JP2001135538A - 永久磁石材料の製造方法 - Google Patents

永久磁石材料の製造方法

Info

Publication number
JP2001135538A
JP2001135538A JP31465599A JP31465599A JP2001135538A JP 2001135538 A JP2001135538 A JP 2001135538A JP 31465599 A JP31465599 A JP 31465599A JP 31465599 A JP31465599 A JP 31465599A JP 2001135538 A JP2001135538 A JP 2001135538A
Authority
JP
Japan
Prior art keywords
magnet material
permanent magnet
sintered
sintered magnet
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31465599A
Other languages
English (en)
Inventor
Nobuyuki Yoshino
吉野  信幸
Hidetake Hashimoto
英豪 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP31465599A priority Critical patent/JP2001135538A/ja
Publication of JP2001135538A publication Critical patent/JP2001135538A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

(57)【要約】 【課題】 R−Fe−B系組成(Rは希土類元素)の希
土類焼結永久磁石の製造方法に関し、特に高度の磁気特
性を保持した状態で優れた耐食性を付与するための永久
磁石材料の表面処理方法を提供する。 【解決手段】 R−Fe−B系組成(Rは希土類元素)
からなる焼結磁石材料を研削あるいは研磨加工後、焼結
磁石材料表面を洗浄する工程と、焼結磁石材料表面をプ
ラズマ処理あるいはオゾン処理する工程と、無電解ニッ
ケルメッキ液に浸漬後、焼結磁石材料にマイナス電位を
印加する工程と、無電解ニッケルメッキ被膜を被覆する
工程とを有する表面処理方法を適用する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、R−Fe−B系組
成(Rは希土類元素)の希土類焼結永久磁石の製造方法
に関し、特に磁気特性を保持した状態で優れた耐食性を
付与するための永久磁石材料の表面処理方法に関する。
【0002】
【従来の技術】R−Fe−B系組成(Rは希土類元素)
の希土類焼結永久磁石は、非常に優れた磁気特性を持
ち、特にその最大エネルギー積はSmCo系焼結磁石を
凌ぎ、最近では50MGOeを越える高性能のNd−F
e−B系の希土類焼結永久磁石が量産化されており、現
在の情報エレクトロニクス社会に必要不可欠な機能性材
料として活躍している。そして、今後もその応用範囲は
拡大することが予想されている。
【0003】近年、磁石を応用したコンピュータ関連機
器やCDプレーヤー、ミニディスクシステム、携帯電話
をはじめとする電子機器の軽薄短小化、高密度化、高容
量化、高性能化、省電力・省エネルギー化に伴い、R−
Fe−B系組成(Rは希土類元素)の希土類焼結永久磁
石、特に、Nd−Fe−B組成の焼結磁石の小型化、薄
型化が要求されている。
【0004】小型化あるいは薄型のR−Fe−B系組成
(Rは希土類元素)の希土類焼結永久磁石を実用形状に
加工し、磁気回路に実装するためには、成形焼結したブ
ロック状の焼結磁石を研削や研磨加工する必要があり、
この加工にはワイヤーソー等の切断機や表面研削機、セ
ンタレス研磨機、ラッピングマシン等が使用されてい
る。
【0005】しかしながら、上記のような加工を行う
と、R−Fe−B系組成(Rは希土類元素)の希土類焼
結永久磁石は僅かな酸や水分の存在によって電気化学的
に腐食が急激に進行し、磁石相が侵食されて錆が発生
し、それに伴って大幅に磁気特性が劣化する。この現象
は劣化速度に差はあるものの加工の有無を問わずに発生
するものであり、一般的に永久磁石の使用環境は湿気の
存在を避け難いため、R−Fe−B系組成(Rは希土類
元素)の希土類焼結永久磁石表面に耐食性を付与する目
的で適切な表面処理を施す必要がある。
【0006】表面処理方法としては、既に電気メッキや
アルミニウム蒸着膜を被覆後、その表面にクロム複合酸
化物の薄膜層を形成する方法(アルミクローメート処
理)や電着塗装、エポキシあるいはフッ素樹脂のスプレ
ー塗装が実用化されている。
【0007】
【発明が解決しようとする課題】しかしながら、これら
の方法はいずれもいくつかの欠点を有している。たとえ
ば電気メッキでは、一般にメッキ液は酸性であり、その
ためR−Fe−B系組成(Rは希土類元素)の希土類焼
結永久磁石をメッキ液に浸漬すると徐々に腐食する現象
を生じる。または長時間、電界を印加している間に磁石
の構成成分であるFe等のイオンが溶出し、磁気特性の
劣化をもたらす。また、磁石の形状によっては電界分布
が不均一となりメッキ膜厚が場所により異なる現象が生
ずる。特に鋭角な角部を有する箇所では電界が集中し、
設定膜厚よりも著しくメッキ膜厚が厚くなり、磁石全体
の寸法精度が要求される場合に問題となる。場合によっ
ては後加工が必要となるケースも発生する。さらには得
られたメッキ被膜にピンホールが数多く存在し、経時変
化に伴い水分が磁石表面に到達し、腐食の原因となる問
題点がある。
【0008】アルミクロメート処理では、蒸着装置やそ
の後のクロム複合酸化物の薄膜層を形成する工程でも環
境問題の観点から廃液の処理設備などの高価な設備が必
要であり、最終的にはコストアップに繋がる。また、微
小な穴内部や溝部へのコーティングができないなどの欠
点がある。更に、クロム複合酸化物の薄膜層を形成する
工程では人体の健康を害する恐れが生ずる。
【0009】電着塗装では電気メッキと同様な欠点を有
し、また、エポキシあるいはフッ素樹脂のスプレー塗装
では、膜厚の制御が困難であり、また、膜厚が薄いとピ
ンホールの発生確率が大きくなり、腐食が発生する問題
がある。
【0010】一方、メッキには電気メッキの他に無電解
メッキ法があり、その中でも無電解ニッケルメッキ法は
安価な耐食性付与方法として既に多方面に応用されてい
る。この方法は形状に関わらず均一な膜厚で全面被覆が
可能であること、膜厚の制御が容易でピンホールの無い
膜形成が可能であること、更には大規模で高価な設備を
必要としないことなど上述の表面処理方法と比較し、優
位な点を有しており、R−Fe−B系組成(Rは希土類
元素)の希土類焼結永久磁石の耐食性付与方法としての
手段としての適用が既に考案されている。
【0011】しかしながら、無電解ニッケルメッキでは
一般にメッキ前処理工程で塩酸に代表される酸性水溶液
を用いるため、メッキ前処理工程の段階で腐食が急激に
進行し、それに伴って磁気特性が著しく劣化してしまう
ことが大きな問題であった。また、無電解ニッケルメッ
キは直接、焼結磁石材料表面に被覆することが困難であ
り、通常は電気メッキによる銅やニッケル、亜鉛などの
の下地メッキを施した後に被覆する多層メッキにする必
要があり、そのための設備や工程の煩雑さが問題であっ
た。そのため、無電解ニッケルメッキ法が1回のメッキ
処理工程でR−Fe−B系組成(Rは希土類元素)の希
土類焼結永久磁石の耐食性付与方法として磁気特性の劣
化を生じさせずに可能となれば非常に有効であると考え
られる。
【0012】本発明はかかる問題点に鑑みてなされたも
ので、その目的は、R−Fe−B系組成(Rは希土類元
素)の希土類焼結永久磁石の製造方法に関し、特に高度
の磁気特性を保持した状態で優れた耐食性を付与するた
めの永久磁石材料の表面処理方法を提供することにあ
る。
【0013】
【課題を解決するための手段】上記目的を達成するた
め、本発明による永久磁石材料の製造方法は、下記記載
の手段を採用する。本発明の永久磁石材料の製造方法
は、R−Fe−B系組成(Rは希土類元素)からなる焼
結磁石材料を研削あるいは研磨加工後、焼結磁石材料表
面を洗浄する工程と、焼結磁石材料表面をプラズマ処理
あるいはオゾン処理する工程と、無電解ニッケルメッキ
液に浸漬後、焼結磁石材料にマイナス電位を印加する工
程と、無電解ニッケルメッキを被覆する工程とを有する
ことを特徴とする。
【0014】本発明の永久磁石材料の製造方法は、焼結
磁石材料表面を洗浄する工程が有機溶媒を用いる工程で
あることを特徴とする。
【0015】本発明の永久磁石材料の製造方法は、焼結
磁石材料表面を洗浄する工程がアルカリ性水溶液を用い
る工程であることを特徴とする。
【0016】本発明の永久磁石材料の製造方法は、焼結
磁石材料表面をプラズマ処理あるいはオゾン処理する工
程が、空気、不活性ガス、酸素、窒素、水素のいずれか
1種類以上を含むガス雰囲気下で行うことを特徴とす
る。
【0017】本発明の永久磁石材料の製造方法は、無電
解ニッケルメッキ液に浸漬後、焼結磁石材料にマイナス
電位を印加する工程が、1分間以下であることを特徴と
する。
【0018】本発明の永久磁石材料の製造方法は、無電
解ニッケルメッキ液に浸漬後、焼結磁石材料にマイナス
電位を印加する工程が、電流密度0.1A/cm2 以上
であることを特徴とする。
【0019】本発明の永久磁石材料の製造方法は、無電
解ニッケルメッキ液のpHが6以上の範囲にあることを
特徴とする。
【0020】(作用)本発明の永久磁石材料の製造方法
における焼結磁石材料を研削あるいは研磨加工後の洗浄
工程はメッキ前処理として表面の異物付着、油成分を除
去するためであり、アセトンやイソプロピルアルコール
などの有機溶媒や水酸化ナトリウムやオルソケイ酸ナト
リウムを溶解したアルカリ性水溶液で洗浄、脱脂する。
この時の洗浄には超音波洗浄が有効である。この工程で
は塩酸や硫酸、硝酸などの無機酸を用いないため、焼結
磁石材料は侵食されず、磁気特性も劣化しないことが本
発明者によって確認されている。
【0021】焼結磁石材料表面をプラズマ処理あるいは
オゾン処理する工程は、表面に残存する油成分をプラズ
マやオゾン中に存在するイオンやラジカルによって分
解、除去するためであり、更にはメッキ液に対する濡れ
性を向上させる効果がある。尚、この工程は上記の洗浄
工程と組み合わせて、洗浄工程後に行うことが好まし
い。また、プラズマ処理よりもオゾン処理の方が設備も
簡易でコスト的にも安価であり、より好ましい。
【0022】その後、無電解ニッケルメッキ液に浸漬
し、メッキ被膜を被覆するが、この時、焼結磁石材料表
面には不働態層(薄い酸化膜)が形成され不活性である
ため、このままの状態ではメッキ反応は開始しない。そ
のため、本発明者は無電解ニッケルメッキ液中に対抗電
極を配し、直流電源を介して焼結磁石材料と結線し、焼
結磁石材料表面に瞬間的にマイナス電位を印加すること
によって、不働態層(薄い酸化膜)が絶縁破壊され、メ
ッキ反応が開始することを見出した。この時の電流密度
は0.1A/cm2 以上が適当であり、これ未満ではメ
ッキ反応は開始しない。また、マイナス電位を印可する
時間は1分間以下が適当であり、これより多くの時間マ
イナス電位を印可すると、焼結磁石材料の構成元素であ
るネオジムや鉄のイオンが溶出し、結果的に磁気特性が
劣化する現象が生ずる。
【0023】また、無電解ニッケルメッキ液のpHは6
以上であること、好ましくはpH=7の中性であること
が望ましい。これはpH6未満の酸性であると電気化学
的に腐食が急激に進行し、磁石相が侵食されて磁気特性
が劣化するからである。また、メッキ被膜の密着性を上
げるためメッキ後、熱処理を行っても良い。この時の温
度としては400℃以下が適当である。また、メッキ被
膜の膜厚は完全な耐食性を得るため5μm以上が好まし
い。
【0024】上記方法によって得られるメッキ被膜はN
iを主成分とする均一な一層の合金である。また、従来
の方法では下地メッキを被覆するなどの2層以上の多層
メッキを行う必要があったが、本発明では1つのメッキ
槽中で1回のメッキ操作によりR−Fe−B系組成(R
は希土類元素)からなる焼結磁石材料に耐食性を付与す
ることが可能であり、コスト面、生産性の面からも有利
である。
【0025】
【発明の実施の形態】以下、本発明の実施の形態を実施
例により詳細に説明する。 (実施例)以下、本発明の実施例における永久磁石材料
およびその製造方法について説明する。本実施例ではR
−Fe−B系組成(Rは希土類元素)からなる焼結磁石
材料としてNd−Fe−B組成からなる焼結磁石材料を
採用した。本発明で用いるNd−Fe−B組成からなる
焼結磁石材料の製造方法はまず、高周波溶解により所定
組成のNd−Fe−B合金を溶解しインゴットを作製す
る。このインゴットを粗粉砕機と微粉砕機との組み合わ
せにより、平均粒径3μmまで粉砕し、微粉末を得る。
この微粉末を磁場中でプレスして、c軸方向が揃った成
形体を作製する。この成形体をアルゴン雰囲気中、11
00℃付近の温度で焼結し、その後、アルゴン雰囲気中
で約600℃で熱処理することにより長さ40mm、幅
30mm、厚み20mmの高磁気エネルギー積、(B
H)maxを有するブロック状の焼結磁石材料を得た。
【0026】その後、上記のブロック状の焼結体をワイ
ヤーソーを用いて切断し、その後、表面研削機やラッピ
ングマシン等により研削し、各辺が長さ1mm、幅1m
m、厚さ0.5mm寸法の直方体を作製し、試験用サン
プルとした。
【0027】その後、この試験用サンプルをアセトン中
で超音波洗浄した後、水酸化ナトリウム20g/L、オ
ルソケイ酸ナトリウム70g/L、炭酸ナトリウム20
g/Lを含むアルカリ水溶液中で脱脂後、純水で水洗
し、熱風で乾燥した。この時使用する有機溶媒はアセト
ンに限るものでなく、その他の有機溶媒、たとえばイソ
プロピルアルコールやトルエンなどでも良い。同様にア
ルカリ水溶液も上記成分に限るものではない。
【0028】次に、試験用サンプルを紫外線によるオゾ
ン発生機構を具備したチャンバー内に設置し、空気中で
30分間のオゾン処理を行った。この処理はオゾン処理
に限るものではなく、プラズマ処理でも良く。また、雰
囲気ガスも空気以外でも良く、不活性ガス、酸素、窒
素、水素のいずれか1種類以上を含むガス雰囲気下で行
うことが望ましい。
【0029】その後、試験用サンプルを適当な導電性を
有するメッキ治具に設置後、以下の組成及び条件からな
る無電解ニッケルメッキ液に浸漬した。この時、あらか
じめ対向電極としてニッケルの板を無電解ニッケルメッ
キ液に浸漬させておき、対向電極が正極になるように直
流電源を介して、試験用サンプルを入れたメッキ治具に
接続した。
【0030】硫酸ニッケル: 30g/L 次亜リン酸ナトリウム: 20g/L クエン酸ナトリウム: 10g/L その他添加剤: 2g/L pH=7.0 液温: 90℃
【0031】続いて、電流密度1A/cm2 になるよう
直流電源の電圧を調整し、5秒間試験用サンプルにマイ
ナス電位を印加した。この操作によりメッキ反応が開始
する。その後、60分間無電解ニッケルメッキ液に浸漬
させることにより、メッキ膜厚10μmを試験用サンプ
ル全面に被覆した。
【0032】メッキ終了後、水洗、乾燥し、その後20
0℃で1時間熱処理を行った。得られたメッキ被膜はE
PMA(電子プローブマイクロアナリシス)による分析
により均一な組成からなるNi−Pの合金層であること
が確認された。また、本実施例ではNi−Pの無電解ニ
ッケルメッキを採用したが、これに限るものではなく、
その他Ni−Bなどの2種類以上の元素を含有するニッ
ケルメッキ合金層であっても良い。
【0033】(比較例)なお、本実施例に対する比較例
1として、ブロック状の焼結体を切断、研削して試験用
サンプルとした後、全く表面処理を行わない永久磁石材
料と、比較例2として比較例1の永久磁石表面に電気メ
ッキによりNiメッキを10μm被覆し、その後200
℃で1時間熱処理を行った永久磁石材料と、比較例3と
して、比較例1の永久磁石をアセトン中で超音波洗浄し
た後、本実施例と同様のアルカリ水溶液中で脱脂、純水
で水洗し、その後1%濃度の塩酸水溶液に5秒間浸漬し
てから、純水で水洗し、その後の工程は本実施例と同条
件で無電解ニッケルメッキを行った永久磁石材料と、比
較例4として、比較例1の永久磁石を無電解ニッケルメ
ッキ液に浸漬後、電流密度1A/cm2 になるよう直流
電源の電圧を調整し、90秒間試験用サンプルにマイナ
ス電位を印加する以外は全く本実施例と同じ条件で処理
を行った永久磁石材料を作製した。
【0034】そして、各サンプルについて温度60℃、
相対湿度95%、4日間の雰囲気に曝す耐食性試験を行
った。その結果を以下の表に示す。
【0035】
【表1】
【0036】これらの結果から、比較例1及び2と比
べ、本発明の表面処理方法によって作製した永久磁石材
料では試験後も外観に異常は無く、磁気特性も劣化しな
いことが確認された。
【0037】
【発明の効果】以上説明したように、本発明による永久
磁石材料の製造方法では、R−Fe−B系組成(Rは希
土類元素)からなる焼結磁石材料を研削あるいは研磨加
工後、焼結磁石材料表面を洗浄し、その表面をプラズマ
処理あるいはオゾン処理した後、無電解ニッケルメッキ
液に浸漬し、焼結磁石材料にマイナス電位を印加して無
電解ニッケルメッキを開始して、無電解ニッケルメッキ
被膜を被覆する方法によって、高い磁気特性を保持した
状態で、優れた耐食性を付与するための永久磁石材料の
表面処理方法を提供することが可能となる。この方法は
コスト及び生産性にも優れている。

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 R−Fe−B系組成(Rは希土類元素)
    からなる焼結磁石材料を研削あるいは研磨加工後、焼結
    磁石材料表面を洗浄する工程と、焼結磁石材料表面をプ
    ラズマ処理あるいはオゾン処理する工程と、無電解ニッ
    ケルメッキ液に浸漬後、焼結磁石材料にマイナス電位を
    印加する工程と、無電解ニッケルメッキを被覆する工程
    とを有することを特徴とする永久磁石材料の製造方法。
  2. 【請求項2】 焼結磁石材料表面を洗浄する工程が有機
    溶媒を用いる工程であることを特徴とする請求項1に記
    載の永久磁石材料の製造方法。
  3. 【請求項3】 焼結磁石材料表面を洗浄する工程がアル
    カリ性水溶液を用いる工程であることを特徴とする請求
    項1または請求項2に記載の永久磁石材料の製造方法。
  4. 【請求項4】 焼結磁石材料表面をプラズマ処理あるい
    はオゾン処理する工程が空気、不活性ガス、酸素、窒
    素、水素のいずれか1種類以上を含むガス雰囲気下で行
    うことを特徴とする請求項1、請求項2または請求項3
    に記載の永久磁石材料の製造方法。
  5. 【請求項5】 無電解ニッケルメッキ液に浸漬後、焼結
    磁石材料にマイナス電位を印加する工程が、1分間以下
    であることを特徴とする請求項1から請求項4のいずれ
    か1項に記載の永久磁石材料の製造方法。
  6. 【請求項6】 無電解ニッケルメッキ液に浸漬後、焼結
    磁石材料にマイナス電位を印加する工程が、電流密度
    0.1A/cm2 以上であることを特徴とする請求項1
    から請求項5のいずれか1項に記載の永久磁石材料の製
    造方法。
  7. 【請求項7】 無電解ニッケルメッキ液のpHが6以上
    の範囲にあることを特徴とする請求項1から請求項6の
    いずれか1項に記載の永久磁石材料の製造方法。
JP31465599A 1999-11-05 1999-11-05 永久磁石材料の製造方法 Pending JP2001135538A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31465599A JP2001135538A (ja) 1999-11-05 1999-11-05 永久磁石材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31465599A JP2001135538A (ja) 1999-11-05 1999-11-05 永久磁石材料の製造方法

Publications (1)

Publication Number Publication Date
JP2001135538A true JP2001135538A (ja) 2001-05-18

Family

ID=18055953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31465599A Pending JP2001135538A (ja) 1999-11-05 1999-11-05 永久磁石材料の製造方法

Country Status (1)

Country Link
JP (1) JP2001135538A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135511A (ja) * 1999-11-09 2001-05-18 Sumitomo Special Metals Co Ltd 耐食性のすぐれた超小型磁石
WO2008023731A1 (en) * 2006-08-23 2008-02-28 Ulvac, Inc. Permanent magnet and process for producing the same
US7862238B2 (en) * 2006-03-31 2011-01-04 Panasonic Corporation Hydrodynamic bearing rotary device and information apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135511A (ja) * 1999-11-09 2001-05-18 Sumitomo Special Metals Co Ltd 耐食性のすぐれた超小型磁石
JP4552161B2 (ja) * 1999-11-09 2010-09-29 日立金属株式会社 耐食性のすぐれた超小型磁石
US7862238B2 (en) * 2006-03-31 2011-01-04 Panasonic Corporation Hydrodynamic bearing rotary device and information apparatus
WO2008023731A1 (en) * 2006-08-23 2008-02-28 Ulvac, Inc. Permanent magnet and process for producing the same
US8257511B2 (en) 2006-08-23 2012-09-04 Ulvac, Inc. Permanent magnet and a manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR20150098196A (ko) 희토류 영구 자석의 제조방법
JPH04328804A (ja) 耐食性永久磁石及びその製造方法
CN104025724A (zh) 在非传导表面上形成传导图像的方法
JP2015151624A (ja) 電着装置及び希土類永久磁石の製造方法
JPH0283905A (ja) 耐食性永久磁石およびその製造方法
KR100374398B1 (ko) 고내식성을 갖는 R-Fe-B계 본드 자석과 그 제조 방법
JP2001135538A (ja) 永久磁石材料の製造方法
JP2001257112A (ja) 永久磁石材料
JPS63217601A (ja) 耐食性永久磁石及びその製造方法
JP2001250707A (ja) 永久磁石材料
JPS6377103A (ja) 耐食性のすぐれた希土類磁石及びその製造方法
JPS62120004A (ja) 耐食性のすぐれた永久磁石及びその製造方法
JP2002212602A (ja) 磁石材料およびその製造方法
JP2631493B2 (ja) 耐食性永久磁石の製造方法
JPH0613211A (ja) 耐食性のすぐれた永久磁石及びその製造方法
JPS62120003A (ja) 耐食性のすぐれた永久磁石及びその製造方法
JPH09289108A (ja) 密着性のすぐれた電気絶縁性被膜を有するR−Fe−B系永久磁石とその製造方法
JP3236815B2 (ja) 高耐食性R−Fe−B系ボンド磁石とその製造方法
JPS63232304A (ja) 耐酸化性に優れた永久磁石とその製造方法
JPS61281850A (ja) 永久磁石材料
KR20020050829A (ko) 니켈 다층 도금 네오디뮴-철-보론계 자석 및 그 제조방법
JP2001093715A (ja) 永久磁石材料およびその製造方法
JPS6260212A (ja) 永久磁石材料の製造方法
KR20010057967A (ko) 다층 도금 네오디뮴-철-보론계 자석 및 그 제조방법
EP4120297A1 (en) Method for recycling rare earth sintered magnet