JP2009100005A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2009100005A
JP2009100005A JP2009008441A JP2009008441A JP2009100005A JP 2009100005 A JP2009100005 A JP 2009100005A JP 2009008441 A JP2009008441 A JP 2009008441A JP 2009008441 A JP2009008441 A JP 2009008441A JP 2009100005 A JP2009100005 A JP 2009100005A
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
semiconductor
manufacturing
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009008441A
Other languages
Japanese (ja)
Other versions
JP4805362B2 (en
Inventor
Takashi Noma
崇 野間
Akira Suzuki
彰 鈴木
Katsuhiko Kitagawa
勝彦 北川
Yoshinori Seki
嘉則 関
Yukihiro Takao
幸弘 高尾
Keiichi Yamaguchi
恵一 山口
Motoaki Wakui
元明 和久井
Hisao Otsuka
久夫 大塚
Masanori Iida
正則 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Sanyo Semiconductors Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Sanyo Semiconductors Co Ltd
Priority to JP2009008441A priority Critical patent/JP4805362B2/en
Publication of JP2009100005A publication Critical patent/JP2009100005A/en
Application granted granted Critical
Publication of JP4805362B2 publication Critical patent/JP4805362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector

Landscapes

  • Dicing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems relating to a yield and reliability caused by the cracks of a glass substrate or the like due to the exposure of the entire cutting area during dicing, in a method of manufacturing a semiconductor device, which has a process of bonding the glass substrate on the first surface of a semiconductor substrate, and etching the semiconductor substrate from the second surface of the semiconductor substrate. <P>SOLUTION: In the method of manufacturing the semiconductor device, as shown in Fig. 12, in a semiconductor substrate 302, a window 303 which can expose first wiring 301 and the cutting area 304 during dicing is formed only in a region where the first wiring 301 is present. This increases a region where the semiconductor substrate 302 and the glass substrate not shown are bonded through an insulating film or resin, and prevents the occurrence of the cracks or peeling. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

半導体装置の製造方法に関し、特に、半導体チップの外形寸法とほぼ同サイズの外形寸法を有するパッケージの製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a package having an outer dimension approximately the same as the outer dimension of a semiconductor chip.

近年、パッケージ技術として、CSP(Chip Size Package)が注目されている。CSPとは、半導体チップの外形寸法とほぼ同サイズの外形寸法を有する小型パッケージをいう。従来より、CSPの一種として、BGA型の半導体装置が知られている。このBGA型の半導体装置は、半田等の金属部材からなるボール状の導電端子をパッケージの一主面上に格子状に複数配列し、パッケージの他方の面上に形成される半導体チップと電気的に接続したものである。   In recent years, CSP (Chip Size Package) has attracted attention as a package technology. The CSP refers to a small package having an outer dimension substantially the same as the outer dimension of a semiconductor chip. Conventionally, a BGA type semiconductor device is known as a kind of CSP. In this BGA type semiconductor device, a plurality of ball-shaped conductive terminals made of a metal member such as solder are arranged in a grid pattern on one main surface of a package, and electrically connected to a semiconductor chip formed on the other surface of the package. Is connected to.

そして、このBGA型の半導体装置を電子機器に組み込む際には、各導電端子をプリント基板上の配線パターンに圧着することで、半導体チップとプリント基板上に搭載される外部回路とを電気的に接続している。   When incorporating this BGA type semiconductor device into an electronic device, each conductive terminal is crimped to a wiring pattern on the printed circuit board, thereby electrically connecting the semiconductor chip and the external circuit mounted on the printed circuit board. Connected.

このようなBGA型の半導体装置は、側部に突出したリードピンを有するSOP(Small Outline Package)やQFP(Quad Flat Package)等の他のCSP型半導体装置に比べて、多数の導電端子を設けることができ、しかも小型化できるという長所を有する。このBGA型の半導体装置は、例えば携帯電話機に搭載されるデジタルカメラのイメージセンサチップとしての用途がある。   Such a BGA type semiconductor device is provided with a larger number of conductive terminals than other CSP type semiconductor devices such as SOP (Small Outline Package) and QFP (Quad Flat Package) having lead pins protruding from the side. And has the advantage of being able to be downsized. This BGA type semiconductor device has an application as an image sensor chip of a digital camera mounted on a mobile phone, for example.

図13は従来のBGA型の半導体装置の概略構成を成すものであり、図13(a)は、このBGA型の半導体装置の表面側の斜視図である。また、図13(b)はこのBGA型の半導体装置の裏面側の斜視図である。   FIG. 13 shows a schematic configuration of a conventional BGA type semiconductor device, and FIG. 13A is a perspective view of the surface side of this BGA type semiconductor device. FIG. 13B is a perspective view of the back side of the BGA type semiconductor device.

BGA型の半導体装置100は、第1及び第2のガラス基板104a、104bの間に半導体チップ101が樹脂105a、105bを介して封止されている。第2のガラス基板104bの一主面上、即ちBGA型の半導体装置100の裏面上には、ボール状の端子(以下、導電端子111と称す)が格子状に複数配置されている。この導電端子111は、第2の配線109を介して半導体チップ101へと接続される。複数の第2の配線109には、それぞれ半導体チップ101の内部から引き出されたアルミニウム配線が接続されており、各導電端子111と半導体チップ101との電気的接続がなされている。   In the BGA type semiconductor device 100, the semiconductor chip 101 is sealed between the first and second glass substrates 104a and 104b via resins 105a and 105b. On one main surface of the second glass substrate 104b, that is, on the back surface of the BGA type semiconductor device 100, a plurality of ball-shaped terminals (hereinafter referred to as conductive terminals 111) are arranged in a lattice shape. The conductive terminal 111 is connected to the semiconductor chip 101 via the second wiring 109. Aluminum wires drawn from the inside of the semiconductor chip 101 are connected to the plurality of second wirings 109, respectively, and electrical connection between each conductive terminal 111 and the semiconductor chip 101 is made.

このBGA型の半導体装置100の断面構造について図14を参照して更に詳しく説明する。図14はダイシングラインに沿って、個々のチップに分割されたBGA型の半導体装置100の断面図を示している。   The cross-sectional structure of the BGA type semiconductor device 100 will be described in more detail with reference to FIG. FIG. 14 shows a cross-sectional view of the BGA type semiconductor device 100 divided into individual chips along the dicing line.

半導体チップ101の表面に配置された絶縁膜102上に第1の配線103が設けられている。この半導体チップ101は樹脂105aによって第1のガラス基板104aと接着されている。また、この半導体チップ101の裏面は、樹脂105bによって第2のガラス基板104bと接着されている。そして、第1の配線103の一端は第2の配線109と接続されている。この第2の配線109は、第1の配線103の一端から第2のガラス基板104bの表面に延在している。そして、第2のガラス基板104b上に延在した第2の配線109上には、ボール状の導電端子111が形成されている。   A first wiring 103 is provided on the insulating film 102 disposed on the surface of the semiconductor chip 101. The semiconductor chip 101 is bonded to the first glass substrate 104a with a resin 105a. The back surface of the semiconductor chip 101 is bonded to the second glass substrate 104b with a resin 105b. One end of the first wiring 103 is connected to the second wiring 109. The second wiring 109 extends from one end of the first wiring 103 to the surface of the second glass substrate 104b. A ball-shaped conductive terminal 111 is formed on the second wiring 109 extending on the second glass substrate 104b.

上述した技術は、以下の特許文献1に記載されている。   The technique described above is described in Patent Document 1 below.

特許公表2002−512436号公報Patent Publication 2002-512436

前述した半導体装置は、半導体装置の両面にガラス基板を用いるため、半導体装置が厚くなること、コストが高くなることが欠点として挙げられる。そこで、ガラス基板を第1の配線が形成される側にのみ接着する方法が検討された。その場合、ガラス基板が接着されない側は、半導体基板になるため、ガラス基板と比較すると、エッチング加工が容易になる。この利点を生かして、第1の配線と第2の配線を接続させるために、スクライブ領域の半導体基板や絶縁膜をエッチングして、第1の配線を露出させる。この結果、半導体チップの両面にガラス基板を用いる方法と比べると、第1の配線と第2の配線の接触面積を増大させることができる。その後、第2の配線、保護膜、導電端子等を形成し、最終的にガラス基板を切断することで、半導体装置を個別に分離する。   Since the semiconductor device described above uses glass substrates on both sides of the semiconductor device, the semiconductor device becomes thicker and the cost increases. Therefore, a method of bonding the glass substrate only to the side where the first wiring is formed has been studied. In that case, since the side to which the glass substrate is not bonded becomes a semiconductor substrate, etching processing becomes easier as compared with the glass substrate. Taking advantage of this advantage, in order to connect the first wiring and the second wiring, the semiconductor substrate and the insulating film in the scribe region are etched to expose the first wiring. As a result, the contact area between the first wiring and the second wiring can be increased as compared with the method using glass substrates on both sides of the semiconductor chip. Thereafter, a second wiring, a protective film, a conductive terminal, and the like are formed, and the glass substrate is finally cut to separate the semiconductor devices individually.

その反面、第1の配線を露出させた後、スクライブ領域は半導体基板上に回路を形成する際に成膜された絶縁膜が露出した状態になる。この時、前記スクライブ領域には、前記絶縁膜、樹脂、ガラス基板しか存在しない。各部の厚さを考えると、実質的に、全ての半導体チップをガラス基板だけで支える状態になる。更に、半導体基板の材料とガラス基板では熱膨張率が異なるため、ガラス基板には大きなそりが生じる。そのため、作業途中のハンドリングにより、ガラス基板に対し、ガラス基板と接着されている半導体チップ等の荷重がかかるようになる。その結果、図11に示すように、半導体チップの外周部で半導体チップと不図示のガラス基板の間に剥離204が発生したり、ガラス基板202にクラック205が発生したりする。結果として、半導体装置の歩留まりや信頼性が低下する問題が発生するようになった。   On the other hand, after the first wiring is exposed, the scribe region is exposed to the insulating film formed when the circuit is formed on the semiconductor substrate. At this time, only the insulating film, resin, and glass substrate exist in the scribe region. Considering the thickness of each part, substantially all the semiconductor chips are supported only by the glass substrate. Furthermore, since the coefficient of thermal expansion is different between the material of the semiconductor substrate and the glass substrate, the glass substrate is greatly warped. Therefore, a load such as a semiconductor chip bonded to the glass substrate is applied to the glass substrate by handling during the operation. As a result, as shown in FIG. 11, separation 204 occurs between the semiconductor chip and a glass substrate (not shown) at the outer periphery of the semiconductor chip, or a crack 205 occurs on the glass substrate 202. As a result, there arises a problem that the yield and reliability of the semiconductor device are lowered.

本発明の半導体装置の製造方法は、複数の半導体チップを含む半導体基板の第1の面上に形成され、前記複数の半導体チップの境界近傍に配置された第1の配線上を覆うように、接着剤を介して支持板を接着する工程と、第2の面より前記半導体基板の一部を選択的に除去して、前記第1の配線の下部にある絶縁膜を露出するように開口部を形成する工程と、を有することを特徴とする。この場合、ダイシング領域全体が露出することに伴う課題の解決を図るための手段であることから、ダイシング領域の全体が露出しないように開口部を形成することは明らかで、例えば、実施形態で示す図12のような局所的な形態になる。The method of manufacturing a semiconductor device of the present invention is formed on a first surface of a semiconductor substrate including a plurality of semiconductor chips, and covers a first wiring disposed in the vicinity of the boundary between the plurality of semiconductor chips. A step of adhering a support plate through an adhesive, and an opening so as to selectively remove a portion of the semiconductor substrate from the second surface and expose an insulating film under the first wiring And a step of forming. In this case, since it is a means for solving the problems associated with the exposure of the entire dicing area, it is clear that the opening is formed so that the entire dicing area is not exposed. The local form is as shown in FIG.

本発明は、ガラス基板に生じるクラックや半導体チップ周辺部での剥離の発生を防止することにより、半導体装置の歩留まりや信頼性を向上させる効果を有する。また、半導体チップの裏面側のガラス基板を省略したことで、半導体装置の薄型化やコスト低減を図ることもできる。   The present invention has an effect of improving the yield and reliability of a semiconductor device by preventing the occurrence of cracks in the glass substrate and the peeling at the periphery of the semiconductor chip. Further, by omitting the glass substrate on the back surface side of the semiconductor chip, it is possible to reduce the thickness and cost of the semiconductor device.

本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 従来に係る半導体装置の製作途中における平面図である。It is a top view in the middle of manufacture of the conventional semiconductor device. 本発明の実施形態に係る半導体装置の製造途中における平面図である。It is a top view in the middle of manufacture of the semiconductor device concerning the embodiment of the present invention. 従来例に係るBGA型半導体装置の斜視図である。It is a perspective view of the BGA type semiconductor device which concerns on a prior art example. 従来に係るBGA型半導体装置の断面図である。It is sectional drawing of the BGA type semiconductor device which concerns on the past.

次に、本発明による半導体装置の製造方法を、図1乃至図10の半導体装置の断面図、及び図12の半導体装置の平面図を参照しながら説明する。   Next, a method for manufacturing a semiconductor device according to the present invention will be described with reference to cross-sectional views of the semiconductor device of FIGS. 1 to 10 and a plan view of the semiconductor device of FIG.

最初に、図1に示すように、半導体基板1を用意する。これらの半導体基板1は、前記半導体基板1上に、例えばCCDのイメージセンサや半導体メモリを、半導体のプロセスにより形成したものである。その表面上に第1の絶縁膜2を介して、後に、半導体チップ毎に分断するための境界S(ダイシングラインまたはスクライブラインと呼ばれる。)付近で、所定の間隙を有して第1の配線3を形成する。ここで、第1の配線3は、半導体装置のボンディングパットから、境界S付近まで拡張されたパッドである。すなわち、第1の配線3は外部接続パッドであって、半導体装置の図示しない回路と電気的に接続されている。   First, as shown in FIG. 1, a semiconductor substrate 1 is prepared. These semiconductor substrates 1 are obtained by forming, for example, a CCD image sensor or a semiconductor memory on the semiconductor substrate 1 by a semiconductor process. A first wiring having a predetermined gap in the vicinity of a boundary S (referred to as a dicing line or a scribe line) to be divided for each semiconductor chip later through the first insulating film 2 on the surface. 3 is formed. Here, the first wiring 3 is a pad extended from the bonding pad of the semiconductor device to the vicinity of the boundary S. That is, the first wiring 3 is an external connection pad and is electrically connected to a circuit (not shown) of the semiconductor device.

次に、第1の配線3が形成された半導体基板1上に、支持板として用いるガラス基板4を、透明の接着剤として樹脂5(例えばエポキシ樹脂)を用いて接着する。なお、ここでは、支持板としてガラス基板、接着剤としてエポキシ樹脂を使用しているが、シリコン基板やプラスチックの板を支持板として用いてもよく、接着剤はこれらの支持板に対して適切な接着剤を選択すればよい。   Next, a glass substrate 4 used as a support plate is bonded onto the semiconductor substrate 1 on which the first wiring 3 is formed using a resin 5 (for example, epoxy resin) as a transparent adhesive. Here, a glass substrate is used as the support plate and an epoxy resin is used as the adhesive, but a silicon substrate or a plastic plate may be used as the support plate, and the adhesive is suitable for these support plates. What is necessary is just to select an adhesive agent.

その後、前記半導体基板1について、ガラス基板4を接着した面と反対側の面をバックグラインドして、基板の厚さを薄くする。バックグラインドされた半導体基板1の面では、スクラッチが発生し、幅、深さが数μm程度になる凹凸ができる。これを小さくするために、半導体基板1の材料であるシリコンと第1の絶縁膜2の材料であるシリコン酸化膜に比して高いエッチング選択比を有する薬液を用いてウエットエッチングを行う。   Thereafter, the surface of the semiconductor substrate 1 opposite to the surface to which the glass substrate 4 is bonded is back-ground to reduce the thickness of the substrate. On the back-ground surface of the semiconductor substrate 1, scratches are generated, and irregularities with a width and depth of about several μm are formed. In order to reduce this, wet etching is performed using a chemical having a higher etching selectivity than silicon that is the material of the semiconductor substrate 1 and silicon oxide that is the material of the first insulating film 2.

薬液としては、前述したようにシリコンとシリコン酸化膜に比して高いエッチング選択比を有していれば特別な限定をするものではない。例えば、本発明では、シリコンエッチング溶液として、フッ化水素酸2.5%、硝酸50%、酢酸10%及び水37.5%の溶液を使用している。   As described above, the chemical solution is not particularly limited as long as it has a higher etching selectivity than silicon and the silicon oxide film. For example, in the present invention, a solution of 2.5% hydrofluoric acid, 50% nitric acid, 10% acetic acid and 37.5% water is used as the silicon etching solution.

なお、当該ウエットエッチングは、行う方が好ましいが、本発明は、ウエットエッチングを行わないことを制限するものではない。   In addition, although it is more preferable to perform the said wet etching, this invention does not restrict | limit that wet etching is not performed.

次に、図2(a)及び図2(b)に示すように、前記半導体基板1において、ガラス基板4を接着した面と反対側の面に対して、第1の配線3の一部を露出できるように開口部を設けた不図示のレジストパターンをマスクとして、半導体基板1の等方性エッチング(もしくは異方性エッチング)を行う。この結果、第1の配線3が存在する部分では、図2(a)に示すように、境界Sの部分で開口するウィンドウ20が形成され、第1の絶縁膜2が露出した状態となる。一方、第1の配線3が存在しない部分では、図2(b)に示すように、半導体基板1が残ったままとなる。結果として、図2(a)及び図2(b)の半導体装置を半導体基板1側から見た場合には、図12の平面図に示すように、ダイシング時の切断領域304全体がエッチングされず、第1の配線301と共にダイシング時の切断領域304の一部を露出するウインドウ303が形成される。その結果、不図示のガラス基板の殆どの部分は、不図示の樹脂や絶縁膜を介し、半導体基板302と接着した状態に保たれる。   Next, as shown in FIGS. 2A and 2B, a part of the first wiring 3 is formed on the surface of the semiconductor substrate 1 opposite to the surface to which the glass substrate 4 is bonded. Isotropic etching (or anisotropic etching) of the semiconductor substrate 1 is performed using a resist pattern (not shown) provided with an opening so as to be exposed as a mask. As a result, in the portion where the first wiring 3 exists, as shown in FIG. 2A, a window 20 opening at the boundary S is formed, and the first insulating film 2 is exposed. On the other hand, in the portion where the first wiring 3 does not exist, the semiconductor substrate 1 remains as shown in FIG. As a result, when the semiconductor device of FIGS. 2A and 2B is viewed from the semiconductor substrate 1 side, the entire cutting region 304 during dicing is not etched as shown in the plan view of FIG. A window 303 exposing a part of the cutting region 304 at the time of dicing is formed together with the first wiring 301. As a result, most of the glass substrate (not shown) is kept in a state of being bonded to the semiconductor substrate 302 via a resin or insulating film (not shown).

上述したように、第1の配線に対応する位置のみを露出し得るウィンドウ20を設けたことにより、半導体基板1とガラス基板4が第1の絶縁膜2や樹脂5を介して接着する領域が増大する。これにより、ガラス基板4による支持強度が高められる。また、半導体基板1とガラス基板4との熱膨張率の差異によるガラス基板4の反りの増大が低減され、半導体装置に生じるクラックや剥離が低減される。   As described above, by providing the window 20 that can expose only the position corresponding to the first wiring, a region where the semiconductor substrate 1 and the glass substrate 4 are bonded via the first insulating film 2 and the resin 5 is provided. Increase. Thereby, the support strength by the glass substrate 4 is raised. Moreover, the increase in the curvature of the glass substrate 4 by the difference in the thermal expansion coefficient of the semiconductor substrate 1 and the glass substrate 4 is reduced, and the crack and peeling which arise in a semiconductor device are reduced.

なお、当該エッチングは、ドライエッチング、ウエットエッチングのどちらで行ってもよい。また、これ以降の工程の説明では、図2(a)及び図2(b)と同様に、ウィンドウ20が形成されている部分の断面図を図番(a)、ウィンドウ20が形成されていない部分の断面図を図番(b)として示す。   Note that the etching may be performed by either dry etching or wet etching. In the description of the subsequent steps, as in FIGS. 2A and 2B, the sectional view of the portion where the window 20 is formed is the figure number (a), and the window 20 is not formed. A sectional view of the portion is shown as a drawing number (b).

エッチングされた半導体基板1の面では、面内の凹凸や残渣、異物があり、また、図2(a)中に丸く囲んで1a,1bとして示したように、ウィンドウ20において角になる部分が尖った形状になっている。   The etched surface of the semiconductor substrate 1 has in-plane irregularities, residues, and foreign matter. Further, as shown in circles 1a and 1b in FIG. It has a pointed shape.

そこで、図3(a)及び図3(b)に示すように、残渣や異物の除去、尖った部分の先端部を丸めるためにウエットエッチングを行う。これにより、図2(a)で丸く囲んだ1a,1bの尖った部分は、図3(a)で丸く囲んだ1a,1bに示すように滑らかな形状になる。   Therefore, as shown in FIGS. 3A and 3B, wet etching is performed to remove residues and foreign matters and to round off the tip of the sharp portion. As a result, the sharp portions of 1a and 1b circled in FIG. 2 (a) have a smooth shape as shown in 1a and 1b circled in FIG. 3 (a).

次に、図4(a)及び図4(b)に示すように、前記半導体基板1において、ガラス基板4を接着した面と反対側の面に対して、第2の絶縁膜6の成膜を行う。本実施形態では、シランベースの酸化膜を3μm程度成膜する。   Next, as shown in FIGS. 4A and 4B, the second insulating film 6 is formed on the surface of the semiconductor substrate 1 opposite to the surface to which the glass substrate 4 is bonded. I do. In this embodiment, a silane-based oxide film is formed to a thickness of about 3 μm.

次に、前記半導体基板1において、ガラス基板4を接着した面と反対側の面に対して、不図示のレジストを塗布し、ウィンドウ20内の境界Sに沿う部分を開口させるようにパターニングを行って、レジスト膜を形成する。そして、図5(a)及び図5(b)に示すように、その不図示のレジスト膜をマスクにして、第2の絶縁膜6、第1の絶縁膜2をエッチングし、第1の配線3の一部を露出させる。   Next, a resist (not shown) is applied to the surface of the semiconductor substrate 1 opposite to the surface to which the glass substrate 4 is bonded, and patterning is performed so as to open a portion along the boundary S in the window 20. Then, a resist film is formed. Then, as shown in FIGS. 5A and 5B, the second insulating film 6 and the first insulating film 2 are etched using the resist film (not shown) as a mask, and the first wiring A part of 3 is exposed.

次に、図6(a)及び図6(b)に示すように、後に導電端子10を形成する位置に対応するように、柔軟性を有する緩衝部材7を形成する。なお、緩衝部材7は導電端子10に加わる力を吸収し、導電端子10の接合時のストレスを緩和する機能を持つものであるが、本発明は緩衝部材7の不使用を制限するものではない。   Next, as shown in FIGS. 6A and 6B, a flexible buffer member 7 is formed so as to correspond to a position where the conductive terminal 10 is formed later. Although the buffer member 7 has a function of absorbing the force applied to the conductive terminal 10 and relieving stress when the conductive terminal 10 is joined, the present invention does not limit the non-use of the buffer member 7. .

次に、前記ガラス基板4の反対側の面に、第2の配線8を形成する。これにより、第1の配線3と第2の配線8が電気的に接続される。   Next, the second wiring 8 is formed on the opposite surface of the glass substrate 4. Thereby, the first wiring 3 and the second wiring 8 are electrically connected.

その後、前記ガラス基板4の反対側の面に、不図示のレジストを塗布する。ここで、ウィンドウ20が形成されている部分では、ウィンドウ20内の境界Sに沿う部分を開口させるようにレジスト膜のパターン形成を行う。一方、ウィンドウ20が開口されていない部分では、第2の配線8を露出するようにレジスト膜のパターン形成を行う。そして、前記不図示のレジスト膜をマスクとしてエッチングを行い、境界S付近の第2の配線8を除去する。また、ウィンドウ20が形成されていない部分の第2の配線8を除去する。   Thereafter, a resist (not shown) is applied to the opposite surface of the glass substrate 4. Here, in a portion where the window 20 is formed, a resist film pattern is formed so as to open a portion along the boundary S in the window 20. On the other hand, in a portion where the window 20 is not opened, a resist film pattern is formed so as to expose the second wiring 8. Then, etching is performed using the resist film (not shown) as a mask, and the second wiring 8 near the boundary S is removed. Further, the portion of the second wiring 8 where the window 20 is not formed is removed.

次に、図7(a)及び図7(b)示すように、境界Sに沿って、ガラス基板4を例えば30μm程度の深さで切削するように、切り込み30(逆V字型の溝)を形成する。   Next, as shown in FIGS. 7A and 7B, the notch 30 (inverted V-shaped groove) is formed so as to cut the glass substrate 4 at a depth of, for example, about 30 μm along the boundary S. Form.

即ち、半導体基板1上において第1の配線3が存在する部分(即ちウィンドウ20内の境界Sに沿う部分)では、樹脂5、及びガラス基板4の一部が切削されて、上記切り込み30が形成される。この時、ウィンドウ20内の第2の配線に接触しないような幅のブレードを用いる必要がある。   That is, in the portion where the first wiring 3 exists on the semiconductor substrate 1 (that is, the portion along the boundary S in the window 20), the resin 5 and a part of the glass substrate 4 are cut to form the cuts 30. Is done. At this time, it is necessary to use a blade having a width that does not contact the second wiring in the window 20.

一方、半導体基板1上において第1の配線3が存在しない領域(即ちウィンドウ20が形成されない領域)では、半導体基板1、第1の絶縁膜2、樹脂5、及びガラス基板4の一部が切削されて、上記切り込み30が形成される。   On the other hand, in a region where the first wiring 3 does not exist on the semiconductor substrate 1 (that is, a region where the window 20 is not formed), a part of the semiconductor substrate 1, the first insulating film 2, the resin 5, and the glass substrate 4 is cut. Thus, the cut 30 is formed.

なお、本実施形態では、切り込み30の形状は楔形の断面形状をしているが、矩形状の断面形状であっても良い。また、本願発明は、上述したような切り込み30を入れる工程を行うことを強制するものではない。   In the present embodiment, the cut 30 has a wedge-shaped cross-sectional shape, but may have a rectangular cross-sectional shape. Further, the present invention does not force the process of making the cut 30 as described above.

次に、図8(a)及び図8(b)に示すように、ガラス基板4の反対側の面に対して無電解メッキ処理を行い、第2の配線8に対して、Ni−Auメッキ膜9を形成する。この膜は、メッキであるため、第2の配線8が存在する部分にのみ形成される。   Next, as shown in FIGS. 8A and 8B, the surface opposite to the glass substrate 4 is subjected to electroless plating, and the second wiring 8 is plated with Ni—Au. A film 9 is formed. Since this film is plated, it is formed only on the portion where the second wiring 8 exists.

次に、図9(a)及び図9(b)に示すように、ガラス基板4の反対側の面に保護膜10を形成する。保護膜10を形成するためには、ガラス基板4の反対側の面を上に向けて、熱硬化性の有機系樹脂を上方から滴下し、半導体基板自体を回転させることで、この回転により生じる遠心力を利用し、当該有機系樹脂を基板面上に広げる。これにより、境界Sに沿って形成された切り込み30の内壁を含む半導体基板1の裏面側に、保護膜10が形成される。   Next, as shown in FIGS. 9A and 9B, a protective film 10 is formed on the opposite surface of the glass substrate 4. In order to form the protective film 10, a thermosetting organic resin is dropped from above with the opposite surface of the glass substrate 4 facing upward, and the semiconductor substrate itself is rotated. The organic resin is spread on the substrate surface using centrifugal force. Thereby, the protective film 10 is formed on the back surface side of the semiconductor substrate 1 including the inner wall of the notch 30 formed along the boundary S.

即ち、半導体基板1上において第1の配線3が存在する部分(即ちウィンドウ20内の境界Sに沿う部分)では、第2の絶縁膜6の表面から、切り込み30の内壁において露出する樹脂5、及びガラス基板4を覆うようにして、保護膜10が形成される。一方、半導体基板1上において第1の配線3が存在する部分以外の領域(即ちウィンドウ20が形成されない領域)では、第2の絶縁膜6の表面から、切り込み30の内壁において露出する第2の絶縁膜6、半導体基板1、第1の絶縁膜2、樹脂5、及びガラス基板4の各露出部を覆うようにして、保護膜10が形成される。   That is, in a portion where the first wiring 3 exists on the semiconductor substrate 1 (that is, a portion along the boundary S in the window 20), the resin 5 exposed on the inner wall of the cut 30 from the surface of the second insulating film 6; And the protective film 10 is formed so that the glass substrate 4 may be covered. On the other hand, in the region other than the portion where the first wiring 3 exists on the semiconductor substrate 1 (that is, the region where the window 20 is not formed), the second exposed from the surface of the second insulating film 6 on the inner wall of the cut 30. A protective film 10 is formed so as to cover the exposed portions of the insulating film 6, the semiconductor substrate 1, the first insulating film 2, the resin 5, and the glass substrate 4.

その後、導電端子11を形成する部分の保護膜10を、不図示のレジストマスク(緩衝部材7に対応する位置に開口部を有する)を利用したエッチングにより除去し、緩衝部材7に対応するNi−Auメッキ膜9上の位置に導電端子11を形成する。この導電端子11は、Ni−Auメッキ膜9を介して第2の配線8と電気的に接続されている。導電端子11は、はんだバンプや金バンプで作成する。特に、金バンプを用いる場合、導電端子11の厚さを、160μmから数μm〜数十μmに減少させることができる。   Thereafter, the portion of the protective film 10 where the conductive terminal 11 is to be formed is removed by etching using a resist mask (not shown) (having an opening at a position corresponding to the buffer member 7), and Ni− corresponding to the buffer member 7. Conductive terminals 11 are formed at positions on the Au plating film 9. The conductive terminal 11 is electrically connected to the second wiring 8 through the Ni—Au plating film 9. The conductive terminal 11 is made of a solder bump or a gold bump. In particular, when gold bumps are used, the thickness of the conductive terminal 11 can be reduced from 160 μm to several μm to several tens of μm.

そして、図10(a)及び図10(b)に示すように、切り込み30を設けた部分から、境界Sに沿ってダイシングを行い、半導体装置を各々の半導体チップに分離する。この時、ダイシングに用いるブレードの幅は、ガラス基板4、及び切り込み30内の保護膜のみを切削し得る幅である必要がある。   Then, as shown in FIGS. 10A and 10B, dicing is performed along the boundary S from the portion where the notch 30 is provided, and the semiconductor device is separated into each semiconductor chip. At this time, the width of the blade used for dicing needs to be a width that can cut only the glass substrate 4 and the protective film in the cut 30.

上述したように、本実施形態の半導体装置の製造方法によれば、2段階のダイシング、即ち、切り込み30を形成して、さらに、その切り込み30を覆う保護膜10を形成した後にダイシングを行う。これにより、半導体装置を個々の半導体チップに分離するダイシングの際、境界S(即ちダイシングライン)に沿って形成された切り込み30の内壁が保護膜10で覆われているため、ガラス基板4及び保護膜10のみをダイシングすることで分離を行うことができる。即ち、ガラス基板4及び保護膜10以外の層(樹脂5、及び第2の配線8等)にブレードが接触することが無い。従って、分離された半導体装置、即ち半導体チップの断面やエッジ部に、ダイシング時のブレードの接触による剥離が生じることを極力抑止できる。   As described above, according to the method for manufacturing a semiconductor device of the present embodiment, dicing is performed after two-stage dicing, that is, the cut 30 is formed, and the protective film 10 covering the cut 30 is further formed. Thereby, when dicing the semiconductor device into individual semiconductor chips, the inner wall of the cut 30 formed along the boundary S (ie, the dicing line) is covered with the protective film 10, so that the glass substrate 4 and the protective film are protected. Separation can be performed by dicing only the membrane 10. That is, the blade does not come into contact with layers other than the glass substrate 4 and the protective film 10 (the resin 5 and the second wiring 8). Therefore, it is possible to suppress the separation of the separated semiconductor device, that is, the semiconductor chip due to the contact of the blade during dicing, as much as possible.

結果として、半導体装置の歩留まりや信頼性を向上することが可能となる。また、本発明の半導体装置は、1枚のガラス基板から成るため、半導体装置の薄型化やコスト低減を図ることも可能となる。   As a result, the yield and reliability of the semiconductor device can be improved. In addition, since the semiconductor device of the present invention is composed of a single glass substrate, it is possible to reduce the thickness and reduce the cost of the semiconductor device.

なお、本実施形態では、第2の配線8と電気的に接続する導電端子11を形成したが、本発明はこれに限定されない。即ち、本発明は、導電端子が形成されない半導体装置(例えばLGA;Land Grid Array型パッケージ)に適用されるものであってもよい。   In the present embodiment, the conductive terminal 11 electrically connected to the second wiring 8 is formed, but the present invention is not limited to this. That is, the present invention may be applied to a semiconductor device (for example, LGA; Land Grid Array type package) in which a conductive terminal is not formed.

1 半導体基板
2 第1の絶縁膜
3 第1の配線
4 ガラス基板
5 樹脂
6 第2の絶縁膜
7 緩衝部材
8 第2の配線
9 Ni−Auメッキ
10 保護膜
11 導電端子
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 1st insulating film 3 1st wiring 4 Glass substrate 5 Resin 6 2nd insulating film 7 Buffer member 8 2nd wiring 9 Ni-Au plating 10 Protective film 11 Conductive terminal

Claims (8)

複数の半導体チップを含む半導体基板の第1の面上に形成され、前記複数の半導体チップの境界近傍に配置された第1の配線上を覆うように、接着剤を介して支持板を接着する工程と、
第2の面より前記半導体基板の一部を選択的に除去して、前記第1の配線の下部にある絶縁膜を露出するように開口部を形成する工程と、を有することを特徴とする半導体装置の製造方法。
A support plate is bonded via an adhesive so as to cover the first wiring formed on the first surface of the semiconductor substrate including the plurality of semiconductor chips and disposed in the vicinity of the boundary between the plurality of semiconductor chips. Process,
And a step of selectively removing a part of the semiconductor substrate from the second surface to form an opening so as to expose an insulating film under the first wiring. A method for manufacturing a semiconductor device.
前記開口部が前記第1の配線ごとに非連続的に、当該第1の配線の下部から当該第1の配線に隣接するダイシング領域まで延在していることを特徴とする請求項1に記載の半導体装置の製造方法。The said opening part is extended to the dicing area | region adjacent to the said 1st wiring from the lower part of the said 1st wiring discontinuously for every said 1st wiring. Semiconductor device manufacturing method. 前記第1の配線は、前記半導体チップの境界を挟んで一対となるように配置されており、前記開口部は、前記一対の第1の配線毎に非連続的に存在することを特徴とする請求項1に記載の半導体装置の製造方法。 The first wirings are arranged in a pair so as to sandwich the boundary of the semiconductor chip, and the openings exist discontinuously for each pair of first wirings. A method for manufacturing a semiconductor device according to claim 1. 前記絶縁膜を露出する開口部を形成する工程の前に、前記半導体基板の第2の面を研削する工程を有することを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置の製造方法。   4. The semiconductor device according to claim 1, further comprising a step of grinding the second surface of the semiconductor substrate before the step of forming the opening exposing the insulating film. Manufacturing method. 前記絶縁膜を露出する開口部を形成する工程の後に、前記半導体基板の第2の面に第2の絶縁膜を形成する工程を有することを特徴とする請求項1乃至請求項4のいずれかに記載の半導体装置の製造方法。   5. The method according to claim 1, further comprising a step of forming a second insulating film on the second surface of the semiconductor substrate after the step of forming the opening exposing the insulating film. The manufacturing method of the semiconductor device as described in any one of Claims 1-3. 前記第2の絶縁膜を形成する工程の後に、前記第1の絶縁膜と前記第2の絶縁膜をエッチングして、前記第1の配線を露出させる工程を有することを特徴とする請求項5に記載の半導体装置の製造方法。   6. The step of etching the first insulating film and the second insulating film to expose the first wiring after the step of forming the second insulating film. The manufacturing method of the semiconductor device as described in any one of Claims 1-3. 前記第1の配線を露出させる工程の後に、当該第1の配線に接続される第2の配線を形成する工程を有することを特徴とする請求項6に記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 6, further comprising a step of forming a second wiring connected to the first wiring after the step of exposing the first wiring. 前記半導体チップの境界に沿ってダイシングを行い、各々の前記半導体チップを分離する工程を有することを特徴とする請求項7に記載の半導体装置の製造方法。8. The method of manufacturing a semiconductor device according to claim 7, further comprising a step of dicing along the boundary of the semiconductor chip to separate each of the semiconductor chips.
JP2009008441A 2003-08-06 2009-01-19 Manufacturing method of semiconductor device Expired - Fee Related JP4805362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008441A JP4805362B2 (en) 2003-08-06 2009-01-19 Manufacturing method of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003288150 2003-08-06
JP2003288150 2003-08-06
JP2009008441A JP4805362B2 (en) 2003-08-06 2009-01-19 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004022989A Division JP4401181B2 (en) 2003-08-06 2004-01-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009100005A true JP2009100005A (en) 2009-05-07
JP4805362B2 JP4805362B2 (en) 2011-11-02

Family

ID=39422967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008441A Expired - Fee Related JP4805362B2 (en) 2003-08-06 2009-01-19 Manufacturing method of semiconductor device

Country Status (2)

Country Link
JP (1) JP4805362B2 (en)
CN (1) CN101174572B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722514B2 (en) 2011-01-17 2014-05-13 Infineon Technologies Ag Semiconductor devices having insulating substrates and methods of formation thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330992A (en) * 1996-06-10 1997-12-22 Ricoh Co Ltd Semiconductor device mounting body and its manufacture
JP2002329852A (en) * 2001-05-01 2002-11-15 Fuji Film Microdevices Co Ltd Solid-state image pickup apparatus and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL108359A (en) * 1994-01-17 2001-04-30 Shellcase Ltd Method and apparatus for producing integrated circuit devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330992A (en) * 1996-06-10 1997-12-22 Ricoh Co Ltd Semiconductor device mounting body and its manufacture
JP2002329852A (en) * 2001-05-01 2002-11-15 Fuji Film Microdevices Co Ltd Solid-state image pickup apparatus and its manufacturing method

Also Published As

Publication number Publication date
JP4805362B2 (en) 2011-11-02
CN101174572B (en) 2010-12-15
CN101174572A (en) 2008-05-07

Similar Documents

Publication Publication Date Title
JP4401181B2 (en) Semiconductor device and manufacturing method thereof
KR100938970B1 (en) Semiconductor device and manufacturing method thereof
US7312521B2 (en) Semiconductor device with holding member
JP3548082B2 (en) Semiconductor device and manufacturing method thereof
JP4544876B2 (en) Manufacturing method of semiconductor device
US7759779B2 (en) Semiconductor device and method of manufacturing the same
EP1478021A1 (en) Semiconductor device and manufacturing method thereof
JP4334397B2 (en) Semiconductor device and manufacturing method thereof
JP4215571B2 (en) Manufacturing method of semiconductor device
JP5238985B2 (en) Manufacturing method of semiconductor device
JP4805362B2 (en) Manufacturing method of semiconductor device
JP3877700B2 (en) Semiconductor device and manufacturing method thereof
JP2010016395A5 (en)
JP4401330B2 (en) Semiconductor device and manufacturing method thereof
JP4522213B2 (en) Manufacturing method of semiconductor device
JP4371719B2 (en) Semiconductor device and manufacturing method thereof
JP2006191152A (en) Semiconductor device and manufacturing method thereof
JP2004172587A (en) Method for manufacturing semiconductor device
JP2006179709A (en) Manufacturing method for semiconductor device
JP2006173198A (en) Semiconductor device and its manufacturing method
JP2005101411A (en) Semiconductor device and method for manufacturing the same
JP2004006820A (en) Semiconductor device and its manufacturing method
JP2008235789A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees