JP2001127162A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2001127162A
JP2001127162A JP30215399A JP30215399A JP2001127162A JP 2001127162 A JP2001127162 A JP 2001127162A JP 30215399 A JP30215399 A JP 30215399A JP 30215399 A JP30215399 A JP 30215399A JP 2001127162 A JP2001127162 A JP 2001127162A
Authority
JP
Japan
Prior art keywords
wiring
power supply
layers
integrated circuit
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30215399A
Other languages
Japanese (ja)
Inventor
Norimasa Narumi
典将 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30215399A priority Critical patent/JP2001127162A/en
Publication of JP2001127162A publication Critical patent/JP2001127162A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a layout method of a semiconductor integrated circuit for reducing influences of a cross talk. SOLUTION: A minimum interval is made so as to pass only one wiring therebetween, and power supply (VDD, VSS) wirings at a minimum line width are disposed in a vertical axial direction in n layers and in a horizontal axial direction in (n+1) layers to form a lattice-like shield, which is wired with a signal line. Furthermore, when (n-1) layers and (n+2) layers are used in a multilayer wiring of three layers or more, the power supply wiring is disposed in the signal line of the (n+1) layer, to shield vertically. Incidentally, a wiring may be made in the (n+1) and (n-1) layers in the vertical direction and in the n and (n+1) layers in the horizontal direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は信号線間の干渉を防
ぐ半導体集積回路のレイアウトに関するものである。
The present invention relates to a layout of a semiconductor integrated circuit for preventing interference between signal lines.

【0002】[0002]

【従来の技術】平行配線において隣り合う信号線の並走
距離が長くなると、隣接する信号線の干渉を受け易くな
りクロストークが発生するため、十分な配線の間隔をと
るか、固定電位配線により囲み込むことで干渉を防いで
いた。
2. Description of the Related Art In a parallel wiring, if the parallel running distance between adjacent signal lines becomes longer, the signal lines are more likely to be interfered by adjacent signal lines and crosstalk occurs. By surrounding it, interference was prevented.

【0003】[0003]

【発明が解決しようとする課題】ディープ・サブミクロ
ン化が進む今日においては、配線の間隔が狭くなってき
ているため、平行配線長があまり長くなくても隣接する
配線の干渉を強く受けてしまう傾向にある。
In today's deep sub-micron world, the distance between the wirings is becoming narrower, so that even if the length of the parallel wirings is not very long, the adjacent wirings are strongly affected by interference. There is a tendency.

【0004】一方、一般的にレイアウトデータから遅延
情報を抽出して実遅延シミュレーションを行ない設計に
フィードバックする設計手法(Back Annota
tion:以下BAと略す)があるが、配線間隔の狭ま
りによる影響が出てきている。
On the other hand, in general, a design method (Back Annota) that extracts delay information from layout data, performs an actual delay simulation, and feeds back to the design.
(hereinafter, abbreviated as BA)), but the influence of the narrowing of the wiring interval has appeared.

