JP2002177796A - 重質油の水素化処理触媒及び重油基材の製造方法 - Google Patents

重質油の水素化処理触媒及び重油基材の製造方法

Info

Publication number
JP2002177796A
JP2002177796A JP2000382695A JP2000382695A JP2002177796A JP 2002177796 A JP2002177796 A JP 2002177796A JP 2000382695 A JP2000382695 A JP 2000382695A JP 2000382695 A JP2000382695 A JP 2000382695A JP 2002177796 A JP2002177796 A JP 2002177796A
Authority
JP
Japan
Prior art keywords
mass
oil
heavy oil
catalyst
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000382695A
Other languages
English (en)
Other versions
JP4567877B2 (ja
Inventor
Wataru Sawara
渉 佐原
Kozo Kamiya
孝三 神谷
Hajime Okazaki
肇 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Petroleum Energy Center PEC
Nippon Mitsubishi Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Nippon Mitsubishi Oil Corp filed Critical Petroleum Energy Center PEC
Priority to JP2000382695A priority Critical patent/JP4567877B2/ja
Publication of JP2002177796A publication Critical patent/JP2002177796A/ja
Application granted granted Critical
Publication of JP4567877B2 publication Critical patent/JP4567877B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 【課題】 重質油のドライスラッジ低減に有効な水素化
処理触媒を提供する。 【解決手段】 細孔径100〜300Åの細孔の細孔容
積が0.3〜0.7cc/g、細孔径1000〜100
00Åの細孔の細孔容積が0.1〜0.4cc/gであ
り、全細孔容積が0.4〜1.1cc/g、表面積が1
50〜250m2/gの物性を有する多孔性無機酸化物
担体に周期律表第VIB族と第VIII族の触媒活性を有する
金属をそれぞれ2〜6質量%および5〜15質量%担持
し、第VIB族と第VIII族金属のモル比が0.2〜0.6
である水素化処理触媒。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、重質油のドライス
ラッジ低減に有効な水素化処理触媒に関し、またこの触
媒を用いて硫黄含有量の比較的高い重質油を二段階水素
化処理することにより、ドライスラッジ含有量が少な
く、硫黄含有量が原料油より低められた重油基材を製造
する方法に関し、またこの触媒を用いてドライスラッジ
含有量が高い重質油を水素化処理することで、ドライス
ラッジ含有量が少ない重油基材を製造する方法に関す
る。
【0002】
【従来の技術】従来、我国における重油は硫黄含有量の
少ない原油を常圧蒸留装置で処理しナフサ、灯油、軽油
といった軽質炭化水素を除去することにより得られる硫
黄含有量の低い常圧蒸留残査物や、この低硫黄常圧蒸留
残査物を更に減圧蒸留装置で処理して減圧軽油を除去す
ることにより得られる低硫黄減圧蒸留残査物を主な基材
とし、これにさらに粘度等の調整に灯油、軽油などを混
合することで製造されてきた。
【0003】一方、低硫黄原油の供給不足や硫黄含有量
の多い原油から得られる常圧または減圧蒸留残査物の有
効利用、更に粘度調整用の灯油、軽油等の中間留分の増
産といった観点から、硫黄含有量の多い原油から得られ
る常圧または減圧蒸留残査物を高温高水素分圧下で水素
化触媒と接触させて脱硫、脱窒素、分解反応を進めるこ
とで、低硫黄かつ低粘度の重油基材を製造する水素化処
理プロセスが開発され、商業運転されている。この水素
化処理プロセスの代表的な運転条件は、反応温度350
〜450℃、反応塔入口の水素分圧9.8〜19.6MP
a、液空間速度0.1〜5.0h-1、反応塔入口の水素/
油比250〜1700Nm3/m3である。
【0004】これらの水素化処理プロセスは上述したと
おり、低硫黄原油の供給不足や硫黄含有量の多い原油か
ら得られる常圧または減圧蒸留残査物の有効利用、更に
粘度調整用の灯油、軽油等の中間留分の増産といった観
点から、非常に有意義なものであるが、反応温度を高く
する等の苛酷度の高い運転条件で蒸留残査物を水素化処
理すると、生成物中にドライスラッジが析出してしま
う。なお、ドライスラッジとは、一般に1.0μm以上
の径を持つアスファルテン分子を主体とした粒子であ
る。ドライスラッジを多く含有する基材を重油の基材と
して使用すると、他の基材と混合時あるいは貯蔵期間中
にそれらがさらに巨大スラッジに成長し、燃料油フィル
ターや遠心式油清浄機の閉塞、燃料油加熱器のファウリ
ング、および燃焼機関の重油噴射ノズルの閉塞等のトラ
ブルが発生する懸念がある。したがってこれまでは、水
素化処理プロセスの運転において、ドライスラッジが析
出しない反応温度を上限とするような運転条件の制約を
受けざるを得なかった。
【0005】また、蒸留残査物の水素化処理に用いられ
る水素化触媒は通常運転時間と共に脱硫、脱窒素、分解
反応の活性が低下するため、運転中の触媒活性の低下を
補償するための反応温度の昇温を考慮して運転初期の反
応温度を決めるが、運転期間中の原油タイプに代表され
る原料油種の変更や生成油硫黄含有量の目標値の変更等
により触媒活性の低下が予想以上に進み、運転の途中で
運転末期の設計反応温度に到達してしまうことがある。
したがってたとえ運転初期の反応温度をドライスラッジ
が析出しない温度以下に設定しても、運転途中に運転末
期の設計反応温度に到達するとドライスラッジが発生す
るため、それ以降は脱硫、脱窒素、分解反応の転化率を
下げる、厳しい反応条件が要求される減圧蒸留残査物の
処理比率を下げる、または反応条件の緩やかな常圧蒸留
残査物のみを処理する、あるいはその処理量を下げると
いった制限を受けていた。
【0006】
【発明が解決しようとする課題】本発明は、重質油のド
ライスラッジ低減用水素化処理触媒及びその触媒を用い
て重質油を水素化処理することによりドライスラッジ含
有量の低い重油基材を製造する方法を提供することを目
的とする。
【0007】
【課題を解決するための手段】本発明者らは硫黄含有量
の比較的多い重質油である原料油を苛酷水素化処理して
低硫黄含有量の重油基材を得る際に起こる上記問題点を
解決すべく研究を重ねた結果、細孔分布のピークが2種
類あるバイモーダル型触媒を用いることによってドライ
スラッジ含有量の低い重油基材が得られることを見い出
し、本発明を完成するに至った。
【0008】すなわち本発明の第1発明は、細孔径10
0〜300Åの細孔の細孔容積が0.3〜0.7cc/
g、細孔径1000〜10000Åの細孔の細孔容積が
0.1〜0.4cc/gであり、全細孔容積が0.4〜
1.1cc/g、表面積が150〜250m2/gの物
性を有する多孔性無機酸化物担体に周期律表第VIB族と
第VIII族の触媒活性を有する金属をそれぞれ2〜6質量
%および5〜15質量%担持し、第VIB族と第VIII族金
属のモル比が0.2〜0.6であることを特徴とする重
質油のドライスラッジ低減用水素化処理触媒を提供す
る。
【0009】また、本発明の第2発明は硫黄化合物を含
有する重質油を二段階水素化処理することでドライスラ
ッジ含有量が0.05質量%以下で硫黄含有量が原料油
より低められた重油基材を製造する方法であって、第1
段階で水素化脱硫処理触媒を用い、第2段階で細孔径1
00〜300Åの細孔の細孔容積が0.3〜0.7cc
/g、細孔径1000〜10000Åの細孔の細孔容積
が0.1〜0.4cc/gであり、全細孔容積が0.4
〜1.1cc/g、表面積が150〜250m 2/gの
物性を有する多孔性無機酸化物担体に周期律表第VIB族
と第VIII族の触媒活性を有する金属をそれぞれ2〜6質
量%および5〜15質量%担持し、第VIB族と第VIII族
金属のモル比が0.2〜0.6である水素化処理触媒を
用いることを特徴とする重油基材の製造方法を提供す
る。
【0010】また、本発明の第3発明は、ドライスラッ
ジ含有量が0.05質量%を超える重質油を水素化処理
触媒を用いて水素化処理することでドライスラッジ含有
量が0.05質量%以下の重油基材を製造する方法であ
って、該水素化処理触媒として、細孔径100〜300
Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径
1000〜10000Åの細孔の細孔容積が0.1〜
0.4cc/gであり、全細孔容積が0.4〜1.1c
c/g、表面積が150〜250m2/gの物性を有す
る多孔性無機酸化物担体に周期律表第VIB族と第VIII族
の触媒活性を有する金属をそれぞれ2〜6質量%および
5〜15質量%担持し、第VIB族と第VIII族金属のモル
比が0.2〜0.6である水素化処理触媒を用いること
を特徴とする重油基材の製造方法を提供する。
【0011】
【発明の実施の形態】以下、本発明の内容について詳細
に説明する。本発明の第1発明の触媒に用いる担体は、
多孔性無機酸化物である。該担体は、細孔径100〜3
00Åと細孔径1000〜10000Åの2個所にピー
クを有するバイモーダル型担体で、該担体の細孔径10
0〜300Åの細孔の細孔容積が0.3〜0.7cc/
g、好ましくは0.4〜0.6cc/g、細孔径100
0〜10000Åの細孔の細孔容積が0.1〜0.4c
c/g、好ましくは0.2〜0.3cc/gであり、全
細孔容積が0.4〜1.1cc/g、好ましくは0.5
〜1.0cc/gであり、表面積が150〜250m2
/g、好ましくは160〜240m2/gの物性を有す
るものである。該担体の細孔径100〜300Åの細孔
の細孔容積が0.3〜0.7cc/g、細孔径1000
〜10000Åの細孔の細孔容積が0.1〜0.4cc
/g及び表面積が150〜250m2/gのいずれかが
外れるとドライスラッジ低減率が低下し、ドライスラッ
ジ含有量が0.05質量%以下の重質油を製造すること
ができない。なお、該担体の物理性状は水銀圧法で測定
した。
【0012】前記多孔性無機酸化物としては、例えばア
ルミナ、シリカ、チタニア、ジルコニア、マグネシア、
アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタ
ニア、アルミナ−ジルコニア、アルミナ−マグネシア、
アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チ
タニア、各種ゼオライト、セピオライト、モンモリロナ
イト等の各種粘土鉱物などが挙げられる。本発明の担体
は、細孔径100〜300Åの細孔の細孔容積が0.3
〜0.7cc/g、細孔径1000〜10000Åの細
孔の細孔容積が0.1〜0.4cc/gであり、全細孔
容積が0.4〜1.1cc/g、表面積が150〜25
0m2/gの物性を有するバイモ−ダル型担体であれば
特に制限なく使用することができる。担体の製造方法も
特に限定されない。
【0013】該担体に担持する水素化活性金属成分は、
周期律表第VIB族金属および第VIII族金属から選ばれる
触媒活性を有する金属成分である。周期律表第VIB族金
属としてはクロム、モリブデン、タングステンが挙げら
れる。好ましく用いられる金属としてはモリブデンが挙
げられる。第VIII族金属としては鉄、コバルト、ニッケ
ル、ルテニウム、ロジウム、パラジウム、白金が挙げら
れる。好ましい金属としてはコバルト、ニッケルが挙げ
られる。周期律表第VIB族金属および第VIII族金属の組
合わせは自由であるが、好ましくは該金属成分の担持量
は周期律表第VIB族金属は2〜6質量%、好ましくは3
〜5質量%、第VIII族金属は5〜15質量%、好ましく
は6〜14質量%の範囲である。金属成分の担持量がこ
の範囲を外れるとドライスラッジ低減率が低下し、ドラ
イスラッジ含有量が0.05質量%以下の重油基材を製
造することができない。該第VIB族金属と第VIII族金属
の混合割合は、第VIB族と第VIII族金属のモル比が0.
2〜0.6、好ましくは0.3〜0.5になるように混
合する。第VIB族と第VIII族金属のモル比がこの範囲を
外れるとドライスラッジ低減率が低下し、ドライスラッ
ジ含有量が0.05質量%以下の重油基材を製造するこ
とができない。
【0014】本発明の原料油として用いられる重質油と
しては、例えば、石油蒸留残査物が挙げられる。該石油
蒸留残査物としては、具体的には、常圧蒸留装置より得
られる、通常、蒸留温度300℃以上の留分を70質量
%以上、好ましくは90質量%以上、より好ましくは9
5質量%以上含む残査物;減圧蒸留装置より得られる、
通常、蒸留温度400℃以上の留分を70質量%以上、
好ましくは90質量%以上、より好ましくは95質量%
以上含む残査物;これら常圧蒸留残査物と減圧蒸留残査
物を任意の割合で混合した残査油;これら常圧蒸留残査
物、減圧蒸留残査物またはそれらの混合物を水素化処理
して得られる硫黄分や窒素分等が減少した生成油;また
はこれらの混合物などが挙げられる。なお、本発明でい
う蒸留温度とは、JIS K 2254に規定する「石
油製品−蒸留試験方法」の「6.減圧法蒸留試験方法」
に準拠して測定される温度を意味する。以降、本発明に
おける石油留分の蒸留温度とは、すべて上記方法により
測定される値を意味する。
【0015】また本発明の原料油として用いられる重質
油としては、これら石油蒸留残査物100重量部に対し
て、接触分解装置(FCC)から得られる分解重質軽油
(ヘビーサイクル油)やスラリー油を40重量部以下、
好ましくは20重量部以下配合したような混合油なども
好ましく用いることができる。さらに本発明の原料油と
して用いられる重質油としては、後述する二段階の水素
化処理工程における出口油の一部をリサイクルして、上
記の石油蒸留残査物や混合油100重量部に対してこの
リサイクル油を50重量部以下、好ましくは30重量部
以下配合した混合油なども、また好ましく用いることが
できる。
【0016】また本発明の第2発明で原料油として用い
られる重質油の硫黄含有量の下限値は1.0質量%、好
ましくは2.0質量%であり、一方、その上限値は10
質量%、好ましくは6.0質量%である。硫黄含有量が
1.0質量%未満の場合は本発明の第2発明のような二
段階の工程での水素化処理を要さずとも重油基材を製造
することが可能であり、エネルギーコスト的に不利であ
る。また硫黄含有量が10質量%を超える場合は、得ら
れる重油基材の硫黄含有量が高くなり、ボイラー燃料と
して用いた場合に燃焼排ガス中の硫黄酸化物量の増大を
もたらしてしまう。また得られる重油基材の硫黄含有量
をより低下させるためには、反応塔や周辺機器等の建設
費が急激に上昇したり、多量のカッター材を必要とする
ため、それぞれ好ましくない。なお、本発明における硫
黄含有量とは、JIS K 2541−1992に規定
する「原油及び石油製品−硫黄分試験方法」の「6.放
射線式励起法」に準拠して測定される硫黄含有量を意味
する。以降、本発明における硫黄含有量とは、すべて上
記方法により測定される値を意味する。
【0017】本発明の第2発明で原料油として用いられ
る重質油のドライスラッジ含有量の下限値は0質量%で
あり、一方、その上限値は5.0質量%、好ましくは
1.0質量%である。ドライスラッジ含有量の上限値が
5.0質量%を超える場合は、水素化処理工程における
原料油供給系統でのストレーナーやバルブの閉塞、熱交
換器や加熱炉のファウリングによる伝熱効率の低下等の
問題を生じる恐れがあるため好ましくない。なお本発明
におけるドライスラッジ含有量とは、ASTM D 4
870−92に規定する”Standard Test Method for D
etermination of Total Sediment in Residual Fuels”
に準拠して測定される全沈降物量を意味する。以降、本
発明におけるドライスラッジ含有量とは、すべてこの方
法により測定される値を意味する。
【0018】本発明の第3発明における原料油はドライ
スッラッジ含有量が0.05質量%を超える重質油であ
り、硫黄含有量は第2発明より少ない重質油である。
【0019】本発明の第2発明においては、これら原料
油である重質油に対してまず第1段階の水素化脱硫処理
を実行する。この第1段階の水素化脱硫処理温度の下限
値は340℃、好ましくは370℃であり、一方、その
上限値は450℃、好ましくは430℃である。第1段
階での水素化脱硫処理温度が340℃未満の場合は触媒
活性が十分に発揮されないため脱硫、脱窒素および分解
反応が実用の領域まで進まず、一方、その水素化処理温
度が450℃を超える場合はコーキング反応が激しくな
り、触媒上にコークが堆積して触媒活性が急速に低下
し、触媒寿命が短くなるため、それぞれ好ましくない。
また第1段階の水素化脱硫処理工程における温度以外の
他の条件は任意である。しかし、第1段階の入口の水素
分圧は、通常、下限値が8.0MPa、好ましくは9.
8MPaであり、一方、上限値が25.0MPa、好ま
しくは19.6MPaの範囲で行うことができる。入口
の水素分圧が8.0MPa未満の場合は触媒上のコーク
生成が激しくなり触媒寿命が極端に短くなる懸念があ
り、一方、その水素分圧が25.0MPaを越える場合
は反応塔や周辺機器等の建設費が急激に上昇し、経済的
に実用性が失われる懸念がある。
【0020】また、第1段階での原料油である重質油の
液空間速度(LHSV)は、通常、下限値が0.05h
-1、好ましくは0.1h-1であり、一方、上限値が5.
0h-1、好ましくは2.0h-1の範囲で行うことができ
る。液空間速度(LHSV)が0.05h-1未満の場合
は、反応塔の建設費が莫大になり経済的に実用性が失わ
れる懸念があり、一方、液空間速度(LHSV)が5.
0h-1を越える場合は触媒活性が十分に発揮されず、脱
硫、脱窒素および分解反応が実用の領域まで進まない懸
念がある。
【0021】また、第1段階の入口の水素/油比は、通
常、下限値が250Nm3/m3、好ましくは600Nm
3/m3であり、一方、上限値が1700Nm3/m3、好
ましくは1500Nm3/m3の範囲で行うことができ
る。水素/油比が250Nm3/m3未満の場合は触媒上
のコーク生成が激しくなり触媒寿命が極端に短くなる懸
念があり、一方、水素/油比が1700Nm3/m3を超
える場合は、反応塔や周辺機器等の建設費が急激に上昇
し、経済的に実用性が失われる懸念がある。
【0022】また第1段階での水素化脱硫処理工程の操
作は、油とガスを並行で下降流または上昇流で行うこと
ができ、また、油とガスを向流で行うこともできる。ま
た、第1段階の水素化脱硫処理工程として触媒を充填し
て使用される反応塔は、単独の反応塔または連続した複
数の反応塔のどちらで構成されていてもよい。更に反応
塔内は、単独の触媒床、または複数の触媒床のどちらで
構成されていてもよい。またさらに、第1段階の水素化
脱硫処理工程における各反応塔の間や各触媒床の間に、
後続の反応塔や触媒床の入口の反応温度を調節する目的
で、気体、液体または液体と気体の混合物を注入するこ
とも可能である。ここでいう気体は、通常、水素;メタ
ン、エタン、プロパン、ブタン、ペンタン、ヘキサン等
の炭素数1〜6のパラフィン系炭化水素およびこれらの
混合物など、注入する温度、圧力で気体として存在でき
る炭化水素;または水素とこれら炭化水素との混合物;
が好ましく用いられるが、例えば硫化水素、アンモニ
ア、窒素など、注入する温度、圧力で気体として存在で
きる他の物質を含んでいてもよい。また、ここでいう液
体は、通常、例えば、灯油、直留軽油、減圧軽油などの
石油蒸留物;石油蒸留残査物;石油蒸留物や石油蒸留残
査物などの水素化処理油;石油蒸留物や石油蒸留残査物
などの熱分解油;石油蒸留物や石油蒸留残査物などの接
触分解油;またはこれらの混合物;など、注入する温
度、圧力で液体として存在できる炭化水素が好ましく用
いられるが、後述する第2段階の水素化処理工程におけ
る出口油の一部をリサイクルして使用するのが更に好ま
しい。
【0023】第1段階において各反応塔の間や各触媒床
の間に気体や液体を注入する場合、それらの注入量は任
意であるが、通常、気体を注入する場合は注入量が気体
/油比で1700Nm3/m3以下の範囲で行うことがで
き、液体を注入する場合は注入量が液体/油比で1m3
/m3以下の範囲で行うことができる。なお、第1段階
の水素化脱硫処理工程において複数の反応塔または触媒
床を使用する場合、本発明における第1段階の水素化脱
硫処理温度は、各反応塔の間や各触媒床の間への気体、
液体または液体と気体の混合物の注入の有無にかかわら
ず、またさらに反応塔の数に関係なく、第1段階のすべ
ての触媒床を対象にして、各触媒床の入口温度と出口温
度を平均した温度に各触媒床の触媒充填重量比率を乗じ
て加えた触媒重量平均温度(WABT)で定義される。
【0024】また、第1段階の水素化脱硫処理工程にお
ける水素化処理触媒としては、従来公知の任意の水素化
処理触媒が使用可能である。具体的には例えば、アルミ
ナ、シリカ、チタニア、ジルコニア、マグネシア、アル
ミナ−シリカ、アルミナ−ボリア、アルミナ−チタニ
ア、アルミナ−ジルコニア、アルミナ−マグネシア、ア
ルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタ
ニア、各種ゼオライト、セピオライト、モンモリロナイ
ト等の各種粘土鉱物などの多孔性無機酸化物を担体と
し、これに水素化活性金属を担持した物を好ましく用い
ることができる。該担持金属としては、通常、周期律表
第VIA、VA、VB、およびVIII族の金属から選ばれる少
なくとも1種の水素化活性金属種が好ましく用いられ、
特にコバルト、モリブデン、ニッケルをそれぞれ単独
で、または、コバルト、モリブデン、ニッケルを2種あ
るいは3種組み合わせて多孔性無機酸化物に担持した触
媒がより好ましく用いられる。なお、本発明の第1段階
の水素化脱硫処理工程で用いる水素化処理触媒は、通常
市販されている水素化処理触媒でも十分目的が達成可能
であり、本発明は触媒の種類によって何ら制限されるも
のではない。
【0025】上述した第1段階の水素化脱硫処理工程で
得られる水素化処理油のドライスラッジ含有量は、通
常、原料油のドライスラッジ含有量より増加するか、少
なくとも0.05重量%を越える値、より一般的には、
通常、0.2質量%以上の値となる。またこの第1段階
の水素化脱硫処理工程により、通常、実質的に原料重質
油の脱硫反応、脱窒素反応および分解反応の大部分が達
成される。第1段階の水素化脱硫処理工程で得られる水
素化処理油の硫黄含有量は何ら規定されるものではない
が、通常、その下限値は0.01質量%、好ましくは
0.1質量%であり、一方、その上限値は2.0質量
%、好ましくは1.0質量%が一般的である。また第1
段階の水素化脱硫処理工程で得られる水素化処理油の窒
素含有量も何ら規定されるものではないが、通常、その
下限値は0.01質量%、好ましくは0.1質量%であ
り、一方、その上限値は1.0質量%、好ましくは0.
5質量%が一般的である。なお、本発明における窒素含
有量とは、JIS K 2609−1990に規定する
「原油及び石油製品−窒素分試験方法」の「7.化学発
光法」に準拠して測定される窒素含有量を意味する。以
降、本発明における窒素含有量とは、すべて上記方法に
より測定される値を意味する。
【0026】本発明では上述の第1段階の水素化脱硫処
理を行った水素化処理油に対して、次いで第2段階の水
素化処理を実行する。この第2段階の水素化処理温度の
下限値は200℃、好ましくは250℃であり、一方、
その上限値は440℃、好ましくは400℃である。第
2段階での水素化処理温度が200℃未満の場合は触媒
活性が十分に発揮されないためスラッジ分の水素化反応
が実用の領域まで進まず、一方、その水素化処理温度が
440℃を超える場合はスラッジ分の水素化が進まず
に、逆にスラッジ分が生成してしまうため、それぞれ好
ましくない。さらに本発明では第2段階の水素化工程に
おいて、その水素化処理温度を第1段階の水素化処理温
度より低い値に設定して水素化処理を実施することが重
要である。第2段階の水素化処理工程における水素化処
理温度は、第1段階での水素化処理温度より低い温度で
あれば、上記の温度範囲内で任意の温度に設定すること
が可能であるが、両段階での水素化処理温度の差が好ま
しくは10℃以上、より好ましくは20℃以上あること
が望ましい。本発明において、第2段階の水素化処理温
度が第1段階の水素化処理温度と同一または第1段階の
水素化処理温度より高い場合は、スラッジ分の水素化が
進まずに、逆にスラッジ分が生成してしまうため好まし
くない。
【0027】また第2段階の水素化処理工程における温
度以外の他の条件は任意である。しかし、第2段階の入
口の水素分圧は、通常、下限値が1.0MPaであり、
一方、上限値が25.0MPa、好ましくは19.6MP
aの範囲で行うことができる。入口の水素分圧が1.0
MPa未満の場合は触媒活性が十分に発揮されず、スラ
ッジ分の水素化反応が実用の領域まで進まない懸念があ
り、一方、その水素分圧が25.0MPaを越える場合
は反応塔や周辺機器等の建設費が急激に上昇し、経済的
に実用性が失われる懸念がある。また、第2段階での原
料油(第1段階の水素化脱硫処理を経た水素化処理油)
の液空間速度(LHSV)は、通常、下限値が0.1h
-1、好ましくは0.2h- 1であり、一方、上限値が10
-1、好ましくは4.0h-1の範囲で行うことができ
る。液空間速度(LHSV)が0.1h-1未満の場合
は、反応塔の建設費が莫大になり経済的に実用性が失わ
れる懸念があり、一方、液空間速度(LHSV)が10
-1を越える場合は触媒活性が十分に発揮されず、スラ
ッジ分の水素化反応が実用の領域まで進まない懸念があ
る。また、第2段階の入口の水素/油比は、通常、下限
値が250Nm3/m3、好ましくは600Nm3/m3
あり、一方、上限値が1700Nm3/m3、好ましくは
1500Nm3/m3の範囲で行うことができる。水素/
油比が250Nm3/m3未満の場合は触媒上のコーク生
成が激しくなり触媒寿命が極端に短くなる懸念があり、
一方、水素/油比が1700Nm3/m3を超える場合
は、反応塔や周辺機器等の建設費が急激に上昇し、経済
的に実用性が失われる懸念がある。
【0028】また第2段階での水素化処理工程の操作
は、油とガスを並行で下降流または上昇流で行うことが
でき、また、油とガスを向流で行うこともできる。ま
た、第2段階の水素化処理工程として触媒を充填して使
用される反応塔は、単独の反応塔または連続した複数の
反応塔のどちらで構成されていてもよい。更に反応塔内
は、単独の触媒床または複数の触媒床のどちらで構成さ
れていてもよい。またさらに、第2段階の水素化処理工
程における各反応塔の間や各触媒床の間に、後続の反応
塔や触媒床の入口の反応温度を調節する目的で、気体、
液体または液体と気体の混合物を注入することも可能で
ある。ここでいう気体は、通常、水素;メタン、エタ
ン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数
1〜6のパラフィン系炭化水素およびこれらの混合物な
ど、注入する温度、圧力で気体として存在できる炭化水
素;または水素とこれら炭化水素との混合物;が好まし
く用いられるが、例えば硫化水素、アンモニア、窒素な
ど、注入する温度、圧力で気体として存在できる他の物
質を含んでいてもよい。また、ここでいう液体は、通
常、例えば、灯油、直留軽油、減圧軽油などの石油蒸留
物;石油蒸留残査物;石油蒸留物や石油蒸留残査物など
の水素化処理油;石油蒸留物や石油蒸留残査物などの熱
分解油;石油蒸留物や石油蒸留残査物などの接触分解
油;またはこれらの混合物;など、注入する温度、圧力
で液体として存在できる炭化水素が好ましく用いられる
が、第2段階の水素化処理工程における出口油の一部を
リサイクルして使用するのが更に好ましい。
【0029】第2段階において各反応塔の間や各触媒床
の間に気体や液体を注入する場合、それらの注入量は任
意であるが、通常、気体を注入する場合は注入量が気体
/油比で1700Nm3/m3以下の範囲で行うことがで
き、液体を注入する場合は注入量が液体/油比で1m3
/m3以下の範囲で行うことができる。
【0030】なお、第2段階の水素化処理工程において
複数の反応塔または触媒床を使用する場合、本発明にお
ける第2段階の水素化処理温度は、各反応塔の間や各触
媒床の間への気体、液体または液体と気体の混合物の注
入の有無にかかわらず、またさらに反応塔の数に関係な
く、第2段階のすべての触媒床を対象にして、各触媒床
の入口温度と出口温度を平均した温度に各触媒床の触媒
充填重量比率を乗じて加えた触媒重量平均温度(WAB
T)で定義される。また、第2段階の水素化処理工程に
おける水素化処理触媒としては、細孔径100〜300
Åの細孔の細孔容積が0.3〜0.7cc/g、細孔径
1000〜10000Åの細孔の細孔容積が0.1〜
0.4cc/gであり、全細孔容積が0.4〜1.1c
c/g、表面積が150〜250m2/gの物性を有
し、無機酸化物担体に周期律表第VIB族および第VIII族
の触媒活性を有する金属をそれぞれ2〜6質量%および
5〜15質量%担持し、第VIB族と第VIII族金属のモル
比が0.2〜0.6であることを特徴とするものを用い
る。なお、本発明においては、第1段階の水素化脱硫処
理と第2段階の水素化処理を、一つの反応塔の中で行っ
てもよく、あるいは分離した2基以上の反応塔を用いて
行ってもよい。また反応塔の中は複数個の触媒床に分か
れていても良い。
【0031】また本発明の第2発明において、第2段階
の水素化処理温度を第1段階の水素化処理温度より下げ
る方法は特に限定されるものでなく、任意の方法を採用
することができる。具体的には従来公知の方法、例え
ば、低温の気体、液体、あるいは気体と液体の両方を注
入する方法、または熱交換器による低温流体との熱交換
の方法などを用いることができる。なおここでいう気体
は、通常、水素;メタン、エタン、プロパン、ブタン、
ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭
化水素およびこれらの混合物など、注入する温度、圧力
で気体として存在できる炭化水素;または水素とこれら
炭化水素との混合物;が好ましく用いられるが、例えば
硫化水素、アンモニア、窒素など、注入する温度、圧力
で気体として存在できる他の物質を含んでいてもよい。
また、ここでいう液体は、通常、例えば、灯油、直留軽
油、減圧軽油などの石油蒸留物;石油蒸留残査物;石油
蒸留物や石油蒸留残査物などの水素化処理油;石油蒸留
物や石油蒸留残査物などの熱分解油;石油蒸留物や石油
蒸留残査物などの接触分解油;またはこれらの混合物;
など、注入する温度、圧力で液体として存在できる炭化
水素が好ましく用いられるが、第2段階の水素化処理工
程における出口油の一部をリサイクルして使用するのが
更に好ましい。
【0032】また、本発明の第2発明における第1段階
の水素化脱硫処理と第2段階の水素化処理は連続的操作
に限定されるわけではなく、第1段階の操作と第2段階
の操作を個別に実施してもよい。なお両段階の操作を個
別に実施する場合、第1段階と第2段階の間の条件は特
に限定されるものではない。本発明の第2発明において
は、以上の二段階の水素化処理により、最終的にドライ
スラッジ含有量が0.05質量%以下、好ましくは0.
04質量%以下であり、かつ硫黄含有量が原料重質油よ
り低められた重油基材が得られる。得られる重油基材の
硫黄含有量は、原料油の重質油の硫黄含有量より低めら
れてさえいれば任意の値でよいが、通常、原料油の重質
油に対する脱硫反応の達成率が好ましくは80%以上、
より好ましくは90%以上であるのが望ましい。なお、
本発明における脱硫反応の達成率は、[(原料重質油中
の硫黄分(質量%)―得られる重油基材中の硫黄分(質
量%))/原料重質油中の硫黄分(質量%)] ×100
(%)で示される値を意味する。以降、本発明における
脱硫反応の達成率とは、すべてこの式により計算される
値を意味する。
【0033】また得られる重油基材の窒素含有量も何ら
規定されるものではないが、通常、原料油に対する脱窒
素反応の達成率が10%以上、好ましくは30%以上で
あるのが一般的である。なお、本発明における脱窒素反
応の達成率は、[(原料重質油中の窒素分(質量%)―
得られる重油基材中の窒素分(質量%))/原料重質油
中の窒素分(質量%)] ×100(%)で示される値
を意味する。以降、本発明における脱窒素反応の達成率
とは、すべてこの式により計算される値を意味する。
【0034】また本発明における二段階の水素化処理に
よる全体での分解反応達成率は任意であるが、通常20
%以上、好ましくは40%以上であるのが一般的であ
る。なお、本発明における分解反応の達成率は、[(原
料重質油中の蒸留温度565℃以上の留分(質量%)―
得られる重油基材中の蒸留温度565℃以上の留分(質
量%))/原料重質油中の蒸留温度565℃以上の留分
(質量%)] ×100(%)で示される値を意味する。
以降、本発明における分解反応の達成率とは、すべてこ
の式により計算される値を意味する。
【0035】また本発明の第2発明においては、通常、
第1段階の水素化脱硫処理での脱硫反応達成率が、第2
段階の水素化処理工程も含めた全体の水素化処理での脱
硫反応達成率の80%以上、好ましくは90%以上、よ
り好ましくは95%以上を占めることが望ましい。また
本発明の第2発明においては、通常、第1段階の水素化
脱硫処理での脱窒素反応達成率が、第2段階の水素化処
理工程も含めた全体の水素化処理での脱窒素反応達成率
の50%以上、好ましくは80%以上、より好ましくは
90%以上を占めることが望ましい。さらに本発明の第
2発明においては、通常、第1段階の水素化脱硫処理工
程での分解反応達成率が、第2段階の水素化処理工程も
含めた全体の水素化処理での分解反応達成率の75%以
上、好ましくは85%以上、より好ましくは90%以上
を占めることが望ましい。
【0036】本発明の第3発明は ドライスラッジ含有
量が0.05質量%を超える重質油を水素化処理触媒を
用いて水素化処理することでドライスラッジ含有量が
0.05質量%以下の重油基材を製造する方法であっ
て、該水素化処理触媒として、細孔径100〜300Å
の細孔の細孔容積が0.3〜0.7cc/g、細孔径1
000〜10000Åの細孔の細孔容積が0.1〜0.
4cc/gであり、全細孔容積が0.4〜1.1cc/
g、表面積が150〜250m2/gの物性を有する多
孔性無機酸化物担体に周期律表第VIB族および第VIII族
の触媒活性を有する金属をそれぞれ2〜6質量%および
5〜15質量%担持し、第VIB族と第VIII族金属のモル
比が0.2〜0.6である水素化処理触媒を用いること
を特徴とする重油基材の製造方法である。
【0037】水素化処理温度の下限値は200℃、好ま
しくは250℃であり、一方、その上限値は440℃、
好ましくは400℃である。水素化処理温度が200℃
未満の場合は触媒活性が十分に発揮されないためスラッ
ジ分の水素化反応が実用の領域まで進まず、一方、その
水素化処理温度が440℃を超える場合はスラッジ分の
水素化が進まずに、逆にスラッジ分が生成してしまうた
め、それぞれ好ましくない。
【0038】入口の水素分圧は、通常、下限値が1.0
MPaであり、一方、上限値が25.0MPa、好まし
くは19.6MPaの範囲で行うことができる。入口の
水素分圧が1.0MPa未満の場合は触媒活性が十分に
発揮されず、スラッジ分の水素化反応が実用の領域まで
進まない懸念があり、一方、その水素分圧が25.0M
Paを越える場合は反応塔や周辺機器等の建設費が急激
に上昇し、経済的に実用性が失われる懸念がある。ま
た、原料油の液空間速度(LHSV)は、通常、下限値
が0.1h-1、好ましくは0.2h-1であり、一方、上
限値が10h-1、好ましくは4.0h-1の範囲で行うこ
とができる。液空間速度(LHSV)が0.1h-1未満
の場合は、反応塔の建設費が莫大になり経済的に実用性
が失われる懸念があり、一方、液空間速度(LHSV)
が10h-1を越える場合は触媒活性が十分に発揮され
ず、スラッジ分の水素化反応が実用の領域まで進まない
懸念がある。また、入口の水素/油比は、通常、下限値
が250Nm3/m3、好ましくは600Nm3/m3であ
り、一方、上限値が1700Nm3/m3、好ましくは1
500Nm3/m3の範囲で行うことができる。水素/油
比が250Nm3/m3未満の場合は、触媒上のコーク生
成が激しくなり触媒寿命が極端に短くなる懸念があり、
一方、水素/油比が1700Nm3/m3を超える場合
は、反応塔や周辺機器等の建設費が急激に上昇し、経済
的に実用性が失われる懸念がある。
【0039】また水素化処理工程の操作は、油とガスを
並行で下降流または上昇流で行うことができ、また、油
とガスを向流で行うこともできる。また、水素化処理工
程として触媒を充填して使用される反応塔は、単独の反
応塔または連続した複数の反応塔のどちらで構成されて
いてもよい。更に反応塔内は、単独の触媒床または複数
の触媒床のどちらで構成されていてもよい。またさら
に、水素化処理工程における各反応塔の間や各触媒床の
間に、後続の反応塔や触媒床の入口の反応温度を調節す
る目的で、気体、液体または液体と気体の混合物を注入
することも可能である。ここでいう気体は、通常、水
素;メタン、エタン、プロパン、ブタン、ペンタン、ヘ
キサン等の炭素数1〜6のパラフィン系炭化水素および
これらの混合物など、注入する温度、圧力で気体として
存在できる炭化水素;または水素とこれら炭化水素との
混合物;が好ましく用いられるが、例えば硫化水素、ア
ンモニア、窒素など、注入する温度、圧力で気体として
存在できる他の物質を含んでいてもよい。また、ここで
いう液体は、通常、例えば、灯油、直留軽油、減圧軽油
などの石油蒸留物;石油蒸留残査物;石油蒸留物や石油
蒸留残査物などの水素化処理油;石油蒸留物や石油蒸留
残査物などの熱分解油;石油蒸留物や石油蒸留残査物な
どの接触分解油;またはこれらの混合物;など、注入す
る温度、圧力で液体として存在できる炭化水素が好まし
く用いられる。
【0040】各反応塔の間や各触媒床の間に気体や液体
を注入する場合、それらの注入量は任意であるが、通
常、気体を注入する場合は注入量が気体/油比で170
0Nm 3/m3以下の範囲で行うことができ、液体を注入
する場合は注入量が液体/油比で1m3/m3以下の範囲
で行うことができる。なお、水素化処理工程において複
数の反応塔または触媒床を使用する場合、水素化処理温
度は、各反応塔の間や各触媒床の間への気体、液体また
は液体と気体の混合物の注入の有無にかかわらず、また
さらに反応塔の数に関係なく、すべての触媒床を対象に
して、各触媒床の入口温度と出口温度を平均した温度に
各触媒床の触媒充填重量比率を乗じて加えた触媒重量平
均温度(WABT)で定義される。また、水素化処理工
程における水素化処理触媒としては、細孔径100〜3
00Åの細孔の細孔容積が0.3〜0.7cc/g、細
孔径1000〜10000Åの細孔の細孔容積が0.1
〜0.4cc/gであり、全細孔容積が0.4〜1.1
cc/g、表面積が150〜250m2/gの物性を有
する多孔性無機酸化物担体に周期律表第VIB族および第
VIII族の触媒活性を有する金属をそれぞれ2〜6質量%
および5〜15質量%担持し、第VIB族と第VIII族金属
のモル比が0.2〜0.6である水素化処理触媒を用い
る。
【0041】本発明により得られる重油基材は、単独で
も製品重油として使用可能である。また、具体的には例
えば、石油蒸留残査物;灯油;直留軽油;減圧軽油;石
油蒸留残査物を熱分解して得られる軽油や残油およびこ
れらの水素化処理油;接触分解装置より得られる軽質軽
油(ライトサイクル油)、重質軽油(ヘビーサイクル
油)、スラリー油等の他の重質油を適宜配合して、製品
重油とすることもできる。
【0042】
【実施例】次に実施例および比較例により本発明をさら
に詳細に説明するが、本発明はこれらの例によって何ら
限定されるものではない。
【0043】実施例1 アルミナ担体にNiO 3質量%とMoO3 11質量%
を含有する市販水素化脱硫触媒を第1段階の水素化処理
用ステンレス製反応塔に、細孔径100〜300Åの細
孔の細孔容積が0.6cc/g、細孔径1000〜10
000Åの細孔の細孔容積が0.1cc/g、全細孔容
積が0.7cc/g、表面積が160m2/gの物性を
有するアルミナ担体にNiO 2質量%とMoO3 8質
量%を担持した水素化処理触媒を第2段階の水素化処理
用ステンレス製反応塔に、それぞれ充填後、触媒を予備
硫化した。次いで表1の性状を有する減圧蒸留残査油を
原料油とし、この反応塔で表2に示す反応条件で連続的
に水素化処理を行った。反応塔出口より得られた水素化
処理油の性状も表2に併記した。
【0044】実施例2 原料油を表3に示すように、ドライスラッジ含有量0.
1質量%以上のものとし、第1段階をバイパスしたこと
以外は実施例1と同一の反応条件で水素化処理を行い、
その結果を表4に記した。
【0045】比較例1 本発明の細孔分布のピークが2種類あるバイモーダル型
触媒の効果を明確化するため、水素化処理触媒として
は、実施例1で第2段階に用いた触媒と、担体の材質お
よび金属種、量は同じであるが、担体の細孔径が100
Å、表面積が160m2/gである触媒を用いた以外は
実施例1と同様の条件で水素化処理を行い、その結果も
表2に併記した。
【0046】比較例2 ドライスラッジ0.1質量%以上含有する原料油を直接
第2段階で処理したときの、本発明のバイモーダル型触
媒の効果を明確化するため、水素化処理触媒としては、
実施例2で第2段階に用いた触媒と、担体の材質および
金属種、量は同じであるが、担体の細孔径が100Å、
表面積が160m2/gである触媒を用いた以外は実施
例2と同様の条件で水素化処理を行い、その結果も表4
に併記した。
【0047】
【表1】
【0048】
【表2】
【0049】
【表3】
【0050】
【表4】
【0051】表2および表4の結果から明らかなとお
り、本発明の方法によれば、比較的低温で細孔径100
〜300Åの細孔の細孔容積が0.6cc/g、細孔径
1000〜10000Åの細孔の細孔容積が0.1cc
/gの水素化処理触媒と接触させることにより、ドライ
スラッジ含有量が0.05質量%以下の重油基材を得る
ことが可能である。それに対して細孔径100Å、表面
積160m2/gとした比較例1および比較例2では、
ドライスラッジ含有量は0.20質量%と実施例1およ
び実施例2と比較して非常に高く、重油基材として不適
当なものである。
【0052】
【発明の効果】以上のように、本発明の水素化処理触媒
をドライスラッジ含有量が0.05質量%より多い原料
油に接触させることにより、ドライスラッジ含有量が
0.05質量%以下の重油基材を得ることができる。こ
のため、重油基材として不適当であるドライスラッジ含
有量が0.05質量%を超える重質油、例えばドライス
ラッジ含有量が0.05質量%を超える石油蒸留残査油
などを重油基材の原料として有効に利用できる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 孝三 神奈川県横浜市中区千鳥町8番地 日石三 菱株式会社中央技術研究所内 (72)発明者 岡崎 肇 神奈川県横浜市中区千鳥町8番地 日石三 菱株式会社中央技術研究所内 Fターム(参考) 4G069 AA01 AA03 AA12 BA01A BA01B BB04B BC57A BC59B BC65A BC68B CC02 DA05 EC03X EC03Y EC07X EC07Y EC15X EC15Y 4H029 CA00 DA00 DA09

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 細孔径100〜300Åの細孔の細孔容
    積が0.3〜0.7cc/g、細孔径1000〜100
    00Åの細孔の細孔容積が0.1〜0.4cc/gであ
    り、全細孔容積が0.4〜1.1cc/g、表面積が1
    50〜250m 2/gの物性を有する多孔性無機酸化物
    担体に周期律表第VIB族と第VIII族の触媒活性を有する
    金属をそれぞれ2〜6質量%および5〜15質量%担持
    し、第VIB族と第VIII族金属のモル比が0.2〜0.6
    であることを特徴とする重質油の水素化処理触媒。
  2. 【請求項2】 硫黄化合物を含有する重質油を二段階水
    素化処理することでドライスラッジ含有量が0.05質
    量%以下で硫黄含有量が原料油より低められた重油基材
    を製造する方法であって、第1段階で水素化脱硫処理触
    媒を用い、第2段階で細孔径100〜300Åの細孔の
    細孔容積が0.3〜0.7cc/g、細孔径1000〜
    10000Åの細孔の細孔容積が0.1〜0.4cc/
    gであり、全細孔容積が0.4〜1.1cc/g、表面
    積が150〜250m2/gの物性を有する多孔性無機
    酸化物担体に周期律表第VIB族と第VIII族の触媒活性を
    有する金属をそれぞれ2〜6質量%および5〜15質量
    %担持し、第VIB族と第VIII族金属のモル比が0.2〜
    0.6である水素化処理触媒を用いることを特徴とする
    重油基材の製造方法。
  3. 【請求項3】 ドライスラッジ含有量が0.05質量%
    を超える重質油を水素化処理触媒を用い水素化処理する
    ことでドライスラッジ含有量が0.05質量%以下の重
    油基材を製造する方法であって、該水素化処理触媒とし
    て、細孔径100〜300Åの細孔の細孔容積が0.3
    〜0.7cc/g、細孔径1000〜10000Åの細
    孔の細孔容積が0.1〜0.4cc/gであり、全細孔
    容積が0.4〜1.1cc/g、表面積が150〜25
    0m2/gの物性を有する多孔性無機酸化物担体に周期
    律表第VIB族と第VIII族の触媒活性を有する金属をそれ
    ぞれ2〜6質量%および5〜15質量%担持し、第VIB
    族と第VIII族金属のモル比が0.2〜0.6である水素
    化処理触媒を用いることを特徴とする重油基材の製造方
    法。
JP2000382695A 2000-12-15 2000-12-15 重質油の水素化処理触媒及び重油基材の製造方法 Expired - Fee Related JP4567877B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382695A JP4567877B2 (ja) 2000-12-15 2000-12-15 重質油の水素化処理触媒及び重油基材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382695A JP4567877B2 (ja) 2000-12-15 2000-12-15 重質油の水素化処理触媒及び重油基材の製造方法

Publications (2)

Publication Number Publication Date
JP2002177796A true JP2002177796A (ja) 2002-06-25
JP4567877B2 JP4567877B2 (ja) 2010-10-20

Family

ID=18850479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382695A Expired - Fee Related JP4567877B2 (ja) 2000-12-15 2000-12-15 重質油の水素化処理触媒及び重油基材の製造方法

Country Status (1)

Country Link
JP (1) JP4567877B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181562A (ja) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理触媒組成物およびその製造方法
JP2009525179A (ja) * 2006-02-03 2009-07-09 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 正方晶系ジルコニアを含む物品およびそれを製造するための方法
WO2010033480A3 (en) * 2008-09-18 2010-06-03 Chevron U.S.A. Inc. Systems and methods for producing a crude product
CN103769147A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种加氢催化剂的制备方法
CN117046510A (zh) * 2023-10-11 2023-11-14 煜安特(山东)环保科技有限公司 一种油泥热解催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688081A (ja) * 1992-04-20 1994-03-29 Texaco Dev Corp 水素化転換法
JPH08231965A (ja) * 1994-12-27 1996-09-10 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理方法
JPH0959651A (ja) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd 重油基材の製造法
JPH0959652A (ja) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd 重油基材の製造方法
JPH11128744A (ja) * 1997-10-24 1999-05-18 Japan Energy Corp 水素化処理用触媒およびその製造方法
JP2000000470A (ja) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd 水素化処理触媒及び重質油の水素化処理方法
JP2000210565A (ja) * 1999-01-26 2000-08-02 Nippon Kecchen Kk 水素化処理用触媒並びに水素化処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688081A (ja) * 1992-04-20 1994-03-29 Texaco Dev Corp 水素化転換法
JPH08231965A (ja) * 1994-12-27 1996-09-10 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理方法
JPH0959651A (ja) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd 重油基材の製造法
JPH0959652A (ja) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd 重油基材の製造方法
JPH11128744A (ja) * 1997-10-24 1999-05-18 Japan Energy Corp 水素化処理用触媒およびその製造方法
JP2000000470A (ja) * 1998-06-15 2000-01-07 Idemitsu Kosan Co Ltd 水素化処理触媒及び重質油の水素化処理方法
JP2000210565A (ja) * 1999-01-26 2000-08-02 Nippon Kecchen Kk 水素化処理用触媒並びに水素化処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181562A (ja) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd 重質炭化水素油の水素化処理触媒組成物およびその製造方法
JP2009525179A (ja) * 2006-02-03 2009-07-09 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 正方晶系ジルコニアを含む物品およびそれを製造するための方法
WO2010033480A3 (en) * 2008-09-18 2010-06-03 Chevron U.S.A. Inc. Systems and methods for producing a crude product
EA023427B1 (ru) * 2008-09-18 2016-06-30 Шеврон Ю.Эс.Эй. Инк. Способ гидрокрекинга исходного сырья на основе тяжелой нефти
CN103769147A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种加氢催化剂的制备方法
CN117046510A (zh) * 2023-10-11 2023-11-14 煜安特(山东)环保科技有限公司 一种油泥热解催化剂及其制备方法
CN117046510B (zh) * 2023-10-11 2024-01-05 煜安特(山东)环保科技有限公司 一种油泥热解催化剂及其制备方法

Also Published As

Publication number Publication date
JP4567877B2 (ja) 2010-10-20

Similar Documents

Publication Publication Date Title
Kressmann et al. Recent developments in fixed-bed catalytic residue upgrading
US4592827A (en) Hydroconversion of heavy crudes with high metal and asphaltene content in the presence of soluble metallic compounds and water
US4051021A (en) Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst
EP1600491A1 (en) Catalytic hydrorefining process for crude oil
AU2001249836B2 (en) Staged hydrotreating method for naphtha desulfurization
KR101962496B1 (ko) 3-상 수소화처리 공정 전처리로서의 2-상 수소화처리 공정
WO2006022419A1 (ja) 重質炭化水素油の水素化処理方法
AU757014B2 (en) Improved catalyst activation method for selective cat naphtha hydrodesulfurization
US10005971B2 (en) Gas oil hydroprocess
EP2295525A2 (en) Hydrogenation of middle distillate using a counter-current reactor
CN103773450B (zh) 一种加工劣质原料的加氢裂化方法
US5888379A (en) Process for producing a fuel oil base material
CN101942331B (zh) 汽油和柴油组合加氢方法
JP4576334B2 (ja) 軽油留分の水素化処理方法
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
US9574141B2 (en) Wet start-up method for hydrogenation unit, energy-saving hydrogenation process and hydrogenation apparatus
CN103119133A (zh) 共用分馏的两级加氢操作装置和方法
JP4567877B2 (ja) 重質油の水素化処理触媒及び重油基材の製造方法
CN103059934A (zh) 一种兼顾柴油产品质量的加氢改质降凝方法
JP2002146364A (ja) 重油基材の製造方法
JP3608095B2 (ja) 重油基材の製造方法
JP3582803B2 (ja) 重油基材の製造法
US6447673B1 (en) Hydrofining process
JP2004250554A (ja) 軽油留分の水素化脱硫方法
JP2018131550A (ja) 熱分解重質軽油の処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4567877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees