaging device having a microlens without impairing the function of the microlens, and to manufacture a miniaturized solid-state imaging device at low cost.
An object of the present invention is to provide a method for manufacturing a solid-state imaging device.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明の固体撮像装置は、受光領域の各々に対応し
てマイクロレンズが配置された固体撮像素子が形成され
た半導体基板と、前記固体撮像素子に電源を供給するた
めに、該半導体基板表面のマイクロレンズ配置領域以外
の領域に設けられた表面電極と、前記半導体基板の裏面
に設けられた裏面電極と、前記半導体基板の側面を通し
て、または前記半導体基板を貫通して前記表面電極と前
記裏面電極とを電気的に接続する接続手段と、マイクロ
レンズ配置領域に対向して配置される透明基板と、前記
透明基板が前記マイクロレンズと接触しないように、マ
イクロレンズ配置領域の周囲において前記透明基板を前
記半導体基板に固定すると共に、前記透明基板と前記半
導体基板との間の空間を封止する封止部材と、を備えて
構成したことを特徴とする。In order to achieve the above object, a solid-state imaging device according to the present invention comprises: a semiconductor substrate on which a solid-state imaging device in which microlenses are arranged corresponding to respective light receiving regions is formed; A surface electrode provided in a region other than the microlens arrangement region on the surface of the semiconductor substrate, a back electrode provided on a back surface of the semiconductor substrate, and a side surface of the semiconductor substrate for supplying power to the solid-state imaging device; Connecting means for electrically connecting the front surface electrode and the back surface electrode through or through the semiconductor substrate, a transparent substrate arranged to face a microlens arrangement region, and the transparent substrate So that the transparent substrate is fixed to the semiconductor substrate around the microlens arrangement region so that the transparent substrate and the semiconductor substrate are not in contact with each other. Characterized by being configured with a sealing member for sealing between.
【0010】本発明の固体撮像装置は、受光領域の各々
に対応してマイクロレンズが配置された固体撮像素子が
形成された半導体基板を備えている。この半導体基板の
マイクロレンズ配置領域に対向して透明基板が配置され
る。例えば接着剤等の封止部材によって、この透明基板
がマイクロレンズと接触しないように、マイクロレンズ
配置領域の周囲において透明基板を半導体基板に固定す
ると共に、透明基板と半導体基板との間の空間を封止す
るので、マイクロレンズが接着剤により被覆されたり、
マイクロレンズが透明基板と接触してレンズ表面が傷付
いたりすることがなく、マイクロレンズの機能は損なわ
れることがない。[0010] The solid-state imaging device of the present invention includes a semiconductor substrate on which a solid-state imaging device in which microlenses are arranged corresponding to respective light receiving regions is formed. A transparent substrate is arranged to face the microlens arrangement region of the semiconductor substrate. For example, the transparent substrate is fixed to the semiconductor substrate around the microlens disposition area by a sealing member such as an adhesive so that the transparent substrate does not contact the microlens, and the space between the transparent substrate and the semiconductor substrate is reduced. Because it seals, the micro lens is covered with adhesive,
The surface of the lens is not damaged by the contact of the microlens with the transparent substrate, and the function of the microlens is not impaired.
【0011】また、固体撮像素子に電源を供給するため
に、半導体基板表面のマイクロレンズ配置領域以外の領
域に設けられた表面電極と、前記半導体基板の裏面に設
けられた裏面電極とを、半導体基板の側面を通してまた
は半導体基板を貫通して電気的に接続する接続手段を備
えているので、半導体チップをワイヤボンディングによ
り電気的に接続してパッケージ化する場合に比べ、配線
スペースを大幅に節約することができ、固体撮像装置の
小型化を図ることができる。In order to supply power to the solid-state imaging device, a front electrode provided in a region other than the microlens arrangement region on the front surface of the semiconductor substrate and a back electrode provided on the back surface of the semiconductor substrate are connected to a semiconductor substrate. Since connection means is provided for electrical connection through the side surface of the substrate or through the semiconductor substrate, wiring space is significantly reduced as compared with the case where the semiconductor chip is electrically connected by wire bonding and packaged. Accordingly, the size of the solid-state imaging device can be reduced.
【0012】更に、本発明の固体撮像装置は、パッケー
ジ化を含む全製造工程をウエハの状態で行えるため、従
来に比べて製造コストが大幅に低減されるという利点も
ある。Further, the solid-state imaging device according to the present invention has an advantage that the manufacturing cost can be greatly reduced as compared with the conventional one because all the manufacturing steps including packaging can be performed in a wafer state.
【0013】上記の固体撮像装置において、封止部材と
しては、半導体基板と透明基板とを所定間隔離間させる
と共にマイクロレンズ配置領域を取り囲むスペーサを備
え、半導体基板と透明基板と間の空間を接着により封止
する封止部材を使用するのが好ましい。この場合、スペ
ーサ及び接着剤が封止部材となるが、スペーサにより半
導体基板と透明基板との間隔が一定に保たれると共に、
スペーサによりマイクロレンズ配置領域への接着剤の侵
入が防止される。スペーサの高さは、前記透明基板が前
記マイクロレンズと接触しない高さとするのが好まし
い。In the solid-state imaging device described above, the sealing member includes a spacer that separates the semiconductor substrate and the transparent substrate from each other by a predetermined distance and surrounds the microlens arrangement region, and bonds the space between the semiconductor substrate and the transparent substrate by bonding. It is preferable to use a sealing member for sealing. In this case, the spacer and the adhesive serve as a sealing member, but the spacer keeps the distance between the semiconductor substrate and the transparent substrate constant, and
The spacer prevents the adhesive from entering the microlens arrangement region. It is preferable that the height of the spacer be a height at which the transparent substrate does not contact the microlens.
【0014】また、封止部材は、半導体基板と透明基板
と間の空間を接着により封止する接着層であってもよ
い。この場合、スペーサ形成工程が省略でき製造工程を
簡略化することができる。Further, the sealing member may be an adhesive layer for sealing a space between the semiconductor substrate and the transparent substrate by bonding. In this case, the spacer forming step can be omitted, and the manufacturing process can be simplified.
【0015】接続手段は、半導体基板の側面に設けられ
たリード配線、または半導体基板を貫通する埋め込み配
線とすることができる。また、接着剤としては紫外線硬
化樹脂が好ましい。The connection means may be a lead wire provided on a side surface of the semiconductor substrate or a buried wire penetrating the semiconductor substrate. Further, as the adhesive, an ultraviolet curable resin is preferable.
【0016】本発明の固体撮像装置の製造方法は、受光
領域の各々に対応してマイクロレンズが配置された固体
撮像素子が形成され、表面のマイクロレンズ配置領域以
外の領域に表面電極が設けられると共に裏面に裏面電極
が設けられた半導体基板と、マイクロレンズ配置領域に
対向して配置される透明基板との少なくとも一方にスペ
ーサを形成し、透明基板及び半導体基板の間にスペーサ
を介在させて透明基板及び半導体基板をマイクロレンズ
配置領域以外の領域で貼着し、貼着した透明基板及び半
導体基板を、表面電極のマイクロレンズ配置領域と反対
側の端部が露出するように裏面から溝を切り欠いて、該
溝の斜面に前記表面電極と前記裏面電極とを電気的に接
続するリード配線を形成し、貼着した透明基板及び半導
体基板を、前記溝の底部で固体撮像素子単位に切断して
固体撮像装置を製造することを特徴とする。According to the method of manufacturing a solid-state imaging device of the present invention, a solid-state imaging device in which microlenses are arranged corresponding to respective light receiving regions is formed, and a surface electrode is provided in a region other than the microlens arrangement region on the surface. In addition, a spacer is formed on at least one of the semiconductor substrate having the back electrode provided on the back surface and the transparent substrate disposed to face the microlens placement region, and the spacer is interposed between the transparent substrate and the semiconductor substrate to form a transparent substrate. The substrate and the semiconductor substrate are attached in a region other than the microlens arrangement region, and a groove is cut from the back surface of the adhered transparent substrate and the semiconductor substrate so that the end of the surface electrode opposite to the microlens arrangement region is exposed. The lead substrate for electrically connecting the front surface electrode and the back surface electrode is formed on the slope of the groove, and the transparent substrate and the semiconductor substrate adhered to the groove are removed from the groove. Cut into the solid-state imaging device unit at the bottom, characterized in that to produce a solid-state imaging device.
【0017】この製造方法では、透明基板及び半導体基
板の間にスペーサを介在させて透明基板及び半導体基板
をマイクロレンズ配置領域以外の領域で貼着するので、
スペーサにより半導体基板と透明基板との間隔が一定に
保たれると共に、スペーサによりマイクロレンズ配置領
域への接着剤の侵入が防止され、マイクロレンズが接着
剤により被覆されたり、マイクロレンズが透明基板と接
触してレンズ表面が傷付いたりすることがなく、マイク
ロレンズの機能が損なわれることがない。なお、半導体
基板と透明基板との間隔が一定に保たれることにより、
透明基板が固体撮像装置の配置面に対してフラットにな
り固体撮像素子の光学精度が向上する。In this manufacturing method, the spacer is interposed between the transparent substrate and the semiconductor substrate, and the transparent substrate and the semiconductor substrate are bonded in a region other than the microlens arrangement region.
The spacer keeps the distance between the semiconductor substrate and the transparent substrate constant, and prevents the adhesive from entering the microlens placement area by the spacer. The lens surface is not damaged by contact, and the function of the microlens is not impaired. In addition, by keeping the distance between the semiconductor substrate and the transparent substrate constant,
The transparent substrate is flat with respect to the arrangement surface of the solid-state imaging device, and the optical accuracy of the solid-state imaging device is improved.
【0018】また、貼着した透明基板及び半導体基板
を、表面電極のマイクロレンズ配置領域と反対側の端部
が露出するように裏面から溝を切り欠いて、該溝の斜面
に表面電極と裏面電極とを電気的に接続するリード配線
を形成するので、半導体チップをワイヤボンディングに
より電気的に接続してパッケージ化する場合に比べ、配
線スペースを大幅に節約することができ、固体撮像装置
の小型化を図ることができる。A groove is cut from the back surface of the adhered transparent substrate and semiconductor substrate so that an end of the surface electrode opposite to the microlens arrangement region is exposed, and the surface electrode and the back surface are formed on the slope of the groove. Since lead wires for electrically connecting the electrodes are formed, the wiring space can be greatly reduced as compared with the case where the semiconductor chip is electrically connected by wire bonding and packaged, and the solid-state imaging device can be reduced in size. Can be achieved.
【0019】更に、リード配線を形成した後に、貼着し
た透明基板及び半導体基板を固体撮像素子単位に切断し
て固体撮像装置を製造するので、パッケージ化を含む全
製造工程をウエハの状態で行うことができ、従来に比べ
て製造コストが大幅に低減される。Further, after the lead wiring is formed, the adhered transparent substrate and semiconductor substrate are cut into solid-state image pickup devices to manufacture a solid-state image pickup device. Therefore, all manufacturing steps including packaging are performed in a wafer state. As a result, the manufacturing cost is greatly reduced as compared with the conventional case.
【0020】また、本発明のもう一つの固体撮像装置の
製造方法は、固体撮像素子が形成された半導体基板に、
該半導体基板を貫通する埋め込み配線を形成し、半導体
基板表面の固体撮像素子の受光領域の外側に表面電極を
設けると共に裏面に裏面電極を設けて、前記埋め込み配
線により前記表面電極と前記裏面電極とを電気的に接続
し、前記固体撮像素子の受光領域の各々に対応してマイ
クロレンズを配置し、マイクロレンズ配置領域に対向し
て配置される透明基板及び半導体基板を所定間隔離間さ
せてマイクロレンズ配置領域以外の領域で貼着し、貼着
した透明基板及び半導体基板を、固体撮像素子単位に切
断して固体撮像装置を製造することを特徴とする。According to another method of manufacturing a solid-state imaging device of the present invention, a semiconductor substrate on which a solid-state imaging device is formed is provided on a semiconductor substrate.
An embedded wiring penetrating the semiconductor substrate is formed, a front surface electrode is provided outside the light receiving region of the solid-state imaging device on the surface of the semiconductor substrate, and a back surface electrode is provided on the back surface. Are electrically connected to each other, micro lenses are arranged corresponding to each of the light receiving areas of the solid-state imaging device, and the transparent substrate and the semiconductor substrate arranged opposite to the micro lens arranging area are spaced apart from each other by a predetermined distance. The solid-state imaging device is manufactured by cutting the transparent substrate and the semiconductor substrate which are attached to each other in an area other than the arrangement area, in units of solid-state imaging elements.
【0021】この製造方法では、透明基板及び半導体基
板を所定間隔離間させてマイクロレンズ配置領域以外の
領域で貼着するので、マイクロレンズが接着剤により被
覆されたり、マイクロレンズが透明基板と接触してレン
ズ表面が傷付いたりすることがなく、マイクロレンズの
機能が損なわれることがない。In this manufacturing method, since the transparent substrate and the semiconductor substrate are adhered to each other in a region other than the microlens arrangement region with a predetermined space therebetween, the microlens is covered with an adhesive or the microlens contacts the transparent substrate. The lens surface is not damaged and the function of the microlens is not impaired.
【0022】また、固体撮像素子が形成された半導体基
板に、該半導体基板を貫通する埋め込み配線を形成し、
半導体基板表面の固体撮像素子の受光領域の外側に表面
電極を設けると共に裏面に裏面電極を設けて、埋め込み
配線により表面電極と裏面電極とを電気的に接続するの
で、半導体チップをワイヤボンディングにより電気的に
接続してパッケージ化する場合に比べ、配線スペースを
大幅に節約することができ、固体撮像装置の小型化を図
ることができる。Further, a buried wiring penetrating the semiconductor substrate is formed on the semiconductor substrate on which the solid-state imaging device is formed,
A front surface electrode is provided outside the light receiving region of the solid-state imaging device on the surface of the semiconductor substrate, and a back surface electrode is provided on the back surface. The front surface electrode and the back surface electrode are electrically connected by embedded wiring, so that the semiconductor chip is electrically connected by wire bonding. The wiring space can be greatly reduced as compared with the case where the components are connected in a package, and the size of the solid-state imaging device can be reduced.
【0023】更に、透明基板及び半導体基板を貼着した
後に、貼着した透明基板及び半導体基板を固体撮像素子
単位に切断して固体撮像装置を製造するので、パッケー
ジ化を含む全製造工程をウエハの状態で行うことがで
き、従来に比べて製造コストが大幅に低減される。Further, after the transparent substrate and the semiconductor substrate are bonded, the bonded transparent substrate and the semiconductor substrate are cut into solid-state image pickup devices to manufacture a solid-state imaging device. , And the manufacturing cost is greatly reduced as compared with the related art.
【0024】なお、上記において受光領域とは固体撮像
素子を構成する光電変換素子各々の受光領域を意味して
いる。以下の説明においては、複数の光電変換素子が配
列された領域を固体撮像素子の受光領域と称する場合が
ある。In the above description, the light receiving region means a light receiving region of each of the photoelectric conversion elements constituting the solid-state imaging device. In the following description, a region where a plurality of photoelectric conversion elements are arranged may be referred to as a light receiving region of a solid-state imaging device.
【0025】[0025]
【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について詳細に説明する。 (第1の実施の形態)第1の実施の形態に係る固体撮像
装置は、図1及び図2に示すように、シェル・ケース方
式のチップ・サイズ・パッケージ(CSP)として構成
されている。なお、図1は後述する透明基板64及び接
着剤62を通して見た固体撮像装置の平面図であり、透
明基板64は2点鎖線で表示されている。この固体撮像
装置は、複数(図1では16個)のマイクロレンズ50
を備えた固体撮像素子が形成された略矩形状の半導体チ
ップ52を備えており、この半導体チップ52は、例え
ば紫外線硬化樹脂等の接着剤54によりガラス等の絶縁
材料で構成された基板56に貼り付けられている。Embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment) As shown in FIGS. 1 and 2, the solid-state imaging device according to the first embodiment is configured as a shell case type chip size package (CSP). FIG. 1 is a plan view of the solid-state imaging device viewed through a transparent substrate 64 and an adhesive 62 described later, and the transparent substrate 64 is indicated by a two-dot chain line. This solid-state imaging device includes a plurality (16 in FIG. 1) of micro lenses 50.
And a semiconductor chip 52 having a substantially rectangular shape on which a solid-state image pickup device having the same is formed. The semiconductor chip 52 is mounted on a substrate 56 made of an insulating material such as glass with an adhesive 54 such as an ultraviolet curing resin. It is pasted.
【0026】半導体チップ52の表面には、マイクロレ
ンズ50が配置された領域70を取り囲むようにスペー
サ60が設けられ、このスペーサ60によって、マイク
ロレンズ50が配置された領域70と該領域の周囲に在
る領域72とが隔離されている。また、領域72には、
半導体チップ52の対向する短辺に沿って略矩形状の電
極パッド58が所定間隔で複数(図1では10個)配設
されており、各電極パッド58は半導体チップ52に形
成された固体撮像素子の各電極に図示しない配線により
電気的に接続されている。電極パッド58は、例えばア
ルミニウム(Al)やクロム(Cr)等の金属で形成す
ることができる。A spacer 60 is provided on the surface of the semiconductor chip 52 so as to surround the region 70 in which the microlenses 50 are disposed. The existing area 72 is isolated. In the area 72,
A plurality (ten in FIG. 1) of substantially rectangular electrode pads 58 are arranged at predetermined intervals along the opposing short sides of the semiconductor chip 52, and each electrode pad 58 is formed by a solid-state imaging device formed on the semiconductor chip 52. Each electrode of the element is electrically connected by a wiring (not shown). The electrode pad 58 can be formed of a metal such as aluminum (Al) or chromium (Cr).
【0027】電極パッド58の端部は、半導体チップ5
2の側面を通って基板56の裏面にまで延びたリード配
線82に電気的に接続されている。リード配線82は、
例えばアルミニウム(Al)やクロム(Cr)等の金属
で形成することができる。The end of the electrode pad 58 is connected to the semiconductor chip 5
2 is electrically connected to a lead wiring 82 extending to the back surface of the substrate 56 through the side surface of the second substrate 56. The lead wiring 82
For example, it can be formed of a metal such as aluminum (Al) or chromium (Cr).
【0028】半導体チップ52の領域70に対向するよ
うに透明基板64が配置されている。半導体チップ52
と透明基板64とは、半導体チップ52と透明基板64
との間に挟み込まれたスペーサ60によって、透明基板
64がマイクロレンズ50と接触しないように一定の間
隔で離間されている。スペーサ60の高さは、マイクロ
レンズ50より高ければよく、マイクロレンズ50の高
さは通常約2μmであるから、スペーサ60は3〜10
μm、好ましくは3〜5μmの高さで形成される。これ
によりマイクロレンズ50が透明基板64と接触して、
レンズ表面が傷付くことがない。また、透明基板64の
材料としては、ガラス、ポリカーボネート等の透明な絶
縁性材料が好ましく、特にガラスが好ましい。The transparent substrate 64 is arranged so as to face the region 70 of the semiconductor chip 52. Semiconductor chip 52
And the transparent substrate 64 include the semiconductor chip 52 and the transparent substrate 64.
The transparent substrate 64 is spaced apart from the microlens 50 at a constant interval by a spacer 60 sandwiched between the transparent substrate 64 and the microlens 50. The height of the spacer 60 may be higher than that of the microlens 50, and the height of the microlens 50 is usually about 2 μm.
μm, preferably 3 to 5 μm in height. Thereby, the microlens 50 comes in contact with the transparent substrate 64,
The lens surface is not damaged. As a material of the transparent substrate 64, a transparent insulating material such as glass and polycarbonate is preferable, and glass is particularly preferable.
【0029】半導体チップ52の領域72において、接
着剤62により半導体チップ52が透明基板64に貼り
付けられて、透明基板64が半導体チップ52に固定さ
れると共に、半導体チップ52と透明基板64との間に
形成された僅かな空間66が封止される。接着剤62と
しては、例えば感光性ポリイミド等の紫外線硬化性樹脂
を用いることができる。スペーサ60の材料は特に制限
されないが、接着剤62と同じ材料で構成する場合に
は、硬化後はスペーサ60と接着剤62とを一体化する
ことができ、接着強度を向上させることができる。In the region 72 of the semiconductor chip 52, the semiconductor chip 52 is adhered to the transparent substrate 64 by the adhesive 62, and the transparent substrate 64 is fixed to the semiconductor chip 52, and the semiconductor chip 52 and the transparent substrate 64 A small space 66 formed therebetween is sealed. As the adhesive 62, for example, an ultraviolet curable resin such as photosensitive polyimide can be used. The material of the spacer 60 is not particularly limited. However, when the spacer 60 is made of the same material as the adhesive 62, the spacer 60 and the adhesive 62 can be integrated after curing, and the adhesive strength can be improved.
【0030】図3は、図2に示す固体撮像装置のB−B
線断面図であり、表面にマイクロレンズ50が形成され
た部分での半導体チップ52の断面構造を示している。
図3に示すように、半導体基板12は、大きく分けてシ
リコン等のn型半導体基板12aとp型不純物添加領域
(p−ウエル)12bとから構成されている。フォトダ
イオード14は、このp型不純物添加領域12b内に埋
込型のフォトダイオードとして形成され、既に述べた通
り、電荷蓄積領域として機能するn型不純物添加領域1
4a、及びn型不純物添加領域14a上に形成されたp
+型不純物添加領域14bから構成されている。FIG. 3 is a sectional view of the solid-state imaging device shown in FIG.
FIG. 4 is a line cross-sectional view showing a cross-sectional structure of the semiconductor chip 52 at a portion where a microlens 50 is formed on the surface.
As shown in FIG. 3, the semiconductor substrate 12 is roughly composed of an n-type semiconductor substrate 12a of silicon or the like and a p-type impurity added region (p-well) 12b. The photodiode 14 is formed as a buried photodiode in the p-type impurity-added region 12b, and as described above, the n-type impurity-added region 1 that functions as a charge storage region.
4a and p formed on n-type impurity added region 14a.
It is composed of a + type impurity added region 14b.
【0031】垂直電荷転送チャネル20は、p型不純物
添加領域12b内に厚さ約0.3μmのn型不純物添加
領域として形成されている。垂直電荷転送チャネル20
と、この垂直電荷転送チャネル20に信号電荷を読み出
す側のフォトダイオード14との間には、p型不純物添
加領域で形成された読み出しゲート用チャネル26が設
けられている。半導体基板12の表面には、この読み出
しゲート用チャネル26に沿ってn型不純物添加領域1
4aが露出している。そして、フォトダイオード14で
発生した信号電荷は、n型不純物添加領域14aに一時
的に蓄積された後、読み出しゲート用チャネル26を介
して読み出される。The vertical charge transfer channel 20 is formed as an n-type doped region having a thickness of about 0.3 μm in the p-type doped region 12b. Vertical charge transfer channel 20
A read gate channel 26 formed of a p-type impurity added region is provided between the vertical charge transfer channel 20 and the photodiode 14 on the side from which signal charges are read. The n-type impurity-added region 1 is formed on the surface of the semiconductor substrate 12 along the read gate channel 26.
4a is exposed. Then, the signal charges generated in the photodiode 14 are temporarily stored in the n-type impurity added region 14a, and then read out through the read gate channel 26.
【0032】一方、垂直電荷転送チャネル20と他のフ
ォトダイオード14との間には、p+型不純物添加領域
であるチャネルストップ28が設けられている。このチ
ャネルストップ28により、フォトダイオード14と垂
直電荷転送チャネル20とが電気的に分離されると共
に、垂直電荷転送チャネル20同士も相互に接触しない
ように分離される。On the other hand, between the vertical charge transfer channel 20 and the other photodiode 14, a channel stop 28, which is a p + -type impurity added region, is provided. The channel stop 28 electrically separates the photodiode 14 and the vertical charge transfer channel 20 from each other, and also separates the vertical charge transfer channels 20 from each other so as not to contact each other.
【0033】半導体基板12の表面には、ゲート酸化膜
30を介して、フォトダイオード間を通過するように水
平方向に延びた転送電極(垂直転送電極)32が厚さ約
0.3μmで形成されている。また、転送電極32は、
読み出しゲート用チャネル26を覆うと共に、n型不純
物添加領域14aが露出し、チャネルストップ28の一
部が露出するように形成されている。なお、転送電極3
2のうち読み出し信号が印加される電極の下方にある読
み出しゲート用チャネル26から信号電荷が転送され
る。A transfer electrode (vertical transfer electrode) 32 extending in the horizontal direction and having a thickness of about 0.3 μm is formed on the surface of the semiconductor substrate 12 via the gate oxide film 30 so as to pass between the photodiodes. ing. Further, the transfer electrode 32
It is formed so as to cover the read gate channel 26, expose the n-type impurity added region 14a, and expose a part of the channel stop 28. The transfer electrode 3
2, signal charges are transferred from the read gate channel 26 below the electrode to which the read signal is applied.
【0034】転送電極32は、垂直電荷転送チャネル2
0と共に、フォトダイオード14で発生した信号電荷を
垂直方向に転送する垂直電荷転送装置(VCCD)33
を構成している。転送電極32は、半導体製造プロセス
あるいは固体デバイスで一般に使用される電極材料を用
いて構成することができる。The transfer electrode 32 is connected to the vertical charge transfer channel 2
0, a vertical charge transfer device (VCCD) 33 for transferring signal charges generated by the photodiode 14 in the vertical direction.
Is composed. The transfer electrode 32 can be formed using an electrode material generally used in a semiconductor manufacturing process or a solid-state device.
【0035】転送電極32が形成された半導体基板12
の表面は、透明樹脂等で構成された表面保護膜36によ
り覆われ、この表面保護膜36上には、厚さ約0.3μ
mの遮光膜38が形成されている。遮光膜38は、各フ
ォトダイオード14毎に、受光領域であるp+型不純物
添加領域14bに受光される光を透過させる光透過部と
して所定形状の開口部40を有している。遮光膜38の
縁部は、受光領域の中心方向に延在させられており、遮
光膜38によりフォトダイオード14の開口形状が画定
されている。遮光膜38は、樹脂材料等の非導電性材料
から形成されている。樹脂材料としては、感光性樹脂ま
たはゼラチンを主基材として含むものが好ましい。例え
ば、可視光を吸収または反射する顔料を樹脂に分散する
こと、または可視光を吸収または反射する染料で樹脂を
染色することにより遮光性が付与された樹脂材料を使用
することができるが、光吸収性(低反射率)材料である
ことが好ましく、例えば、黒色の顔料を樹脂に分散させ
た樹脂材料、または黒色の染料で樹脂を染色した樹脂材
料を使用することができる。開口部40は、非導電性材
料からなる薄膜上にパターニングにより遮光部分にレジ
ストマスクを形成し、このレジストマスクを用いたエッ
チングにより非導電性材料を取り除いて形成することが
できる。Semiconductor substrate 12 on which transfer electrode 32 is formed
Is covered with a surface protection film 36 made of a transparent resin or the like, and the surface protection film 36 has a thickness of about 0.3 μm.
m light-shielding films 38 are formed. The light-shielding film 38 has, for each photodiode 14, an opening 40 having a predetermined shape as a light transmitting portion for transmitting light received by the p + -type impurity-added region 14b, which is a light receiving region. The edge of the light-shielding film 38 extends toward the center of the light-receiving region, and the opening shape of the photodiode 14 is defined by the light-shielding film 38. The light shielding film 38 is formed from a non-conductive material such as a resin material. The resin material preferably contains a photosensitive resin or gelatin as a main base material. For example, a resin material that is provided with a light-blocking property by dispersing a pigment that absorbs or reflects visible light in a resin, or dyeing the resin with a dye that absorbs or reflects visible light can be used. It is preferably an absorptive (low reflectance) material. For example, a resin material in which a black pigment is dispersed in a resin, or a resin material in which a resin is dyed with a black dye can be used. The opening 40 can be formed by forming a resist mask on a light-shielding portion by patterning on a thin film made of a non-conductive material, and removing the non-conductive material by etching using the resist mask.
【0036】遮光膜38及び遮光膜38から露出してい
る表面保護膜36上には、透明樹脂で形成された厚さ約
1.0μmの絶縁層43及び平坦化膜44を介して、赤
色(R)フィルタ46R、緑色(G)フィルタ46G及
び青色(B)フィルタ46Bを備えた色フィルタアレイ
46が形成されている。Rフィルタ46R、Gフィルタ
46G及びBフィルタ46Bは、個々のフォトダイオー
ド14に対応して、所定のパターンで配置されている。
色フィルタの配列パターンについては、詳細な説明を省
略するが、図3においては、Rフィルタ46R、Gフィ
ルタ46G及びBフィルタ46Bが1個ずつ示されてい
る。このような色フィルタアレイ46は、例えば、所望
色の顔料もしくは染料を含有させた樹脂(カラーレジ
ン)領域を、フォトリソグラフィ法等を用いて所定箇所
に形成することによって作製することができる。On the light-shielding film 38 and the surface protective film 36 exposed from the light-shielding film 38, a red color (about 1.0 μm thick insulating layer 43 and a flattening film 44) is formed. A color filter array 46 including an R) filter 46R, a green (G) filter 46G, and a blue (B) filter 46B is formed. The R filter 46R, the G filter 46G, and the B filter 46B are arranged in a predetermined pattern corresponding to the individual photodiodes 14.
Although a detailed description of the arrangement pattern of the color filters is omitted, FIG. 3 shows one R filter 46R, one G filter 46G, and one B filter 46B. Such a color filter array 46 can be manufactured, for example, by forming a resin (color resin) region containing a pigment or dye of a desired color at a predetermined position using a photolithography method or the like.
【0037】色フィルタアレイ46上には、平坦化膜4
8を介して、複数のマイクロレンズ50を備えたマイク
ロレンズアレイが形成されている。マイクロレンズ50
は、個々のフォトダイオード14に対応して配列されて
いる。これらマイクロレンズ50は、例えば、屈折率が
略1.3〜2.0の透明樹脂(フォトレジストを含む)
からなる層をフォトリソグラフィ法等によって所定形状
に区画した後、熱処理によって各区画の透明樹脂層を溶
融させ、表面張力によって角部を丸めた後に冷却するこ
と等により形成することができる。フォトダイオード1
4の開口部40の径(即ち、画素径)は4〜5μmであ
り、マイクロレンズ50は画素全体を覆うと共に高さ約
2μmで形成される。なお、半導体基板12から平坦化
膜48の表面までの厚さは約5μmとする。On the color filter array 46, the flattening film 4
Through 8, a microlens array including a plurality of microlenses 50 is formed. Micro lens 50
Are arranged corresponding to the individual photodiodes 14. These microlenses 50 are, for example, transparent resins having a refractive index of approximately 1.3 to 2.0 (including a photoresist).
Can be formed by, for example, partitioning a layer made of from a predetermined shape by a photolithography method or the like, melting the transparent resin layer of each partition by heat treatment, rounding corners by surface tension, and then cooling. Photodiode 1
The diameter of the opening 40 (that is, the pixel diameter) is 4 to 5 μm, and the microlens 50 covers the entire pixel and has a height of about 2 μm. Note that the thickness from the semiconductor substrate 12 to the surface of the planarizing film 48 is about 5 μm.
【0038】次に、図4〜図7を参照して、第1の実施
の形態に係る固体撮像装置の製造方法について説明す
る。まず、図4に示すように、接着剤54により基板5
6に貼り付けられたシリコン等の半導体ウエハ68と透
明基板64とを用意する。半導体ウエハ68には、複数
のマイクロレンズ50を備えた固体撮像素子が複数個形
成されている。固体撮像素子が形成された領域は、マイ
クロレンズ50が配置された領域70と、この領域70
の周囲に在る配線等を行うための領域72とに区別され
ている。また、ダイシングによりパッケージ化後に個々
の固体撮像装置に分離するために、隣接する2つの固体
撮像素子の間にはダイシング領域76が設けられてい
る。Next, a method of manufacturing the solid-state imaging device according to the first embodiment will be described with reference to FIGS. First, as shown in FIG.
A semiconductor wafer 68 made of silicon or the like adhered to 6 and a transparent substrate 64 are prepared. On the semiconductor wafer 68, a plurality of solid-state imaging devices provided with a plurality of microlenses 50 are formed. The region where the solid-state imaging device is formed includes a region 70 where the microlens 50 is disposed,
And a region 72 for wiring and the like which is located around the area. A dicing region 76 is provided between two adjacent solid-state imaging devices in order to separate the individual solid-state imaging devices after packaging by dicing.
【0039】透明基板64の半導体ウエハ68と対向す
る面には、半導体ウエハ68と透明基板64とを位置合
わせして貼り合わせたときに半導体ウエハ68表面の領
域70を取り囲むことができるようにレイアウトされ
た、所定高さのスペーサ60が設けられている。本実施
の形態では、透明基板64側にスペーサ60を設けて半
導体ウエハ68と透明基板64とを貼り合わせること
で、半導体ウエハ68表面と透明基板64との間隔を一
定にすることができ、位置合わせも容易である。The surface of the transparent substrate 64 facing the semiconductor wafer 68 is laid out so as to surround the region 70 on the surface of the semiconductor wafer 68 when the semiconductor wafer 68 and the transparent substrate 64 are aligned and bonded. A spacer 60 having a predetermined height is provided. In the present embodiment, by providing the spacer 60 on the transparent substrate 64 side and bonding the semiconductor wafer 68 and the transparent substrate 64, the distance between the surface of the semiconductor wafer 68 and the transparent substrate 64 can be made constant, It is easy to match.
【0040】次に、図5に示すように、半導体ウエハ6
8の領域72及びダイシング領域76に、接着剤62と
して紫外線硬化性樹脂を所定厚さで塗布する。スペーサ
60が半導体ウエハ68表面の領域70を取り囲むよう
に位置合わせして、半導体ウエハ68と透明基板64と
を重ね合わせ、透明基板64側から紫外線を照射して接
着剤62を硬化させ、半導体ウエハ68と透明基板64
とを貼り合わせる。この接着工程は、真空中または窒素
等の不活性ガス雰囲気下で実施することが好ましい。貼
り合わせの際には、スペーサ60が壁となって接着剤6
2が領域70に侵入するのを防止するので、マイクロレ
ンズ50が接着剤により被覆されてレンズとしての機能
を失うことがない。Next, as shown in FIG.
An ultraviolet curable resin is applied to the region 72 and the dicing region 76 as the adhesive 62 with a predetermined thickness. The spacer 60 is positioned so as to surround the region 70 on the surface of the semiconductor wafer 68, the semiconductor wafer 68 and the transparent substrate 64 are overlapped, and ultraviolet light is irradiated from the transparent substrate 64 side to cure the adhesive 62, 68 and transparent substrate 64
And stick them together. This bonding step is preferably performed in a vacuum or in an atmosphere of an inert gas such as nitrogen. At the time of bonding, the spacer 60 serves as a wall to serve as an adhesive 6
2 is prevented from entering the region 70, so that the microlens 50 is not covered with the adhesive and does not lose its function as a lens.
【0041】次に、図6に示すように、ダイシング領域
76に、基板56側から電極パッド58の端面が露出す
るまでダイシング・ソーを用いて切り込みを入れ、斜面
80を備えた溝78を形成する。この結果、領域76に
は透明基板64と硬化後の接着剤62とが残存してい
る。Next, as shown in FIG. 6, a cut is made in the dicing region 76 using a dicing saw from the substrate 56 side until the end surface of the electrode pad 58 is exposed, thereby forming a groove 78 having a slope 80. I do. As a result, the transparent substrate 64 and the cured adhesive 62 remain in the region 76.
【0042】次に、図7に示すように、電極パッド58
の端面に接触すると共に溝62の斜面80を被覆し且つ
その端部が斜面80に連続する基板56の裏面に露出す
るように、スパッタリングにより金属膜を蒸着してリー
ド配線82を形成する。最後に、ダイシング領域76の
略中央に在るダイシングライン77に沿って固体撮像素
子単位に切断し、個々の固体撮像装置に分離すると、図
1及び図2に示すCSPで構成された固体撮像装置を得
ることができる。なお、半導体ウエハ68と表示してい
た部分は、個々の固体撮像装置に分離された後は、半導
体チップ52となる。Next, as shown in FIG.
A metal film is deposited by sputtering to form the lead wiring 82 so as to contact the end face of the groove 62 and cover the slope 80 of the groove 62 and expose the end to the back surface of the substrate 56 continuous with the slope 80. Lastly, the solid-state imaging device is cut along a dicing line 77 located substantially at the center of the dicing region 76 into individual solid-state imaging devices and separated into individual solid-state imaging devices. Can be obtained. Note that the portion indicated as the semiconductor wafer 68 becomes the semiconductor chip 52 after being separated into individual solid-state imaging devices.
【0043】以上の通り、本実施の形態の固体撮像装置
は、シェル・ケース方式のウエハ・レベルCSPと呼ば
れる小型パッケージで構成されている。このCSPでは
電極パッドに接続されたリード配線が側面から裏面へと
延びており裏面配線を行うことが可能であり、半導体チ
ップをワイヤボンディングにより電気的に接続してパッ
ケージ化する場合に比べ、配線スペースを大幅に節約す
ることができ、固体撮像装置の超小型化を図ることがで
きる。また、電極パッドの形成やリード配線等、パッケ
ージ化を含む全製造工程をウエハの状態で行えるため、
従来の固体撮像装置に比べて製造コストが大幅に低減さ
れる また、半導体チップの表面には、マイクロレンズ配置領
域を取り囲むようにスペーサが設けられており、このス
ペーサが壁となって接着剤のマイクロレンズ配置領域へ
の侵入が防止されるので、マイクロレンズが接着剤によ
り被覆されてレンズとしての機能を失うことがない。ま
た、スペーサの高さは、マイクロレンズより高くなるよ
うに設定されているので、マイクロレンズが透明基板と
接触してレンズ表面が傷付くこともない。As described above, the solid-state imaging device according to the present embodiment is constituted by a small package called a wafer level CSP of the shell case type. In this CSP, the lead wiring connected to the electrode pad extends from the side surface to the back surface, so that the back surface wiring can be performed. Compared with the case where the semiconductor chip is electrically connected by wire bonding to form a package, the wiring is reduced. The space can be largely saved, and the solid-state imaging device can be miniaturized. In addition, since all manufacturing processes including packaging, such as formation of electrode pads and lead wiring, can be performed in a wafer state,
The manufacturing cost is greatly reduced as compared with the conventional solid-state imaging device.Moreover, a spacer is provided on the surface of the semiconductor chip so as to surround the microlens arrangement region. Since the intrusion into the microlens arrangement region is prevented, the microlens is not covered with the adhesive and does not lose its function as a lens. Further, since the height of the spacer is set to be higher than that of the microlens, the lens surface does not come into contact with the transparent substrate and the lens surface is not damaged.
【0044】更に、固体撮像装置を製造する際に、透明
基板側に所定高さのスペーサを設けてウエハと透明基板
とを貼り合わせるので、ウエハ表面と透明基板との間隔
を一定にすることができ、位置合わせも容易である。ま
た、パッケージ化してから素子単位に分割するので、ダ
イシング時に固体撮像素子の表面が汚れず信頼性を確保
することができる。Further, when manufacturing a solid-state imaging device, a spacer having a predetermined height is provided on the transparent substrate side to bond the wafer and the transparent substrate, so that the distance between the wafer surface and the transparent substrate can be made constant. It is possible and alignment is easy. In addition, since the package is divided into element units after being packaged, the surface of the solid-state imaging element is not stained at the time of dicing, and reliability can be secured.
【0045】(第2の実施の形態)第2の実施の形態に
係る固体撮像装置は、図8に示すように、スペーサを用
いずにウエハと透明基板とを貼り合わせた以外は、第1
の実施の形態と同様のシェル・ケース方式のCSPとし
て構成されているため、同一部分には同じ符号を付して
説明を省略する。(Second Embodiment) As shown in FIG. 8, a solid-state imaging device according to a second embodiment has a structure similar to that of the first embodiment except that a wafer and a transparent substrate are bonded without using a spacer.
Since the CSP is configured as a shell-case type CSP similar to that of the embodiment, the same parts are denoted by the same reference numerals and description thereof will be omitted.
【0046】半導体チップ52の領域72において、接
着剤62により半導体チップ52が透明基板64に貼り
付けられて、透明基板64が半導体チップ52に固定さ
れている。接着剤62の厚さはマイクロレンズ50の高
さより大きく設定されており、このため半導体チップ5
2と透明基板64との間には僅かな空間66が形成さ
れ、該空間66が接着剤62により封止される。接着剤
62は領域70を除いて領域72だけに設けられている
ので、マイクロレンズ50が接着剤により被覆されてレ
ンズとしての機能を失うことがない。In the region 72 of the semiconductor chip 52, the semiconductor chip 52 is attached to the transparent substrate 64 by the adhesive 62, and the transparent substrate 64 is fixed to the semiconductor chip 52. The thickness of the adhesive 62 is set to be larger than the height of the microlens 50, so that the semiconductor chip 5
A slight space 66 is formed between 2 and the transparent substrate 64, and the space 66 is sealed with the adhesive 62. Since the adhesive 62 is provided only in the region 72 except for the region 70, the microlens 50 is not covered with the adhesive and does not lose its function as a lens.
【0047】接着剤62の厚さは、上記の通りマイクロ
レンズ50の高さより大きく設定されていればよく、マ
イクロレンズ50の高さは通常約2μmであるから、接
着剤62の厚さは3〜10μm、好ましくは3〜5μm
とされる。これによりマイクロレンズ50が透明基板6
4と接触して、レンズ表面が傷付くことがない。The thickness of the adhesive 62 may be set larger than the height of the microlens 50 as described above. Since the height of the microlens 50 is usually about 2 μm, the thickness of the adhesive 62 is 3 μm. -10 μm, preferably 3-5 μm
It is said. As a result, the micro lens 50 is
The lens surface is not damaged by contact with the lens.
【0048】また、スペーサを用いないため、図4と同
様にして半導体ウエハ68及び透明基板64とを重ね合
わせて貼り合わせる際に、半導体ウエハ68表面と透明
基板64との間隔を一定にするために、所定の保持機構
(図示せず)により半導体ウエハ68及び透明基板64
の各々を所定位置に固定して保持する。保持機構により
貼り合わせの位置精度を上げることで、ウエハ表面と透
明基板との間隔を一定にするためのスペーサを不要と
し、スペーサ形成工程を省略して製造工程を簡略化する
ことができる。具体的には±10μm程度の位置精度が
必要とされる。Since the spacer is not used, when the semiconductor wafer 68 and the transparent substrate 64 are overlapped and bonded as in FIG. 4, the distance between the surface of the semiconductor wafer 68 and the transparent substrate 64 is made constant. The semiconductor wafer 68 and the transparent substrate 64 are moved by a predetermined holding mechanism (not shown).
Are fixedly held in place. By increasing the positional accuracy of the bonding by the holding mechanism, a spacer for keeping the distance between the wafer surface and the transparent substrate unnecessary can be eliminated, and the manufacturing process can be simplified by omitting the spacer forming step. Specifically, positional accuracy of about ± 10 μm is required.
【0049】以上の通り、本実施の形態の固体撮像装置
は、シェル・ケース方式のウエハ・レベルCSPと呼ば
れる小型パッケージで構成されている。このCSPでは
電極パッドに接続されたリード配線が側面から裏面へと
延びており裏面配線を行うことが可能であり、半導体チ
ップをワイヤボンディングにより電気的に接続してパッ
ケージ化する場合に比べ、配線スペースを大幅に節約す
ることができ、固体撮像装置の超小型化を図ることがで
きる。また、電極パッドの形成やリード配線等、パッケ
ージ化を含む全製造工程をウエハの状態で行えるため、
従来の固体撮像装置に比べて製造コストが大幅に低減さ
れる また、半導体チップの表面は、接着剤により透明基板に
貼り付けられているが、接着剤はマイクロレンズ配置領
域を除いてその周囲にだけに設けられているので、マイ
クロレンズが接着剤により被覆されてレンズとしての機
能を失うことがない。また、接着剤の厚さは、マイクロ
レンズの高さより大きく設定されているので、マイクロ
レンズが透明基板と接触して、レンズ表面が傷付くこと
がない。As described above, the solid-state imaging device according to the present embodiment is constituted by a small package called a wafer level CSP of a shell case type. In this CSP, the lead wiring connected to the electrode pad extends from the side surface to the back surface, so that the back surface wiring can be performed. Compared with the case where the semiconductor chip is electrically connected by wire bonding to form a package, the wiring is reduced. The space can be largely saved, and the solid-state imaging device can be miniaturized. In addition, since all manufacturing processes including packaging, such as formation of electrode pads and lead wiring, can be performed in a wafer state,
The manufacturing cost is greatly reduced compared to conventional solid-state imaging devices.Also, the surface of the semiconductor chip is attached to the transparent substrate with an adhesive, but the adhesive is Provided, the microlens is not covered with the adhesive and does not lose its function as a lens. Further, since the thickness of the adhesive is set to be larger than the height of the microlens, the microlens does not come into contact with the transparent substrate and the lens surface is not damaged.
【0050】更に、固体撮像装置を製造する際に、ウエ
ハ表面と透明基板との間隔を一定にするために、所定の
保持機構によりウエハ及び透明基板の各々を所定位置に
固定して保持するので、スペーサを用いることなく貼り
合わせの位置精度を上げることができ、スペーサ形成工
程を省略して製造工程を簡略化することができる。ま
た、パッケージ化してから素子単位に分割するので、ダ
イシング時に固体撮像素子の表面が汚れず信頼性を確保
することができる。Further, when manufacturing the solid-state imaging device, each of the wafer and the transparent substrate is fixed and held at a predetermined position by a predetermined holding mechanism in order to keep the distance between the wafer surface and the transparent substrate constant. The positioning accuracy of the bonding can be improved without using the spacer, and the manufacturing process can be simplified by omitting the spacer forming step. In addition, since the package is divided into element units after being packaged, the surface of the solid-state imaging element is not stained at the time of dicing, and reliability can be ensured.
【0051】(第3の実施の形態)第3の実施の形態に
係る固体撮像装置は、図9及び図10に示すように、固
体撮像素子、配線等を含む回路部が形成された半導体基
板12を含む略矩形状の半導体チップ88を備えてい
る。半導体基板12は、回路部が形成された表面がシリ
コン酸化膜等の絶縁性の酸化膜84で覆われ、且つ裏面
が絶縁性の酸化膜86で覆われている。なお、図9は透
明基板64、接着剤62及び絶縁膜43を通して見た固
体撮像装置の平面図である。(Third Embodiment) As shown in FIGS. 9 and 10, a solid-state imaging device according to a third embodiment has a semiconductor substrate on which a circuit portion including a solid-state imaging device, wiring, and the like is formed. A semiconductor chip 88 having a substantially rectangular shape including the semiconductor chip 88 is provided. The surface of the semiconductor substrate 12 on which the circuit portion is formed is covered with an insulating oxide film 84 such as a silicon oxide film, and the back surface is covered with an insulating oxide film 86. FIG. 9 is a plan view of the solid-state imaging device viewed through the transparent substrate 64, the adhesive 62, and the insulating film 43.
【0052】酸化膜84の両側には、半導体チップ88
の対向する短辺に沿って略矩形状の電極パッド90が所
定間隔で複数(図9では10個)配設されている。半導
体基板12には、該半導体基板12を貫通するように、
側面が絶縁性の酸化膜86で覆われたスルーホール92
が設けられ、該スルーホール92に金属が充填されて、
埋め込み配線94が形成されている。半導体チップ88
の裏面には、酸化膜86を介して裏面電極96が設けら
れている。そして、各電極パッド90は、半導体基板1
2に形成された回路部の図示しない配線に電気的に接続
されると共に、埋め込み配線94によって裏面電極96
に電気的に接続されている。On both sides of the oxide film 84, a semiconductor chip 88
A plurality (ten in FIG. 9) of substantially rectangular electrode pads 90 are arranged at predetermined intervals along short sides facing each other. In the semiconductor substrate 12, so as to penetrate the semiconductor substrate 12,
Through hole 92 whose side surface is covered with insulating oxide film 86
Is provided, the metal is filled in the through hole 92,
A buried wiring 94 is formed. Semiconductor chip 88
A back surface electrode 96 is provided on the back surface with an oxide film 86 interposed therebetween. Each of the electrode pads 90 is connected to the semiconductor substrate 1.
2 is electrically connected to a wiring (not shown) of the circuit portion formed on the rear surface electrode 96 by the embedded wiring 94.
Is electrically connected to
【0053】酸化膜84及び電極パッド90は、例えば
シリコンナイトライド等で構成された透明な絶縁膜43
により覆われて保護され、半導体チップ88の表面が平
坦化されている。固体撮像素子の受光領域上にはフィル
タ部98が設けられており、フィルタ部98上にはマイ
クロレンズ50が複数個(図9では16個)配置されて
いる。図11はこの部分の部分拡大図である。図11に
示すように、半導体チップ88の絶縁膜43上には、透
明な平坦化膜44を介して、赤色(R)フィルタ46
R、緑色(G)フィルタ46G及び青色(B)フィルタ
46Bを備えた色フィルタアレイ46が形成されてい
る。Rフィルタ46R、Gフィルタ46G及びBフィル
タ46Bは、個々のフォトダイオード14に対応して、
所定のパターンで配置されている。色フィルタアレイ4
6上には、平坦化膜48を介して、複数のマイクロレン
ズ50を備えたマイクロレンズアレイが形成されてい
る。マイクロレンズ50は、個々のフォトダイオード1
4に対応して配列されている。なお、原色のカラーフィ
ルタに代えて補色のカラーフィルタを使用することもで
きる。The oxide film 84 and the electrode pad 90 are made of a transparent insulating film 43 made of, for example, silicon nitride.
, And the surface of the semiconductor chip 88 is flattened. A filter section 98 is provided on the light receiving area of the solid-state imaging device, and a plurality of (16 in FIG. 9) microlenses 50 are arranged on the filter section 98. FIG. 11 is a partially enlarged view of this part. As shown in FIG. 11, a red (R) filter 46 is formed on the insulating film 43 of the semiconductor chip 88 via the transparent flattening film 44.
A color filter array 46 including R, green (G) filters 46G and blue (B) filters 46B is formed. The R filter 46R, the G filter 46G, and the B filter 46B correspond to the individual photodiodes 14,
They are arranged in a predetermined pattern. Color filter array 4
A microlens array having a plurality of microlenses 50 is formed on 6 via a flattening film 48. The micro lens 50 is provided for each photodiode 1
4 are arranged. Note that a complementary color filter may be used instead of the primary color filter.
【0054】マイクロレンズ50が配置された領域70
に対向するように透明基板64が配置されている。フィ
ルタ部98が形成された半導体チップ88表面の領域7
0の周囲に在る領域72において、接着剤62により半
導体チップ88が透明基板64に貼り付けられて、透明
基板64が半導体チップ88に固定されている。An area 70 where the microlenses 50 are arranged
The transparent substrate 64 is arranged so as to face the. Region 7 on the surface of semiconductor chip 88 on which filter portion 98 is formed
In a region 72 around 0, the semiconductor chip 88 is attached to the transparent substrate 64 with the adhesive 62, and the transparent substrate 64 is fixed to the semiconductor chip 88.
【0055】接着剤62の厚さは、フィルタ部98の厚
さにマイクロレンズ50の高さを加えた値より大きく設
定されており、このため半導体チップ88と透明基板6
4との間には僅かな空間66が形成され、該空間66が
接着剤62により封止される。接着剤62は領域70を
除いて領域72だけに設けられているので、マイクロレ
ンズ50が接着剤により被覆されてレンズとしての機能
を失うことがなく、マイクロレンズ50が透明基板64
と接触して、レンズ表面が傷付くことがない。マイクロ
レンズ50の高さは約2μm、フィルタ部98の厚さは
約5μmである。従って、接着剤62の厚さは8μm以
上、好ましくは8μm〜20μmとされる。The thickness of the adhesive 62 is set to be larger than the value obtained by adding the height of the microlens 50 to the thickness of the filter section 98. Therefore, the semiconductor chip 88 and the transparent substrate 6 are formed.
4 and a slight space 66 is formed, and the space 66 is sealed with the adhesive 62. Since the adhesive 62 is provided only in the region 72 except for the region 70, the microlens 50 is not covered with the adhesive and does not lose its function as a lens.
The lens surface is not damaged by contact with the lens. The height of the micro lens 50 is about 2 μm, and the thickness of the filter section 98 is about 5 μm. Therefore, the thickness of the adhesive 62 is 8 μm or more, preferably 8 μm to 20 μm.
【0056】なお、マイクロレンズ50が形成された部
分での半導体チップ88の断面構造は、第1の実施の形
態と同じ構成であるため説明を省略する。The cross-sectional structure of the semiconductor chip 88 at the portion where the microlenses 50 are formed has the same configuration as that of the first embodiment, and a description thereof will be omitted.
【0057】次に、図12〜図20を参照して、第1の
実施の形態に係る固体撮像装置の製造方法について説明
する。まず、図12に示すように、表面がシリコン酸化
膜等の酸化膜84で覆われた固体撮像素子、配線等を含
む複数の回路部及び複数のダイシング領域85が交互に
形成されたシリコン等の半導体ウエハ100を用意す
る。スルーホール92が形成される開口領域102を除
いて、半導体ウエハ100上に例えばシリコンナイトラ
イド等の透明な保護膜104を設ける。これにより酸化
膜84を含む基板表面が保護膜104により被覆され
る。なお、保護膜104は、次のエッチング工程におい
て酸化膜84を保護することにより、間接的に回路部を
保護する役割を果たす。Next, a method of manufacturing the solid-state imaging device according to the first embodiment will be described with reference to FIGS. First, as shown in FIG. 12, a solid-state imaging device whose surface is covered with an oxide film 84 such as a silicon oxide film, a plurality of circuit portions including wirings, and a silicon or the like in which a plurality of dicing regions 85 are alternately formed. A semiconductor wafer 100 is prepared. Except for the opening region 102 where the through hole 92 is formed, a transparent protective film 104 such as silicon nitride is provided on the semiconductor wafer 100. Thus, the surface of the substrate including the oxide film 84 is covered with the protective film 104. Note that the protective film 104 serves to indirectly protect the circuit portion by protecting the oxide film 84 in the next etching step.
【0058】次に、図13に示すように、開口領域10
2に半導体ウエハ100を貫通するスルーホール92を
設ける。ここで、スルーホール92を形成する工程を詳
しく説明する。エッチングにより、約100μm角の開
口領域102に10〜20μm角の凹部を複数個(好ま
しくは5個以上)形成する。スルーホール92の反対側
の開口が設けられる領域を除いて、半導体ウエハ100
裏面にレジスト膜を設ける。このレジストマスクを用い
裏面側から水銀ランプ等を用いて所定波長域の光を照射
して光励起エッチングを行う。エッチング液としてはフ
ッ酸希釈液(例えば、2.5wt%HF溶液)を用い
る。エッチングは開口領域102に設けた凹部から進行
し、半導体ウエハ100貫通するスルーホール92が形
成される。なお、スルーホール92形成後、半導体ウエ
ハ100裏面に設けられたレジスト膜は剥離する。Next, as shown in FIG.
2 is provided with a through hole 92 penetrating the semiconductor wafer 100. Here, the step of forming the through hole 92 will be described in detail. A plurality of (preferably five or more) concave portions having a size of 10 to 20 μm are formed in the opening region 102 having a size of approximately 100 μm by etching. Except for the region where the opening opposite to the through hole 92 is provided, the semiconductor wafer 100
A resist film is provided on the back surface. Using this resist mask, light in a predetermined wavelength range is irradiated from the back side using a mercury lamp or the like to perform photoexcited etching. As an etching solution, a hydrofluoric acid diluting solution (for example, a 2.5 wt% HF solution) is used. The etching proceeds from the concave portion provided in the opening region 102, and a through hole 92 penetrating the semiconductor wafer 100 is formed. After the formation of the through holes 92, the resist film provided on the back surface of the semiconductor wafer 100 is peeled off.
【0059】次に、半導体ウエハ100を硝酸液に浸漬
することにより、半導体ウエハ100の露出表面が酸化
されて、図14に示すように、半導体ウエハ100の裏
面に酸化膜86が形成されると共に、スルーホール92
の側面にも酸化膜86が形成される。これらの酸化膜を
絶縁膜として使用する。例えば、半導体ウエハ100と
してシリコンウエハを用いた場合には、酸化膜86とし
て絶縁性のシリコン酸化膜が生成する。Next, by immersing the semiconductor wafer 100 in a nitric acid solution, the exposed surface of the semiconductor wafer 100 is oxidized to form an oxide film 86 on the back surface of the semiconductor wafer 100 as shown in FIG. , Through hole 92
Oxide film 86 is also formed on the side surface of. These oxide films are used as insulating films. For example, when a silicon wafer is used as the semiconductor wafer 100, an insulating silicon oxide film is generated as the oxide film 86.
【0060】次に、図15に示すように、半導体ウエハ
100の裏面に保護金属膜106を形成した後に、スル
ーホール92に金属を充填して埋め込み配線94を形成
する。ここで、スルーホール92への金属の充填方法に
ついて詳しく説明する。スルーホール92に充填する金
属としては、例えばインジウム(In)やスズ(Sn)
等の100℃〜200℃の低温で溶融する金属を用い
る。特に、凝固収縮率の小さいInが好ましい。まず、
スルーホール92が形成された半導体ウエハ100を溶
融金属浴と共に気圧調整が可能なチャンバー内に入れ、
チャンバー内を真空にする。そして、真空下において、
半導体ウエハ100全体を溶融金属浴に浸漬した後に真
空状態を解除すると、溶融金属がスルーホール92に侵
入する。この状態で所定時間放置すると侵入した金属が
固化し、スルーホール92内に金属が充填される。な
お、保護金属膜106は、低温で溶融する金属からウエ
ハを保護するために形成される。Next, as shown in FIG. 15, after forming a protective metal film 106 on the back surface of the semiconductor wafer 100, the through holes 92 are filled with metal to form buried interconnects 94. Here, a method of filling the metal into the through hole 92 will be described in detail. As the metal filling the through hole 92, for example, indium (In) or tin (Sn)
A metal that melts at a low temperature of 100 ° C. to 200 ° C. is used. In particular, In having a small solidification shrinkage is preferable. First,
The semiconductor wafer 100 in which the through hole 92 is formed is put into a pressure-adjustable chamber together with a molten metal bath,
The chamber is evacuated. And, under vacuum,
When the vacuum state is released after immersing the entire semiconductor wafer 100 in the molten metal bath, the molten metal enters the through hole 92. If left in this state for a predetermined time, the invading metal is solidified, and the metal is filled in the through hole 92. The protective metal film 106 is formed to protect the wafer from a metal that melts at a low temperature.
【0061】次に、図16(A)に示すように、半導体
ウエハ100表面の保護膜104を剥離し、埋め込み配
線94の露出部分を覆うように電極パッド90を形成す
る。また、図16(B)に示すように、半導体ウエハ1
00表面に設けられた配線108の電極パッド90との
接触部を引き出して、電極パッド90と電気的に接続さ
せる。電極パッド90は、前記配線108を介して半導
体ウエハ100表面に設けられた固体撮像素子110の
図示しない端子に接続される。なお、配線108及び固
体撮像素子110が設けられた半導体ウエハ100の表
面は、透明な酸化膜84で覆われている。Next, as shown in FIG. 16A, the protective film 104 on the surface of the semiconductor wafer 100 is peeled off, and an electrode pad 90 is formed so as to cover the exposed portion of the embedded wiring 94. In addition, as shown in FIG.
The contact portion of the wiring 108 provided on the surface of the metal pad 00 with the electrode pad 90 is drawn out, and is electrically connected to the electrode pad 90. The electrode pad 90 is connected to a terminal (not shown) of the solid-state imaging device 110 provided on the surface of the semiconductor wafer 100 via the wiring 108. The surface of the semiconductor wafer 100 provided with the wiring 108 and the solid-state imaging device 110 is covered with a transparent oxide film 84.
【0062】次に、図17に示すように、半導体ウエハ
100表面に形成された酸化膜84及び電極パッド90
を、例えばシリコンナイトライド等の透明な絶縁膜43
により被覆して表面を平坦化する。保護金属膜106を
剥離した後、半導体ウエハ100の裏面に、蒸着または
メッキにより配線用の金属膜を形成し、該金属膜をフォ
トリソグラフィー及びエッチングにより所定パターンに
パターンニングして裏面電極96を形成する。Next, as shown in FIG. 17, the oxide film 84 formed on the surface of the semiconductor wafer 100 and the electrode pad 90 are formed.
To a transparent insulating film 43 such as silicon nitride.
To flatten the surface. After peeling off the protective metal film 106, a metal film for wiring is formed on the back surface of the semiconductor wafer 100 by vapor deposition or plating, and the metal film is patterned into a predetermined pattern by photolithography and etching to form a back electrode 96. I do.
【0063】次に、図18に示すように、固体撮像素子
の受光領域上方の絶縁膜43上にフィルタ部98を設
け、フィルタ部98上にマイクロレンズ50を複数個形
成する。ここで、フィルタ部98の形成工程について更
に詳しく説明する。平坦化膜44を介して、Rフィルタ
46R、Gフィルタ46G及びBフィルタ46Bを備え
た色フィルタアレイ46を形成し、該色フィルタアレイ
46上に平坦化膜48を介して複数のマイクロレンズ5
0を備えたマイクロレンズアレイを形成する。色フィル
タアレイ46及びマイクロレンズ50の形成方法は、第
1の実施の形態と同様であるため説明を省略する。フォ
トダイオード14の開口部40の径(即ち、画素径)は
4〜5μmであり、マイクロレンズ50は画素全体を覆
うと共に高さ約2μmで形成される。なお、半導体基板
12から平坦化膜48の表面までの厚さは約5μmとす
る。Next, as shown in FIG. 18, a filter section 98 is provided on the insulating film 43 above the light receiving region of the solid-state imaging device, and a plurality of microlenses 50 are formed on the filter section 98. Here, the step of forming the filter section 98 will be described in more detail. A color filter array 46 including an R filter 46R, a G filter 46G, and a B filter 46B is formed via a planarizing film 44, and a plurality of micro lenses 5 are formed on the color filter array 46 via a planarizing film 48.
A microlens array with zeros is formed. The method of forming the color filter array 46 and the microlens 50 is the same as in the first embodiment, and a description thereof will be omitted. The diameter (that is, the pixel diameter) of the opening 40 of the photodiode 14 is 4 to 5 μm, and the microlens 50 covers the entire pixel and is formed with a height of about 2 μm. Note that the thickness from the semiconductor substrate 12 to the surface of the planarizing film 48 is about 5 μm.
【0064】次に、図19に示すように、マイクロレン
ズ50が配置された領域70以外の領域、即ち、領域7
2上に、フィルタ部98の厚さにマイクロレンズ50の
高さを加えた値より大きな厚さで接着剤62を塗布し、
半導体ウエハ100と透明な透明基板64とを重ね合わ
せて透明基板64側から紫外線を照射して接着剤62を
硬化させ、半導体ウエハ100と透明基板64とを貼り
合わせる。この接着工程は、真空中または窒素等の不活
性ガス雰囲気下で実施することが好ましい。Next, as shown in FIG. 19, the region other than the region 70 where the microlenses 50 are arranged, that is, the region 7
2, the adhesive 62 is applied with a thickness larger than a value obtained by adding the height of the micro lens 50 to the thickness of the filter portion 98,
The semiconductor wafer 100 and the transparent substrate 64 are overlapped, and the adhesive 62 is cured by irradiating ultraviolet rays from the transparent substrate 64 side, and the semiconductor wafer 100 and the transparent substrate 64 are bonded together. This bonding step is preferably performed in a vacuum or in an atmosphere of an inert gas such as nitrogen.
【0065】半導体ウエハ100と透明基板64とを貼
り合わせる際に、半導体ウエハ100表面(絶縁膜43
表面)と透明基板64との間隔を一定にするために、所
定の保持機構(図示せず)により半導体ウエハ100及
び透明基板64の各々を所定位置に固定して保持する。
保持機構により貼り合わせの位置精度を上げることで、
ウエハ表面と透明基板との間隔を一定にするためのスペ
ーサを不要とし、スペーサ形成工程を省略して製造工程
を簡略化することができる。具体的には±10μm程度
の位置精度が必要とされる。When bonding the semiconductor wafer 100 and the transparent substrate 64, the surface of the semiconductor wafer 100 (the insulating film 43)
In order to keep the distance between the front surface) and the transparent substrate 64 constant, each of the semiconductor wafer 100 and the transparent substrate 64 is fixedly held at a predetermined position by a predetermined holding mechanism (not shown).
By increasing the position accuracy of the bonding by the holding mechanism,
A spacer for keeping a constant distance between the wafer surface and the transparent substrate is not required, and the manufacturing process can be simplified by omitting the spacer forming step. Specifically, positional accuracy of about ± 10 μm is required.
【0066】最後に、図20に示すように、ダイシング
・ソーを用いて、ダイシング領域85の略中央にあるダ
イシング・ライン112に沿って切断し、各々のCCD
に分離すると、図9及び図10に示す固体撮像装置を得
ることができる。なお、半導体ウエハ100と表示して
いた部分は、個々の固体撮像装置に分離された後は、半
導体基板12となる。Finally, as shown in FIG. 20, using a dicing saw, cutting is performed along a dicing line 112 substantially at the center of the dicing region 85, and each CCD is cut.
Then, the solid-state imaging device shown in FIGS. 9 and 10 can be obtained. It should be noted that the portion indicated as the semiconductor wafer 100 becomes the semiconductor substrate 12 after being separated into individual solid-state imaging devices.
【0067】以上の通り、本実施の形態の固体撮像装置
は、チップサイズの小型パッケージで構成されている。
このCSPでは電極パッドに接続された埋め込み配線を
用いて裏面配線を行うことが可能であり、半導体チップ
をワイヤボンディングにより電気的に接続してパッケー
ジ化する場合に比べ、配線スペースを大幅に節約するこ
とができ、固体撮像装置の超小型化を図ることができ
る。また、電極パッドの形成やリード配線等、パッケー
ジ化を含む全製造工程をウエハの状態で行えるため、従
来の固体撮像装置に比べて製造コストが大幅に低減され
る また、半導体チップの表面は、接着剤により透明基板に
貼り付けられているが、接着剤はマイクロレンズ配置領
域を除いてその周囲にだけに設けられているので、マイ
クロレンズが接着剤により被覆されてレンズとしての機
能を失うことがない。また、接着剤の厚さは、マイクロ
レンズの高さより大きく設定されているので、マイクロ
レンズが透明基板と接触して、レンズ表面が傷付くこと
がない。As described above, the solid-state imaging device according to the present embodiment is constituted by a small package having a chip size.
In this CSP, the backside wiring can be performed using the embedded wiring connected to the electrode pad, and the wiring space is greatly reduced as compared with the case where the semiconductor chip is electrically connected by wire bonding to form a package. Accordingly, the solid-state imaging device can be miniaturized. In addition, since the entire manufacturing process including packaging, such as formation of electrode pads and lead wiring, can be performed in a wafer state, the manufacturing cost is significantly reduced as compared with a conventional solid-state imaging device. It is attached to the transparent substrate with an adhesive, but the adhesive is provided only around it except for the microlens arrangement area, so the microlens is covered with the adhesive and loses the function as a lens There is no. Further, since the thickness of the adhesive is set to be larger than the height of the microlenses, the microlenses do not come into contact with the transparent substrate and the lens surface is not damaged.
【0068】更に、固体撮像装置を製造する際に、ウエ
ハ表面と透明基板との間隔を一定にするために、所定の
保持機構によりウエハ及び透明基板の各々を所定位置に
固定して保持するので、スペーサを用いることなく貼り
合わせの位置精度を上げることができ、スペーサ形成工
程を省略して製造工程を簡略化することができる。ま
た、パッケージ化してから素子単位に分割するので、ダ
イシング時に固体撮像素子の表面が汚れず信頼性を確保
することができる。また、シェル・ケース方式のCSP
のようにダイシングを中途で止める必要がなく、製造が
容易である。Further, when manufacturing the solid-state imaging device, each of the wafer and the transparent substrate is fixed and held at a predetermined position by a predetermined holding mechanism in order to keep a constant distance between the wafer surface and the transparent substrate. The positioning accuracy of the bonding can be improved without using the spacer, and the manufacturing process can be simplified by omitting the spacer forming step. In addition, since the package is divided into element units after being packaged, the surface of the solid-state imaging element is not stained at the time of dicing, and reliability can be ensured. In addition, CSP of shell case method
It is not necessary to stop the dicing halfway as in the case of (1), and the manufacturing is easy.
【0069】なお、本発明は、CCDエリアセンサ、C
CDラインセンサ、CMOSイメージセンサ等のマイク
ロレンズを備えた総ての固体撮像装置に適用することが
できる。The present invention relates to a CCD area sensor, C
The present invention can be applied to all solid-state imaging devices including a micro lens such as a CD line sensor and a CMOS image sensor.
【0070】第3の実施の形態では1層の回路基板を備
えた固体撮像装置について説明したが、第3の実施の形
態は、複数層の回路基板を備えた3次元集積回路構成の
固体撮像装置にも適用することができる。In the third embodiment, a solid-state imaging device having a single-layer circuit board has been described. However, in the third embodiment, a solid-state imaging device having a three-dimensional integrated circuit configuration having a plurality of circuit boards is described. It can also be applied to devices.
【0071】[0071]
【発明の効果】本発明によれば、マイクロレンズを備え
た固体撮像素子をマイクロレンズの機能を損なうことな
くパッケージ化した固体撮像装置であって、小型で低価
格の固体撮像装置を提供することができる。また、本発
明によれば、マイクロレンズを備えた固体撮像素子をマ
イクロレンズの機能を損なうことなくパッケージ化する
と共に、小型化された固体撮像装置を低コストで製造す
る、固体撮像装置の製造方法を提供することができる。According to the present invention, there is provided a solid-state image pickup device in which a solid-state image pickup device provided with a microlens is packaged without impairing the function of the microlens, and which is small and inexpensive. Can be. Further, according to the present invention, a method for manufacturing a solid-state imaging device, in which a solid-state imaging device having a microlens is packaged without impairing the function of the microlens and a miniaturized solid-state imaging device is manufactured at low cost. Can be provided.
【図1】第1の実施の形態に係る固体撮像装置の平面図
である。FIG. 1 is a plan view of a solid-state imaging device according to a first embodiment.
【図2】図1に示す固体撮像装置のA−A線断面図であ
る。FIG. 2 is a sectional view taken along line AA of the solid-state imaging device shown in FIG.
【図3】図2に示す固体撮像装置のB−B線断面図であ
る。FIG. 3 is a cross-sectional view of the solid-state imaging device shown in FIG. 2 taken along line BB.
【図4】第1の実施の形態に係る固体撮像装置の製造工
程を示す断面図である。FIG. 4 is a sectional view illustrating a manufacturing process of the solid-state imaging device according to the first embodiment;
【図5】第1の実施の形態に係る固体撮像装置の製造工
程を示す断面図である。FIG. 5 is a sectional view illustrating a manufacturing process of the solid-state imaging device according to the first embodiment;
【図6】第1の実施の形態に係る固体撮像装置の製造工
程を示す断面図である。FIG. 6 is a sectional view illustrating a manufacturing step of the solid-state imaging device according to the first embodiment;
【図7】第1の実施の形態に係る固体撮像装置の製造工
程を示す断面図である。FIG. 7 is a cross-sectional view illustrating a manufacturing process of the solid-state imaging device according to the first embodiment.
【図8】第2の実施の形態に係る固体撮像装置の断面図
である。FIG. 8 is a sectional view of a solid-state imaging device according to a second embodiment.
【図9】第3の実施の形態に係る固体撮像装置の平面図
である。FIG. 9 is a plan view of a solid-state imaging device according to a third embodiment.
【図10】図9に示す固体撮像装置のA−A線断面図で
ある。FIG. 10 is a sectional view taken along line AA of the solid-state imaging device shown in FIG. 9;
【図11】図9に示す固体撮像装置のフィルタ部及びマ
イクロレンズの部分拡大図である。FIG. 11 is a partially enlarged view of a filter unit and a microlens of the solid-state imaging device shown in FIG. 9;
【図12】第3の実施の形態に係る固体撮像装置の製造
工程(回路形成工程)を示す断面図である。FIG. 12 is a sectional view illustrating a manufacturing process (circuit forming process) of the solid-state imaging device according to the third embodiment;
【図13】第3の実施の形態に係る固体撮像装置の製造
工程(スルーホール形成工程)を示す断面図である。FIG. 13 is a sectional view illustrating a manufacturing process (through-hole forming process) of the solid-state imaging device according to the third embodiment;
【図14】第3の実施の形態に係る固体撮像装置の製造
工程(表面酸化工程)を示す断面図である。FIG. 14 is a cross-sectional view illustrating a manufacturing step (surface oxidation step) of the solid-state imaging device according to the third embodiment;
【図15】第3の実施の形態に係る固体撮像装置の製造
工程(埋め込み配線形成工程)を示す断面図である。FIG. 15 is a sectional view illustrating a manufacturing process (embedded wiring forming process) of the solid-state imaging device according to the third embodiment;
【図16】(A)は第3の実施の形態に係る固体撮像装
置の製造工程(電極パッド形成工程)を示す断面図であ
り、(B)は(A)に示す工程でのパッド電極と回路部
の接続関係を示す平面図である。16A is a cross-sectional view illustrating a manufacturing process (electrode pad forming process) of the solid-state imaging device according to the third embodiment, and FIG. 16B is a cross-sectional view illustrating a pad electrode in the process illustrated in FIG. FIG. 4 is a plan view showing a connection relationship of a circuit unit.
【図17】第3の実施の形態に係る固体撮像装置の製造
工程(裏面電極形成工程)を示す断面図である。FIG. 17 is a cross-sectional view illustrating a manufacturing step (a back electrode forming step) of the solid-state imaging device according to the third embodiment;
【図18】第3の実施の形態に係る固体撮像装置の製造
工程(フィルタ部及びマイクロレンズ形成工程)を示す
断面図である。FIG. 18 is a cross-sectional view illustrating a manufacturing process (a filter portion and a microlens forming process) of the solid-state imaging device according to the third embodiment;
【図19】第3の実施の形態に係る固体撮像装置の製造
工程(基板貼り合わせ工程)を示す断面図である。FIG. 19 is a cross-sectional view illustrating a manufacturing step (substrate bonding step) of the solid-state imaging device according to the third embodiment;
【図20】第3の実施の形態に係る固体撮像装置の製造
工程(切断工程)を示す断面図である。FIG. 20 is a sectional view illustrating a manufacturing step (cutting step) of the solid-state imaging device according to the third embodiment;
【図21】従来の固体撮像装置の構成を示す断面図であ
る。FIG. 21 is a cross-sectional view illustrating a configuration of a conventional solid-state imaging device.
【図22】(A)〜(C)は、シェル・ケース方式CS
Pの製造工程を示す断面図である。22 (A) to 22 (C) show shell / case type CS
It is sectional drawing which shows the manufacturing process of P.
【図23】シェル・ケース方式のCSPの構成を示す断
面図である。FIG. 23 is a cross-sectional view showing a configuration of a CSP of a shell case type.
12 半導体基板 14 フォトダイオード 20 垂直電荷転送チャネル 28 チャネルストップ 32 転送電極(垂直転送電極) 33 垂直電荷転送装置(VCCD) 43 絶縁層 44、48 平坦化膜 46 色フィルタアレイ 50 マイクロレンズ 52、88 半導体チップ 54、62 接着剤 56 基板 58、90 電極パッド 60 スペーサ 64 透明基板 66 空間 68、100 半導体ウエハ 70 領域(マイクロレンズ配置領域) 72 領域(周辺領域) 76 ダイシング領域 78 溝 82 リード配線 84 酸化膜 92 スルーホール 94 埋め込み配線 96 裏面電極 98 フィルタ部 102 開口領域 Reference Signs List 12 semiconductor substrate 14 photodiode 20 vertical charge transfer channel 28 channel stop 32 transfer electrode (vertical transfer electrode) 33 vertical charge transfer device (VCCD) 43 insulating layer 44, 48 flattening film 46 color filter array 50 microlens 52, 88 semiconductor Chip 54, 62 Adhesive 56 Substrate 58, 90 Electrode pad 60 Spacer 64 Transparent substrate 66 Space 68, 100 Semiconductor wafer 70 Area (microlens arrangement area) 72 Area (peripheral area) 76 Dicing area 78 Groove 82 Lead wiring 84 Oxide film 92 through hole 94 buried wiring 96 back electrode 98 filter part 102 opening area
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M118 AA10 AB01 CA03 FA06 FA26 FA33 GC08 GC14 GD04 GD07 HA02 HA11 HA29 5C024 CY47 CY48 EX22 EX24 EX43 5F061 AA00 BA03 CA26 FA06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4M118 AA10 AB01 CA03 FA06 FA26 FA33 GC08 GC14 GD04 GD07 HA02 HA11 HA29 5C024 CY47 CY48 EX22 EX24 EX43 5F061 AA00 BA03 CA26 FA06
Claims (9)
が配置された固体撮像素子が形成された半導体基板と、 前記固体撮像素子に電源を供給するために、該半導体基
板表面のマイクロレンズ配置領域以外の領域に設けられ
た表面電極と、 前記半導体基板の裏面に設けられた裏面電極と、 前記半導体基板の側面を通して、または前記半導体基板
を貫通して前記表面電極と前記裏面電極とを電気的に接
続する接続手段と、 マイクロレンズ配置領域に対向して配置される透明基板
と、 前記透明基板が前記マイクロレンズと接触しないよう
に、マイクロレンズ配置領域の周囲において前記透明基
板を前記半導体基板に固定すると共に、前記透明基板と
前記半導体基板との間の空間を封止する封止部材と、 を備えた固体撮像装置。1. A semiconductor substrate on which a solid-state imaging device in which micro-lenses are arranged corresponding to respective light receiving regions is formed, and a micro-lens arrangement on a surface of the semiconductor substrate for supplying power to the solid-state imaging device. A front electrode provided in a region other than the region, a back electrode provided on a back surface of the semiconductor substrate, and electrically connecting the front electrode and the back electrode through a side surface of the semiconductor substrate or through the semiconductor substrate. Connecting means for electrically connecting, a transparent substrate disposed opposite to the microlens disposition area, and connecting the transparent substrate to the semiconductor substrate around the microlens disposition area so that the transparent substrate does not contact the microlens. And a sealing member for sealing a space between the transparent substrate and the semiconductor substrate.
明基板とを所定間隔離間させると共にマイクロレンズ配
置領域を取り囲むスペーサを備え、前記半導体基板と前
記透明基板と間の空間を接着により封止する請求項1に
記載の固体撮像装置。2. The sealing member includes a spacer that separates the semiconductor substrate and the transparent substrate by a predetermined distance and surrounds a microlens arrangement region, and seals a space between the semiconductor substrate and the transparent substrate by bonding. The solid-state imaging device according to claim 1, which stops.
記マイクロレンズと接触しない高さとした請求項1に記
載の固体撮像装置。3. The solid-state imaging device according to claim 1, wherein the height of the spacer is such that the transparent substrate does not contact the microlens.
明基板と間の空間を接着により封止する接着層である請
求項1に記載の固体撮像装置。4. The solid-state imaging device according to claim 1, wherein the sealing member is an adhesive layer that seals a space between the semiconductor substrate and the transparent substrate by bonding.
られたリード配線である請求項1〜4のいずれか1項に
記載の固体撮像装置。5. The solid-state imaging device according to claim 1, wherein said connection means is a lead wiring provided on a side surface of the semiconductor substrate.
め込み配線である請求項1〜4のいずれか1項に記載の
固体撮像装置。6. The solid-state imaging device according to claim 1, wherein said connection means is a buried wiring penetrating a semiconductor substrate.
1〜6のいずれか1項に記載の固体撮像装置。7. The solid-state imaging device according to claim 1, wherein said adhesive is an ultraviolet curable resin.
が配置された固体撮像素子が形成され、表面のマイクロ
レンズ配置領域以外の領域に表面電極が設けられると共
に裏面に裏面電極が設けられた半導体基板と、マイクロ
レンズ配置領域に対向して配置される透明基板との少な
くとも一方にスペーサを形成し、 透明基板及び半導体基板の間にスペーサを介在させて透
明基板及び半導体基板をマイクロレンズ配置領域以外の
領域で貼着し、 貼着した透明基板及び半導体基板を、表面電極のマイク
ロレンズ配置領域と反対側の端部が露出するように裏面
から溝を切り欠いて、該溝の斜面に前記表面電極と前記
裏面電極とを電気的に接続するリード配線を形成し、 貼着した透明基板及び半導体基板を、前記溝の底部で固
体撮像素子単位に切断して固体撮像装置を製造する固体
撮像装置の製造方法。8. A solid-state imaging device in which a microlens is arranged corresponding to each of the light receiving areas, a front electrode is provided in a region other than the microlens arrangement region on the front surface, and a back electrode is provided on the rear surface. A spacer is formed on at least one of the semiconductor substrate and the transparent substrate disposed opposite to the microlens placement region, and the transparent substrate and the semiconductor substrate are placed in the microlens placement region with the spacer interposed between the transparent substrate and the semiconductor substrate. A groove is cut out from the back surface of the transparent substrate and the semiconductor substrate, which are stuck in a region other than the microlens arrangement region of the surface electrode, so that an end of the surface electrode is exposed. A lead wiring for electrically connecting the front surface electrode and the back surface electrode is formed, and the attached transparent substrate and semiconductor substrate are cut into solid-state imaging devices at the bottom of the groove. Method for manufacturing a solid-state imaging apparatus for producing a solid-state imaging device.
該半導体基板を貫通する埋め込み配線を形成し、 半導体基板表面の固体撮像素子の受光領域の外側に表面
電極を設けると共に裏面に裏面電極を設けて、前記埋め
込み配線により前記表面電極と前記裏面電極とを電気的
に接続し、 前記固体撮像素子の受光領域の各々に対応してマイクロ
レンズを配置し、 マイクロレンズ配置領域に対向して配置される透明基板
及び半導体基板を所定間隔離間させてマイクロレンズ配
置領域以外の領域で貼着し、 貼着した透明基板及び半導体基板を、固体撮像素子単位
に切断して固体撮像装置を製造する固体撮像装置の製造
方法。9. A semiconductor substrate on which a solid-state imaging device is formed,
Forming a buried wiring penetrating the semiconductor substrate, providing a front surface electrode outside the light receiving region of the solid-state imaging device on the surface of the semiconductor substrate and providing a back surface electrode on the back surface, and the buried wiring forms the front surface electrode and the back surface electrode; Are electrically connected to each other, micro lenses are arranged corresponding to each of the light receiving areas of the solid-state imaging device, and the transparent substrate and the semiconductor substrate arranged opposite to the micro lens arranging area are spaced apart from each other by a predetermined distance. A method for manufacturing a solid-state imaging device in which a transparent substrate and a semiconductor substrate which are attached to each other in an area other than an arrangement area are cut into solid-state imaging elements to produce a solid-state imaging device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001134543A JP3839271B2 (en) | 2001-05-01 | 2001-05-01 | Solid-state imaging device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001134543A JP3839271B2 (en) | 2001-05-01 | 2001-05-01 | Solid-state imaging device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002329852A true JP2002329852A (en) | 2002-11-15 |
JP3839271B2 JP3839271B2 (en) | 2006-11-01 |
Family
ID=18982198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001134543A Expired - Lifetime JP3839271B2 (en) | 2001-05-01 | 2001-05-01 | Solid-state imaging device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3839271B2 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047177A1 (en) * | 2002-11-19 | 2004-06-03 | Sanyo Electric Co.,Ltd. | Semiconductor integrated device and method for manufacturing same |
JP2004200274A (en) * | 2002-12-17 | 2004-07-15 | Sanyo Electric Co Ltd | Method for manufacturing semiconductor package |
JP2005056999A (en) * | 2003-08-01 | 2005-03-03 | Fuji Photo Film Co Ltd | Solid-state image pickup device and its manufacturing method |
WO2005022631A1 (en) * | 2003-08-28 | 2005-03-10 | Fujikura Ltd. | Semiconductor package and manufacturing method thereof |
JP2005072364A (en) * | 2003-08-26 | 2005-03-17 | Fuji Film Microdevices Co Ltd | Solid state imaging element and its manufacturing method |
JP2005117011A (en) * | 2003-10-08 | 2005-04-28 | United Microelectronics Corp | Method and structure of wafer level package |
EP1536478A2 (en) * | 2003-11-25 | 2005-06-01 | Fuji Photo Film Co., Ltd. | Solid state imaging device and producing method thereof |
JP2005322851A (en) * | 2004-05-11 | 2005-11-17 | Fuji Photo Film Co Ltd | Solid-state imaging apparatus |
JP2006012904A (en) * | 2004-06-22 | 2006-01-12 | Fuji Film Microdevices Co Ltd | Solid-state imaging device and endoscope |
JP2006073852A (en) * | 2004-09-03 | 2006-03-16 | Dainippon Printing Co Ltd | Sensor package and its manufacturing method |
WO2006040986A1 (en) * | 2004-10-13 | 2006-04-20 | Sumitomo Bakelite Co., Ltd. | Light-receiving device |
SG123651A1 (en) * | 2005-01-05 | 2006-07-26 | Advanced Chip Eng Tech Inc | Fbga and cob package structure for image sensor |
JP2007095908A (en) * | 2005-09-28 | 2007-04-12 | Disco Abrasive Syst Ltd | Wafer processing method |
US7221051B2 (en) | 2004-01-23 | 2007-05-22 | Sharp Kabushiki Kaisha | Semiconductor device, module for optical devices, and manufacturing method of semiconductor device |
GB2433588A (en) * | 2005-12-20 | 2007-06-27 | Kingpak Tech Inc | Image sensor module and manufacturing method |
JP2007520743A (en) * | 2004-01-20 | 2007-07-26 | フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. | Image recognition system and use thereof |
JP2008004714A (en) * | 2006-06-22 | 2008-01-10 | Nec Corp | Chip-laminated semiconductor device |
JP2008085195A (en) * | 2006-09-28 | 2008-04-10 | Fujifilm Corp | Method of manufacturing solid-state imaging device and solid-state imaging device |
JP2008124334A (en) * | 2006-11-14 | 2008-05-29 | Toppan Printing Co Ltd | Solid-state image pickup device and manufacturing method therefor |
JP2009100005A (en) * | 2003-08-06 | 2009-05-07 | Sanyo Electric Co Ltd | Method of manufacturing semiconductor device |
KR100903824B1 (en) * | 2007-01-08 | 2009-06-25 | 비스에라 테크놀러지스 컴퍼니 리미티드 | Electronic assembly for image sensor device and fabrication method thereof |
KR100927423B1 (en) | 2008-05-15 | 2009-11-19 | 삼성전기주식회사 | Glass cap molding package and manufacturing method thereof, and camera module |
JP2010016395A (en) * | 2002-04-23 | 2010-01-21 | Sanyo Electric Co Ltd | Manufacturing method for semiconductor device |
JP2010098066A (en) * | 2008-10-15 | 2010-04-30 | Olympus Corp | Solid-state image pickup apparatus, and method of manufacturing solid-state image pickup apparatus |
US7719097B2 (en) | 2005-11-15 | 2010-05-18 | Fujitsu Microelectronics Limited | Semiconductor device having transparent member |
US7968961B2 (en) | 2006-11-02 | 2011-06-28 | Toppan Printing Co., Ltd. | Solid-state image pickup device and method for manufacturing the same |
JP2013007676A (en) * | 2011-06-24 | 2013-01-10 | Mitsutoyo Corp | Graduation protection structure of scale |
CN102881666A (en) * | 2012-07-18 | 2013-01-16 | 香港应用科技研究院有限公司 | Wafer level packaging device |
EP2858105A4 (en) * | 2012-05-30 | 2016-05-18 | Olympus Corp | Imaging device, semiconductor device, and imaging unit |
JP2017103435A (en) * | 2015-12-04 | 2017-06-08 | 日本電信電話株式会社 | Optical component structure |
CN111512444A (en) * | 2017-12-28 | 2020-08-07 | 索尼半导体解决方案公司 | Camera package, method of manufacturing camera package, and electronic apparatus |
-
2001
- 2001-05-01 JP JP2001134543A patent/JP3839271B2/en not_active Expired - Lifetime
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010016395A (en) * | 2002-04-23 | 2010-01-21 | Sanyo Electric Co Ltd | Manufacturing method for semiconductor device |
WO2004047177A1 (en) * | 2002-11-19 | 2004-06-03 | Sanyo Electric Co.,Ltd. | Semiconductor integrated device and method for manufacturing same |
US7361525B2 (en) | 2002-11-19 | 2008-04-22 | Sanyo Electric Co., Ltd. | Semiconductor integrated device having solid-state image sensor packaged within and production method for same |
US7619292B2 (en) | 2002-11-19 | 2009-11-17 | Sanyo Electric Co., Ltd. | Semiconductor integrated device having solid-state image sensor packaged within and production method for same |
CN100373626C (en) * | 2002-11-19 | 2008-03-05 | 三洋电机株式会社 | Semiconductor integrated device and method for manufacturing same |
JP2004200274A (en) * | 2002-12-17 | 2004-07-15 | Sanyo Electric Co Ltd | Method for manufacturing semiconductor package |
JP2005056999A (en) * | 2003-08-01 | 2005-03-03 | Fuji Photo Film Co Ltd | Solid-state image pickup device and its manufacturing method |
JP4551638B2 (en) * | 2003-08-01 | 2010-09-29 | 富士フイルム株式会社 | Method for manufacturing solid-state imaging device |
JP2009100005A (en) * | 2003-08-06 | 2009-05-07 | Sanyo Electric Co Ltd | Method of manufacturing semiconductor device |
JP2005072364A (en) * | 2003-08-26 | 2005-03-17 | Fuji Film Microdevices Co Ltd | Solid state imaging element and its manufacturing method |
US7180149B2 (en) | 2003-08-28 | 2007-02-20 | Fujikura Ltd. | Semiconductor package with through-hole |
KR101180815B1 (en) * | 2003-08-28 | 2012-09-07 | 올림푸스 가부시키가이샤 | Semiconductor package and manufacturing method thereof |
WO2005022631A1 (en) * | 2003-08-28 | 2005-03-10 | Fujikura Ltd. | Semiconductor package and manufacturing method thereof |
AU2004268299B2 (en) * | 2003-08-28 | 2009-05-21 | Olympus Corporation | Semiconductor package and manufacturing method thereof |
JP2009194396A (en) * | 2003-08-28 | 2009-08-27 | Fujikura Ltd | Semiconductor package and method of manufacturing the same |
JP4632694B2 (en) * | 2003-10-08 | 2011-02-16 | 聯華電子股▲ふん▼有限公司 | Wafer level package method and structure |
JP2005117011A (en) * | 2003-10-08 | 2005-04-28 | United Microelectronics Corp | Method and structure of wafer level package |
EP1536478A3 (en) * | 2003-11-25 | 2008-07-23 | FUJIFILM Corporation | Solid state imaging device and producing method thereof |
US7527990B2 (en) | 2003-11-25 | 2009-05-05 | Fujifilm Corporation | Solid state imaging device and producing method thereof |
EP1536478A2 (en) * | 2003-11-25 | 2005-06-01 | Fuji Photo Film Co., Ltd. | Solid state imaging device and producing method thereof |
JP2007520743A (en) * | 2004-01-20 | 2007-07-26 | フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. | Image recognition system and use thereof |
US7221051B2 (en) | 2004-01-23 | 2007-05-22 | Sharp Kabushiki Kaisha | Semiconductor device, module for optical devices, and manufacturing method of semiconductor device |
KR100755165B1 (en) * | 2004-01-23 | 2007-09-04 | 샤프 가부시키가이샤 | Semiconductor device, module for optical devices, and manufacturing method of semiconductor device |
JP2005322851A (en) * | 2004-05-11 | 2005-11-17 | Fuji Photo Film Co Ltd | Solid-state imaging apparatus |
JP4739697B2 (en) * | 2004-06-22 | 2011-08-03 | 富士フイルム株式会社 | Solid-state image sensor and endoscope |
JP2006012904A (en) * | 2004-06-22 | 2006-01-12 | Fuji Film Microdevices Co Ltd | Solid-state imaging device and endoscope |
JP2006073852A (en) * | 2004-09-03 | 2006-03-16 | Dainippon Printing Co Ltd | Sensor package and its manufacturing method |
KR100892204B1 (en) * | 2004-10-13 | 2009-04-07 | 스미토모 베이클리트 컴퍼니 리미티드 | Light-receiving device |
WO2006040986A1 (en) * | 2004-10-13 | 2006-04-20 | Sumitomo Bakelite Co., Ltd. | Light-receiving device |
JP4760713B2 (en) * | 2004-10-13 | 2011-08-31 | 住友ベークライト株式会社 | Receiver |
SG123651A1 (en) * | 2005-01-05 | 2006-07-26 | Advanced Chip Eng Tech Inc | Fbga and cob package structure for image sensor |
JP2007095908A (en) * | 2005-09-28 | 2007-04-12 | Disco Abrasive Syst Ltd | Wafer processing method |
US7932121B2 (en) | 2005-11-15 | 2011-04-26 | Fujitsu Semiconductor Limited | Semiconductor device and manufacturing method of the same |
US7719097B2 (en) | 2005-11-15 | 2010-05-18 | Fujitsu Microelectronics Limited | Semiconductor device having transparent member |
GB2433588A (en) * | 2005-12-20 | 2007-06-27 | Kingpak Tech Inc | Image sensor module and manufacturing method |
GB2433588B (en) * | 2005-12-20 | 2008-10-22 | Kingpak Tech Inc | Image sensor modules |
JP2008004714A (en) * | 2006-06-22 | 2008-01-10 | Nec Corp | Chip-laminated semiconductor device |
JP2008085195A (en) * | 2006-09-28 | 2008-04-10 | Fujifilm Corp | Method of manufacturing solid-state imaging device and solid-state imaging device |
US7968961B2 (en) | 2006-11-02 | 2011-06-28 | Toppan Printing Co., Ltd. | Solid-state image pickup device and method for manufacturing the same |
JP2008124334A (en) * | 2006-11-14 | 2008-05-29 | Toppan Printing Co Ltd | Solid-state image pickup device and manufacturing method therefor |
KR100903824B1 (en) * | 2007-01-08 | 2009-06-25 | 비스에라 테크놀러지스 컴퍼니 리미티드 | Electronic assembly for image sensor device and fabrication method thereof |
KR100927423B1 (en) | 2008-05-15 | 2009-11-19 | 삼성전기주식회사 | Glass cap molding package and manufacturing method thereof, and camera module |
JP2010098066A (en) * | 2008-10-15 | 2010-04-30 | Olympus Corp | Solid-state image pickup apparatus, and method of manufacturing solid-state image pickup apparatus |
JP2013007676A (en) * | 2011-06-24 | 2013-01-10 | Mitsutoyo Corp | Graduation protection structure of scale |
EP2858105A4 (en) * | 2012-05-30 | 2016-05-18 | Olympus Corp | Imaging device, semiconductor device, and imaging unit |
JP2017103478A (en) * | 2012-05-30 | 2017-06-08 | オリンパス株式会社 | Imaging device, semiconductor device, and imaging unit |
US10249672B2 (en) | 2012-05-30 | 2019-04-02 | Olympus Corporation | Image pickup apparatus, semiconductor apparatus, and image pickup unit |
CN102881666A (en) * | 2012-07-18 | 2013-01-16 | 香港应用科技研究院有限公司 | Wafer level packaging device |
US9117715B2 (en) | 2012-07-18 | 2015-08-25 | Hong Kong Applied Science and Technology Research Institute Company Limited | Wafer-level device packaging |
JP2017103435A (en) * | 2015-12-04 | 2017-06-08 | 日本電信電話株式会社 | Optical component structure |
CN111512444A (en) * | 2017-12-28 | 2020-08-07 | 索尼半导体解决方案公司 | Camera package, method of manufacturing camera package, and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3839271B2 (en) | 2006-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3839271B2 (en) | Solid-state imaging device and manufacturing method thereof | |
US7518206B2 (en) | Semiconductor device with a photoelectric converting portion and a light-shading means | |
US7948555B2 (en) | Camera module and electronic apparatus having the same | |
US6930327B2 (en) | Solid-state imaging device and method of manufacturing the same | |
US7122390B2 (en) | Methods of fabrication for flip-chip image sensor packages | |
US7964926B2 (en) | Image sensing devices including image sensor chips, image sensor package modules employing the image sensing devices, electronic products employing the image sensor package modules, and methods of fabricating the same | |
US7083999B2 (en) | Optical device, method of manufacturing the same, optical module, circuit board and electronic instrument | |
JP2004063751A (en) | Solid-state image sensing device and its manufacturing method | |
JP4174247B2 (en) | Manufacturing method of solid-state imaging device | |
JP2009176949A (en) | Backside irradiation-type solid state image pickup device and its production process | |
JP2004063782A (en) | Solid-state image sensing device and its manufacturing method | |
JP2004063786A (en) | Solid-state image sensing device and its manufacturing method | |
JP4271904B2 (en) | Method for manufacturing solid-state imaging device | |
JP2003347529A (en) | Solid-state image pickup device and its manufacturing method | |
JP2004063757A (en) | Solid-state image sensing device and its manufacturing method | |
JP4961393B2 (en) | Solid-state imaging device and method for manufacturing solid-state imaging device | |
JP2004063765A (en) | Solid-state image sensing device and its manufacturing method | |
JP5047077B2 (en) | Method for manufacturing solid-state imaging device | |
JP2004063772A (en) | Solid-state image sensing device and its manufacturing method | |
JP2009111130A (en) | Imaging apparatus and its manufacturing method | |
KR20240073033A (en) | Imaging devices, electronic devices and methods of manufacturing imaging devices | |
JP2004063756A (en) | Solid-state image sensing device and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060802 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3839271 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090811 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090811 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090811 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130811 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |