JP2002129311A - Apparatus and method of forming protection coating for plasma display - Google Patents

Apparatus and method of forming protection coating for plasma display

Info

Publication number
JP2002129311A
JP2002129311A JP2000321408A JP2000321408A JP2002129311A JP 2002129311 A JP2002129311 A JP 2002129311A JP 2000321408 A JP2000321408 A JP 2000321408A JP 2000321408 A JP2000321408 A JP 2000321408A JP 2002129311 A JP2002129311 A JP 2002129311A
Authority
JP
Japan
Prior art keywords
substrate
plasma display
vapor deposition
protective film
heaters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000321408A
Other languages
Japanese (ja)
Other versions
JP4570232B2 (en
Inventor
Toshiharu Kurauchi
倉内  利春
Munehito Hakomori
宗人 箱守
Kazuya Uchida
一也 内田
Yukio Masuda
行男 増田
Toshihiro Okada
俊弘 岡田
Hiroto Ikeda
裕人 池田
Yuichi Orii
雄一 織井
Eiichi Iijima
栄一 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000321408A priority Critical patent/JP4570232B2/en
Priority to TW090125821A priority patent/TW550304B/en
Priority to CNB011370432A priority patent/CN1271241C/en
Priority to KR1020010064594A priority patent/KR100544407B1/en
Publication of JP2002129311A publication Critical patent/JP2002129311A/en
Application granted granted Critical
Publication of JP4570232B2 publication Critical patent/JP4570232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an uniform film deposition on a large surface substrate and to prevent the cracking of a substrate due to temperature rise by arranging evaporation points in a plurality of lines at right angles to the moving direction of a substrate, arranging a plurality of substrate heaters, equipping each heaters with a means for controlling heating temperature individually and providing the opening control plate with a cooling mechanism for defining the film deposition zone so that the temperature rise of the substrate and the difference in the temperature distribution of the substrate are reduced during film deposition. SOLUTION: An apparatus of forming protection coating for a plasma display which comprises a structure conveying the substrate, heaters for the substrate, the ring hearths filled with vaporized materials, and electron beam guns to make vapor deposition on the substrate by irradiating the vapor materials with electron beams in the ring hearths to produce vapor, features in placing a plurality of lines of vapor sources in the ring hearths at right angles to the movable direction of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MgO膜等のプラ
ズマディスプレイ用保護膜形成装置に関するものであ
る。
The present invention relates to an apparatus for forming a protective film for a plasma display such as an MgO film.

【0002】[0002]

【従来の技術】近年、大画面の壁掛けテレビ等の実用化
に向け、プラズマディスプレイパネル(PDP)が注目
を集めているが、このパネル用として、ガラス製の基板
上に保護膜としてMgO成膜を形成することが行われて
いる。また、このプラズマディスプレイパネルの成膜に
限らず、基板上に皮膜を形成させることは、種々の分野
に適用されている。この成膜には真空蒸着装置が用いら
れるが、その成膜作業を連続的に行うためには通常イン
ライン式のものが使用される。図7に従来一般に使用さ
れている保護膜形成装置の蒸着室の概念図を示す。蒸着
室1内において、基板4は搬送機構5にセットされ、さ
らにその上部に設置されたヒーターパネル6によって加
熱されながら水平方向に移動する。一方、基板4の表面
に蒸着されるMgOは、図8に示すように、2台の回転
するリングハース3に充填され、同じく2台のピアス式
電子ビーム(EB)ガン2から電子ビーム7をリングハ
ース3上のMgOに照射し、基板の搬送方向に対して直
角方向に1列に並んだ4箇所からMgOを蒸発させ、基
板4上に蒸着・堆積する。例えば約1m×1.5mの大
面積の基板4にMgO保護膜を形成させている。また、
このとき基板4の下方にはMgOの入射角θを制限し
て、保護膜の膜質を維持するために開口制限板8を設置
している。ところで、MgOは昇華性の材料であるた
め、局所的に加熱すると、スプラッシュが発生し易い。
そのため、スプラッシュなしに高い成膜レートを得るた
めには、電子ビームをスイープさせ、蒸発面積を広く
し、高出力の電子ビームを投入しなければならない。そ
の結果、蒸発源からの輻射熱により、蒸着中に基板温度
が大きく上昇し、しかも基板の面内で大きな温度分布が
発生し、その結果ガラス製の基板が割れる問題が多発し
た。また、スプラッシュの発生と上記基板割れの問題に
より、生産可能な成膜レートは2500Å/minが限
界であった。図10は、上記の従来装置により、基板加
熱温度200℃、成膜レート2500Å/minにおい
て、厚さ7000ÅのMgO膜を形成させた場合の温度
測定結果を示すものである。また図9は基板温度の測定
位置を示す説明図である。図9において、5は搬送装置
のキャリアで、ホルダー9により基板4を保持してい
る。AおよびBは基板温度の測定位置である。なお10
は盲板である。このような位置における測定の結果、図
10に示すように、測定位置A−B間で最大80℃の温
度差が発生していることが分かった。
2. Description of the Related Art In recent years, a plasma display panel (PDP) has been attracting attention for practical use of a large-screen wall-mounted television or the like. For this panel, a MgO film is formed as a protective film on a glass substrate. Is being formed. In addition to forming the film on the plasma display panel, forming a film on a substrate is applied to various fields. A vacuum evaporation apparatus is used for this film formation, and an in-line type is usually used to continuously perform the film formation work. FIG. 7 shows a conceptual diagram of a vapor deposition chamber of a conventional protective film forming apparatus generally used. In the vapor deposition chamber 1, the substrate 4 is set on the transport mechanism 5, and further moves in the horizontal direction while being heated by the heater panel 6 installed thereon. On the other hand, as shown in FIG. 8, MgO deposited on the surface of the substrate 4 is filled in two rotating ring hearths 3, and the electron beam 7 is also emitted from two piercing electron beam (EB) guns 2. Irradiation is performed on the MgO on the ring hearth 3, and the MgO is vaporized and deposited on the substrate 4 from four locations arranged in a line in a direction perpendicular to the transport direction of the substrate. For example, an MgO protective film is formed on a substrate 4 having a large area of about 1 mx 1.5 m. Also,
At this time, an aperture limiting plate 8 is provided below the substrate 4 to limit the incident angle θ of MgO and maintain the quality of the protective film. By the way, since MgO is a sublimable material, splash is likely to occur when locally heated.
Therefore, in order to obtain a high deposition rate without splash, it is necessary to sweep the electron beam, widen the evaporation area, and supply a high-power electron beam. As a result, radiant heat from the evaporation source significantly increases the temperature of the substrate during vapor deposition, and generates a large temperature distribution in the plane of the substrate. As a result, the glass substrate is often broken. Further, due to the occurrence of the splash and the above-mentioned problem of the substrate cracking, the film formation rate that can be produced was limited to 2500 ° / min. FIG. 10 shows temperature measurement results when a 7000-.ANG.-thick MgO film is formed at a substrate heating temperature of 200.degree. C. and a deposition rate of 2500.degree. FIG. 9 is an explanatory diagram showing the measurement position of the substrate temperature. In FIG. 9, reference numeral 5 denotes a carrier of the transfer device, which holds the substrate 4 by the holder 9. A and B are measurement positions of the substrate temperature. Note that 10
Is a blind plate. As a result of the measurement at such a position, as shown in FIG. 10, it was found that a maximum temperature difference of 80 ° C. occurred between the measurement positions AB.

【0003】[0003]

【発明が解決しようとする課題】本発明は、蒸発ポイン
トを、基板の搬送方向に対し、直角方向に複数列配置す
ること、また、基板を加熱するヒーターを複数個分割し
て設けるとともに、各ヒーターに加熱温度設定用制御手
段を個別に設けたこと、さらに、成膜ゾーンを限定する
ための開口制御板に冷却機構を設けたことにより、成膜
時における基板の温度上昇の低減と、基板の温度分布の
差を少なくでき、大面積基板に均一に成膜するととも
に、温度上昇による基板の割れを防止し、従来装置にお
ける問題点を解消を図ったものである。
SUMMARY OF THE INVENTION According to the present invention, a plurality of rows of evaporation points are arranged in a direction perpendicular to the direction in which the substrate is transported, and a plurality of heaters for heating the substrate are provided separately. By separately providing a heater with a heating temperature setting control means, and further by providing a cooling mechanism in an opening control plate for limiting a film forming zone, the temperature rise of the substrate during film formation can be reduced, and The difference in temperature distribution can be reduced, a uniform film is formed on a large-area substrate, the substrate is prevented from cracking due to a rise in temperature, and the problems in the conventional apparatus are solved.

【0004】[0004]

【課題を解決するための手段】請求項1記載の本発明の
プラズマディスプレイ保護膜形成装置は、基板上に保護
膜を形成する成膜室内に、基板搬送機構、該基板を加熱
するヒーター、蒸着材料を充填したリングハース、前記
リングハースに充填した蒸着材料に電子ビームを照射し
て蒸着材料を蒸発させ、基板上に蒸着させる電子ビーム
ガンをそれぞれ設けた保護膜形成装置において、前記リ
ングハースによる蒸発ポイントを基板の搬送方向に対し
て直角方向に複数列配置したことを特徴とする。請求項
2記載の本発明は、請求項1記載のプラズマディスプレ
イ保護膜形成装置において、基板を加熱するヒーターを
複数個分割して設けるとともに、前記各ヒーターに加熱
温度設定用制御手段を個別に設けたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載
のプラズマディスプレイ保護膜形成装置において、成膜
ゾーンを限定するための開口制御板に冷却機構を設けた
ことを特徴とする。請求項4記載の本発明のプラズマデ
ィスプレイ保護膜形成方法は、基板を搬送しつつ成膜す
るに際し、基板の搬送方向に対し、直角方向に蒸発ポイ
ントを複数列配置することにより、高成膜レートで均一
に成膜させるようにしたことを特徴とする。
According to a first aspect of the present invention, there is provided an apparatus for forming a protective film on a plasma display, comprising: a substrate transport mechanism, a heater for heating the substrate, and a vapor deposition chamber for forming a protective film on the substrate. In a protective film forming apparatus provided with a ring hearth filled with a material and an electron beam gun for irradiating an electron beam to the vapor deposition material filled in the ring hearth and evaporating the vapor deposition material and vapor deposition on a substrate, the evaporation by the ring hearth is performed. A plurality of points are arranged in a direction perpendicular to the substrate transport direction. According to a second aspect of the present invention, there is provided the plasma display protective film forming apparatus according to the first aspect, wherein a plurality of heaters for heating the substrate are provided separately, and a heating temperature setting control means is separately provided for each of the heaters. It is characterized by having.
According to a third aspect of the present invention, in the plasma display protective film forming apparatus according to the first or second aspect, a cooling mechanism is provided on an opening control plate for limiting a film forming zone. According to the plasma display protective film forming method of the present invention, when forming a film while transporting the substrate, a plurality of evaporation points are arranged in a direction perpendicular to the substrate transport direction, so that a high deposition rate can be obtained. Is characterized in that the film is formed uniformly.

【0005】[0005]

【発明の実施の形態】本発明の第1の実施の形態は、蒸
着材料を充填したリングハースおよびリングハースに充
填した蒸発材料に電子ビームを照射する電子ビームガン
により形成される蒸発ポイントを、基板の搬送方向に対
し、直角方向に複数列配置したものである。その結果、
大面積の基板に対して均一に成膜することが可能であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a first embodiment of the present invention, an evaporation point formed by a ring hearth filled with an evaporation material and an electron beam gun for irradiating the evaporation material filled in the ring hearth with an electron beam is defined as a substrate. Are arranged in a plurality of rows in a direction perpendicular to the conveying direction. as a result,
It is possible to form a uniform film on a large area substrate.

【0006】本発明の第2の実施の形態は,基板を加熱
するヒーターを複数個分割して設け、かつ該ヒーターに
加熱温度設定用制御手段を個別に設けたものである。そ
の結果、成膜時における基板への入熱量の均一化を図
り、基板の割れを防止することができる。
In a second embodiment of the present invention, a plurality of heaters for heating a substrate are provided in a divided manner, and the heaters are individually provided with heating temperature setting control means. As a result, the amount of heat input to the substrate during film formation can be made uniform, and cracking of the substrate can be prevented.

【0007】本発明の第3の実施の形態は,成膜ゾーン
を限定するための開口制御板に冷却機構を設けたもので
ある。その結果、成膜時における基板の温度の上昇を低
減することができる。
In a third embodiment of the present invention, a cooling mechanism is provided on an opening control plate for limiting a film forming zone. As a result, an increase in the temperature of the substrate during film formation can be reduced.

【0008】本発明の第4の実施の形態は,基板を搬送
しつつ成膜するに際し、基板の搬送方向に対し、直角方
向に蒸発ポイントを複数列配置することにより、高成膜
レートで均一に成膜させるようにしたプラズマディスプ
レイ保護膜形成方法である。
According to a fourth embodiment of the present invention, when forming a film while transferring a substrate, a plurality of rows of evaporation points are arranged in a direction perpendicular to the direction in which the substrate is transferred, so that a uniform film formation rate can be obtained. This is a plasma display protective film forming method for forming a film on the substrate.

【0009】[0009]

【実施例】(実施例1)以下、図面により本発明の一実
施例を説明する。既に従来例で説明した構成については
同一符号を付してその説明の一部を省略する。図1およ
び図2は本発明のMgO蒸着装置における電子ビームガ
ンとリングハースの配置の一例を示す説明図で、図1
は、蒸着室1に電子ビームガン2とリングハース3をそ
れぞれ4台設けた場合を示すものである。同図に示すよ
うに、本実施例は、リングハース3を基板の搬送方向に
対して直角方向に2台づつ2列に配置している。また各
列が4つの蒸発ポイントとなるように、各リングハース
3は2つの蒸発ポイントを持つ。また、図2は、電子ビ
ームガン2とリングハース3をそれぞれ2台設けた場合
を示すものである。同図に示すように、本実施例は、2
台のリングハース3を基板の搬送方向に対して直角方向
に1列に配置し、各リングハース3には、4つの蒸発ポ
イントを基板の搬送方向に対して直角方向に2つづつ2
列に形成している。その結果、基板の搬送方向に対して
直角方向に4つづつ2列の蒸発ポイントを持つ。図3は
本発明のMgO蒸着装置の概念図である。図3に示すよ
うに、前記の蒸着室1の内部には、下方にモーター等の
駆動機構(図示せず)により回転するリングハース3が
設けられており、側面には、電子ビームを放出する電子
ビームガン2が設置されている。また、リングハース3
の上方には、成膜されるガラス等の材料からなる基板4
を保持した搬送機構のキャリア5が水平方向に移動可能
に配置され、所定速度で基板4を搬送するように配置さ
れている。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. The same reference numerals are given to the components already described in the conventional example, and a part of the description is omitted. 1 and 2 are explanatory views showing an example of the arrangement of the electron beam gun and the ring hearth in the MgO vapor deposition apparatus of the present invention.
Shows a case where four electron beam guns 2 and four ring hearths 3 are provided in the vapor deposition chamber 1 respectively. As shown in the figure, in the present embodiment, two ring hearths 3 are arranged in two rows in a direction perpendicular to the substrate transport direction. Each ring hearth 3 has two evaporation points so that each row has four evaporation points. FIG. 2 shows a case where two electron beam guns 2 and two ring hearths 3 are provided. As shown in FIG.
The ring hearths 3 are arranged in a row in a direction perpendicular to the substrate transport direction, and each ring hearth 3 is provided with four evaporation points two in a direction perpendicular to the substrate transport direction.
Formed in columns. As a result, there are two rows of four evaporation points each in a direction perpendicular to the substrate transfer direction. FIG. 3 is a conceptual diagram of the MgO vapor deposition apparatus of the present invention. As shown in FIG. 3, a ring hearth 3 that is rotated by a driving mechanism (not shown) such as a motor is provided below the inside of the vapor deposition chamber 1 and emits an electron beam on a side surface. An electron beam gun 2 is provided. Also, Ring Hearth 3
Above the substrate 4 is a substrate 4 made of a material such as glass to be formed.
The carrier 5 of the transport mechanism holding the substrate 4 is disposed so as to be movable in the horizontal direction, and is disposed so as to transport the substrate 4 at a predetermined speed.

【0010】上記構成において、基板4上に真空蒸着を
行い、成膜を形成させるには、基板4を搬送機構のキャ
リア5にセットし、基板4の上方に分割設置されたヒー
ターパネル6によって基板4を加熱しながら水平方向に
移動させる。なおそれぞれのヒーターパネル6は、独立
に温度制御可能なように構成されている。一方、蒸着室
1内に設けた前記4台のリングハース3を回転させつ
つ、蒸着室1の側壁に設けた4台の電子ビームガン2か
ら前記リングハース3に充填したMgO等の蒸発材料の
2箇所(図1参照)あるいは4箇所(図2参照)の蒸発
ポイントに対して、基板の搬送方向に直角方向に電子ビ
ーム7を照射すると、前記MgO等の蒸発材料は蒸発・
飛散し、基板4上に蒸着・堆積して保護膜が形成され
る。このとき、基板4は、前記のように、分割設置され
たヒーター6により加熱されるが、それぞれのヒーター
6ごとに設けた温度制御手段により加熱温度を独立に制
御することができるので、基板4における極端な温度分
布差の発生を防止することができる。なお、開口制御板
8は、基板4に対するMgOの入射角θを制限し、保護
膜の膜質を維持するものである。
In the above structure, in order to form a film by performing vacuum deposition on the substrate 4, the substrate 4 is set on a carrier 5 of a transport mechanism, and the substrate is divided by a heater panel 6 installed above the substrate 4. 4 is moved in the horizontal direction while heating. In addition, each heater panel 6 is configured so that the temperature can be independently controlled. On the other hand, while rotating the four ring hearths 3 provided in the vapor deposition chamber 1, the two electron beam guns 2 provided on the side walls of the vapor deposition chamber 1 are used to rotate the two ring hearths 3 into the ring hearth 3. When the electron beam 7 is irradiated at a point (see FIG. 1) or at four points (see FIG. 2) in a direction perpendicular to the substrate transport direction, the evaporation material such as MgO evaporates.
The protective film is scattered and deposited and deposited on the substrate 4 to form a protective film. At this time, the substrate 4 is heated by the divided heaters 6 as described above. Since the heating temperature can be independently controlled by the temperature control means provided for each heater 6, the substrate 4 is heated. , An extreme temperature distribution difference can be prevented. The aperture control plate 8 limits the incident angle θ of MgO to the substrate 4 and maintains the quality of the protective film.

【0011】図4は、上記装置により、基板加熱温度2
00℃において、厚さ7000ÅのMgO膜を基板上に
形成させた場合の温度測定結果を示す。図4において、
曲線AおよびBは、図9に示した測定点AおよびBにお
ける基板の温度と蒸着時間との関係を示すものである
が、この測定値から明らかなように、各測定点において
蒸着が開始されるまでの温度上昇 (ΔT)と、各測定
点の温度上昇 (ΔT)による測定点A−B間の温度差
が最大でも45℃まで低減され、その結果、基板割れの
危険性を大幅に低減することが可能となった。また、成
膜レートについては、スプラッシュの発生なしに、従来
装置の2倍の5000Å/minが得られ、生産性が2
倍に向上した。
FIG. 4 shows the substrate heating temperature 2
This shows the temperature measurement results when a 7000 ° thick MgO film was formed on a substrate at 00 ° C. In FIG.
Curves A and B show the relationship between the substrate temperature and the deposition time at the measurement points A and B shown in FIG. 9, and as apparent from these measured values, the deposition was started at each measurement point. Temperature difference (ΔT 1 ) and the temperature difference between the measurement points A and B due to the temperature increase (ΔT 2 ) at each measurement point are reduced to 45 ° C. at the maximum. As a result, the risk of substrate cracking is greatly increased. It became possible to reduce to. Regarding the film forming rate, 5000 [deg.] / Min, twice as large as that of the conventional apparatus, can be obtained without generating a splash, and the productivity is 2%.
Improved by a factor of two.

【0012】(実施例2)図5は、蒸着室1内に分割し
たヒーターパネル6を設置し、また、基板4の下方に水
冷開口制限板8を取り付けた装置を示すものである。基
板4に保護膜を形成させるための蒸着の態様は上記実施
例1の場合と同様であるため同一符号を付して説明を省
略する。図6は、本実施例における基板の温度と蒸着時
間との関係を示すものである。基板温度の測定条件は実
施例1の場合と同じであったが、リングハース3の直上
のヒーターパネル6の設定温度を他のヒーターより50
℃低く設定することにより、各測定点の温度上昇 (ΔT
)をさらに低減することができた。また、水冷開口制
限板8を用いて基板4の温度上昇を防止することによ
り、各測定点において蒸着が開始されるまでの温度上昇
(ΔT)が極めて小さくなった。ここで、水冷開口制
限板8には、直接堆積膜が付着しないように防着カバー
8’が設けられている。
(Embodiment 2) FIG. 5 shows an apparatus in which a divided heater panel 6 is installed in a vapor deposition chamber 1 and a water-cooling opening limiting plate 8 is attached below a substrate 4. The mode of vapor deposition for forming a protective film on the substrate 4 is the same as that of the first embodiment, and therefore the same reference numerals are given and the description is omitted. FIG. 6 shows the relationship between the substrate temperature and the vapor deposition time in this embodiment. The measurement conditions for the substrate temperature were the same as those in Example 1, but the set temperature of the heater panel 6 immediately above the ring hearth 3 was set to 50
The temperature rise at each measurement point (ΔT
2 ) could be further reduced. Further, by preventing the temperature of the substrate 4 from rising by using the water-cooled aperture limiting plate 8, the temperature rise until the vapor deposition is started at each measurement point.
(ΔT 2 ) became extremely small. Here, the water-cooling opening limiting plate 8 is provided with a deposition-inhibiting cover 8 ′ so that the deposited film does not directly adhere.

【0013】なお、上記の各実施例においては、電子ビ
ームによる蒸着の場合についてのみ説明したが、本発明
は、プラズマガンを用いた蒸着やホローカソードガンを
用いた反応性蒸着にも適用することが可能である。ま
た、MgO以外の成膜にも適用可能である。
In each of the embodiments described above, only the case of vapor deposition by an electron beam has been described. However, the present invention can be applied to vapor deposition using a plasma gun or reactive vapor deposition using a hollow cathode gun. Is possible. Further, the present invention can be applied to film formation other than MgO.

【0014】[0014]

【発明の効果】以上説明したように、本発明において
は、蒸着室内の基板の搬送方向に対して直角方向に複数
列の蒸発ポイントを設置することにより、成膜ゾーンを
広くすることができ、また基板面内の温度分布の差を小
さくすることができる。その結果、基板の搬送速度を高
くすることができ、しかも、熱による基板の割れの機会
を減少することができ、生産性を大幅に向上することが
できる。また、蒸発室に分割したヒーターを設置して、
独立に温度制御を行い、かつ、水冷された開口制限板を
設置したので、基板に対する入熱量を制御して、その温
度上昇を更に低減することができる。さらに、基板に対
する蒸着材料の入射角を制限するために、リングハース
と基板との間に設置している開口制限板を、水冷等適宜
の手段を用いて冷却することにより、成膜時における基
板の温度上昇を防止することができ、基板の割れの機会
を少なくすることができる。
As described above, in the present invention, the deposition zone can be widened by arranging a plurality of rows of evaporation points in a direction perpendicular to the direction of transport of the substrate in the evaporation chamber. Further, the difference in the temperature distribution in the substrate surface can be reduced. As a result, the transfer speed of the substrate can be increased, and the chance of the substrate being cracked by heat can be reduced, so that the productivity can be greatly improved. Also, install a divided heater in the evaporation chamber,
Since the temperature control is performed independently and the water-cooled aperture limiting plate is provided, the amount of heat input to the substrate can be controlled to further reduce the temperature rise. Further, in order to limit the incident angle of the vapor deposition material with respect to the substrate, the aperture limiting plate provided between the ring hearth and the substrate is cooled by using an appropriate means such as water cooling, so that the substrate during the film formation is cooled. Temperature rise can be prevented, and the chance of cracking the substrate can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における電子ガンとリングハースの構成
の実例を示す説明図
FIG. 1 is an explanatory view showing a practical example of a configuration of an electronic gun and a ring hearth according to the present invention.

【図2】本発明における電子ガンとリングハースの構成
の他の実例を示す説明図
FIG. 2 is an explanatory view showing another example of the configuration of the electronic gun and the ring hearth according to the present invention.

【図3】本発明の保護膜形成装置の実例を示す概念図FIG. 3 is a conceptual diagram showing an actual example of a protective film forming apparatus of the present invention.

【図4】本発明における基板温度と時間との測定結果を
示す特性図
FIG. 4 is a characteristic diagram showing measurement results of substrate temperature and time in the present invention.

【図5】本発明の保護膜形成装置の他の実例を示す説明
FIG. 5 is an explanatory view showing another example of the protective film forming apparatus of the present invention.

【図6】本発明における基板温度と時間との測定結果を
示す特性図
FIG. 6 is a characteristic diagram showing measurement results of substrate temperature and time in the present invention.

【図7】従来の保護膜形成装置の実例を示す概念図FIG. 7 is a conceptual diagram showing an actual example of a conventional protective film forming apparatus.

【図8】従来の保護膜形成装置における電子ガンとリン
グハースの構成の実例を示す説明図
FIG. 8 is an explanatory view showing an example of the configuration of an electron gun and a ring hearth in a conventional protective film forming apparatus.

【図9】基板温度と時間との測定位置を示す説明図FIG. 9 is an explanatory diagram showing measurement positions of a substrate temperature and time.

【図10】従来の保護膜形成装置における基板温度と時
間との測定結果を示す特性図
FIG. 10 is a characteristic diagram showing measurement results of substrate temperature and time in a conventional protective film forming apparatus.

【符号の説明】[Explanation of symbols]

1 蒸着室 2 電子ビームガン 3 リングハース 4 基板 5 搬送機構 6 ヒーター 7 電子ビーム 8 開口制限板 9 ホルダー 10 盲板 DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Electron beam gun 3 Ring hearth 4 Substrate 5 Transport mechanism 6 Heater 7 Electron beam 8 Aperture limiting plate 9 Holder 10 Blind plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 一也 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 増田 行男 神奈川県茅ヶ崎市萩園2500 日本真空技術 株式会社内 (72)発明者 岡田 俊弘 神奈川県茅ヶ崎市萩園2500 日本真空技術 株式会社内 (72)発明者 池田 裕人 神奈川県茅ヶ崎市萩園2500 日本真空技術 株式会社内 (72)発明者 織井 雄一 神奈川県茅ヶ崎市萩園2500 日本真空技術 株式会社内 (72)発明者 飯島 栄一 神奈川県茅ヶ崎市萩園2500 日本真空技術 株式会社内 Fターム(参考) 4K029 AA09 AA24 BA43 BD00 CA01 DA08 DB14 DB21 HA03 KA01 5C027 AA05 AA07 5C040 GE09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuya Uchida 5-9-7 Tokodai, Tsukuba, Ibaraki Pref., Tsukuba Super Materials Research Laboratories, Japan Vapor Technology Co., Ltd. (72) Inventor Yukio Masuda Hagizono, Chigasaki, Kanagawa 2500 Nippon Vacuum Technology Co., Ltd. Yuichi Ori 2500 Hagizono, Chigasaki City, Kanagawa Prefecture Japan Vacuum Technology Co., Ltd. (72) Eiichi Iijima 2500 Hagizono, Chigasaki City, Kanagawa Prefecture Japan Vacuum Technology Co., Ltd.F-term (reference) 4K029 AA09 AA24 BA43 BD00 CA01 DA08 DB14 DB21 HA03 KA01 5C027 AA05 AA07 5C040 GE09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に保護膜を形成する成膜室内に、
基板搬送機構、該基板を加熱するヒーター、蒸着材料を
充填したリングハース、前記リングハースに充填した蒸
着材料に電子ビームを照射して蒸着材料を蒸発させ、基
板上に蒸着させる電子ビームガンをそれぞれ設けた保護
膜形成装置において、前記リングハースによる蒸発ポイ
ントを基板の搬送方向に対して直角方向に複数列配置し
たことを特徴とするプラズマディスプレイ保護膜形成装
置。
In a film forming chamber for forming a protective film on a substrate,
A substrate transport mechanism, a heater for heating the substrate, a ring hearth filled with a vapor deposition material, an electron beam gun for irradiating an electron beam on the vapor deposition material filled in the ring hearth to evaporate the vapor deposition material, and vapor deposition on the substrate are provided respectively. The apparatus for forming a protective film for a plasma display, wherein the evaporation points by the ring hearth are arranged in a plurality of rows in a direction perpendicular to the direction of transport of the substrate.
【請求項2】 基板を加熱するヒーターを複数個分割し
て設けるとともに、前記各ヒーターに加熱温度設定用制
御手段を個別に設けたことを特徴とする請求項1記載の
プラズマディスプレイ保護膜形成装置。
2. The plasma display protective film forming apparatus according to claim 1, wherein a plurality of heaters for heating the substrate are provided separately, and a control means for setting a heating temperature is separately provided for each of the heaters. .
【請求項3】 成膜ゾーンを限定するための開口制御板
に冷却機構を設けたことを特徴とする請求項1又は請求
項2に記載のプラズマディスプレイ保護膜形成装置。
3. The plasma display protective film forming apparatus according to claim 1, wherein a cooling mechanism is provided on an opening control plate for limiting a film forming zone.
【請求項4】 基板を搬送しつつ成膜するに際し、基板
の搬送方向に対し、直角方向に蒸発ポイントを複数列配
置することにより、高成膜レートで均一に成膜させるよ
うにしたことを特徴とするプラズマディスプレイ保護膜
形成方法。
4. A method for forming a film at a high film forming rate by arranging a plurality of evaporation points in a direction perpendicular to a direction in which the substrate is conveyed when forming a film while transferring the substrate. A method for forming a plasma display protective film, which is characterized in that:
JP2000321408A 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method Expired - Fee Related JP4570232B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000321408A JP4570232B2 (en) 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method
TW090125821A TW550304B (en) 2000-10-20 2001-10-18 Apparatus and method of forming protection coating for plasma display
CNB011370432A CN1271241C (en) 2000-10-20 2001-10-19 Apparatus and method for forming protective film on plasma display
KR1020010064594A KR100544407B1 (en) 2000-10-20 2001-10-19 Protective film forming apparatus and protective film forming method for plasma display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321408A JP4570232B2 (en) 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method

Publications (2)

Publication Number Publication Date
JP2002129311A true JP2002129311A (en) 2002-05-09
JP4570232B2 JP4570232B2 (en) 2010-10-27

Family

ID=18799536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321408A Expired - Fee Related JP4570232B2 (en) 2000-10-20 2000-10-20 Plasma display protective film forming apparatus and protective film forming method

Country Status (4)

Country Link
JP (1) JP4570232B2 (en)
KR (1) KR100544407B1 (en)
CN (1) CN1271241C (en)
TW (1) TW550304B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050662A1 (en) * 2006-10-27 2008-05-02 Ulvac, Inc. Plasma display panel manufacturing method and manufacturing device
WO2010032817A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Method for forming protective film on plasma display panel bases, and device for forming said protective film
WO2010038384A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Film forming apparatus and film forming method using same
JP4977143B2 (en) * 2006-09-22 2012-07-18 株式会社アルバック Vacuum processing equipment
JP2012233214A (en) * 2011-04-28 2012-11-29 Ulvac Japan Ltd Electron beam vapor deposition apparatus
ES2399593R1 (en) * 2011-03-24 2014-11-06 Primestar Solar, Inc. Dynamic system for variable heating or cooling of linearly transported substrates

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500894B2 (en) * 2003-04-04 2009-03-10 Panasonic Corporation Method for manufacturing plasma display panels with consistent panel substrate characteristics
CN101660126B (en) * 2005-03-18 2012-10-10 株式会社爱发科 Coating method and apparatus, a permanent magnet, and manufacturing method thereof
CN100454475C (en) * 2005-03-31 2009-01-21 西安交通大学 Plasma display screen medium protection film forming apparatus with angle control
US7989021B2 (en) * 2005-07-27 2011-08-02 Global Oled Technology Llc Vaporizing material at a uniform rate
US8247741B2 (en) * 2011-03-24 2012-08-21 Primestar Solar, Inc. Dynamic system for variable heating or cooling of linearly conveyed substrates
WO2020144894A1 (en) * 2019-01-10 2020-07-16 株式会社アルバック Vapor deposition device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176262A (en) * 1996-12-17 1998-06-30 Ulvac Japan Ltd Vapor deposition device
JPH11315370A (en) * 1998-05-07 1999-11-16 Ulvac Corp Ion plating device for forming sublimable metallic compound thin film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213869A (en) * 1998-01-21 1999-08-06 Asahi Glass Co Ltd Method for forming protective film of ac-type plasma display panel, and device thereof
JPH11335820A (en) * 1998-05-20 1999-12-07 Fujitsu Ltd Vapor deposition and vapor deposition device
JP2000001771A (en) * 1998-06-18 2000-01-07 Hitachi Ltd Production of dielectric protective layer and apparatus for production thereof as well as plasma display panel and image display device using the same
JP4197204B2 (en) * 1998-10-23 2008-12-17 キヤノンアネルバ株式会社 Magnesium oxide production equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176262A (en) * 1996-12-17 1998-06-30 Ulvac Japan Ltd Vapor deposition device
JPH11315370A (en) * 1998-05-07 1999-11-16 Ulvac Corp Ion plating device for forming sublimable metallic compound thin film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977143B2 (en) * 2006-09-22 2012-07-18 株式会社アルバック Vacuum processing equipment
WO2008050662A1 (en) * 2006-10-27 2008-05-02 Ulvac, Inc. Plasma display panel manufacturing method and manufacturing device
JPWO2008050662A1 (en) * 2006-10-27 2010-02-25 株式会社アルバック Method and apparatus for manufacturing plasma display panel
KR101168180B1 (en) 2006-10-27 2012-07-24 가부시키가이샤 알박 Plasma display panel manufacturing method and manufacturing device
JP5078903B2 (en) * 2006-10-27 2012-11-21 株式会社アルバック Method and apparatus for manufacturing plasma display panel
WO2010032817A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Method for forming protective film on plasma display panel bases, and device for forming said protective film
JPWO2010032817A1 (en) * 2008-09-19 2012-02-16 株式会社アルバック Method of forming protective film on substrate of plasma display panel and apparatus for forming protective film
JP2013213285A (en) * 2008-09-19 2013-10-17 Ulvac Japan Ltd Device for forming film on base plate
WO2010038384A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Film forming apparatus and film forming method using same
US20100189904A1 (en) * 2008-09-30 2010-07-29 Canon Anelva Corporation Film forming apparatus and film forming method using the same
ES2399593R1 (en) * 2011-03-24 2014-11-06 Primestar Solar, Inc. Dynamic system for variable heating or cooling of linearly transported substrates
JP2012233214A (en) * 2011-04-28 2012-11-29 Ulvac Japan Ltd Electron beam vapor deposition apparatus

Also Published As

Publication number Publication date
TW550304B (en) 2003-09-01
KR100544407B1 (en) 2006-01-23
JP4570232B2 (en) 2010-10-27
KR20020031071A (en) 2002-04-26
CN1271241C (en) 2006-08-23
CN1351193A (en) 2002-05-29

Similar Documents

Publication Publication Date Title
JP4767000B2 (en) Vacuum deposition equipment
US20080014825A1 (en) Deposition apparatus
JP2002129311A (en) Apparatus and method of forming protection coating for plasma display
KR20070056190A (en) In-line equipment using metal-plate belt source for oled manufacturing
US5849371A (en) Laser and laser-assisted free electron beam deposition apparatus and method
US8709837B2 (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
CN212223086U (en) Electron beam evaporation table
KR20170104103A (en) Curved plane type evaporation source for high resolution OLED pattern production
TW201625358A (en) Crucible, a evaporation assembly having the same and a method using the same for evaporation purposes
JP2004238663A (en) Vapor deposition apparatus
KR101925064B1 (en) Manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices
JP3865841B2 (en) Electron beam evaporation system
JP2003253433A (en) Thin film deposition apparatus
JP3735287B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP4242114B2 (en) Formation method of vapor deposition film
JPH06235061A (en) Continuous vacuum deposition device
JP4457809B2 (en) Vacuum deposition system
KR100980258B1 (en) The dome for fixing deposition products in the deposition device of multi-layer film
KR102567009B1 (en) Apparatus Restraining from Thermal Interference for Multi Source Co-Deposition
JP4242113B2 (en) Electron beam evaporation system
JPH09143723A (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method
KR20030047630A (en) Vacuum deposition apparatus and method for improving large area deposition uniformity
JPH0580555B2 (en)
JPH04191360A (en) Method and device for vapor deposition
JP2021031694A (en) Vacuum process device and method of cooling process object in vacuum process device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees