WO2020144894A1 - Vapor deposition device - Google Patents

Vapor deposition device Download PDF

Info

Publication number
WO2020144894A1
WO2020144894A1 PCT/JP2019/035545 JP2019035545W WO2020144894A1 WO 2020144894 A1 WO2020144894 A1 WO 2020144894A1 JP 2019035545 W JP2019035545 W JP 2019035545W WO 2020144894 A1 WO2020144894 A1 WO 2020144894A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
evaporation source
limiting plate
evaporation
target
Prior art date
Application number
PCT/JP2019/035545
Other languages
French (fr)
Japanese (ja)
Inventor
僚也 北沢
敬臣 倉田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020207020857A priority Critical patent/KR102372878B1/en
Priority to JP2019565967A priority patent/JP7026143B2/en
Priority to CN201980006665.4A priority patent/CN111684100B/en
Publication of WO2020144894A1 publication Critical patent/WO2020144894A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to a vapor deposition device that vaporizes a vapor deposition material and attaches it to an object to be vapor deposited.
  • the vapor deposition device that vaporizes vapor deposition material and attaches it to the vapor deposition target is used for manufacturing various products such as organic EL (electro-luminescence) displays and image sensors.
  • the vapor deposition apparatus includes an evaporation source arranged in the chamber, and an evaporation target such as a display panel is arranged so as to face the evaporation source.
  • the evaporation source can contain a vapor deposition material that is solid or liquid and has a heating mechanism.
  • the vapor deposition material is heated by the heating mechanism, and the generated vapor is supplied to the vapor deposition target.
  • the directivity of the vapor deposition material is weak, and the vapor deposition material scatters in a wide angle range.
  • a mask that defines the deposition area of the deposition material is often placed on the deposition target, but if the scattering angle of the deposition material is large, the deposition material adheres to the area that should be shielded by the mask and the periphery of the deposition area May cause a masking effect that causes blurring.
  • Patent Document 1 discloses a vacuum vapor deposition device that suppresses a mask effect by adjusting the direction and interval of nozzles from which vapor deposition material is discharged.
  • Patent Document 1 in a vapor deposition device, it is required to solve the problem caused by the large scattering angle of the vapor deposition material.
  • an object of the present invention is to provide a vapor deposition device capable of suppressing the influence of a large scattering angle of the vapor deposition material.
  • a vapor deposition device includes an evaporation source, a support mechanism, a limiting plate, and a chamber.
  • the evaporation source contains a vapor deposition material and includes a heating mechanism for heating the vapor deposition material.
  • the support mechanism supports the evaporation target at a position facing the evaporation source.
  • the restriction plate is disposed on the side of the evaporation target with respect to the midpoint of the evaporation source and the evaporation target, and restricts the scattering path of the evaporation material.
  • the chamber houses the evaporation source, the support mechanism, and the limiting plate.
  • the scattering angle of the vapor deposition material emitted from the evaporation source can be limited by the limiting plate.
  • the evaporation source and the limiting plate may be configured to be movable with respect to the chamber while maintaining their relative positions.
  • the evaporation source and the limiting plate are fixed to the chamber,
  • the support mechanism may be configured to be movable with respect to the chamber.
  • the limiting plate may be a plate member along a plane perpendicular to the moving direction of the evaporation source and the limiting plate.
  • the limiting plate may be a plate-like member along a plane perpendicular to the moving direction of the support mechanism.
  • the evaporation source may include a first evaporation source containing a first evaporation material and a second evaporation source containing a second evaporation material.
  • a vapor deposition device according to an embodiment of the present technology will be described.
  • FIG. 1 is a side view showing a configuration of a vapor deposition apparatus 100 according to this embodiment
  • FIG. 2 is a perspective view of a partial configuration of the vapor deposition apparatus 100.
  • three directions orthogonal to each other are referred to as an X direction, a Y direction and a Z direction, respectively.
  • the X direction and the Y direction are, for example, the horizontal direction
  • the Z direction is, for example, the vertical direction.
  • the vapor deposition device 100 includes a chamber 101, a support mechanism 102, an evaporation source 103, and a limiting plate 104.
  • the chamber 101 is connected to a vacuum pump (not shown) to maintain the inside at a predetermined pressure.
  • the support mechanism 102, the evaporation source 103, and the limiting plate 104 are housed in the chamber 101.
  • the support mechanism 102 is arranged in the chamber 101 and supports the vapor deposition target S.
  • the support mechanism 102 is configured to be able to move the vapor deposition target S in the X direction between a position facing the evaporation source 103 and a position not facing the evaporation source 103.
  • the vapor deposition target S is, for example, a display panel.
  • a mask M is provided on the surface of the vapor deposition target S.
  • the mask M is provided with openings in a predetermined pattern to form a pattern of vapor deposition material on the surface of the vapor deposition object S.
  • the mask M may not be provided.
  • the evaporation source 103 is arranged in the chamber 101 and supplies a vapor deposition material to the vapor deposition object S.
  • FIG. 3 is a sectional view showing the structure of the evaporation source 103.
  • the evaporation source 103 includes a housing box 111, a heating mechanism 112, and a nozzle 113.
  • the storage box 111 stores the vapor deposition material R.
  • the vapor deposition material R is a metal, an organic substance, or the like and is not particularly limited.
  • a dispersion plate or the like for equalizing the flow of the vapor deposition material R may be provided in the internal space of the accommodation box 111.
  • the heating mechanism 112 is provided around the housing box 111 and heats and vaporizes the vapor deposition material R.
  • the heating mechanism 112 can generate heat by resistance heating, induction heating, or the like.
  • the nozzle 113 communicates with the internal space of the housing box 111 and discharges the evaporated vapor deposition material R.
  • a plurality of nozzles 113 are provided, and as shown in FIG. 2, the plurality of nozzles 113 can be arranged along the Y direction.
  • the number of nozzles 113 is not particularly limited, and may be one.
  • the evaporation source 103 may not have the nozzle 113 and may have a structure in which the upper surface of the housing box 111 is opened.
  • the vapor deposition device 100 may include two evaporation sources 103, a first evaporation source 103a and a second evaporation source 103b.
  • the first evaporation source 103a and the second evaporation source 103b are adjacent to each other in the X direction and supply different evaporation materials R to the evaporation target S.
  • the limiting plate 104 is arranged between the evaporation source 103 and the vapor deposition target S, and limits the scattering path of the vapor deposition material R. As shown in FIG. 2, the limiting plate 104 is a plate-shaped member along a plane (YZ plane) perpendicular to the moving direction (X direction) of the support mechanism 102.
  • the vapor deposition device 100 includes a pair of limiting plates 104 facing each other in the X direction with the evaporation source 103 interposed therebetween.
  • FIG. 4 and 5 are schematic views showing the position of the limiting plate 104, FIG. 4 is a view seen from the Y direction, and FIG. 5 is a view seen from the X direction.
  • the midpoint of the evaporation source 103 and the evaporation target S on the XZ plane is set to a point P, that is, the distance D1 between the point P and the evaporation source 103, the point P, and the evaporation target S.
  • the distance D2 is assumed to be equal.
  • the limiting plate 104 is provided on the vapor deposition target S side with respect to the point P, that is, closer to the vapor deposition target S than the evaporation source 103.
  • the limiting plate 104 is supported by the chamber 101 or the evaporation source 103 by a supporting mechanism (not shown), and its relative position to the evaporation source 103 is fixed.
  • the evaporation material R is heated by the heating mechanism 112 (see FIG. 3) in the evaporation source 103, and the evaporation material is discharged from the nozzle 113.
  • the vapor deposition material emitted from the first evaporation source 103a is referred to as vapor deposition material R1
  • the vapor deposition material emitted from the second evaporation source 103b is referred to as vapor deposition material R2.
  • the vapor deposition object S Prior to the start of vapor deposition, the vapor deposition object S is located at a standby position separated from the evaporation source 103 as shown in FIG.
  • the support mechanism 102 is driven to move the vapor deposition target S to a position facing the evaporation source 103 as shown in FIG.
  • the vapor deposition materials R1 and R2 scatter from the nozzle 113 toward the vapor deposition target S and adhere to the vapor deposition target S. Further, a part is shielded by the mask M and patterned. At this time, the scattering paths of the vapor deposition materials R1 and R2 are limited by the limiting plate 104 as described later.
  • the vapor deposition materials R1 and R2 are vapor deposition targets on both the outward path from the standby position (FIG. 6) of the vapor deposition target S to the end position (FIG. 8) and the return path from the end position (FIG. 8) to the standby position (FIG. 6). It is vapor-deposited on the object S.
  • a film made of the vapor deposition materials R1 and R2 is formed on the surface of the vapor deposition target S.
  • the vapor deposition materials R1 and R2 may form a chemical bond or may be mixed.
  • FIG. 9 is a schematic diagram which shows the vapor deposition apparatus 300 which concerns on a comparative example.
  • the vapor deposition device 300 includes an evaporation source 303 and a limiting plate 304.
  • the evaporation source 303 includes a storage box 311 that stores a vapor deposition material and a nozzle 313, and the limiting plate 304 is disposed near the nozzle 313.
  • the vapor deposition material When the vapor deposition material is heated, it is assumed that the vapor deposition material has its scattering path restricted by the limiting plate 304 and scatters in the angle range H1 as shown in FIG. A region of the vapor deposition target S where the scattered vapor deposition material reaches in the angle range H1 is shown as a straight region L1.
  • FIG. 10 is a graph showing the film thickness distribution of the vapor deposition target S by the vapor deposition device 300. As shown in the figure, the film thickness from the central portion (left side in the figure) of the vapor deposition target S to the straight region L1 is the same as that when the limiting plate 304 is not provided.
  • the deposition material actually adheres to the outside of the angle range H1 (on the right side in the figure). This is because the vapor deposition material discharged from the side opposite to the limiting plate 304 of the nozzle 313 adheres, as indicated by the angle range H2 in FIG. In FIGS. 9 and 10, a region reached by the vapor deposition material scattered in the angle range H2 is shown as a cross region L2.
  • FIG. 11 is a schematic diagram showing a mode of vapor deposition by the vapor deposition apparatus 100 according to the present invention.
  • the straight region L1 and the cross region L2 are almost the same region.
  • FIG. 9 and FIG. 11 show only one evaporation source, the straight region L1 and the cross region L2 can be substantially matched in the structure of the present invention even when there are two evaporation sources.
  • FIG. 12 and 13 are schematic diagrams showing the size of the chamber 301 in the vapor deposition device 300.
  • FIG. 12 shows a standby position of the vapor deposition target S before vapor deposition. As shown in the figure, the standby position needs to be a position separated from the evaporation source 303 so that the vapor deposition material scattered in the angular range H2 does not reach the vapor deposition target S.
  • FIG. 13 shows the position of the vapor deposition target S at the start of vapor deposition. Since the desired film thickness is not obtained in the cross region L2 as described above, it is necessary to set the position where the vapor deposition material scattered in the angular range H1 reaches as the vapor deposition start position.
  • the vapor deposition device 300 it is necessary to separate the vapor deposition target S from the vaporization source 303 so that the vapor deposition material does not adhere before the vapor deposition is started, and it is necessary to increase the size of the chamber 301 accordingly. is there.
  • FIG. 14 is a schematic diagram showing the size of the chamber 101 in the vapor deposition device 100.
  • the arrival position of the vapor deposition material scattered in the angle range H1 and the arrival position of the vapor deposition material scattered in the angle range H2 are substantially the same. Therefore, as shown in the figure, the standby position of the vapor deposition target S before the start of vapor deposition can be brought close to the evaporation source 103, and the size of the chamber 101 can be reduced.
  • FIG. 15 is an enlarged cross-sectional view of the mask M (see FIG. 1). As shown in the figure, the mask M has a tapered portion 502 whose opening area increases toward the evaporation source 103 side opening 501 and a tapered portion 504 whose opening area increases toward the vapor deposition target S side opening 503. Have.
  • the inclination angle ⁇ of the taper portion 502 and the taper portion 504 is generally about 55°.
  • the vapor deposition material R is obliquely inclined via the taper portion 502 or the taper portion 504 as shown in FIG. Is incident on the vapor deposition target S and adheres to a position wider than the opening 503.
  • the pattern of the deposited film becomes unclear, and the accuracy of the pattern decreases.
  • the blurring of the pattern becomes a greater problem.
  • the angle range H2 is limited to the predetermined angle or less by the limiting plate 104, so that almost no vapor deposition material that enters in a wide angle range exists, and the pattern becomes unclear. It is possible to suppress.
  • the vapor deposition device 300 when two types of vapor deposition materials are simultaneously vapor-deposited (co-evaporated) by using the two evaporation sources 303, there is a problem that the concentration distribution of the vapor deposition material in the film becomes non-uniform.
  • FIG. 16 is a schematic diagram showing a mode of co-deposition by the vapor deposition apparatus 300. As shown in the figure, the first evaporation material R1 is emitted from the evaporation source 303a, and the second evaporation material R2 is emitted from the evaporation source 303b.
  • FIG. 17 is a graph showing the film thickness distribution of a film formed by co-evaporation by the vapor deposition device 300, in which the vapor deposition target S is formed in a stationary state with respect to the evaporation source 303.
  • the film thickness of the first vapor deposition material R1 is larger than the film thickness of the second vapor deposition material R2 at the right end of the film formation region, and the film thickness of the second vapor deposition material R2 is at the left end of the first vapor deposition material R1. It is larger than the film thickness. This is because, as described above, in the vapor deposition apparatus 300, the vapor deposition material that enters the vapor deposition target S within the angular range H2, which is a wide angular range, exists.
  • FIG. 18 is a graph showing the concentration distribution of the first vapor deposition material R1 (dopant) in the film thickness direction when the vapor deposition target S is reciprocated once with respect to the evaporation source 303.
  • the concentration of the first vapor deposition material R1 is high on the vapor deposition target S side (left end in the figure) and the evaporation source 303 side (right end in the figure) of the film, and the concentration of the first vapor deposition material R1 is central. Is getting smaller.
  • the concentration distributions of the two types of vapor deposition materials become non-uniform due to the difference between the angle range H1 and the angle range H2 due to the limiting plate 304.
  • the vapor deposition device 100 since there is almost no difference between the angle range H1 and the angle range H2 due to the limiting plate 104, it is possible to make the concentration distribution of the vapor deposition material uniform.
  • the vapor deposition device 100 it is possible to reduce the amount of vapor deposition material that adheres to the limiting plate 104.
  • the vapor deposition device 300 since the limiting plate 304 is arranged near the nozzle 313, the vapor deposition material adheres to the limiting plate 304 during vapor deposition. The vapor deposition material attached to the limiting plate 304 does not reach the vapor deposition target S and is wasted.
  • the volume of the vapor deposition material attached to the limiting plate 304 increases, and the amount attached per unit time also increases, so the vapor deposition material reaching the vapor deposition target S gradually decreases, and the vapor deposition target The film thickness formed by one round trip of S changes continuously.
  • the limiting plate 304 serves as a heat source, and the mask M and the vapor deposition target S are affected by thermal deformation and the like. Have difficulty. Therefore, the deposition material is inevitably attached to the limiting plate 304.
  • the limiting plate 104 is provided apart from the evaporation source 103, the amount of deposition material deposited on the limiting plate 104 is overwhelmingly smaller than that in the vapor deposition device 300. As a result, the amount of vapor deposition material that is wasted can be suppressed and the material utilization efficiency can be improved. Further, since the change in film thickness over time is suppressed, it is possible to improve the film quality.
  • the configuration of the vapor deposition device 100 according to this embodiment is not limited to the above.
  • the positions of the evaporation source 103 and the limiting plate 104 are fixed with respect to the chamber 101, and the supporting mechanism 102 moves with respect to the chamber 101 to form a film.
  • the support mechanism 102 may be fixed to the chamber 101, and the evaporation source 103 and the limiting plate 104 may be movable in the X direction with respect to the chamber.
  • the evaporation source 103 and the limiting plate 104 need only be fixed in their relative positions, and the evaporation source 103 and the limiting plate 104 can be directly connected or can be moved while maintaining their relative positions by their respective drive mechanisms. It may be configured.
  • the limiting plate 104 can be a plate-shaped member along a plane (YZ plane) perpendicular to the moving direction (X direction) of the evaporation source 103 and the limiting plate 104.
  • FIG. 19 is a plan view showing a limiting plate 104 having another configuration, and is a view of the evaporation source 103 and the limiting plate 104 viewed from the Z direction.
  • the limiting plate 104 may be provided so as to surround the evaporation source 103 when viewed from the Z direction.
  • the evaporation source 103 is arranged vertically below and the support mechanism 102 is arranged vertically above.
  • the vapor deposition device 100 is not limited to this arrangement, and the support mechanism 102 may be arranged vertically below and the evaporation source 103 may be arranged vertically above. Further, the evaporation source 103 and the support mechanism 102 may be arranged horizontally.
  • Vapor deposition apparatus 101... Chamber 102... Support mechanism 103... Evaporation source 104... Limit plate 111... Storage box 112... Heating mechanism 113... Nozzle S... Vapor deposition target M... Mask R... Vapor deposition material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

[Problem] To provide a vapor deposition device that suppresses the effect of a large spreading angle of a vapor deposition material. [Solution] A substrate holding device according to one mode of the present invention comprises an evaporation source, a supporting mechanism, limiting plates, and a chamber. The evaporation source is equipped with a heating mechanism that houses a vapor deposition material and heats the vapor deposition material. The supporting mechanism supports the vapor deposition target at a position facing the evaporation source. The limiting plates are disposed on the vapor deposition target side relative to the midpoint between the evaporation source and the vapor deposition target and limits the spreading path of the vapor deposition material. The chamber houses the evaporation source, the supporting mechanism, and the limiting plates.

Description

蒸着装置Vapor deposition equipment
 本発明は、蒸着材料を蒸発させ、蒸着対象物に付着させる蒸着装置に関する。 The present invention relates to a vapor deposition device that vaporizes a vapor deposition material and attaches it to an object to be vapor deposited.
 蒸着材料を蒸発させ、蒸着対象物に付着させる蒸着装置は、有機EL(electro-luminescence)ディスプレイやイメージセンサ等の各種製品の製造に利用されている。蒸着装置は、チャンバ内に配置された蒸発源を備え、ディスプレイのパネル等の蒸着対象物が蒸発源に対向して配置される。 The vapor deposition device that vaporizes vapor deposition material and attaches it to the vapor deposition target is used for manufacturing various products such as organic EL (electro-luminescence) displays and image sensors. The vapor deposition apparatus includes an evaporation source arranged in the chamber, and an evaporation target such as a display panel is arranged so as to face the evaporation source.
 蒸発源は、固体又は液体である蒸着材料を収容可能であり、加熱機構を備える。加熱機構によって蒸着材料を加熱し、発生した蒸気を蒸着対象物に供給する。ここで、このような蒸発源では、蒸着材料の指向性が弱く、広い角度範囲で蒸着材料が飛散する。 The evaporation source can contain a vapor deposition material that is solid or liquid and has a heating mechanism. The vapor deposition material is heated by the heating mechanism, and the generated vapor is supplied to the vapor deposition target. Here, in such an evaporation source, the directivity of the vapor deposition material is weak, and the vapor deposition material scatters in a wide angle range.
 蒸着対象物には、蒸着材料の付着領域を規定するマスクが配置されることが多いが、蒸着材料の飛散角度が大きいとマスクによって遮蔽されるべき領域に蒸着材料が付着し、付着領域の周縁が不鮮明となるマスクエフェクトが生じるおそれがある。 A mask that defines the deposition area of the deposition material is often placed on the deposition target, but if the scattering angle of the deposition material is large, the deposition material adheres to the area that should be shielded by the mask and the periphery of the deposition area May cause a masking effect that causes blurring.
 これに対し、例えば特許文献1には、蒸着材料が放出されるノズルの向き及び間隔を調整し、マスクエフェクトを抑制する真空蒸着装置が開示されている。 On the other hand, for example, Patent Document 1 discloses a vacuum vapor deposition device that suppresses a mask effect by adjusting the direction and interval of nozzles from which vapor deposition material is discharged.
国際公開第2018/025637号International Publication No. 2018/025637
 特許文献1に記載されているように、蒸着装置では蒸着材料の飛散角度が大きいことによる問題を解消することが求められている。 As described in Patent Document 1, in a vapor deposition device, it is required to solve the problem caused by the large scattering angle of the vapor deposition material.
 以上のような事情に鑑み、本発明の目的は、蒸着材料の大きな飛散角度による影響を抑制することが可能な蒸着装置を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a vapor deposition device capable of suppressing the influence of a large scattering angle of the vapor deposition material.
 上記目的を達成するため、本発明の一形態に係る蒸着装置は、蒸発源と、支持機構と、制限板と、チャンバとを具備する。
 上記蒸発源は、蒸着材料を収容し、上記蒸着材料を加熱する加熱機構を備える。
 上記支持機構は、蒸着対象物を上記蒸発源に対向する位置で支持する。
 上記制限板は、上記蒸発源と上記蒸着対象物の中点に対して上記蒸着対象物側に配置され、上記蒸着材料の飛散経路を制限する。
 上記チャンバは、上記蒸発源、上記支持機構及び上記制限板を収容する。
In order to achieve the above object, a vapor deposition device according to an aspect of the present invention includes an evaporation source, a support mechanism, a limiting plate, and a chamber.
The evaporation source contains a vapor deposition material and includes a heating mechanism for heating the vapor deposition material.
The support mechanism supports the evaporation target at a position facing the evaporation source.
The restriction plate is disposed on the side of the evaporation target with respect to the midpoint of the evaporation source and the evaporation target, and restricts the scattering path of the evaporation material.
The chamber houses the evaporation source, the support mechanism, and the limiting plate.
 この構成によれば、蒸発源から放出される蒸着材料の飛散角度を、制限板によって制限することができる。制限板を蒸発源と蒸着対象物の中点に対して蒸着対象物側に配置することにより、制限板による飛散角度の差異を抑制することが可能となる。 According to this configuration, the scattering angle of the vapor deposition material emitted from the evaporation source can be limited by the limiting plate. By disposing the limiting plate on the vapor deposition target side with respect to the midpoint of the evaporation source and the vapor deposition target, it is possible to suppress the difference in the scattering angle due to the limiting plate.
 上記蒸発源と上記制限板は、互いの相対位置を維持したまま上記チャンバに対して移動可能に構成されていてもよい。 The evaporation source and the limiting plate may be configured to be movable with respect to the chamber while maintaining their relative positions.
 上記蒸発源及び上記制限板は上記チャンバに対して固定され、
 上記支持機構は、上記チャンバに対して移動可能に構成されていてもよい。
The evaporation source and the limiting plate are fixed to the chamber,
The support mechanism may be configured to be movable with respect to the chamber.
 上記制限板は、上記蒸発源及び上記制限板の移動方向に対して垂直な面に沿う板状部材であってもよい。 The limiting plate may be a plate member along a plane perpendicular to the moving direction of the evaporation source and the limiting plate.
 上記制限板は、上記支持機構の移動方向に対して垂直な面に沿う板状部材であってもよい。 The limiting plate may be a plate-like member along a plane perpendicular to the moving direction of the support mechanism.
 上記蒸発源は、第1の蒸着材料を収容する第1の蒸発源と、第2の蒸着材料を収容する第2の蒸発源とを含んでもよい。 The evaporation source may include a first evaporation source containing a first evaporation material and a second evaporation source containing a second evaporation material.
 以上のように、本発明によれば蒸着材料の大きな飛散角度による影響を抑制することが可能な蒸着装置を提供することができる。 As described above, according to the present invention, it is possible to provide a vapor deposition device capable of suppressing the influence of a large scattering angle of the vapor deposition material.
本発明の実施形態に係る蒸着装置の平面図である。It is a top view of the vapor deposition device concerning the embodiment of the present invention. 同蒸着装置の一部構成の斜視図である。It is a perspective view of a partial configuration of the vapor deposition device. 同蒸着装置が備える蒸発源の模式図である。It is a schematic diagram of the evaporation source with which the vapor deposition apparatus is provided. 同蒸着装置が備える制限板の配置を示す模式図である。It is a schematic diagram which shows the arrangement|positioning of the limiting plate with which the same vapor deposition apparatus is equipped. 同蒸着装置が備える制限板の配置を示す模式図である。It is a schematic diagram which shows the arrangement|positioning of the limiting plate with which the same vapor deposition apparatus is equipped. 同蒸着装置の動作を示す模式図である。It is a schematic diagram which shows operation|movement of the same vapor deposition apparatus. 同蒸着装置の動作を示す模式図である。It is a schematic diagram which shows operation|movement of the same vapor deposition apparatus. 同蒸着装置の動作を示す模式図である。It is a schematic diagram which shows operation|movement of the same vapor deposition apparatus. 比較例に係る蒸着装置における蒸着材料の飛散角度を示す模式図である。It is a schematic diagram which shows the scattering angle of the vapor deposition material in the vapor deposition apparatus which concerns on a comparative example. 比較例に係る蒸着装置により成膜された膜の膜厚分布を示すグラフである。It is a graph which shows the film thickness distribution of the film formed with the vapor deposition device which concerns on a comparative example. 本発明の実施形態に係る蒸着装置における蒸着材料の飛散角度を示す模式図である。It is a schematic diagram which shows the scattering angle of the vapor deposition material in the vapor deposition apparatus which concerns on embodiment of this invention. 比較例に係る蒸着装置におけるチャンバの大きさを示す模式図である。It is a schematic diagram which shows the size of the chamber in the vapor deposition apparatus which concerns on a comparative example. 比較例に係る蒸着装置におけるチャンバの大きさを示す模式図である。It is a schematic diagram which shows the size of the chamber in the vapor deposition apparatus which concerns on a comparative example. 本発明の実施形態に係る蒸着装置におけるチャンバの大きさを示す模式図である。It is a schematic diagram which shows the size of the chamber in the vapor deposition apparatus which concerns on embodiment of this invention. 蒸着に用いられるマスクを示す断面図であるIt is sectional drawing which shows the mask used for vapor deposition. 比較例に係る蒸着装置における共蒸着の態様を示す模式図である。It is a schematic diagram which shows the aspect of co-deposition in the vapor deposition apparatus which concerns on a comparative example. 比較例に係る蒸着装置を用いた共蒸着により成膜された膜の蒸着材料毎の相対膜厚を示すグラフである。It is a graph which shows the relative film thickness for every vapor deposition material of the film formed by the co-evaporation using the vapor deposition apparatus which concerns on a comparative example. 比較例に係る蒸着装置を用いた共蒸着により成膜された膜の膜厚方向の膜厚分布を示すグラフである。7 is a graph showing a film thickness distribution in a film thickness direction of a film formed by co-evaporation using the vapor deposition device according to the comparative example. 本発明の実施形態に係る蒸着装置が備える制限板の他の構成を示す平面図である。It is a top view which shows the other structure of the limiting plate with which the vapor deposition apparatus which concerns on embodiment of this invention is equipped.
 本技術の実施形態に係る蒸着装置について説明する。 A vapor deposition device according to an embodiment of the present technology will be described.
 [蒸着装置の構成]
 図1は、本実施形態に係る蒸着装置100の構成を示す側面図であり、図2は、蒸着装置100の一部構成の斜視図である。以下の図において相互に直交する三方向をそれぞれX方向、Y方向及びZ方向とする。X方向及びY方向は例えば水平方向、Z方向は例えば鉛直方向である。
[Structure of vapor deposition device]
FIG. 1 is a side view showing a configuration of a vapor deposition apparatus 100 according to this embodiment, and FIG. 2 is a perspective view of a partial configuration of the vapor deposition apparatus 100. In the following figures, three directions orthogonal to each other are referred to as an X direction, a Y direction and a Z direction, respectively. The X direction and the Y direction are, for example, the horizontal direction, and the Z direction is, for example, the vertical direction.
 これらの図に示すように、蒸着装置100は、チャンバ101、支持機構102、蒸発源103及び制限板104を備える。 As shown in these drawings, the vapor deposition device 100 includes a chamber 101, a support mechanism 102, an evaporation source 103, and a limiting plate 104.
 チャンバ101は、図示しない真空ポンプに接続され、内部を所定の圧力に維持する。支持機構102、蒸発源103及び制限板104はチャンバ101内に収容されている。 The chamber 101 is connected to a vacuum pump (not shown) to maintain the inside at a predetermined pressure. The support mechanism 102, the evaporation source 103, and the limiting plate 104 are housed in the chamber 101.
 支持機構102は、チャンバ101内に配置され、蒸着対象物Sを支持する。支持機構102は、蒸着対象物Sを、蒸発源103に対向する位置と対向しない位置の間でX方向において移動させることが可能に構成されている。蒸着対象物Sは例えばディスプレイのパネルである。 The support mechanism 102 is arranged in the chamber 101 and supports the vapor deposition target S. The support mechanism 102 is configured to be able to move the vapor deposition target S in the X direction between a position facing the evaporation source 103 and a position not facing the evaporation source 103. The vapor deposition target S is, for example, a display panel.
 蒸着対象物Sの表面には、マスクMが設けられている。マスクMには所定のパターンで開口が設けられ、蒸着対象物Sの表面に蒸着材料のパターンを形成する。なお、蒸着対象物Sの全面に蒸着を行う場合にはマスクMは設けられなくてもよい。 A mask M is provided on the surface of the vapor deposition target S. The mask M is provided with openings in a predetermined pattern to form a pattern of vapor deposition material on the surface of the vapor deposition object S. When vapor deposition is performed on the entire surface of the vapor deposition object S, the mask M may not be provided.
 蒸発源103は、チャンバ101内に配置され、蒸着対象物Sに蒸着材料を供給する。 The evaporation source 103 is arranged in the chamber 101 and supplies a vapor deposition material to the vapor deposition object S.
 図3は、蒸発源103の構造を示す断面図である。同図に示すように、蒸発源103は、収容箱111、加熱機構112及びノズル113を備える。 FIG. 3 is a sectional view showing the structure of the evaporation source 103. As shown in the figure, the evaporation source 103 includes a housing box 111, a heating mechanism 112, and a nozzle 113.
 収容箱111は蒸着材料Rを収容する。蒸着材料Rは、金属や有機物等であり特に限定されない。収容箱111の内部空間には、蒸着材料Rの流れを均等にするための分散板等が設けられてもよい。 The storage box 111 stores the vapor deposition material R. The vapor deposition material R is a metal, an organic substance, or the like and is not particularly limited. A dispersion plate or the like for equalizing the flow of the vapor deposition material R may be provided in the internal space of the accommodation box 111.
 加熱機構112は、収容箱111の周囲に設けられ、蒸着材料Rを加熱し、蒸発させる。加熱機構112は、抵抗加熱又は誘導加熱等によって発熱するものとすることができる。 The heating mechanism 112 is provided around the housing box 111 and heats and vaporizes the vapor deposition material R. The heating mechanism 112 can generate heat by resistance heating, induction heating, or the like.
 ノズル113は、収容箱111の内部空間に連通し、蒸発した蒸着材料Rを放出する。ノズル113は複数が設けられ、図2に示すように、複数のノズル113がY方向に沿って配列するものとすることができる。なお、ノズル113の数は特に限定されず、1つであってもよい。また、蒸発源103はノズル113を有さず、収容箱111の上面が開放された構造のものであってもよい。 The nozzle 113 communicates with the internal space of the housing box 111 and discharges the evaporated vapor deposition material R. A plurality of nozzles 113 are provided, and as shown in FIG. 2, the plurality of nozzles 113 can be arranged along the Y direction. The number of nozzles 113 is not particularly limited, and may be one. Further, the evaporation source 103 may not have the nozzle 113 and may have a structure in which the upper surface of the housing box 111 is opened.
 図2に示すように、蒸着装置100は、第1蒸発源103aと第2蒸発源103bの2つの蒸発源103を備えるものとすることができる。第1蒸発源103aと第2蒸発源103bはX方向に隣接し、互いに異なる蒸着材料Rを蒸着対象物Sに供給する。 As shown in FIG. 2, the vapor deposition device 100 may include two evaporation sources 103, a first evaporation source 103a and a second evaporation source 103b. The first evaporation source 103a and the second evaporation source 103b are adjacent to each other in the X direction and supply different evaporation materials R to the evaporation target S.
 制限板104は、蒸発源103と蒸着対象物Sの間に配置され、蒸着材料Rの飛散経路を制限する。図2に示すように、制限板104は、支持機構102の移動方向(X方向)に対して垂直な面(Y-Z平面)に沿う板状部材である。蒸着装置100は、蒸発源103を挟んでX方向に対向する1対の制限板104を備える。 The limiting plate 104 is arranged between the evaporation source 103 and the vapor deposition target S, and limits the scattering path of the vapor deposition material R. As shown in FIG. 2, the limiting plate 104 is a plate-shaped member along a plane (YZ plane) perpendicular to the moving direction (X direction) of the support mechanism 102. The vapor deposition device 100 includes a pair of limiting plates 104 facing each other in the X direction with the evaporation source 103 interposed therebetween.
 図4及び図5は、制限板104の位置を示す模式図であり、図4はY方向から見た図、図5はX方向から見た図である。これらの図に示すように、X-Z平面上での蒸発源103と蒸着対象物Sの中点を点Pとし、即ち点Pと蒸発源103の距離D1と点Pと蒸着対象物Sの距離D2は等しいとする。 4 and 5 are schematic views showing the position of the limiting plate 104, FIG. 4 is a view seen from the Y direction, and FIG. 5 is a view seen from the X direction. As shown in these drawings, the midpoint of the evaporation source 103 and the evaporation target S on the XZ plane is set to a point P, that is, the distance D1 between the point P and the evaporation source 103, the point P, and the evaporation target S. The distance D2 is assumed to be equal.
 制限板104は、点Pに対して蒸着対象物S側に設けられ、即ち蒸発源103よりも蒸着対象物Sに近接して設けられている。 The limiting plate 104 is provided on the vapor deposition target S side with respect to the point P, that is, closer to the vapor deposition target S than the evaporation source 103.
 制限板104は、図示しない支持機構によってチャンバ101又は蒸発源103に支持され、蒸発源103に対する相対位置が固定されている。 The limiting plate 104 is supported by the chamber 101 or the evaporation source 103 by a supporting mechanism (not shown), and its relative position to the evaporation source 103 is fixed.
 [蒸着装置の動作について]
 蒸着装置100の動作について説明する。図6乃至図8は蒸着装置100の動作を示す模式図である。
[About the operation of vapor deposition equipment]
The operation of the vapor deposition device 100 will be described. 6 to 8 are schematic views showing the operation of the vapor deposition device 100.
 図6に示すように、蒸発源103において加熱機構112(図3参照)により蒸着材料Rを加熱し、蒸着材料をノズル113から放出させる。第1蒸発源103aから放出される蒸着材料を蒸着材料R1とし、第2蒸発源103bから放出される蒸着材料を蒸着材料R2とする。 As shown in FIG. 6, the evaporation material R is heated by the heating mechanism 112 (see FIG. 3) in the evaporation source 103, and the evaporation material is discharged from the nozzle 113. The vapor deposition material emitted from the first evaporation source 103a is referred to as vapor deposition material R1, and the vapor deposition material emitted from the second evaporation source 103b is referred to as vapor deposition material R2.
 蒸着開始前には図6に示すように蒸着対象物Sは蒸発源103から離間した待機位置に位置している。蒸着材料R1及びR2が所定の温度に到達すると、支持機構102を駆動し、図7に示すように蒸着対象物Sを蒸発源103に対向する位置に移動させる。 Prior to the start of vapor deposition, the vapor deposition object S is located at a standby position separated from the evaporation source 103 as shown in FIG. When the vapor deposition materials R1 and R2 reach a predetermined temperature, the support mechanism 102 is driven to move the vapor deposition target S to a position facing the evaporation source 103 as shown in FIG.
 蒸着材料R1及びR2はノズル113から蒸着対象物Sに向かって飛散し、蒸着対象物Sに付着する。また、一部はマスクMによって遮蔽され、パターニングされる。この際、蒸着材料R1及びR2の飛散経路は、後述するように制限板104によって制限される The vapor deposition materials R1 and R2 scatter from the nozzle 113 toward the vapor deposition target S and adhere to the vapor deposition target S. Further, a part is shielded by the mask M and patterned. At this time, the scattering paths of the vapor deposition materials R1 and R2 are limited by the limiting plate 104 as described later.
 図8に示すように、蒸着対象物Sが終端位置に到達すると、支持機構102は蒸着対象物Sを図6に示す待機位置に戻す。 As shown in FIG. 8, when the vapor deposition target S reaches the end position, the support mechanism 102 returns the vapor deposition target S to the standby position shown in FIG.
 蒸着材料R1及びR2は、蒸着対象物Sの待機位置(図6)から終端位置(図8)への往路と終端位置(図8)から待機位置(図6)への復路の両方で蒸着対象物Sに蒸着される。 The vapor deposition materials R1 and R2 are vapor deposition targets on both the outward path from the standby position (FIG. 6) of the vapor deposition target S to the end position (FIG. 8) and the return path from the end position (FIG. 8) to the standby position (FIG. 6). It is vapor-deposited on the object S.
 これにより、蒸着対象物Sの表面に蒸着材料R1及びR2からなる膜が成膜される。なお、蒸着材料R1とR2は化学結合を生じてもよく、混合されてもよい。 Thereby, a film made of the vapor deposition materials R1 and R2 is formed on the surface of the vapor deposition target S. The vapor deposition materials R1 and R2 may form a chemical bond or may be mixed.
 [制限板による効果について]
 制限板104による効果について、比較例との比較の上で説明する。図9は、比較例に係る蒸着装置300を示す模式図である。同図に示すように、蒸着装置300は、蒸発源303及び制限板304を備える。蒸発源303は、蒸着材料を収容する収容箱311及びノズル313を備え、制限板304はノズル313の近傍に配置されている。
[About the effect of the limiting plate]
The effect of the limiting plate 104 will be described in comparison with a comparative example. FIG. 9: is a schematic diagram which shows the vapor deposition apparatus 300 which concerns on a comparative example. As shown in the figure, the vapor deposition device 300 includes an evaporation source 303 and a limiting plate 304. The evaporation source 303 includes a storage box 311 that stores a vapor deposition material and a nozzle 313, and the limiting plate 304 is disposed near the nozzle 313.
 蒸着材料を加熱すると、蒸着材料は制限板304によって飛散経路を制限され、図9に示すように角度範囲H1で飛散すると想定される。蒸着対象物Sにおいて角度範囲H1で飛散した蒸着材料が到達する領域をストレート領域L1として示す。 When the vapor deposition material is heated, it is assumed that the vapor deposition material has its scattering path restricted by the limiting plate 304 and scatters in the angle range H1 as shown in FIG. A region of the vapor deposition target S where the scattered vapor deposition material reaches in the angle range H1 is shown as a straight region L1.
 図10は、蒸着装置300による蒸着対象物Sの膜厚分布を示すグラフである。同図に示すように、蒸着対象物Sの中央部(図中左側)からストレート領域L1までは制限板304がない場合と同様の膜厚となる。 FIG. 10 is a graph showing the film thickness distribution of the vapor deposition target S by the vapor deposition device 300. As shown in the figure, the film thickness from the central portion (left side in the figure) of the vapor deposition target S to the straight region L1 is the same as that when the limiting plate 304 is not provided.
 しかしながら、実際には角度範囲H1の外側(図中右側)においても蒸着材料の付着が生じる。これは、図9において角度範囲H2で示すように、ノズル313の制限板304とは反対側から放出された蒸着材料が付着したものである。図9及び図10において角度範囲H2で飛散した蒸着材料が到達する領域をクロス領域L2として示す。 However, the deposition material actually adheres to the outside of the angle range H1 (on the right side in the figure). This is because the vapor deposition material discharged from the side opposite to the limiting plate 304 of the nozzle 313 adheres, as indicated by the angle range H2 in FIG. In FIGS. 9 and 10, a region reached by the vapor deposition material scattered in the angle range H2 is shown as a cross region L2.
 図10に示すように、制限板304を設けることにより、ストレート領域L1までは所定の膜厚とすることができるが、クロス領域L2にも周縁に向かって膜厚が急減する膜が形成される。 As shown in FIG. 10, by providing the limiting plate 304, it is possible to obtain a predetermined film thickness up to the straight region L1, but a film whose film thickness sharply decreases toward the peripheral edge is also formed in the cross region L2. ..
 一方、図11は、本発明に係る蒸着装置100による蒸着の態様を示す模式図である。同図に示すように、制限板104が蒸着対象物Sに近接して設けられているため、ストレート領域L1とクロス領域L2はほとんど同一の領域となる。なお、図9及び図11ではそれぞれ一つの蒸発源について示すが、蒸発源が二つの場合も同様に本発明の構造ではストレート領域L1とクロス領域L2をほぼ一致させることができる。 On the other hand, FIG. 11 is a schematic diagram showing a mode of vapor deposition by the vapor deposition apparatus 100 according to the present invention. As shown in the figure, since the limiting plate 104 is provided close to the vapor deposition target S, the straight region L1 and the cross region L2 are almost the same region. Although FIG. 9 and FIG. 11 show only one evaporation source, the straight region L1 and the cross region L2 can be substantially matched in the structure of the present invention even when there are two evaporation sources.
 図12及び図13は、蒸着装置300におけるチャンバ301のサイズを示す模式図である。図12は、蒸着前の蒸着対象物Sの待機位置を示す。同図に示すように、待機位置は、蒸着対象物Sに角度範囲H2で飛散する蒸着材料が到達しないように、蒸発源303から離間した位置とする必要がある。 12 and 13 are schematic diagrams showing the size of the chamber 301 in the vapor deposition device 300. FIG. 12 shows a standby position of the vapor deposition target S before vapor deposition. As shown in the figure, the standby position needs to be a position separated from the evaporation source 303 so that the vapor deposition material scattered in the angular range H2 does not reach the vapor deposition target S.
 また、図13は、蒸着開始時の蒸着対象物Sの位置を示す。上記のようにクロス領域L2では所望の膜厚とならないため、角度範囲H1で飛散する蒸着材料が到達する位置を蒸着開始位置とする必要がある。 Further, FIG. 13 shows the position of the vapor deposition target S at the start of vapor deposition. Since the desired film thickness is not obtained in the cross region L2 as described above, it is necessary to set the position where the vapor deposition material scattered in the angular range H1 reaches as the vapor deposition start position.
 このように、蒸着装置300においては、蒸着開始前に蒸着材料が付着しないように、蒸着対象物Sを蒸発源303から離間させておく必要があり、その分チャンバ301のサイズを大きくする必要がある。 As described above, in the vapor deposition device 300, it is necessary to separate the vapor deposition target S from the vaporization source 303 so that the vapor deposition material does not adhere before the vapor deposition is started, and it is necessary to increase the size of the chamber 301 accordingly. is there.
 一方、図14は、蒸着装置100におけるチャンバ101のサイズを示す模式図である。上記のように蒸着装置100では角度範囲H1で飛散する蒸着材料の到達位置と角度範囲H2で飛散する蒸着材料の到達位置がほぼ一致する。このため同図に示すように、蒸着開始前の蒸着対象物Sの待機位置を蒸発源103に接近させることができ、チャンバ101のサイズの縮小が可能である。 On the other hand, FIG. 14 is a schematic diagram showing the size of the chamber 101 in the vapor deposition device 100. As described above, in the vapor deposition device 100, the arrival position of the vapor deposition material scattered in the angle range H1 and the arrival position of the vapor deposition material scattered in the angle range H2 are substantially the same. Therefore, as shown in the figure, the standby position of the vapor deposition target S before the start of vapor deposition can be brought close to the evaporation source 103, and the size of the chamber 101 can be reduced.
 さらに、蒸着装置100では、マスクによるパターンのにじみを抑制することが可能である。図15は、マスクM(図1参照)の拡大断面図である。同図に示すように、マスクMは、蒸発源103側の開口501に向かって開口面積が拡大するテーパ部502と蒸着対象物S側の開口503に向かって開口面積が拡大するテーパ部504を有する。 Further, in the vapor deposition device 100, it is possible to suppress the pattern bleeding due to the mask. FIG. 15 is an enlarged cross-sectional view of the mask M (see FIG. 1). As shown in the figure, the mask M has a tapered portion 502 whose opening area increases toward the evaporation source 103 side opening 501 and a tapered portion 504 whose opening area increases toward the vapor deposition target S side opening 503. Have.
 これらのテーパ部は、マスクMの作製時に形成されるものである。テーパ部502及びテーパ部504の傾斜角度θは55°程度が一般的である。ここで、蒸着装置300では、上記のように角度範囲H2の広い角度範囲で入射する蒸着材料が存在するため、同図に示すように蒸着材料Rがテーパ部502あるいはテーパ部504を介して斜めに蒸着対象物Sに入射し、開口503より広い位置に付着する。 These tapered portions are formed when the mask M is manufactured. The inclination angle θ of the taper portion 502 and the taper portion 504 is generally about 55°. Here, in the vapor deposition device 300, since the vapor deposition material that enters in the wide angle range of the angle range H2 exists as described above, the vapor deposition material R is obliquely inclined via the taper portion 502 or the taper portion 504 as shown in FIG. Is incident on the vapor deposition target S and adheres to a position wider than the opening 503.
 これにより、蒸着膜のパターンが不鮮明となり、パターンの精度が低下する。特に、ディスプレイの高解像化等に伴いパターンの微細化が進むとパターンの不鮮明化はより大きな問題なる。 Due to this, the pattern of the deposited film becomes unclear, and the accuracy of the pattern decreases. In particular, as the pattern becomes finer as the resolution of the display becomes higher, the blurring of the pattern becomes a greater problem.
 これに対し、蒸着装置100では上記のように、角度範囲H2は制限板104によって所定の角度以下に制限されるため、広い角度範囲で入射する蒸着材料がほとんど存在せず、パターンの不鮮明化を抑制することが可能である。 On the other hand, in the vapor deposition apparatus 100, as described above, the angle range H2 is limited to the predetermined angle or less by the limiting plate 104, so that almost no vapor deposition material that enters in a wide angle range exists, and the pattern becomes unclear. It is possible to suppress.
 また、蒸着装置300では、2つの蒸発源303を用いて2種の蒸着材料を同時に蒸着(共蒸着)する場合、膜における蒸着材料の濃度分布が不均一となるという問題がある。 Further, in the vapor deposition device 300, when two types of vapor deposition materials are simultaneously vapor-deposited (co-evaporated) by using the two evaporation sources 303, there is a problem that the concentration distribution of the vapor deposition material in the film becomes non-uniform.
 図16は蒸着装置300による共蒸着の態様を示す模式図である。同図に示すように、蒸発源303aからは第1蒸着材料R1が放出され、蒸発源303bからは第2蒸着材料R2が放出される。 FIG. 16 is a schematic diagram showing a mode of co-deposition by the vapor deposition apparatus 300. As shown in the figure, the first evaporation material R1 is emitted from the evaporation source 303a, and the second evaporation material R2 is emitted from the evaporation source 303b.
 図17は、蒸着装置300による共蒸着により成膜された膜の膜厚分布を示すグラフであり、蒸着対象物Sは蒸発源303に対して静止させた状態で成膜されている。同図に示すように、成膜領域の右端では第1蒸着材料R1の膜厚が第2蒸着材料R2の膜厚より大きく、左端では第2蒸着材料R2の膜厚が第1蒸着材料R1の膜厚より大きくなっている。これは、上述のように蒸着装置300では広い角度範囲である角度範囲H2で蒸着対象物Sに入射する蒸着材料が存在するためである。 FIG. 17 is a graph showing the film thickness distribution of a film formed by co-evaporation by the vapor deposition device 300, in which the vapor deposition target S is formed in a stationary state with respect to the evaporation source 303. As shown in the figure, the film thickness of the first vapor deposition material R1 is larger than the film thickness of the second vapor deposition material R2 at the right end of the film formation region, and the film thickness of the second vapor deposition material R2 is at the left end of the first vapor deposition material R1. It is larger than the film thickness. This is because, as described above, in the vapor deposition apparatus 300, the vapor deposition material that enters the vapor deposition target S within the angular range H2, which is a wide angular range, exists.
 図18は、蒸着対象物Sを蒸発源303に対して一往復させた場合の膜厚方向の第1蒸着材料R1(ドーパント)の濃度分布を示すグラフである。同図に示すように、膜の蒸着対象物S側(図中左端)と蒸発源303側(図中右端)では第1蒸着材料R1の濃度が高く、中央部では第1蒸着材料R1の濃度が小さくなっている。 FIG. 18 is a graph showing the concentration distribution of the first vapor deposition material R1 (dopant) in the film thickness direction when the vapor deposition target S is reciprocated once with respect to the evaporation source 303. As shown in the figure, the concentration of the first vapor deposition material R1 is high on the vapor deposition target S side (left end in the figure) and the evaporation source 303 side (right end in the figure) of the film, and the concentration of the first vapor deposition material R1 is central. Is getting smaller.
 このように、蒸着装置300では、制限板304による角度範囲H1と角度範囲H2の差異により、2種類の蒸着材料の濃度分布が不均一となるという問題がある。 As described above, in the vapor deposition device 300, there is a problem that the concentration distributions of the two types of vapor deposition materials become non-uniform due to the difference between the angle range H1 and the angle range H2 due to the limiting plate 304.
 これに対し、蒸着装置100では、制限板104による角度範囲H1と角度範囲H2の差異がほとんどないため、蒸着材料の濃度分布を均一とすることが可能である。 On the other hand, in the vapor deposition device 100, since there is almost no difference between the angle range H1 and the angle range H2 due to the limiting plate 104, it is possible to make the concentration distribution of the vapor deposition material uniform.
 さらに、蒸着装置100では、制限板104へ付着するの蒸着材料の量を低減することが可能である。蒸着装置300においては、ノズル313の近傍に制限板304が配置されるため、蒸着中に蒸着材料が制限板304に付着する。この制限板304に付着した蒸着材料は蒸着対象物Sに到達せず、無駄となってしまう。 Furthermore, in the vapor deposition device 100, it is possible to reduce the amount of vapor deposition material that adheres to the limiting plate 104. In the vapor deposition device 300, since the limiting plate 304 is arranged near the nozzle 313, the vapor deposition material adheres to the limiting plate 304 during vapor deposition. The vapor deposition material attached to the limiting plate 304 does not reach the vapor deposition target S and is wasted.
 さらに、蒸着の進行と共に制限板304に付着した蒸着材料の体積が増加し、単位時間当たりの付着量も増加していくため、蒸着対象物Sに到達する蒸着材料が次第に減少し、蒸着対象物Sの一往復で成膜される膜厚が継時的に変化する。 Further, as the vapor deposition progresses, the volume of the vapor deposition material attached to the limiting plate 304 increases, and the amount attached per unit time also increases, so the vapor deposition material reaching the vapor deposition target S gradually decreases, and the vapor deposition target The film thickness formed by one round trip of S changes continuously.
 なお、制限板304を加熱すると蒸着材料の付着を防止することができるが、制限板304が熱源となり、マスクMや蒸着対象物Sに熱変形等の影響が生じるため、制限板304の加熱も困難である。したがって、制限板304への蒸着材料の付着は避けられない。 Although heating of the limiting plate 304 can prevent deposition of the vapor deposition material, the limiting plate 304 serves as a heat source, and the mask M and the vapor deposition target S are affected by thermal deformation and the like. Have difficulty. Therefore, the deposition material is inevitably attached to the limiting plate 304.
 これに対し、蒸着装置100では、制限板104は蒸発源103から離間して設けられているため、蒸着装置300に比較して制限板104への蒸着材料の付着量が圧倒的に少ない。これにより、無駄になる蒸着材料の量を抑制し、材料利用効率を向上させることができる。さらに、膜厚の継時的変化も抑制されるため、膜品質の向上を実現することが可能である。 On the other hand, in the vapor deposition device 100, since the limiting plate 104 is provided apart from the evaporation source 103, the amount of deposition material deposited on the limiting plate 104 is overwhelmingly smaller than that in the vapor deposition device 300. As a result, the amount of vapor deposition material that is wasted can be suppressed and the material utilization efficiency can be improved. Further, since the change in film thickness over time is suppressed, it is possible to improve the film quality.
 [蒸着装置の他の構成]
 本実施形態に係る蒸着装置100の構成は上述のものに限られない。例えば、上記構成においては蒸発源103及び制限板104の位置はチャンバ101に対して固定され、支持機構102がチャンバ101に対して移動することによって成膜されるとした。
[Other configurations of vapor deposition apparatus]
The configuration of the vapor deposition device 100 according to this embodiment is not limited to the above. For example, in the above configuration, the positions of the evaporation source 103 and the limiting plate 104 are fixed with respect to the chamber 101, and the supporting mechanism 102 moves with respect to the chamber 101 to form a film.
 一方、これとは逆に、支持機構102はチャンバ101に対して固定され、蒸発源103と制限板104がチャンバに対してX方向に移動可能に構成されてもよい。この場合、蒸発源103と制限板104は互いの相対位置が固定されていればよく、蒸発源103と制限板104は直接接続され、あるいはそれぞれの駆動機構によって相対位置を保ったまま移動可能に構成されてもよい。 On the other hand, conversely, the support mechanism 102 may be fixed to the chamber 101, and the evaporation source 103 and the limiting plate 104 may be movable in the X direction with respect to the chamber. In this case, the evaporation source 103 and the limiting plate 104 need only be fixed in their relative positions, and the evaporation source 103 and the limiting plate 104 can be directly connected or can be moved while maintaining their relative positions by their respective drive mechanisms. It may be configured.
 この構成では、制限板104は、蒸発源103及び制限板104の移動方向(X方向)に対して垂直な面(Y-Z平面)に沿う板状部材とすることができる。 In this configuration, the limiting plate 104 can be a plate-shaped member along a plane (YZ plane) perpendicular to the moving direction (X direction) of the evaporation source 103 and the limiting plate 104.
 また、制限板104は、蒸着対象物Sの移動方向(X方向)において蒸発源103の両側に1対が配置されるとしたが、これに限られない。図19は他の構成を有する制限板104を示す平面図であり、蒸発源103及び制限板104をZ方向から見た図である。同図に示すように、制限板104は、Z方向から見て蒸発源103を囲むように設けられてもよい。 Moreover, although the pair of the limiting plates 104 is arranged on both sides of the evaporation source 103 in the moving direction (X direction) of the vapor deposition target S, the present invention is not limited to this. FIG. 19 is a plan view showing a limiting plate 104 having another configuration, and is a view of the evaporation source 103 and the limiting plate 104 viewed from the Z direction. As shown in the figure, the limiting plate 104 may be provided so as to surround the evaporation source 103 when viewed from the Z direction.
 さらに、蒸着装置100では、典型的には蒸発源103は鉛直下方に配置され、支持機構102が鉛直上方に配置される。しかしながら、蒸着装置100はこの配置に限られず、支持機構102が鉛直下方に配置され、蒸発源103が鉛直上方に配置されてもよい。また、蒸発源103と支持機構102が水平方向に配置されてもよい。 Further, in the vapor deposition device 100, typically, the evaporation source 103 is arranged vertically below and the support mechanism 102 is arranged vertically above. However, the vapor deposition device 100 is not limited to this arrangement, and the support mechanism 102 may be arranged vertically below and the evaporation source 103 may be arranged vertically above. Further, the evaporation source 103 and the support mechanism 102 may be arranged horizontally.
 100…蒸着装置
 101…チャンバ
 102…支持機構
 103…蒸発源
 104…制限板
 111…収容箱
 112…加熱機構
 113…ノズル
 S…蒸着対象物
 M…マスク
 R…蒸着材料
100... Vapor deposition apparatus 101... Chamber 102... Support mechanism 103... Evaporation source 104... Limit plate 111... Storage box 112... Heating mechanism 113... Nozzle S... Vapor deposition target M... Mask R... Vapor deposition material

Claims (6)

  1.  蒸着材料を収容し、前記蒸着材料を加熱する加熱機構を備える蒸発源と、
     蒸着対象物を前記蒸発源に対向する位置で支持する支持機構と、
     前記蒸発源と前記蒸着対象物の中点に対して前記蒸着対象物側に配置され、前記蒸着材料の飛散経路を制限する制限板と
     前記蒸発源、前記支持機構及び前記制限板を収容するチャンバと
     を具備する蒸着装置。
    An evaporation source containing a vapor deposition material and having a heating mechanism for heating the vapor deposition material,
    A support mechanism that supports the evaporation target at a position facing the evaporation source,
    A chamber that is arranged on the side of the evaporation target with respect to the middle point of the evaporation source and the evaporation target and that restricts the scattering path of the evaporation material, the chamber that houses the evaporation source, the support mechanism, and the restriction plate. And a vapor deposition device comprising.
  2.  請求項1に記載の蒸着装置であって、
     前記蒸発源と前記制限板は、互いの相対位置を維持したまま前記チャンバに対して移動可能に構成されている
     蒸着装置。
    The vapor deposition device according to claim 1, wherein
    The vapor deposition device and the limiting plate are configured to be movable with respect to the chamber while maintaining their relative positions.
  3.  請求項1に記載の蒸着装置であって、
     前記蒸発源及び前記制限板は前記チャンバに対して固定され、
     前記支持機構は、前記チャンバに対して移動可能に構成されている
     蒸着装置。
    The vapor deposition device according to claim 1, wherein
    The evaporation source and the limiting plate are fixed with respect to the chamber,
    The deposition mechanism is configured so that the support mechanism is movable with respect to the chamber.
  4.  請求項2に記載の蒸着装置であって、
     前記制限板は、前記蒸発源及び前記制限板の移動方向に対して垂直な面に沿う板状部材である
     蒸着装置。
    The vapor deposition device according to claim 2, wherein
    The vapor deposition apparatus, wherein the limiting plate is a plate-like member along a plane perpendicular to the moving directions of the evaporation source and the limiting plate.
  5.  請求項3に記載の蒸着装置であって、
     前記制限板は、前記支持機構の移動方向に対して垂直な面に沿う板状部材である
     蒸着装置。
    The vapor deposition device according to claim 3, wherein
    The vapor deposition apparatus, wherein the limiting plate is a plate-shaped member along a plane perpendicular to the moving direction of the support mechanism.
  6.  請求項1に記載の蒸着装置であって、
     前記蒸発源は、第1の蒸着材料を収容する第1の蒸発源と、第2の蒸着材料を収容する第2の蒸発源とを含む
     蒸着装置。
    The vapor deposition device according to claim 1, wherein
    The evaporation source includes a first evaporation source containing a first evaporation material and a second evaporation source containing a second evaporation material.
PCT/JP2019/035545 2019-01-10 2019-09-10 Vapor deposition device WO2020144894A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207020857A KR102372878B1 (en) 2019-01-10 2019-09-10 deposition apparatus
JP2019565967A JP7026143B2 (en) 2019-01-10 2019-09-10 Thin film deposition equipment
CN201980006665.4A CN111684100B (en) 2019-01-10 2019-09-10 Evaporation plating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019002738 2019-01-10
JP2019-002738 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020144894A1 true WO2020144894A1 (en) 2020-07-16

Family

ID=71521199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035545 WO2020144894A1 (en) 2019-01-10 2019-09-10 Vapor deposition device

Country Status (5)

Country Link
JP (1) JP7026143B2 (en)
KR (1) KR102372878B1 (en)
CN (1) CN111684100B (en)
TW (1) TWI816883B (en)
WO (1) WO2020144894A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170200A (en) * 2008-01-15 2009-07-30 Sony Corp Method of manufacturing display device
WO2014119452A1 (en) * 2013-01-29 2014-08-07 シャープ株式会社 Vapor deposition unit and vapor deposition device
JP2017025347A (en) * 2015-07-15 2017-02-02 シャープ株式会社 Vapor deposition method and vapor deposition apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570232B2 (en) * 2000-10-20 2010-10-27 株式会社アルバック Plasma display protective film forming apparatus and protective film forming method
JP2012156072A (en) * 2011-01-28 2012-08-16 Konica Minolta Holdings Inc Vacuum vapor deposition device, method of manufacturing organic electroluminescent device, and organic electroluminescent device
JP5616812B2 (en) * 2011-02-10 2014-10-29 キヤノントッキ株式会社 Vapor deposition apparatus and vapor deposition method
KR101723348B1 (en) * 2013-06-21 2017-04-05 샤프 가부시키가이샤 Process for producing organic electroluminescent element, and organic electroluminescent display device
JP6618183B2 (en) * 2015-03-10 2019-12-11 AC Biode株式会社 Secondary battery, charging device and discharging device
WO2016171075A1 (en) * 2015-04-22 2016-10-27 シャープ株式会社 Vapor deposition device and vapor deposition method
CN106282930B (en) * 2015-06-26 2020-05-01 佳能特机株式会社 Evaporation plating device
WO2018025637A1 (en) 2016-08-02 2018-02-08 株式会社アルバック Vacuum deposition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170200A (en) * 2008-01-15 2009-07-30 Sony Corp Method of manufacturing display device
WO2014119452A1 (en) * 2013-01-29 2014-08-07 シャープ株式会社 Vapor deposition unit and vapor deposition device
JP2017025347A (en) * 2015-07-15 2017-02-02 シャープ株式会社 Vapor deposition method and vapor deposition apparatus

Also Published As

Publication number Publication date
KR102372878B1 (en) 2022-03-08
TW202026448A (en) 2020-07-16
JP7026143B2 (en) 2022-02-25
CN111684100B (en) 2022-09-27
KR20200105675A (en) 2020-09-08
JPWO2020144894A1 (en) 2021-02-18
TWI816883B (en) 2023-10-01
CN111684100A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
KR100964224B1 (en) Evaporating apparatus and method for forming thin film
KR100623730B1 (en) Evaporating source assembly and deposition apparatus having the same
JP5319025B2 (en) Crucible and vapor deposition equipment
JP5492120B2 (en) Evaporation source and vapor deposition equipment
US20100297349A1 (en) Thin film deposition apparatus
JP2011132596A (en) Evaporation source and vapor-deposition apparatus using the same
JP5400653B2 (en) Vacuum deposition equipment
KR20170131631A (en) Deposition apparatus and deposition method
WO2019148570A1 (en) Vacuum deposition device and vacuum deposition method
WO2016136595A1 (en) Vapor deposition unit, vapor deposition device, and vapor deposition method
KR20170086679A (en) Apparatus for depositing evaporated material, distribution pipe, vacuum deposition chamber, and method for depositing an evaporated material
WO2020144894A1 (en) Vapor deposition device
KR20190038754A (en) Material deposition arrangement, vacuum deposition system, and methods therefor
KR20160049349A (en) Sputtering apparatus and sputtering method using the same
CN114481038A (en) Evaporation crucible and evaporation system
JP6815153B2 (en) Film deposition equipment
TW201925499A (en) Evaporation apparatus, evaporation method and control plate for forming an evaporation film with high film thickness uniformity and less shadow, and performing excellent evaporation even on a large substrate
KR20210093863A (en) A deposition source, deposition apparatus, and methods for depositing an evaporation material
TWI835440B (en) Evaporation device and evaporation method
JP7372288B2 (en) Film deposition equipment, film deposition method, and evaporation source
JP2011140689A (en) Vapor deposition apparatus and method of manufacturing electro-optical device
KR20200082172A (en) Deposition source and deposition apparatus
KR20170111775A (en) Apparatus for Multi Source Co-Deposition
JP2018066059A (en) Vacuum deposition chamber
KR20170131892A (en) Deposition device having trim plates

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565967

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207020857

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908827

Country of ref document: EP

Kind code of ref document: A1