JP2000509577A - 無線周波数ノイズ・キャンセラ - Google Patents

無線周波数ノイズ・キャンセラ

Info

Publication number
JP2000509577A
JP2000509577A JP9538177A JP53817797A JP2000509577A JP 2000509577 A JP2000509577 A JP 2000509577A JP 9538177 A JP9538177 A JP 9538177A JP 53817797 A JP53817797 A JP 53817797A JP 2000509577 A JP2000509577 A JP 2000509577A
Authority
JP
Japan
Prior art keywords
signal
noise
radio frequency
canceller
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9538177A
Other languages
English (en)
Other versions
JP3988802B2 (ja
Inventor
シオフィ,ジョン,エム.
マロリイ,マーク,ピー.
ビンガム,ジョン,エイ.
Original Assignee
アマティ コミュニケイションズ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アマティ コミュニケイションズ コーポレイション filed Critical アマティ コミュニケイションズ コーポレイション
Publication of JP2000509577A publication Critical patent/JP2000509577A/ja
Application granted granted Critical
Publication of JP3988802B2 publication Critical patent/JP3988802B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • H04B1/126Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means having multiple inputs, e.g. auxiliary antenna for receiving interfering signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

(57)【要約】 無線周波数ノイズ・キャンセラ(112)を有する高速データ通信用の受信機または受信システムを開示する。無線周波数ノイズ・キャンセラ(112)は、データ伝送中に無線周波数ノイズを適応的に推定することにより、伝送媒体を介して受信した信号から無線周波数ノイズを除去する。一実施形態の無線周波数ノイズ・キャンセラは、フィルタ・パラメータに基づいて基準ノイズ信号を濾波することによりノイズ・キャンセル信号を作る適応フィルタ(208)と、第1の信号からノイズ・キャンセル信号を引いて第2の信号を作る減算器(202)と、そのとき存在する第2の信号に基づいて適応フィルタのパラメータを所定の時に修正する更新回路(204)とを含む。無線周波数ノイズを除去する方法も開示する。

Description

【発明の詳細な説明】 無線周波数ノイズ・キャンセラ 技術分野 本発明は、データ伝送システムに関し、より詳しくは、受信機での無線周波数 ノイズの軽減に関する。 背景技術 現在、高速データ通信用の双方向ディジタル・データ伝送システムが開発され ている。ツイスト・ペア電話回線を介した高速データ通信用として開発された標 準の1つは非対称ディジタル加入者線(ADSL)である。ツイスト・ペア電話 回線を介した高速データ通信用として現在提案されている別の標準は、超高速デ ィジタル加入者線(VDSL)である。 ANSI(米国規格協会)標準グループにより認定されたグループである電気 通信情報解決連合(ATIS)は、ADSLを介したディジタル・データの伝送 用の離散多重トーンに基づく方式を最終的に確立した。この標準は、主として、 通常の電話回線を介したビデオ・データの伝送と高速インターネット・アクセス 用であるが、他の種々の応用にも用いられるものである。この北米標準をANS I T1.413ADSL標準(以後、ADSL標準)と呼ぶ。ADSL標準下 での伝送速度は、ツイスト・ペア電話回線を介した最大毎秒800万ビットの速 度での情報の伝送を可能にするものである。標準化されたシステムは、下り(ダ ウン・ストリーム)方向にそれぞれ4.3125kHz幅の256「トーン」す なわち「サブチャンネル」を用いる離散多重トーン(DMT)システムの使用を 定義している。電話システムでは、ダウン・ストリーム方向は中央局(一般に、 電話会社が所有する)からエンド・ユーザ(すなわち、住居またはビジネス・ユ ーザ)である遠隔地への伝送と定義される。他のシステムでは、用いられるトー ン数の種類は非常に多い。しかし、逆高速フーリエ変換(IFFT)を用いて変 調を効果的に行うときは、使用可能なサブチャンネル(トーン)の一般的な数は 2の整数べきであり、例えば128,256,512,1024または2048 サブチャンネルである。 また、ADSL標準は、16〜800Kビット/秒の範囲のデータ速度の上り 信号の使用を定義している。上り信号は、例えば遠隔地から中央局へのアップ・ ストリーム方向の伝送に対応する。したがって、ADSLという用語は、アップ ・ストリーム方向よりダウン・ストリーム方向のデータ伝送速度の方がかなり大 きいことからきている。これは、ビデオ・プログラミングまたはビデオ会議情報 を電話回線を介して遠隔地に伝送するシステムに特に有用である。 ダウン・ストリーム信号もアップ・ストリーム信号も同じ対の線を通る(すな わち、二重化されている)ので、何らかの方法で互いに分離しなければならない 。ADSL標準で用いられている二重化法は、周波数分割二重化(FDD)すな わちエコー消去である。周波数分割二重化システムでは、アップ・ストリーム信 号とダウン・ストリーム信号とは異なる周波数帯域を占め、送信機と受信機とで フィルタにより分離される。エコー消去システムでは、アップ・ストリーム信号 とダウン・ストリーム信号とは同じ周波数帯域を占め、信号処理により分離され る。 ANSIは、加入者線に基づく伝送システム用に別の標準を作っている。これ をVDSL標準と呼ぶ。VDSL標準は、ダウン・ストリーム方向で少なくとも 25.96Mビット/秒好ましくは少なくとも51.92Mビット/秒の伝送速 度を可能にするものである。この速度を得るには、ツイスト・ペア電話回線を介 した伝送距離は、一般に、ADSL用に許容される距離より短くなければならな い。同様に、ディジタル・オーディオ・ビデオ委員会(DAVIC)は、ファイ バー・ツー・ザ・カーブ(FTTC)と呼ぶ同様なシステムについて作業中であ る。「カーブ」から顧客の構内までの伝送媒体は、標準の非シールド・ツイスト ・ペア(UPT)電話回線である。 VDSLおよびFTTC標準(以後、VDSL/FTTCと呼ぶ)用の多数の 変調方式が提案されている。提案されたVDSL/FTTC変調方式の多くは、 アップ・ストリーム信号およびダウン・ストリーム信号の周波数分割二重化を用 いている。提案されている別の有望なVDSL/FTTC変調方式は、互いに重 ならない周期的な同期されたアップ・ストリームおよびダウン・ストリーム通信 期間を用いる。すなわち、バインダを共用する全ての線のアップ・ストリームお よびダウン・ストリーム通信期間は同期される。この方式では、同じバインダ内 の全ての超高速伝送は同期され時分割二重化されて、アップ・ストリーム通信の 伝送と重なるときはダウン・ストリーム通信は伝送されない。これを「ピンポン 」に基づくデータ伝送方式と呼ぶ。どちらの方向にもデータが伝送されない沈黙 期間により、アップ・ストリームおよびダウン・ストリーム通信期間を分離する 。例えば、20記号スーパー・フレームでは、スーパー・フレーム内の2つのD MT記号は、電話回線で伝送方向を逆転させるために無音(すなわち、沈黙期間 )である。この場合は、伝送方向の逆転は毎秒約4000回の割合で起こる。例 えば、約10〜25μ秒の沈黙期間が提案されている。同期方式は、各種の変調 方式、例えば離散多重トーン変調(DMT)などの多重搬送波送信方式や、直交 振幅変調(QAM)や搬送波なし振幅および位相変調(CAP)や4相位相偏移 変調(QPSK)や残留側波帯変調などの単一搬送波伝送方式に用いることがで きる。同期された時分割二重化方式をDMTと共に用いるときは、同期DMT( SDMT)と呼ぶ。 上に述べた伝送システムに共通する特徴は、中央局(例えば、電話会社)とユ ーザ(例えば、住居)を接続する伝送媒体の少なくとも一部にツイスト・ペア電 話回線を用いることである。相互接続する伝送媒体の全ての部分からツイスト・ ペア線を除くことは難しい。中央局からユーザの住居の近くのカーブまで光ファ イバを使うことができる場合でも、カーブからユーザの家庭またはビジネス・ユ ーザまでは信号を運ぶのにツイスト・ペア電話回線が用いられる。 ツイスト・ペア電話回線の撚りによって外部の混信はいくらか防げるが、混信 はまだ存在する。伝送の周波数が高くなるに従って、撚りでは軽減されない混信 が大きくなる。そのため、ツイスト・ペア電話回線を介して高速伝送されるデー タ信号の品質は、混信により大幅に低下する。データ伝送の速度が大きくなるに 従って、問題は一層深刻になる。例えば、VDSL信号をツイスト・ペア電話回 線を介して伝送する場合は、混信によりVDSL信号の品質は大幅に低下する。 測定した結果、無線周波数妨害振幅は300mVにもなるので、実際上、入来す るVDSL信号は混信により完全に判別できなくなる。このように問題になる混 信を無線周波数ノイズと呼ぶ。 望ましくない混信は種々の信号源から来る。混信の信号源の1つはアマチュア (すなわち、ハム)無線通信者である。アマチュア無線は広範囲の周波数にわた ってかなりのパワー・スペクトルで放送する。また、アマチュア無線通信者は頻 繁に(例えば、2分毎に)放送周波数を変えることが多い。高速データ伝送では 、アマチュア無線または他の信号源が作る混信(ノイズ)により、ツイスト・ペ ア電話回線で伝送される所望のデータ信号の品質が非常に低下する。 したがって、ADSLやVDSLなどの高周波データ伝送速度でツイスト・ペ ア電話回線を用いる場合の問題は、混信が大きな障害になって、伝送されるデー タ信号を受信機が正しく受信することができないことである。したがって、無線 周波数妨害を除去しまたは補償する方法を提供する必要がある。 発明の開示 一般的に言って、本発明は、データが実際に伝送されていないときに得られる 情報を用いてデータ伝送中に無線周波数ノイズを適応的に推定することにより、 受信信号から無線周波数ノイズを除去する方法である。一般に、伝送されたデー タは、受信機または受信システムによりこの新規な方法を用いて受信される。こ の新規な方法は、VDSLやADSLなどの高速データ伝送において、伝送され たデータを正しく受信するのにアマチュア無線またはその他の信号源(例えば、 ブリッジ・タップや漏話)によって生成される無線周波数ノイズ(妨害)が非常 に障害になる場合に、特に有用である。 本発明は、装置やシステムや方法など多くの方法で実現することができる。本 発明のいくつかの実施形態を以下に説明する。 第1の信号から無線周波数ノイズを除去して第2の信号を生成する無線周波数 ノイズ・キャンセラとして、本発明の一実施形態は、フィルタ・パラメータに基 づいて基準ノイズ信号を濾波することによりノイズ・キャンセル信号を作る適応 フィルタと、第1の信号からノイズ・キャンセル信号を引いて第2の信号を作る 減算器と、そのときに存在する第2の信号に基づいて前記適応フィルタのパラメ ータを所定の時に修正する更新回路とを含む。 データ通信システムの受信機として、本発明の一実施形態は、伝送媒体に結合 された少なくとも1個の入力端子と差分信号を出力する出力端子と基準ノイズ信 号を出力する基準端子とを有する変圧器と、前記変圧器に結合された、差分信号 から無線周波数ノイズを打ち消してノイズ・キャンセル差分信号を作る無線周波 数ノイズ・キャンセラと、ノイズ・キャンセル差分信号を復号してデータを得る 処理回路とを含む。無線周波数ノイズ・キャンセラは、フィルタ・パラメータに 基づいて基準ノイズ信号を濾波することによりノイズ・キャンセル信号を作る少 なくとも1個の適応フィルタと、差分信号からノイズ・キャンセル信号を引いて ノイズ・キャンセル差分信号を作る減算器と、そのときに存在するノイズ・キャ ンセル差分信号に基づいて前記適応フィルタのパラメータを所定の時に修正する 更新回路とを含む。 時分割多重化データ伝送を用いる同期DMTシステムでは、全てのチャンネル のデータ伝送の方向が周期的に切り替わり、各方向変更の間にデータがどちらの 方向にも伝送されない沈黙期間がある。この同期DMTシステムにおいて、本発 明の受信装置は、伝送媒体に結合された少なくとも1個の入力端子と差分信号を 出力する出力端子とコモン・モード信号を出力するコモン・モード端子とを有す る変圧器と、差分信号から無線周波数ノイズを打ち消してノイズ・キャンセル差 分信号を作る無線周波数ノイズ・キャンセラと、ノイズ・キャンセル差分信号を 復号してデータを得る処理回路とを含む。無線周波数ノイズ・キャンセラは、フ ィルタ・パラメータに従ってコモン・モード信号を濾波することによりノイズ・ キャンセル信号を作る少なくとも1個の適応フィルタと、差分信号からノイズ・ キャンセル信号を引いてノイズ・キャンセル差分信号を作る減算器と、沈黙期間 中の一部または全てにそのときに存在するノイズ・キャンセル差分信号に基づい て前記適応フィルタのパラメータを修正する更新回路とを備える。好ましくは、 伝送媒体はツイスト・ペア電話回線である。 伝送媒体に結合することによって伝送媒体を介して伝送されるデータの受信を 妨害する無線周波数源からの無線周波数妨害を除去する方法として、本発明の一 実施形態は、差分データ信号と基準ノイズ信号とを受信し、推定ノイズ信号を作 り、差分データ信号から推定ノイズ信号を引いて無線周波数妨害を実質的に除去 したノイズ・キャンセル差分信号を作り、データ伝送の沈黙期間中に推定ノイズ 信号の推定値を更新する。 本発明の1つの利点は、妨害する無線周波数ノイズの推定が非常に正確である だけでなく適応的であることである。それは、データ伝送中であるがデータが実 際に伝送されていない所定の短い時間に推定値を更新するからである。本発明の 別の利点は、無線周波数ノイズが受信機のフロント・エンドで除去されることで ある。すなわち、無線周波数ノイズは受信機内のアナログ/ディジタル変換器を 飽和させる前に除去される。 本発明の他の態様や利点は、本発明の原理の例として示す添付の図面に関連し て以下の詳細な説明を読めば明らかになる。 図面の簡単な説明 本発明は、添付の図面に関して以下の詳細な説明を読めば容易に理解できる。 図中、同じ参照番号は同じ構成要素を示す。 図1は、本発明の一実施形態の受信機システムのブロック図である。 図2は、本発明の第1の実施形態の無線周波数(RF)キャンセラのブロック 図である。 図3は、図2に示すRFキャンセラの更新回路および適応フィルタの詳細な実 施形態のブロック図である。 図4は、図2に示すRFキャンセラの更新回路および適応フィルタの一部の別 の詳細な実施形態のブロック図である。 図5は、本発明の第2の実施形態のRFキャンセラのブロック図である。 図6は、第3の実施形態のRFキャンセラのブロック図である。 発明を実施する最良のモード 本発明の実施形態を図1〜図6を参照して以下に説明する。しかし、当業者が 容易に理解するように、これらの図に関して行う詳細な説明は例示の目的であっ て、本発明はこれらの限定された実施形態を超えるものである。 本発明は、データが実際に伝送されていない短い時間に得られる情報を用いて データ伝送中に無線周波数ノイズを適応的に推定することにより、受信信号から 無線周波数ノイズを除去する方法に関する。好ましくは、データ伝送はこの新規 な手法を用いる受信機または受信システムで受信される。本発明は、VDSLや ADSLなどの高速データ伝送において、伝送データを正しく受信するのに無線 周波数ノイズが非常に障害になる場合に特に有用である。本発明について、いく つかの実施形態を参照して以下に詳細に説明する。 図1は、本発明の一実施形態の受信機システム100のブロック図である。受 信機システム100は、ツイスト・ペア線104に結合された変圧器102を含 む。一般に、ツイスト・ペア線104はツイスト・ペア電話回線である。変圧器 102は、入来するデータ信号をツイスト・ペア線104を介して受信する。例 えば、入来するデータ信号は任意の書式またはプロトコルでよいが、受信機シス テム100はADSLやVDSLで与えられる高速システムに特に適している。 また、ノイズ源106がツイスト・ペア線104の近くで動作していると仮定 する。ノイズ源106は無線信号を作る。したがって、ノイズ源106は、受信 機システム100が受信中のデータ信号を妨害する無線信号を作るものを全て含 む。ADSLやVDSLなどの高速データ伝送の場合、アマチュア無線ユーザは 使用する周波数範囲が重なるので、ノイズ源106の候補である。ノイズ源10 6が作る無線信号は有用な信号かも知れないが、受信機システム100にとって は、この信号は無線周波数ノイズである。ノイズ源106が作る無線周波数ノイ ズは望ましくないものであるが、ツイスト・ペア線104に結合して入るので、 受信機システム100はこれを受信する。無線周波数ノイズは無線周波数妨害と も呼ばれる。 変圧器102は、これに結合されたツイスト・ペア線104を有する入力側と 、差分出力信号(νd)108を出力する出力側とを含む。変圧器102は、コモ ン・モード信号(νc)110も出力する。コモン・モード信号(νc)110は、好 ましくは、変圧器102の入力側の中央タップから接地(シャーシ接地)を基準 として得る。または、コモン・モード信号(νc)110は、線104の1つまた は線104全体から接地に対して得てよい。より一般的には、コモン・モード信 号(νc)110は基準ノイズ信号である。 受信機システム100はまた、差分信号(νd)108とコモン・モード信号(νc )110とを受ける無線周波数(RF)キャンセラ112を含む。これらの入力 を受け、RFキャンセラ112は、差分信号(νd)108から望ましくないノイ ズ成分を打ち消して、その結果をノイズ・キャンセル差分信号(νf)114 として出力する。その後、濾波差分信号(νf)114はアナログ/ディジタル変 換器(ADC)116に送られる。ADC116は、入力するノイズ・キャンセ ル差分信号(νf)114をディジタル・ノイズ・キャンセル差分信号(νfD)11 8に変換する。 次に、ディジタル・ノイズ・キャンセル差分信号(νfD)118は、受信機シス テム100内にあってその一部であるディジタル信号プロセッサ(DSP)12 0に送られる。DSP120は、従来の方法で動作し、ディジタル差分濾波信号 (νfD)118を復号して、送信機システム(図示せず)から本来送信されたデー タ122を回復する。従来の復号に加えて、DSP120は、RFキャンセラ1 12にフィードバックする更新制御信号124を作る。更新制御信号124は、 RFキャンセラ112を使用可能および使用不能にして、ツイスト・ペア線10 4を介したデータの受信中にそのノイズ・キャンセル特性の更新を制御する。好 ましくは、RFキャンセラ112によるノイズ・キャンセル特性は、無線周波数 ノイズの打消しを行う内部フィルタ・パラメータにより決定される。後で詳細に 説明するように、好ましくは、更新制御信号124は、入来するデータ信号の受 信の中断(「沈黙期間」)の間に周期的に活動状態になり、これにより、RFキ ャンセラ112は内部濾波パラメータを更新して無線周波数ノイズの打消し効果 を上げる。この中断の間に内部濾波パラメータを更新することにより、RFキャ ンセラ112は無線周波数ノイズの変化に迅速に適応することができる。 図2は、本発明の第1の実施形態のRFキャンセラ200のブロック図である 。RFキャンセラ200は、図1のRFキャンセラ112として用いるのに適し たいくつかの実際のRFキャンセラのうちの1つである。 RFキャンセラ200は減算器202を含む。減算器202は、差分信号(νd )108を受け、ノイズ・キャンセル差分信号(νf)を出力する。好ましくは、減 算器202はアナログ減算器である。RFキャンセラ200はまた、更新回路2 04を含む。更新回路204は、ノイズ・キャンセル差分信号(νf)114と更 新制御信号124とを受ける。更新回路204は、更新制御信号124のレベル に基づいて動作し、ノイズ・キャンセル差分信号(νf)114をフィードバック 信号(νfb)206として適応フィルタ208にフィードバックさせ、ま たは、させない。適応フィルタ208は、コモン・モード信号(νc)110(よ り一般的に、基準ノイズ信号)とフィードバック信号(νfb)206とを受け、推 定ノイズ信号(νn)210を作る。推定ノイズ信号(νn)210は減算器202に 送られる。減算器202は、差分信号(νd)108から推定ノイズ信号(νn)21 0を引いて、ノイズ・キャンセル差分信号(νf)114を作る。 効果的に動作するには、図2に示すRFキャンセラ200は、RF源106に よって発生された無線周波数ノイズ(妨害)を正確に推定する必要がある。従来 は、データの受信中に無線周波数ノイズを正確に推定することができなかったの で、データの受信中に無線周波数ノイズを推定することは不可能であった。無線 周波数ノイズをデータ伝送が始まる直前に推定することはできるが、これでは正 しく動作しない。その理由は、一般的なRF源106は周波数がかなり頻繁に( 約2分毎に)変わるという性質を持つので、ノイズの推定を誤る可能性があるか らである。また、無線周波数ノイズに相関しかつ受信中のデータ信号に相関しな いフィルタ用の基準信号を生成することが従来の問題である。 無線周波数ノイズを正確に推定できるのは、差分信号(νd)がゼロのときだけ である。ノイズ・キャンセラ200は、データ受信の中断の間に無線周波数ノイ ズを周期的に推定することにより、無線周波数ノイズを正確に推定することがで きる。この中断の間は、データを受信しない、すなわち、差分信号(νd)はゼロ である。したがって、データ伝送中に(すなわち、データ伝送の中断の間に)無 線周波数ノイズの推定を更新することができるので、RF源106が作る無線周 波数ノイズのどんな変化も推定ノイズ信号(νn)210により密接に追跡するこ とができる。また、中断の間は、データ信号は短い時間受信されない。したがっ て、基準ノイズ信号(νc)は、実際上、データ信号と(同様に、ノイズ・キャン セル差分信号(νf)114と)相関しない。VDSLの場合は、更新制御信号1 24により適応フィルタ208は、VDSL伝送の「沈黙期間」中に、そのとき 存在する無線周波数ノイズに適応することができる。なお、「沈黙期間」は、約 10〜25μsの短時間であって、同期DMT(SDMT)中に毎秒約4,00 0回起こる。この場合でも、毎秒2,000回の割合で更新するだけで恐らく十 分と考えられる。 適応フィルタ208の内部パラメータの更新を中断の間に行うことができるこ とは数学的に示すことができる。数学的証明では、適応フィルタ208は一定複 素利得ωである。差分信号(νd)は、 νd=s+kc・n であり、基準ノイズ信号(νc)は、 νc=kd・s+n である。ただし、sはデータ信号、kcおよびkdは結合係数、nは無線周波数ノ イズである。誤り信号eは、 e=νd−ω・νc=(1−ω・kd)・s+(kc−ω)・n (1) である。式(1)から、ωの良い設定値は、ω=kcである。誤り信号eは、差 分信号(νd)がゼロのときのノイズ・キャンセラ200の出力(すなわち、ノイ ズ・キャンセル差分信号(νf))である。ωの最小平均二乗誤差(MMSE)設 定を用いると、誤り信号eの平均二乗値は最小になる。全ての信号の平均値はゼ ロ(DC成分がない)でなければならない。また、sの分散(パワーまたはパワ ー・スペクトル密度)はEsであり、ノイズnの分散はσ2である。ωのMMSE 設定を決定するのに用いる基本計算式は、 であり、これは、一般に、kcに等しくない。したがって、対応するMMSEは 、 である。これらの設定は、平均二乗誤差を最小にすることにより、また、多くの 既知の適応アルゴリズムにより得られるが、リンク上の伝送では、好ましくは、 ω=kcであり、したがって、MMSE=Es(1−kcd)である。この設定にな るのは、Es=0のときか無線周波数ノイズが非常に大きいときであるが、Es= 0はデータ信号がないことに対応するので、望ましい状態ではないし、非常に 大きいノイズは全ての線で保証されるわけではなく、また、それ自身、伝送(R Fキャンセラでない)の観点から望ましくない。 また、平均最小二乗(LMS)アルゴリズムを用いて例えばVDSLの沈黙期 間中に更新する場合、ノイズ・キャンセラ200は、平均値ω=kcに収束する ことを示すことができる。すなわち、LMSアルゴリズムを用いてVDSLスー パー・フレーム毎に1度(したがって、スーパー・フレーム内の沈黙期間の1つ だけを用いて)無線周波数キャンセラを更新すると仮定する。この更新時刻を時 間的にkで指標化する。LMSアルゴリズムは(J.R.Treichler,C.R.Johns on,M.G.Larimoreの「適応フィルタの理論と設計」、John Wiley & Sons,New York,1987(以後、Treichler他、と書く)に記述されている。)、 ek=νk−ωk・νc,k ωk+1=ωk+μ・ek・νc,k であり、沈黙期問中だけ更新する場合は、平均値ω=kcに収束する。 図3は、図2に示すRFキャンセラ200の更新回路204と適応フィルタ2 08の詳細な実施形態のブロック図である。図から分かるように、減算器(例え ば、図2に示す減算器202)を除くと、図3に示す回路はRFキャンセラの詳 細な実施形態である。したがって、図3に示す回路をRFキャンセラ300とし て説明する。入力として、RFキャンセラ300は、ノイズ・キャンセル差分信 号(νf)114と、コモン・モード信号(νc)110(より一般的に、基準ノイズ 信号)と、更新制御信号124とを受ける。 ノイズ・キャンセル差分信号(νf)114は、アナログ/ディジタル変換器( ADC)302に送られてディジタル・ノイズ・キャンセル差分信号に変換され る。この信号は、更新制御信号124のレベルに基づいてスイッチ304を通過 しまたは通過しない。スイッチ304の出力はディジタル・フィードバック信号 306であって、これは適応フィルタを実現するRFキャンセラ300の残りの 回路にフィードバックされる。 コモン・モード信号(νc)110は移相器308に送られ、移相器308はコ モン・モード信号(νc)110の同相(IF)成分(νc-I)312と直交(Q)成 分(νc-Q)316とを作る。一例として、移相器308は、コイルまたはヒル ベルト変換回路でよく、90度の移相を誘導して直交部(νc-Q)316を作る。 また、RFキャンセラ300は第1の乗算器318を含み、第1の乗算器31 8はディジタル・フィードバック信号306と同相コモン・モード信号(νc-Q) 312を乗算して同相信号320を作る。次に、同相信号320は積分器322 に送られ、積分器322は同相信号320を積分して同相利得調整信号324を 出力する。次に、第2の乗算器326により、同相利得調整信号324と同相コ モン・モード信号(νc-I)312とを乗算する。第2の乗算器326の出力は同 相ノイズ信号328である。 RFキャンセラ300はまた、第3の乗算器330を含む。第3の乗算器33 0はディジタル・フィードバック信号306と直角コモン・モード信号(νc-Q) 316とを乗算して直交信号322を作る。直交信号332は積分器334に送 られ、積分器334は直交信号332を積分して直交利得調整信号336を出力 する。次に、第4の乗算器338により直交利得調整信号336と直交コモン・ モード信号(νc-Q)316とを乗算する。第4の乗算器338の出力は直交ノイ ズ信号340である。 さらに、RFキャンセラ300は加算器342を含む。加算器342は同相ノ イズ信号328と直交ノイズ信号340とを加算して推定ノイズ信号(νn)21 0を作る。また、上に述べたように、RFキャンセラ300は、加算器342の 出力である推定ノイズ信号(νn)210を差分信号(νd)108から引いてノイズ ・キャンセル差分信号(νf)114を作る。得られたノイズ・キャンセル差分信 号(νf)114には、無線周波数ノイズが実質的にない。 RFキャンセラ300は2個の乗算器326,338を含むが、一般に、タッ プ付き遅延線を用いる場合はより多くの乗算器が必要である。より詳しくは、タ ップ付き遅延線を用いる場合は、移相器308の代わりにタップ付き遅延線を用 い、タップ付き遅延線毎に回路(前に同相および直交成分毎に設けられた)が設 けられる。 図3に示すRFキャンセラ300(より一般的に、本発明のRFキャンセラ) は、アナログ式でも、ディジタル式でも、またはその組合わせでもよい。乗算器 326,338は、適応フィルタの設定ωにより決定されるディジタル・プログ ラムされた利得を有するMDAC(乗算ディジタル/アナログ変換器)で実現し てよい。MDACでは、1つの入力はディジタルであり、他の入力はアナログで あって、2つの入力を乗算した結果はやはりディジタルである。また、加算器3 42としてディジタル加算器を用いると共に、RFキャンセラ300は加算器3 42の前に低域フィルタを含んでよく、また、入力ノイズ・キャンセル差分信号 (νf)114にエイリアス除去フィルタを設けてよい。 図4は、図2に示すRFキャンセラ200の更新回路204と適応フィルタ2 08の一部との別の詳細な実施形態のブロック図である。図から分かるように、 図4に示す回路は、図3に示すRFキャンセラ300のADC302,スイッチ 304,乗算器318および積分器322を置換することができる。したがって 、図4に示す回路をRFキャンセラ400として説明する。キャンセラ400に 必要であるが図示していない回路は、このまたは他の実施形態に説明されたもの と同じである。 RFキャンセラ400は、乗算器326の前のRFキャンセラ300の片側( 同相側)を実現したものである。図4に示すRFキャンヤラ400は、ノイズ・ キャンセル差分信号(νf)114と、コモン・モード信号(νc)110(より一般 的に、基準ノイズ信号)と、更新制御信号124と、クロック信号(CLK)4 02とを受ける。RFキャンセラ400は、更新制御信号124により制御され るスイッチ404を含む。スイッチ404の出力はゼロかまたはノイズ・キャン セル差分信号(νf)114である。スイッチ404の出力はアナログ・フィード バック信号406である。次に、アナログ乗算器408によりアナログ・フィー ドバック信号406とコモン・モード信号(νc)110とを乗算して、アナログ 同相信号410を作る。コンデンサ411はアナログ・フィードバック信号40 6からDC信号を濾波すなわち阻止する。アナログ乗算器408から出力される アナログ同相信号410は、デルタ・シグマ型のアナログ/ディジタル変換器4 12に送られる。デルタ・シグマ型のアナログ/ディジタル変換器412はアナ ログ同相信号410をディジタル1ビット信号413に変換する。 デルタ・シグマ型のアナログ/ディジタル変換器412は加算器/減算器41 4を含む。加算器/減算器414は、アナログ乗算器408から送られるアナロ グ同相信号410からフィードバック信号416を引き、調整アナログ同相信号 418を作る。調整アナログ同相信号418はアナログ積分器420により積分 されて、積分アナログ信号422を作る。積分アナログ信号422は1ビットの アナログ/ディジタル変換器(ADC)424に送られ、ディジタル信号426 として出力される。次に、ディジタル信号426はフリップフロップ回路428 のデータ入力端子(D)に入る。フリップフロップ回路428は、クロック信号 (CLK)402をクロック端子(CLK)に受けて、クロック信号(CLK) 402に従ってディジタル信号426を同期させる。フリップフロップ428の 出力端子(Q)はディジタル1ビット信号413を出力する。ディジタル1ビッ ト信号413は同相信号320に対応するので積分してよい。しかし、ディジタ ル1ビット信号413のDCオフセットを全て除去するため、RFキャンセラ4 00にDCオフセット・キャンセラ432を設けるのが好ましい。 DCオフセット・キャンセラ432は、加算器/減算器434を含み、ディジ タル1ビット信号413からDCオフセット信号436を引いて調整ディジタル 信号438を作る。調整ディジタル信号438は、この場合は、2ビット幅であ る。次に、調整ディジタル信号438は更新制御信号124により制御されるス イッチ440に送られる。スイッチ404がノイズ・キャンセル差分信号(νf) 114を通すときは、スイッチ440は調整ディジタル信号438をディジタル 積分器442に通す。この実施形態では、ディジタル積分器442は、カウンタ (例えば、12ビット・カウンタ)として動作し、調整ディジタル信号438を 所定の時間カウントして適応フィルタ208用のパラメータ情報を作る。言い換 えると、ディジタル積分器442から出力されるパラメータ情報は、例えば同相 利得調整信号324に対応し、図3の乗算器326に送られる。 他方、スイッチ404がノイズ・キャンセル差分信号(νf)114を通さない ときは、スイッチ440は調整ディジタル信号438をディジタル積分器444 に通す。この場合は、スイッチ440は回復すべきデータ信号を受ける。ディジ タル積分器444は、カウンタ(例えば、12ビット・カウンタ)として動作し 、調整ディジタル信号438を所定の時間カウントしてDCオフセット・キャン セラ432用のDCオフセット情報を作る。ディジタル積分器444のDCオフ セ ット情報はディジタル・レート乗算器446に送られ、クロック信号402に従 ってDCオフセット信号436のレートを決定する。このようにして、データの 受信中はDCオフセット・キャンセラ432は活動状態であって全てのDCオフ セットを打ち消し、更新期間中(データを受信しない)はDCオフセット・キャ ンセラ432は活動状態でない。 ADC412(および恐らくADC310,314)から出力されるディジタ ル1ビット信号413は、好ましくは、いわゆる符号付きLMSアルゴリズムを 用いて適応的に更新を行うのに十分である。符号付きLMSアルゴリズムはJ.R .Treichler他に述べられている次の式で、 ek=νk−ωk・νc,k ωk+1=ωk+μ・ek・sgn{νc,k} LMSと同じ設定に収束する。ただし、収束は遅い。符号付きLMSアルゴリズ ムは、実際は、2度行う。1度は同相で、1度は直交相で行い、どちらの場合も 同じ誤り信号eを用いてよい。この1ビット符号付きLMSの収束が遅いことは 、特にVDSLに基づくSDMTで毎秒4000回もの更新を行う場合は、精度 が低いこととのトレードオフとして許容できる。主な余分のコストは乗算DAC である。これは12ビットDACとプログラマブル利得増幅器のカスケードとし て実現してよい(SDMT受信機の後の段の10ビットADCに相当する)。 RFキャンセラは、一般に、高固有値拡散と呼ばれる問題を抱えている(J.R .Treichler他を参照のこと)。高固有値拡散は収束を遅らせ、内部信号処理の ダイナミック・レンジの必要を悪化させる。この問題をなくすには、十分な精度 、漏れを用いるか(J.M.Cioffiの「適応濾波における制限された精度効果,Sp ecial Issue of IEEE Transactions on Circuits and Systems on Adaptive Fil tering,July 1987を参照のこと)、または、小さな白色雑音を信号νcに故意に 加える。しかし、上に述べたDCオフセット・キャンセラ432などのDCオフ セット・キャンセラを用いると、漏れが過剰になる可能性がある。 図5は、本発明の第2の実施形態のRFキャンセラ500のブロック図である 。図5に示すRFキャンセラ500の動作は、前の実施形態で説明したRFキャ ンセラと同じであるが、異なる点は、図5に示す実施形態ではRFキャンセラ5 0 0は主としてディジタル領域で動作して無線周波数ノイズを推定し(すなわち、 推定ノイズ信号(νn)210)、次に、差分信号(νd)108から推定無線周波数 ノイズを除去してノイズ・キャンセル差分信号(νf)114を作ることである。 しかし、高速度データ通信においてRFキャンセラを用いる場合に推定無線周波 数ノイズを応答的に作るには、かなりの量の信号処理計算能力が必要である。 RFキャンセラ500は減算器502を含む。減算器502は、差分信号(νd )108を受け、これから推定ノイズ信号(νn)210を引いてノイズ・キャンセ ル差分信号(νf)を作る。ノイズ・キャンセル差分信号(νf)114はアナログ/ ディジタル変換器(ADC)504に送られてディジタル・ノイズ・キャンセル 差分信号(νfD)118が作られる。次に、ディジタル・ノイズ・キャンセル差分 信号(νfD)118はフィードバック信号としてディジタル信号プロセッサ(DS P)506に送られる。また、RFキャンセラ500はコモン・モード信号(νc )110(より一般的に、基準ノイズ信号)を受ける。コモン・モード信号(νc) 110はアナログ/ディジタル変換器(ADC)510によりディジタル・コモ ン・モード信号(νcD)508に変換される。次に、ディジタル・コモン・モード 信号(νcD)はDSP506に送られる。DSP506は、前の実施形態で上に述 べた操作(例えば、乗算、加算、減算、積分)を行ってディジタル・ノイズ信号 512を作る。次に、アナログ/ディジタル変換器(ADC)514はディジタ ル・ノイズ信号512を推定ノイズ信号(νn)210に変換する。 図6は、本発明の第3の実施形態のRFキャンセラ600のブロック図である 。RFキャンセラ600は図5に示すRFキャンセラ500と同じ設計であるが 、異なる点は、減算器502がここではディジタル減算器602であり、アナロ グ/ディジタル変換器(ADC)は差分信号(νd)108を受けてディジタル減 算器602の前にディジタル信号に変換し、アナログ/ディジタル変換器(AD C)504,514は必要ないことである。したがって、本発明のこの実施形態 は完全にディジタルの実施形態である。注目すべきことは、第3の実施形態のア ナログ/ディジタル変換器(ADC)604はより大きな信号範囲(すなわち、 より多くのビット)を支援する必要があることである。その理由は、無線周波数 ノイズは(差分信号(νd)108と共に)アナログ/ディジタル変換器(ADC )604によりディジタル形式に変換されるからである。 上に述べたDCオフセット・キャンセラも、本発明の任意の異なる実施形態で 用いることができる。例えば、図5と図6とに関して、DSP506はDCオフ セット・キャンセラの上述の動作も行う。 概念的には、無線周波数打消しによりアマチュア無線信号などの任意の数の無 線周波数ノイズを、それらが異なる周波数である限り、理論的に除去することが できる。一般に、RFキャンセラは一種の漏話キャンセラであって、漏話ノイズ ・レベルを減少させることもできる。ただし、任意の所定の周波数で大幅に打ち 消されるのは主な漏話信号だけである。 実現されるものは、1つの無線信号のレベルを減少させるだけの非常に簡単な キャンセラから、多数の無線ノイズ妨害を除去する高級なキャンセラまでいろい ろある。 複雑でないRFキャンセラにはRF妨害の周波数に重点を置くものがある。結 合係数kcが周波数の関数すなわちkc=kc(f)の場合は、ω=kc(frf)である 。ただし、frfは無線周波数ノイズのほぼ中心周波数である。無線周波数ノイズ がない他の周波数では、キャンセラを用いることにより信号の品質がいくらか低 下したり他のノイズが増加したりすることがある。無限長さの適応ディジタル・ フィルタであれば、ωは固定の複素定数ではなく全フィルタ応答なので、この問 題はない。しかし、完全なフィルタを避けて複雑でなくしたものは、興味が持て るし望ましい。 さらに、上に述べた実施形態はツイスト・ペア電話回線によるデータ伝送に適 しているが、本発明はツイスト・ペア電話回線で用いることに限られるものでは ない。例えば、本発明は同軸ケーブルでデータを伝送する場合にも用いられる。 この場合は、中心導体はデータ信号を運び、シールド(接地に対する)はノイズ 基準信号として動作する。 本発明の1つの利点は、妨害する無線周波数ノイズの推定が非常に正確である だけでなく適応的であることである。それは、データ伝送中であるがデータが実 際に伝送されていない所定の短い時間に推定値を更新するからである。本発明の 別の利点は、無線周波数ノイズが受信機のフロント・エンドで除去されることで ある。すなわち、無線周波数ノイズは受信機内のアナログ/ディジタル変換器を 飽和させる前に除去される。