【0005】ここで一般的な信号線として図7(a)に
示すブロック図のバッファ間の配線がある。ba1、b
a2、bb1、bb2、bc1、bc2はバッファであ
り、ba1からba2、bb1からbb2、bc1から
bc2へ接続された配線w1、w2、w3は配線長が長
い平行配線である。この入力段のバッファba1、bb
1、bc1に与える信号として図8の(a)逆位相信
号、(b)同位相信号を与える。bb1からbb2まで
の信号の伝達時間を調べた結果が図9である。縦軸が信
号伝達時間、横軸が配線の間隔であり、(A)は逆位相
信号を与えたもの、(B)は同位相信号を与えたもの
で、(C)は図7(b)のブロック図に示すように3本
の信号線w1、w2、w3の間に固定電位配線を挿入
し、かつ入力信号として図8(a)の逆位相信号を与え
たもの、(D)は図7(a)に示すブロック図の回路の
レイアウトデータから得た遅延情報によるシミュレーシ
ョンの結果である。
Here, as a general signal line, there is a wiring between buffers in a block diagram shown in FIG. ba1, b
a2, bb1, bb2, bc1, bc2 are buffers, and wires w1, w2, w3 connected from ba1 to ba2, bb1 to bb2, and bc1 to bc2 are parallel wires having a long wire length. Buffers ba1, bb of this input stage
1, (b) the opposite phase signal and (b) the same phase signal as shown in FIG. FIG. 9 shows the result of examining the transmission time of the signal from bb1 to bb2. The vertical axis is the signal transmission time, the horizontal axis is the interval between the wirings, (A) gives the opposite phase signal, (B) gives the same phase signal, and (C) shows FIG. 7 (b). As shown in the block diagram of FIG. 8, a fixed potential wiring is inserted between three signal lines w1, w2, and w3, and the opposite phase signal of FIG. 7A is a simulation result based on delay information obtained from layout data of the circuit of the block diagram illustrated in FIG.

【0006】図9のグラフにおいて(A)、(B)測定
結果と(D)のシミュレーション結果に大きな差がある
のに対し、(C)の信号線間に固定電位配線を挿入した
場合は、(D)と非常に近い値が得られている。これは
実遅延シミュレーションでは遅延情報として抽出されて
いるのは、配線の抵抗成分や容量成分であって、動的に
変化するクロストークによる遅延は反映されない為であ
る。このように入力信号パターンによって遅延時間が異
なってくるとBAとして成り立たず、これまでと同様に
実回路の動作を保証することができない。
In the graph of FIG. 9, while there is a large difference between the measurement results of (A) and (B) and the simulation result of (D), when a fixed potential wiring is inserted between the signal lines of (C), A value very close to (D) is obtained. This is because, in the actual delay simulation, the delay information is extracted as the delay information due to the resistance component and the capacitance component of the wiring, and the delay due to the dynamically changing crosstalk is not reflected. If the delay time varies depending on the input signal pattern as described above, it does not hold as BA, and the operation of the actual circuit cannot be guaranteed as before.

【0007】これらのことから、クロストークによる遅
延時間変動に左右されないレイアウト、または新たなB
Aの手法を構築する必要がある。
For these reasons, a layout which is not affected by delay time fluctuation due to crosstalk, or a new B
A method needs to be constructed.

【0008】しかしながら、この課題を解決するために
配線幅や配線間隔を大きくとると微細化によるメリット
が小さく、また固定電位配線によるシールド配線は配線
間の干渉を防ぐには有効であるが、面積を増大させる一
要因になる。
However, if the wiring width and the wiring interval are increased to solve this problem, the merit of miniaturization is small, and the shield wiring using the fixed potential wiring is effective in preventing interference between the wirings. Is one factor that increases

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に、本発明の半導体集積回路は、電源および接地配線に
より1本の信号線を挟み込むことで隣り合う配線からの
干渉を防ぎ、かつこれを電源として利用することを特徴
とする。
In order to solve this problem, a semiconductor integrated circuit according to the present invention prevents interference from an adjacent wiring by sandwiching one signal line between a power supply and a ground wiring. Is used as a power source.

【0010】[0010]

