JPH0377324A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0377324A
JPH0377324A JP21364389A JP21364389A JPH0377324A JP H0377324 A JPH0377324 A JP H0377324A JP 21364389 A JP21364389 A JP 21364389A JP 21364389 A JP21364389 A JP 21364389A JP H0377324 A JPH0377324 A JP H0377324A
Authority
JP
Japan
Prior art keywords
wiring
integrated circuit
semiconductor integrated
cell
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21364389A
Other languages
Japanese (ja)
Inventor
Hiroshi Shinohara
尋史 篠原
Yoshiyuki Kishi
岸 良行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21364389A priority Critical patent/JPH0377324A/en
Publication of JPH0377324A publication Critical patent/JPH0377324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To increase resistance to electromigration, to make wiring region small and to realize a high integration by a method wherein a semiconductor integrated circuit is provided with a plurality of metal wirings layers and a plurality of wiring lines and the metal wiring are piled up in parallel on the same wiring lines over a plurality of layers and connected to each other via through-holes. CONSTITUTION:Al metal wiring such as power-supply lines 7a, 8a, signal conductors 7b, 8b, grounding conductors 7c, 8c, and the like are piled up in parallel on the same wirings lines over two layers in a semiconductor integrated circuit substrate which is provided with a plurality of metal wiring layers and a plurality of wiring lines; they are connected to each other via through-holes 6. Widths of the Al wirings 7a, 7b, 7c, 8a, 8b, 8c are narrow as compared with those of conventional metal wirings. The widths of the metal wirings are not made wider but are composed of a plurality of layers. Thereby, an electric current is distributed and a current density is suppressed. Since the widths of the wirings are narrow, the area of the semiconductor integrated circuit becomes small, compared with that of conventional circuits.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体集積回路の配線レイアウトパターンに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wiring layout pattern of a semiconductor integrated circuit.

[従来の技術] 半導体集積回路にお番づる配線にはA1やA1とSi。[Conventional technology] A1, A1 and Si are used for wiring that connects to semiconductor integrated circuits.

Cuの合金、Wなどの抵抗値の小さい金属を用いること
により電力の損失を少なくしている。第7図は従来の゛
を導体&積回路(インバータ回路)の部分平面図である
。図において、(1)は金属配線で、(la)は電源線
、(1b)は信男線、(1,c )は接地線である。(
2)はP゛拡散領域、(3)はn4拡故領域、(0はポ
リシリコン、(5)は拡散領域(2)。
Power loss is reduced by using a metal with a low resistance value, such as a Cu alloy or W. FIG. 7 is a partial plan view of a conventional conductor & product circuit (inverter circuit). In the figure, (1) is a metal wiring, (la) is a power supply line, (1b) is a Nobuo line, and (1, c) is a grounding line. (
2) is the P diffusion region, (3) is the n4 diffusion region, (0 is polysilicon, and (5) is the diffusion region (2).

(3)と金属配線(+、a) 、 (lb) 、 He
)を接続するwノタクトホール(5)である。
(3) and metal wiring (+, a), (lb), He
) is the w-tact hole (5) that connects.

次に動作について説明する。金属配線(+、)に用いら
れるへl、AI合金等の金属は論理ゲートを構成するシ
リコン化合物に比べて融点が低く、高温Fや106A/
 Cm2の電流密度下ではエレクトロ・マイグレーショ
ンといわれる断線や移動といった現象が起こる。
Next, the operation will be explained. The metals used for metal wiring (+,), such as aluminum and AI alloys, have a lower melting point than the silicon compounds that make up logic gates, and are
Under a current density of Cm2, a phenomenon called electromigration such as disconnection or movement occurs.

従来の金属配線(1)ではマイグレーションに対する強
化策として、充分な配線幅を設けることによって大電流
密度に耐える金属配線(1)にしていた。特に電源線(
1a)、接地線(1C)および信号線(1b)の内クロ
ック線等の負荷容量の大きい信号線のに線幅は広く設け
て、電流密度がlO6八/へl112以下になるように
されていた。
In the conventional metal wiring (1), as a reinforcement measure against migration, a sufficient wiring width is provided so that the metal wiring (1) can withstand a large current density. Especially the power line (
1a) Among the grounding line (1C) and signal line (1b), the signal line with a large load capacity such as a clock line is provided with a wide line width so that the current density is less than 1O6/112. Ta.

[発明が解決しようとする課題] 従来の半導体集積回路の金属配線は以上のように構成さ
れていたので、マイグレーションに耐えつるに充分な幅
を設けることにより半導体集積回路のレイアウト・パタ
ーン(マスクパターン)が大きくなるという問題点があ
った。
[Problems to be Solved by the Invention] Since the metal wiring of conventional semiconductor integrated circuits has been configured as described above, it is possible to improve the layout pattern (mask pattern) of semiconductor integrated circuits by providing a sufficient width to withstand migration. ) became large.

本発明は上記のような問題点を解決するためになされた
もので、エレクトロマイグレーションに強く、かつ配線
領域を小さくし、結果として高集積化を得ることを目的
とする。
The present invention was made to solve the above-mentioned problems, and aims to be strong against electromigration, reduce the wiring area, and achieve high integration as a result.

[:Jiflを解決するための手段コ 本発明に係る半導体集積回路は複数の金属配線層と複数
の配線線路を有し、金属配線を複数層にわたって同じ配
線線路上平行に重ね合わせ、スルーホールを介して互い
に接続するようにしたものである。
[: Means for solving Jifl] The semiconductor integrated circuit according to the present invention has a plurality of metal wiring layers and a plurality of wiring lines, and the metal wiring is overlapped in parallel on the same wiring line across multiple layers, and through holes are They are connected to each other through.

[作用] 本発明における金属配線は複数層にわたって同じ配線線
路上平行に重ね合わせスルーホールを介して互いに接続
されているので、電流を分配することかできるとともに
配線幅はエレクトロマイグレーションについて強化しな
がら狭くすることが可能となり、金属配線幅が狭くでき
結果とし゛C半導体集積回路の高集積化を計ることがで
きる。
[Function] Since the metal wiring in the present invention is layered in parallel on the same wiring line over multiple layers and connected to each other via through holes, current can be distributed and the wiring width can be narrowed while strengthening electromigration. As a result, the width of the metal wiring can be narrowed, and as a result, high integration of the C semiconductor integrated circuit can be achieved.

[実施例] 以下、本発明に係る半導体集積回路の一実施例を図につ
いて説明する。第1図は本発明の一実施例である半導体
集積回路のインバータ回路の平面図、第2図は第1図に
おける接地線付近II −IIから見た斜視図を示して
いる。なお、図中符号(2)〜(5)は前記従来のもの
と同一につき説明は省略する。
[Embodiment] Hereinafter, an embodiment of a semiconductor integrated circuit according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of an inverter circuit of a semiconductor integrated circuit according to an embodiment of the present invention, and FIG. 2 is a perspective view of the vicinity of the ground line II--II in FIG. 1. Note that the reference numerals (2) to (5) in the figure are the same as those of the above-mentioned conventional device, and the explanation thereof will be omitted.

四において、(7a)はAI金属配線で形成された第1
層電源線、(8a)は第2層電源線、(7b)第1層信
号線、(8b)は第2層信号線、(7C)は第1層接地
線、(8c)は第2層接地線、(6)はスルーホールで
ある。なお、第1図および第2図ではAIによる金属配
線の例を示したがAI塩以外もAIとSi、AIと54
とCu、八lとCu等の合金を用いた金属配線でもよい
4, (7a) is the first
Layer power supply line, (8a) is the second layer power supply line, (7b) is the first layer signal line, (8b) is the second layer signal line, (7C) is the first layer ground line, (8c) is the second layer The ground wire (6) is a through hole. In addition, although FIGS. 1 and 2 show examples of metal wiring using AI, there are also other metal interconnections other than AI salt, such as AI and Si, AI and 54
Metal wiring using an alloy of 1 and Cu, 8L and Cu, etc. may also be used.

前記従来のものとは異なり、第1図および第2図では電
源線(7a) 、 (8a)信号線(7b)、(8b)
 、接地線(7c) 、 (8c)等のA1金属配線は
複数の金属配線層と複数の配線線路を有する半導体集積
回路基板中、2層にわたって同一配線線路上平行に重ね
合わせ、スルーホール(6)を介して互いに接続されて
いる。又、^l金属配線(7a) 、 (7b) 、 
(7c) 、 (8a) 。
Unlike the conventional one, in FIGS. 1 and 2, power lines (7a), (8a), signal lines (7b), (8b)
, ground wires (7c), (8c), etc. are superimposed in parallel on the same wiring line across two layers in a semiconductor integrated circuit board having multiple metal wiring layers and multiple wiring lines, and through holes (6 ) are connected to each other through. Also, ^l metal wiring (7a), (7b),
(7c), (8a).

(8b) 、 (8c)の幅は従来の金属配線(la)
 、 (lb) 、 (1,c)に比べて狭い。また、
第1図および第2図ではスルーホール(6)は1つずつ
用いているが2個以上でもよい。A1金属配線経路が枝
別れすることを考慮すると、スルーホール(6)は金属
配線幅の間隔1で設けるのが有効である。その−例を第
3図にボす。
The width of (8b) and (8c) is the conventional metal wiring (la)
, (lb) is narrower than (1,c). Also,
Although one through hole (6) is used in FIGS. 1 and 2, two or more may be used. Considering that the A1 metal wiring path branches, it is effective to provide the through holes (6) at intervals of 1 the width of the metal wiring. An example of this is shown in Figure 3.

次に半導体集積回路の動作について説明する。Next, the operation of the semiconductor integrated circuit will be explained.

従来の配線方法ではTLtL密度を106^/cm2以
下に抑えるために金属配線幅を広くしていた。そのため
半導体集積回路において金属配線幅の占める面積の割合
が大きくなり、結果として半導体集積回路全体の面積は
大きくなる。
In the conventional wiring method, the metal wiring width was widened in order to suppress the TLtL density to 106^/cm2 or less. Therefore, in a semiconductor integrated circuit, the proportion of the area occupied by the metal wiring width increases, and as a result, the area of the entire semiconductor integrated circuit increases.

本実施例では金属配線の幅を広くするのではなく、複数
層にすることによって電流を分配し、定流密度を抑える
ことができる。
In this embodiment, the current can be distributed and the constant current density can be suppressed by using multiple layers instead of increasing the width of the metal wiring.

第1図および第2図では(7a)−(8a) 、 (7
b)−(8b) 。
In Figures 1 and 2, (7a)-(8a), (7
b)-(8b).

(7c)−(8c)といった2層の金属配線層の例を示
したが、3層以上でもよい。また配線幅が狭いことによ
り、半導体集積回路の面積は従来のものに比へC小さく
なる。−にt71.’、、+実施例では金属配線は全・
C複数重・ンj ’f■ねaわt+た場合について説明
しtこか、電源線、接地線、クリック線等のf1荷容h
lの人きい+、’; l、:線に“適用し・た場合も上
記実施例と同様の効果やで秦する。
Although an example of two metal wiring layers such as (7c) to (8c) is shown, three or more layers may be used. Furthermore, because the wiring width is narrow, the area of the semiconductor integrated circuit becomes smaller by C compared to the conventional one. - to t71. ',,+In the example, all metal wiring is
Explain the case of C multiple loads, nj 'f■neawat+, f1 load capacity of power supply wire, grounding wire, click wire, etc.
When applied to the line, the effect is similar to that of the above embodiment.

次に他の実施例Cついて説明する。″r−導体集禎11
11路を設計する際に、゛rr体集積回路を基本機能・
1−ン7−ル(セル)から階居的に構築していく、いJ
)ゆるセルベー 米設計力式がある。セルは半導体集積
回路膜XI” Jl、7j−って、トランジスタ1個と
か、インバータ回路上個等を1つの基本11位とし一ζ
考えれれる。セルヘール設計方式によって設計した゛r
、導体集積回路の平面四を第4図に示す。この)tパ導
体集積[q]路はトランジスタ等の能動素子を今んた機
能・(ンj、〜ルであるセル(9)と半導保集+i’l
 l+】lx外部どの電気的接続を行うバット(10)
と、セル間及びセル−パッド間を電気的に接続する金属
配線な含むセル外配線領域(11)を備えている。
Next, another embodiment C will be explained. ″r-conductor collection 11
When designing the 11th circuit, the basic functions and
It is constructed in a hierarchical manner from 1-7-rules (cells).
) Yuru Selbee There is a rice design force formula. A cell is a semiconductor integrated circuit film.
I can think about it.゛r designed using the CellHale design method
, a plane view of the conductor integrated circuit is shown in FIG. This conductor integration [q] path now functions as an active element such as a transistor.
l+】lx Bat for external electrical connections (10)
and an extra-cell wiring area (11) including metal wiring for electrically connecting cells and between cells and pads.