【発明の実施の形態】以下、本発明の第一の実施形態に
ついて、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0011】図1は請求項1に係る発明の構成図であ
り、縦方向の配線100〜102、110、111は例
えば1層メタル、横方向の配線200〜202、21
0、211、212は例えば2層メタルであり、500
〜507は1層メタルと2層メタルを繋ぐヴィアであ
る。ここで配線110、111、210〜212は信号
線であり、その間を最小間隔だけ開けて、最小線幅の電
源配線100,102,200,202と接地配線10
1,201が交互に配線されており、必ず1本の信号線
が電源配線と接地配線により挟まれるように構成されて
いる。このように一方向に電源配線、信号配線、接地配
線、信号配線、電源配線を繰り返し、立体的なメッシュ
状の電源および接地配線で信号線を囲むことで信号線同
士の干渉を防ぐことができる。なお縦方向を2層メタ
ル、横方向を1層メタルで配線しても構わないものとす
る。また電源配線および接地配線の配線幅、信号線との
配線間隔は任意とする。
FIG. 1 is a block diagram of the invention according to claim 1, wherein the vertical wirings 100 to 102, 110 and 111 are, for example, one-layer metal, and the horizontal wirings 200 to 202 and 21
0, 211, and 212 are, for example, two-layer metals, and 500
Reference numerals 507 indicate vias connecting the first-layer metal and the second-layer metal. Here, the wirings 110, 111, 210 to 212 are signal lines, and the signal lines are separated by a minimum distance, and the power supply wirings 100, 102, 200, 202 having the minimum line width and the ground wiring 10 are formed.
1, 201 are alternately wired, and one signal line is always sandwiched between a power supply line and a ground line. As described above, the power supply wiring, the signal wiring, the ground wiring, the signal wiring, and the power supply wiring are repeated in one direction, and the signal lines are surrounded by the three-dimensional mesh-shaped power supply and ground wirings, thereby preventing interference between the signal lines. . It is to be noted that the wiring may be made of a two-layer metal in the vertical direction and a one-layer metal in the horizontal direction. In addition, the width of the power supply wiring and the ground wiring, and the distance between the power supply wiring and the signal wiring are arbitrary.

【0012】次に図2は請求項3に係る発明の構成図で
あり、図1に配線層を1つ加えたものである。150、
151、160、161は例えば1層メタル、250、
251、260、261は例えば2層メタル、350、
351、360、361は例えば3層メタルであり、1
60、161、260、261、360、361は信号
線、151、251、351は電源配線、150、25
0、350は接地配線である。3層は1層、2層と同様
に電源配線、信号線、接地配線の繰返しで構成されてい
る。また3層の信号線下には1層の電源配線もしくは接
地配線がくるように配置し、上下の配線間の干渉を防ぐ
ようにする。また4層構造においては同様に3層の垂直
方向に電源配線、信号線、接地配線を繰り返し、信号線
下に電源配線もしくは接地配線を配置する。この繰り返
しにより少なくとも3層以上の多層化に対応する。なお
縦方向を2、4層、横方向を1、3層で配線しても構わ
ないものとする。また電源配線および接地配線の配線
幅、信号線との配線間隔は任意とする。
FIG. 2 is a block diagram of the invention according to claim 3, which is obtained by adding one wiring layer to FIG. 150,
151, 160, 161 are, for example, one-layer metal, 250,
251, 260 and 261 are, for example, two-layer metal, 350,
351, 360 and 361 are, for example, three-layer metals,
60, 161, 260, 261, 360, and 361 are signal lines; 151, 251, and 351 are power supply lines;
Reference numerals 0 and 350 are ground wirings. Like the first and second layers, the three layers are formed by repeating power supply lines, signal lines, and ground lines. In addition, one layer of power supply wiring or ground wiring is disposed below the three layers of signal lines so as to prevent interference between upper and lower wirings. In the four-layer structure, the power supply wiring, the signal line, and the ground wiring are similarly repeated in the vertical direction of three layers, and the power supply wiring or the ground wiring is arranged below the signal line. This repetition corresponds to at least three or more layers. Note that wiring may be performed in two or four layers in the vertical direction and one or three layers in the horizontal direction. In addition, the width of the power supply wiring and the ground wiring, and the distance between the power supply wiring and the signal wiring are arbitrary.

【0013】次に本発明の第二の実施形態としてブロッ
ク間配線での適用例について述べる。
Next, as a second embodiment of the present invention, an example of application to inter-block wiring will be described.

【0014】図3はブロック間においてメッシュ状固定
電位配線を配置したものである。ここで600〜608
は例えば電源配線、700〜707は例えば接地配線で
あり、各々はヴィアで繋がり、メッシュ状の固定電位配
線網を形成している。また固定電位配線間の破線800
〜815を使って各ブロック間の接続を行なう。
FIG. 3 shows an arrangement of mesh-like fixed potential wirings between blocks. Where 600-608
Are, for example, power supply wirings, and 700 to 707 are, for example, ground wirings, each of which is connected by a via to form a mesh-shaped fixed potential wiring network. A broken line 800 between the fixed potential wirings
The connection between the blocks is made using .about.815.

【0015】図4はメッシュ状固定電位配線による信号
線間の干渉を防ぐ半導体集積回路の生成フローであり、
機能ブロックの仮配置、信号線の自動配線、メッシュ状
固定電位配線の生成、コンパクション処理の4つのステ
ップから成る。
FIG. 4 is a flow chart of a process for producing a semiconductor integrated circuit for preventing interference between signal lines due to mesh-like fixed potential wiring.
It comprises four steps: provisional placement of functional blocks, automatic wiring of signal lines, generation of mesh-like fixed potential wiring, and compaction processing.

【0016】まずはじめに予め作成された機能ブロック
の仮配置を行なう(1)。このとき機能ブロック間は配
線する領域を確保するため十分に開けておく。次に機能
ブロック間のスペースに例えばデザインルールで定めら
れた最小配線ピッチの2倍の配線ピッチにより信号線の
自動配線を行なう(2)。これにより信号線間に配線を
追加できるスペースを確保する。次に、信号線間にここ
では最小配線ピッチの4倍の配線ピッチでx軸方向に例
えば1層アルミ、y軸方向に例えば2層アルミの配線を
配置し、お互いの交点にヴィアを打ち、メッシュ状の配
線を行なう(3)。これを基幹電源配線につなげる。ま
た4倍の配線ピッチで配線しているため、信号線の両脇
にあったスペースは、片方だけ埋まっている状態にな
る。そのスペースを埋めるように、同様にしてメッシュ
状の配線を行ない、基幹接地配線と接続することで、信
号線をメッシュ状の固定電位配線で囲む。その後、得ら
れたレイアウトに対し、デザインルールで定められたピ
ッチにコンパクションを行なうことで、機能ブロックと
配線との間隔を縮め、レイアウト面積を最適化する
(4)。
First, provisional arrangement of functional blocks created in advance is performed (1). At this time, the functional blocks are sufficiently opened to secure a wiring area. Next, automatic wiring of signal lines is performed in the space between the functional blocks at a wiring pitch twice as large as the minimum wiring pitch determined by the design rule (2). This secures a space in which wiring can be added between signal lines. Next, wiring of, for example, one layer of aluminum in the x-axis direction and wiring of, for example, two layers of aluminum in the y-axis direction are arranged between the signal lines at a wiring pitch of four times the minimum wiring pitch, and vias are formed at intersections of each other. Perform wiring in a mesh form (3). This is connected to the main power supply wiring. In addition, since wiring is performed at four times the wiring pitch, the space on both sides of the signal line is in a state where only one of the spaces is buried. Similarly, a mesh-like wiring is formed so as to fill the space, and the signal line is surrounded by a mesh-like fixed potential wiring by connecting to a main ground wiring. Thereafter, compaction is performed on the obtained layout at a pitch determined by a design rule to reduce the distance between the functional block and the wiring and optimize the layout area (4).

【0017】図5は配線効率を優先させた場合のレイア
ウト図である。あらかじめ遅延が大きくなることが予測
される信号線を指定し、まず指定した信号線からブロッ
ク間の適当な位置、例えばブロック間の中央に配線を行
ない、かつ固定電位配線網で囲む。その後に他の指定外
の信号線を、メッシュ状固定電位配線網の外の空いてい
る配線領域WA1〜WA3に配線させることにより、面
積を抑えることができる。
FIG. 5 is a layout diagram when the wiring efficiency is prioritized. A signal line whose delay is predicted to be large is specified in advance, and wiring is first performed from the specified signal line to an appropriate position between blocks, for example, a center between blocks, and is surrounded by a fixed potential wiring network. Thereafter, other unspecified signal lines are routed in the vacant wiring regions WA1 to WA3 outside the mesh-shaped fixed potential wiring network, so that the area can be reduced.

【0018】なお図6は本発明のレイアウト構成を用い
て論理回路を構成したものである。ここで論理回路1は
インバータ、論理回路2はバッファを構成したものであ
り、論理回路構成部分を1層メタルで構成し、セル間の
接続を2層以上で配線してある。また2層メタルまで引
き上げられた入出力端子、入力1、出力1、入力2、出
力2の位置を、入出力端子間に1本以上の固定電位配線
が入る位置に配置してある。なお入出力間に入る固定電
位配線の数が2本以上の場合は固定電位配線間の間に1
本の信号線が通せるだけの間隔を開けておく。つまり入
出力端子間がn本の固定電位配線と(n−1)本の信号
線(ここでnは1以上)が通るだけ間隔を開け、かつ並
列に配置した時に、セル間に1本の固定電位配線が通る
ようにセル幅を決定してやる。このような構成でスタン
ダードセルを作成し、このセルライブラリを用いてブロ
ックレイアウトを行なえば、セル上にもメッシュ状の固
定電位配線網を形成できるので、より半導体集積回路全
体で電源の安定化を行なうことができる。
FIG. 6 shows a configuration of a logic circuit using the layout configuration of the present invention. Here, the logic circuit 1 constitutes an inverter, and the logic circuit 2 constitutes a buffer. The logic circuit component is constituted by a single-layer metal, and connections between cells are wired in two or more layers. Further, the positions of the input / output terminals, input 1, output 1, input 2, and output 2 raised to the two-layer metal are arranged at positions where one or more fixed potential wirings enter between the input / output terminals. If the number of fixed potential wirings between input and output is two or more, one
Leave enough space for the signal lines to pass through. That is, when n fixed potential wirings and (n-1) signal lines (where n is 1 or more) pass between the input / output terminals and are arranged in parallel, when one cell is placed in parallel, one cell is placed between cells. The cell width is determined so that the fixed potential wiring passes. If a standard cell is created with such a configuration and a block layout is performed using this cell library, a mesh-like fixed potential wiring network can be formed on the cell, so that the power supply can be more stabilized throughout the semiconductor integrated circuit. Can do it.

【0019】[0019]

【発明の効果】本発明は電源配線と接地配線により1本
信号線を挟み込むことで、隣り合う信号線間の干渉を防
ぎ、動的な遅延要因を抑えることが出来るため、新たな
BA手法を確立することなくシミュレーションによる実
回路の動作保証を行なうことができる。
According to the present invention, since one signal line is sandwiched between a power supply line and a ground line, interference between adjacent signal lines can be prevented and a dynamic delay factor can be suppressed. The operation of a real circuit can be guaranteed by simulation without being established.

【0020】また従来のシールドと同様に面積の増加に
寄与するものの、単一な固定電位配線による従来のシー
ルドとは異なり、電源配線と接地配線を用いているた
め、シールド箇所が増えるほど電源および接地配線が増
えるので、内部電源電圧の安定化を図ることができる。
Further, although it contributes to an increase in the area similarly to the conventional shield, unlike the conventional shield using a single fixed potential wiring, the power supply wiring and the ground wiring are used. Since the number of ground wirings increases, the internal power supply voltage can be stabilized.

【0021】また配線する方向を一方向に固定し電源配
線、信号線、接地線、信号線、電源配線を繰り返し、配
線が垂直に交わるように層を増やしていくことで、効率
よく信号線にシールドを施し、内部電源電圧の安定化を
図ることができる。
The wiring direction is fixed in one direction, and the power supply line, the signal line, the ground line, the signal line, and the power supply line are repeated, and the number of layers is increased so that the lines intersect vertically. By providing a shield, the internal power supply voltage can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態におけるメッシュ状固
定電位配線の構成図
FIG. 1 is a configuration diagram of a mesh-shaped fixed potential wiring according to a first embodiment of the present invention.

【図2】本発明の第一の実施形態における多層メッシュ
状固定電位配線の構成図
FIG. 2 is a configuration diagram of a multilayer mesh fixed potential wiring according to the first embodiment of the present invention.

【図3】ブロック間配線とメッシュ状固定電位配線の構
成図
FIG. 3 is a configuration diagram of inter-block wiring and mesh-shaped fixed potential wiring;

【図4】メッシュ状固定電位配線の生成フロー図FIG. 4 is a flow chart of generating a mesh-shaped fixed potential wiring.

【図5】配線効率を優先した場合のブロック間配線とメ
ッシュ状固定電位配線の構成図
FIG. 5 is a configuration diagram of inter-block wiring and mesh-shaped fixed potential wiring when wiring efficiency is prioritized.

【図6】固定電位配線挿入を容易にするセルの構成図FIG. 6 is a configuration diagram of a cell that facilitates insertion of a fixed potential wiring.

【図7】一般的な平行配線を有する回路図FIG. 7 is a circuit diagram having a general parallel wiring;

【図8】図6の回路の信号伝達時間を示す図FIG. 8 is a diagram showing a signal transmission time of the circuit of FIG. 6;

【図9】入力信号パターンとグラフの対応表図FIG. 9 is a table showing correspondence between input signal patterns and graphs.

【符号の説明】[Explanation of symbols]

100〜102、110、111、150、151、1
60、161 n層メタル配線 200〜202、210、211、250、251、2
60、261 n+1層メタル配線 500〜507 ヴィア 350、351、360、361 n+2層メタル配線 B1〜B3 機能ブロック 600〜608、650〜657 電源配線 700〜707、750〜756 接地配線 WA1〜WA3 配線領域 ba1、ba2、bb1、bb2、bc1、bc2 バ
ッファ w1〜w3 信号線
100 to 102, 110, 111, 150, 151, 1
60, 161 n-layer metal wiring 200 to 202, 210, 211, 250, 251, 2
60,261 n + 1 layer metal wiring 500-507 Via 350,351,360,361 n + 2 layer metal wiring B1-B3 Functional block 600-608,650-657 Power supply wiring 700-707,750-756 Ground wiring WA1-WA3 Wiring area ba1, ba2, bb1, bb2, bc1, bc2 Buffer w1 to w3 Signal line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2つ以上の配線層を有する半
導体集積回路において、1つの配線層で一方向に最小配
線幅、最小配線間隔で等間隔に1本の電源配線、信号
線、接地配線、信号線が繰り返し配置されており、かつ
その垂直方向にもう1つの配線層で1本の電源配線、信
号線、接地配線、信号線、を繰り返し配置されたレイア
ウト構造を有することを特徴とする半導体集積回路。
In a semiconductor integrated circuit having at least two or more wiring layers, a single power supply line, a signal line, a ground line, a minimum wiring width in one direction, and a minimum wiring interval at equal intervals in one wiring layer. A semiconductor having a layout structure in which signal lines are repeatedly arranged, and one power supply wiring, signal line, ground wiring, and signal line are repeatedly arranged in another wiring layer in the vertical direction. Integrated circuit.
【請求項2】 少なくとも3つ以上の配線層を有する半
導体集積回路において、下位の配線層に対し、上位層で
垂直方向に電源配線、信号線、接地配線を繰り返す請求
項1に記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein in a semiconductor integrated circuit having at least three or more wiring layers, a power supply wiring, a signal line, and a ground wiring are vertically repeated in an upper layer with respect to a lower wiring layer. circuit.
【請求項3】 信号線と電源および接地配線の配線間距
離、配線幅を変えた請求項1、請求項2に記載の半導体
集積回路。
3. The semiconductor integrated circuit according to claim 1, wherein the distance between the signal lines and the power supply and ground lines and the line width are changed.
JP30215399A 1999-10-25 1999-10-25 Semiconductor integrated circuit Pending JP2001127162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30215399A JP2001127162A (en) 1999-10-25 1999-10-25 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30215399A JP2001127162A (en) 1999-10-25 1999-10-25 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2001127162A true JP2001127162A (en) 2001-05-11

Family

ID=17905559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30215399A Pending JP2001127162A (en) 1999-10-25 1999-10-25 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2001127162A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302756A (en) * 2004-04-06 2005-10-27 Nec Electronics Corp Semiconductor integrated circuit and designing method therefor
JP2005535118A (en) * 2002-07-29 2005-11-17 シンプリシティ・インコーポレーテッド Integrated circuit device and method and apparatus for designing an integrated circuit device
JP2006179554A (en) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd Semiconductor circuit device and its design method
US7207023B2 (en) 2003-07-23 2007-04-17 Ricoh Company, Ltd. Semiconductor device layout method, a computer program, and a semiconductor device manufacture method
JP2007149826A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Standard cell and semiconductor integrated circuit comprising the same
JP2007207301A (en) * 2006-01-31 2007-08-16 Ricoh Co Ltd Semiconductor memory device
JP2009231513A (en) * 2008-03-21 2009-10-08 Elpida Memory Inc Semiconductor device
JP2010021574A (en) * 2009-10-19 2010-01-28 Renesas Technology Corp Multilayer wiring device
US7739624B2 (en) 2002-07-29 2010-06-15 Synopsys, Inc. Methods and apparatuses to generate a shielding mesh for integrated circuit devices
US7774186B2 (en) 2002-04-25 2010-08-10 Synopsys, Inc. Power and ground shield mesh to remove both capacitive and inductive signal coupling effects of routing in integrated circuit device
JP2012142434A (en) * 2010-12-28 2012-07-26 Toshiba Corp Semiconductor integrated circuit wiring method, semiconductor circuit wiring device and semiconductor integrated circuit
US8686567B2 (en) 2010-11-18 2014-04-01 Kiyotaka Endo Semiconductor device having plural wiring layers
JP2014072491A (en) * 2012-10-01 2014-04-21 Fujitsu Semiconductor Ltd Semiconductor device and method of designing semiconductor device
US9059165B2 (en) 2012-04-26 2015-06-16 Ps4 Luxco S.A.R.L. Semiconductor device having mesh-pattern wirings

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7774186B2 (en) 2002-04-25 2010-08-10 Synopsys, Inc. Power and ground shield mesh to remove both capacitive and inductive signal coupling effects of routing in integrated circuit device
US8692297B2 (en) 2002-04-25 2014-04-08 Synopsys, Inc. Power and ground shield mesh to remove both capacitive and inductive signal coupling effects of routing in integrated circuit device
US7739624B2 (en) 2002-07-29 2010-06-15 Synopsys, Inc. Methods and apparatuses to generate a shielding mesh for integrated circuit devices
US8122412B2 (en) 2002-07-29 2012-02-21 Synopsys, Inc. Shelding mesh design for an integrated circuit device
US8286118B2 (en) 2002-07-29 2012-10-09 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US8701068B2 (en) 2002-07-29 2014-04-15 Synopsys, Inc. Interconnection device in a multi-layer shielding mesh
US8166434B2 (en) 2002-07-29 2012-04-24 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US8881086B2 (en) 2002-07-29 2014-11-04 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US8171441B2 (en) 2002-07-29 2012-05-01 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US8386979B2 (en) 2002-07-29 2013-02-26 Synopsys, Inc. Method and apparatus to design an interconnection device in a multi-layer shielding mesh
JP2005535118A (en) * 2002-07-29 2005-11-17 シンプリシティ・インコーポレーテッド Integrated circuit device and method and apparatus for designing an integrated circuit device
US7943436B2 (en) 2002-07-29 2011-05-17 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US8161442B2 (en) 2002-07-29 2012-04-17 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices
US8074197B2 (en) 2002-07-29 2011-12-06 Synopsys, Inc. Shielding mesh design for an integrated circuit device
US8006205B2 (en) 2003-07-23 2011-08-23 Ricoh Company, Ltd. Semiconductor device layout method, a computer program, and a semiconductor device manufacture method
US7207023B2 (en) 2003-07-23 2007-04-17 Ricoh Company, Ltd. Semiconductor device layout method, a computer program, and a semiconductor device manufacture method
JP2005302756A (en) * 2004-04-06 2005-10-27 Nec Electronics Corp Semiconductor integrated circuit and designing method therefor
JP4646619B2 (en) * 2004-12-21 2011-03-09 三洋電機株式会社 Semiconductor circuit device and design method thereof
JP2006179554A (en) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd Semiconductor circuit device and its design method
JP2007149826A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Standard cell and semiconductor integrated circuit comprising the same
JP2007207301A (en) * 2006-01-31 2007-08-16 Ricoh Co Ltd Semiconductor memory device
JP2009231513A (en) * 2008-03-21 2009-10-08 Elpida Memory Inc Semiconductor device
JP2010021574A (en) * 2009-10-19 2010-01-28 Renesas Technology Corp Multilayer wiring device
US8686567B2 (en) 2010-11-18 2014-04-01 Kiyotaka Endo Semiconductor device having plural wiring layers
JP2012142434A (en) * 2010-12-28 2012-07-26 Toshiba Corp Semiconductor integrated circuit wiring method, semiconductor circuit wiring device and semiconductor integrated circuit
US9059165B2 (en) 2012-04-26 2015-06-16 Ps4 Luxco S.A.R.L. Semiconductor device having mesh-pattern wirings
JP2014072491A (en) * 2012-10-01 2014-04-21 Fujitsu Semiconductor Ltd Semiconductor device and method of designing semiconductor device

Similar Documents

Publication Publication Date Title
JP2001127162A (en) Semiconductor integrated circuit
CN101355077A (en) Method for designing semiconductor device and semiconductor device
CN100401511C (en) Integrated circuit design for routing an electrical connection
JP3677135B2 (en) Semiconductor integrated circuit and manufacturing method thereof
EP0926736B1 (en) Semiconductor integrated circuit having thereon on-chip capacitors
JP3119197B2 (en) Automatic wiring method considering crosstalk
JPS6247148A (en) Semiconductor integrated circuit device
JP3281234B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
US6841886B2 (en) Layout structure for a flip chip semiconductor integrated circuit
JP2000068383A (en) Design method for semiconductor integrated circuit device and the semiconductor integrated circuit device
JPH08274127A (en) Semiconductor device
JP4708865B2 (en) Semiconductor device
JPWO2004068577A1 (en) Semiconductor device
JPH0590427A (en) Semiconductor ic device
JP2004103821A (en) Semiconductor integrated circuit
CN112466815B (en) Redundant through hole adding method
JP3386004B2 (en) Semiconductor integrated circuit device
JP4535311B2 (en) Wiring structure of semiconductor device
US7683490B2 (en) Semiconductor integrated circuit and semiconductor device having multilayer interconnection
JPS62203351A (en) Interconnection structure of integrated circuit
JP2682423B2 (en) Wiring method for multiple line widths of LSI
JP3367635B2 (en) Method for determining wiring route of integrated circuit
JPH0377324A (en) Semiconductor integrated circuit
JP3130891B2 (en) Wiring method
JP2947219B2 (en) Wiring structure of standard cell type semiconductor integrated circuit