図に小ずよつにセルの形は 一般には4角形か多いが、
多角形(1り1では6 f(J 尼、8角形〉でもよい
As shown in the figure, the cells are generally rectangular in shape, but
A polygon (6 f (J, octagon) for 1 and 1 may also be used.

設計には!1′、導体集禎回路に要求されるセル(9)
を配jご7−4−る。
For design! 1', Cell required for conductor integrated circuit (9)
7-4-ru.

配置するセル数は必丑に尾・じで何個でもよい。Any number of cells may be placed.

叉、箪4[メ1で61セル(9)を7個配置した場合を
小したか、各々のセルの機能は同じ2て′あ−〕でも異
なツ゛(いてもよい。セル(9)を配置した後、セル外
配線領域(11)に、セル(9)とセル(9)、セル(
9)とバット(]0)を電気的に接続1−る金属配線(
広域配線) (+4)がなされる。広域配線(14)は
セjlz内配線領域(12)と・セル外配線領域(11
)によtとかっているか、セル外配線領域(11)の少
なくとも部分では1層合属だけで配線され(いる1、そ
の理由はセル外配線領域(11)にお吋る配線(10は
自動配線プログラムを用いてなされ、この時、、 P4
.散型にわたる金)萬配線は第1層金属配線に対して第
2層金属配線はjE直り向に配線するといった。τL合
に層を区別して用いるからである。
For example, the function of each cell is the same 2'a-], but the function of each cell may be different. After placing the cell (9), cell (9), cell (
9) and the bat (]0) are electrically connected 1- with the metal wiring (
wide area wiring) (+4) will be done. The wide area wiring (14) is connected to the wiring area within the cell (12) and the wiring area outside the cell (11).
), or at least part of the outside-cell wiring area (11) is wired with only one layer of interconnection (1).The reason is that the wiring (10 is automatically This is done using a wiring program, and at this time, P4
.. It is said that the second layer metal wiring is wired in the direction perpendicular to the first layer metal wire with respect to the first layer metal wire. This is because the layers are used separately in the case of τL.

従来、セル内外にまたがる広域配線(14)はセル内、
セル外ともに同じ配線幅であったか、セル内においては
第11ヌ1〜第3図の金属配線手段を適用り、たセルを
川、〈【することでセルの面積は小さくなり、その結果
、゛r導導体東回回路II¥i積は従来のものによる金
属配線を用いた場合よりも小さくなる5、特にこの実8
6例においてセル内配線領域(12)とセル外配線領域
(11)の境界近傍において1層会騰になっている広域
配線について第5図に示−・l” 、第51T!!Iに
おい°Cセル内の金属配線(7) 、 (8)は視数層
にわたって同じ配線経路上平行に亀ね合わせられ、スル
ーホール(Fi)によってη−いに接続さ、l″lでい
る。セル外配線領域(11)における広域配線は従来の
配線幅であるが、セル内においては配線軸か狭くなって
いる。セル内外の境界近傍のセル内においCはセル外配
線の幅(従来の配線軸)からセル内の多層金属配線幅へ
移行するための形か形成されでいる。そのいく一つかの
他の実施例を第6図にふず。第6図においてもスルーホ
ー・ル(6)を1つ又は2つ用いた例を示し・たか何個
設けでもよい。
Conventionally, wide-area wiring (14) that spans inside and outside the cell is
The area of the cell can be reduced by applying the metal wiring method shown in Figures 11 to 3 and making sure that the wiring width is the same both outside the cell and inside the cell. The r-conductor East Circuit II\i product is smaller than when using conventional metal wiring5, especially this fact8.
Figure 5 shows the wide-area wiring that has a one-layer rise near the boundary between the intra-cell interconnect area (12) and the outer-cell interconnect area (11) in six cases. The metal wirings (7) and (8) in the C cell are twisted in parallel on the same wiring path across the visual layer, and are connected in η-i by through holes (Fi), l″l. The wide-area wiring in the outside-cell wiring area (11) has the conventional wiring width, but inside the cell, the wiring axis is narrower. In the cell near the boundary between the inside and outside of the cell, C is formed in a shape to transition from the width of the wiring outside the cell (conventional wiring axis) to the width of the multilayer metal wiring inside the cell. Some other embodiments are shown in FIG. FIG. 6 also shows an example in which one or two through holes (6) are used; however, any number of through holes (6) may be provided.

1発明の効果] ]ユ[−のように本発明によれば、半導体集積回路にお
ける金属配線幅を狭くすることが可能となり、!t′−
導体集積回路の面積は小さくなる。叉、セル内においで
多層全域配線手段を適用した場合につい°Cもそのセル
の面積は小さくなり、その結果、f、導体集積回路に多
くのセルを紹、6込むことか出太るので、回路の高集積
化に゛つなかる。又、金属配線は同じ配線経路卜、複数
重にわた一〕で平行に重ね合わされてスルーホールによ
って1&続されているので、エレクトロ・マイグレーシ
21ノに強い配線となるなどの効果が11!ら力る。
1 Effects of the Invention] According to the present invention, it is possible to narrow the metal wiring width in a semiconductor integrated circuit, as shown in ! t'-
The area of conductor integrated circuits becomes smaller. Furthermore, if a multilayer interconnection method is applied within a cell, the area of the cell will become smaller, and as a result, the circuit will become thicker due to the introduction of more cells into the conductor integrated circuit. This leads to higher integration. In addition, the metal wiring is superimposed in parallel using the same wiring route, multiple layers, and connected by through holes, making the wiring resistant to electro-migration. Force yourself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るt導体集積101路(7) 、実
施例をシバしたインバータ回路の平面図、第21ヌ1は
第1図のII −II線より見た斜視図、第3図は、+
、免明に係る多層金属配線におけるスル・−ホールの間
隔についての例を示した平面図で、スルーホール(6)
は金属配線幅の間隔で設6−)コいろ。’;)’i <
図はセルへ−ス訛計tf式により設計され!:・本発明
の他の実7ih例を示した゛[導体集積[「j]路円才
面図、箪5し1は本発明に係るセル内外の現界近イ労の
金嵐配線を示した拡大説明図、第6図(a)〜(h)は
セル内外の境界近傍の金属配線の他の実施例を示した部
分平面図、第7図は従来の半導体集積回路を示した平面
図である。 図において、(6)はスルーホール、(7)は2層の金
属配線を重ねた時の第1層金属配線、(8)は第2層金
属配線、(9)はセルである。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a plan view of an inverter circuit with 101 circuits (7) of t-conductor integrated circuits according to the present invention, and FIG. 21 is a perspective view taken from line II-II in FIG. is +
, is a plan view showing an example of the spacing between through-holes in the multilayer metal interconnection according to the present invention, in which through-hole (6)
is set at the interval of the metal wiring width 6-) Color. ';)'i <
The diagram is designed by the cell accent meter tf formula! :・Conductor integration ['j] road diagram showing another practical example of the present invention, Figure 5-1 shows the actual wiring of the current area inside and outside the cell according to the present invention. Enlarged explanatory drawings, FIGS. 6(a) to (h) are partial plan views showing other embodiments of metal wiring near the boundaries between inside and outside cells, and FIG. 7 is a plan view showing a conventional semiconductor integrated circuit. In the figure, (6) is a through hole, (7) is a first layer metal wiring when two layers of metal wiring are stacked, (8) is a second layer metal wiring, and (9) is a cell. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の金属配線層と複数の配線経路を有する半導
体集積回路において、複数層にわたって同じ配線経路上
平行に重ね合わせ、スルーホールを介して互いに接続し
た多層金属配線手段を備えたことを特徴とする半導体集
積回路。
(1) A semiconductor integrated circuit having a plurality of metal wiring layers and a plurality of wiring paths, characterized in that it includes multilayer metal wiring means overlapping the plurality of layers in parallel on the same wiring path and connecting to each other via through holes. Semiconductor integrated circuit.
(2)能動素子を含み、半導体表面上のセル領域を占め
るセルを備え、半導体集積回路外部との電気的接続を行
うパッドを備え、前記セル及びパッドの占める領域外に
あって、セル間及びセル−パッド間を電気的に接続する
金属配線を含むセル外配線領域を備えた半導体集積回路
において、 セル領域とセル外配線領域にわたる広域配線を有し、こ
の広域配線はセル領域内の少なくとも一部分では前記多
層金属配線手段で配線され、セル外配線領域内の少なく
とも一部分では1層金属だけで配線され、前記多層金属
配線手段部分の幅の方が、前記1層金属部分の幅よりも
狭いことを特徴とする請求項、1記載の半導体集積回路
(2) A cell that includes an active element and occupies a cell area on the surface of the semiconductor, and a pad that makes an electrical connection with the outside of the semiconductor integrated circuit, and that is located outside the area occupied by the cells and pads, and that In a semiconductor integrated circuit equipped with an extra-cell wiring area including a metal wiring that electrically connects between a cell and a pad, the semiconductor integrated circuit has a wide-area wiring that spans the cell area and the extra-cell wiring area, and the wide-area wiring covers at least a portion of the cell area. In this case, wiring is performed using the multilayer metal wiring means, at least a portion of the outside cell wiring area is wired using only one layer of metal, and the width of the multilayer metal wiring means portion is narrower than the width of the first layer metal portion. A semiconductor integrated circuit according to claim 1, characterized in that:
JP21364389A 1989-08-19 1989-08-19 Semiconductor integrated circuit Pending JPH0377324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21364389A JPH0377324A (en) 1989-08-19 1989-08-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21364389A JPH0377324A (en) 1989-08-19 1989-08-19 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0377324A true JPH0377324A (en) 1991-04-02

Family

ID=16642552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21364389A Pending JPH0377324A (en) 1989-08-19 1989-08-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0377324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1075027A2 (en) * 1999-08-05 2001-02-07 Infineon Technologies AG Contacting of metal interconnections of integrated semiconductor chips
US6774484B2 (en) * 2001-03-30 2004-08-10 Fujitsu Quantum Devices Limited High frequency semiconductor device
US6919639B2 (en) 2002-10-15 2005-07-19 The Board Of Regents, The University Of Texas System Multiple copper vias for integrated circuit metallization and methods of fabricating same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1075027A2 (en) * 1999-08-05 2001-02-07 Infineon Technologies AG Contacting of metal interconnections of integrated semiconductor chips
EP1075027A3 (en) * 1999-08-05 2005-06-29 Infineon Technologies AG Contacting of metal interconnections of integrated semiconductor chips
US6774484B2 (en) * 2001-03-30 2004-08-10 Fujitsu Quantum Devices Limited High frequency semiconductor device
US6919639B2 (en) 2002-10-15 2005-07-19 The Board Of Regents, The University Of Texas System Multiple copper vias for integrated circuit metallization and methods of fabricating same
US7078817B2 (en) 2002-10-15 2006-07-18 Board Of Regents, The University Of Texas System Multiple copper vias for integrated circuit metallization

Similar Documents

Publication Publication Date Title
JP4786836B2 (en) Wiring connection design method and semiconductor device
US20020000668A1 (en) Semiconductor device
US4924290A (en) Semiconductor device having improved multilayered wirings
JP3989038B2 (en) Semiconductor integrated circuit device
US5739546A (en) Semiconductor wafer
JPH0377324A (en) Semiconductor integrated circuit
JPH0576174B2 (en)
US6177294B1 (en) Wiring layout method for semiconductor device and recording medium on which wiring layout program for semiconductor device is recorded
US6743979B1 (en) Bonding pad isolation
JPH05243482A (en) Semiconductor integrated circuit
JPS59181041A (en) Semiconductor integrated circuit device
JP2919162B2 (en) LSI package forming method and LSI chip
JP2004103821A (en) Semiconductor integrated circuit
JPH05226584A (en) Integrated circuit device
JPH03180052A (en) Semiconductor integrated circuit
JPH02132835A (en) Semiconductor integrated circuit device
JP3063538B2 (en) Wiring board, repair method and manufacturing method thereof
JP3353410B2 (en) Gate array multilayer wiring structure
JPH04116851A (en) Semiconductor integrated circuit element
JPH07283378A (en) Wiring structure of gate array
JPH0786281A (en) Semiconductor device and manufacture of semiconductor device
JP3178443B2 (en) Layout method of semiconductor integrated device
JPH0389536A (en) Semiconductor device
JPH04260352A (en) Semiconductor integrated circuit device
JPH03165037A (en) Semiconductor device