本発明は、高速データ伝送において、アマチュア無 線またはその他の信号源(例えば、ブリッジ・タップや漏話)によって作られる 無線妨害(ノイズ)が伝送中の所望のデータ信号の品質を大幅に低下させる可能 性のある場合に特に有用である。 共に譲渡された、John A.C.BinghamとPo Tongの米国特許出願番号第08/ 501,250号、1995年7月11日出願を引例としてここに挙げる。また 、Cioffi他の「SDMTでのアナログRF打消し」、米国規格協会(ANSI) T1E1.4/96−084提案、1996年4月22日を引例としてここに挙 げる。 本発明の多くの特徴と利点はこの説明から明らかであって、請求の範囲は本発 明の全ての特徴と利点をカバーするものである。更に当業者は種々の修正や変更 を容易に考えられるので、ここに図示して説明した構成と動作に本発明を制限す るのは望ましくない。したがって、全ての適当な修正と同等なものは本発明の範 囲内に入るものとする。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,KE,LS,MW,S D,SZ,UG),EA(AM,AZ,BY,KG,KZ ,MD,RU,TJ,TM),AL,AM,AT,AU ,AZ,BA,BB,BG,BR,BY,CA,CH, CN,CU,CZ,DE,DK,EE,ES,FI,G B,GE,GH,HU,IL,IS,JP,KE,KG ,KP,KR,KZ,LC,LK,LR,LS,LT, LU,LV,MD,MG,MK,MN,MW,MX,N O,NZ,PL,PT,RO,RU,SD,SE,SG ,SI,SK,TJ,TM,TR,TT,UA,UG, US,UZ,VN,YU (72)発明者 ビンガム,ジョン,エイ. アメリカ合衆国94301 カリフォルニア州 パロ アルト,ウェブスター ストリート 2353

Claims (1)

  1. 【特許請求の範囲】 1.第1の信号から無線周波数ノイズを除去して第2の信号を作る無線周波数 ノイズ・キャンセラであって、 フィルタ・パラメータに基づいて基準ノイズ信号を濾波することによりノイズ ・キャンセル信号を作る適応フィルタと、 前記第1の信号から前記ノイズ・キャンセル信号を引いて前記第2の信号を作 る減算器と、 そのときに存在する前記第2の信号に基づいて前記適応フィルタのパラメータ を所定の時に修正する更新回路と、 を備える、無線周波数ノイズ・キャンセラ。 2.前記無線周波数ノイズ・キャンセラはデータ通信システム内で用いられ、 前記所定の時は約500回/秒より大きい割合で周期的に起こる、 請求項1記載の無線周波数ノイズ・キャンセラ。 3.前記第1の信号はデータ伝送により作られ、 前記所定の時は前記データ伝送内の沈黙期間中に起こる、 請求項1記載の無線周波数ノイズ・キャンセラ。 4.前記沈黙期間は前記第1の信号の部分の間に散在する、請求項3記載の無 線周波数ノイズ・キャンセラ。 5.前記適応フィルタは前記基準ノイズ信号にある係数を乗算して前記ノイズ ・キャンセル信号の少なくとも1つの成分を決定し、前記係数は前記基準ノイズ 信号と前記第2の信号との積分された積により決定される、請求項4記載の無線 周波数ノイズ・キャンセラ。 6.前記第1の信号はツイスト・ペア線で受信される、請求項4記載の無線周 波数ノイズ・キャンセラ。 7.前記無線周波数ノイズ・キャンセラは、前記第1の信号に関連するDCオ フセットを打ち消すDCオフセット・キャンセラを更に備える、請求項4記載の 無線周波数ノイズ・キャンセラ。 8.前記DCオフセット・キャンセラは、データ伝送中に、前記基準ノイズ信 号と前記第1の信号との積分された積によりDCオフセット打消し信号のレート を決定する、請求項4記載の無線周波数ノイズ・キャンセラ。 9.前記DCオフセット打消し信号が決定されるのは、前記データ伝送中に前 記第1の信号の部分を受信したときであって前記沈黙期間中ではない、請求項8 記載の無線周波数ノイズ・キャンセラ。 10.少なくとも前記適応フィルタはディジタル信号プロセッサにより実現さ れる、請求項4記載の無線周波数ノイズ・キャンセラ。 11.前記第1の信号は時分割二重化方式で受信され、 前記所定の時はデータ伝送の方向を切り換えるときに起こる、 請求項1記載の無線周波数ノイズ・キャンセラ。 12.前記第1の信号はSDMTによるVDSLまたはADSL書式を有し、 ツイスト・ペア線で受信され、 前記所定の時はデータ伝送の方向を切り換えるときの沈黙期間中に起こる、 請求項1記載の無線周波数ノイズ・キャンセラ。 13.データ通信用の受信機であって、 伝送媒体に結合された少なくとも1個の入力端子と、差分信号を出力する出力 端子と、基準ノイズ信号を出力する基準端子とを有する変圧器と、 該変圧器に結合されて前記差分信号と前記基準ノイズ信号を受け、前記差分信 号からある無線周波数ノイズを打ち消してノイズ・キャンセル差分信号を作る、 無線周波数ノイズ・キャンセラであって、 フィルタ・パラメータに基づいて基準ノイズ信号を濾波することによりノイ ズ・キャンセル信号を作る適応フィルタと、 前記差分信号から前記ノイズ・キャンセル信号を引いて前記ノイズ・キャン セル差分信号を作る減算器と、 そのときに存在する前記ノイズ・キャンセル差分信号に基づいて前記適応フ ィルタのパラメータを所定の時に修正する更新回路と、 を少なくとも含む無線周波数ノイズ・キャンセラと、 前記ノイズ・キャンセル差分信号を復号してデータを得る処理回路と、 を備える、データ通信用の受信機。 14.前記基準ノイズ信号は前記変圧器からのコモン・モード信号である、請 求項13記載のデータ通信用の受信機。 15.前記伝送媒体はツイスト・ペア電話回線であり、 前記変圧器は前記ツイスト・ペア電話回線にそれぞれ結合された第1および第 2の入力端子を有する、 請求項14記載のデータ通信用の受信機。 16.前記コモン・モード信号は前記変圧器の入力側の中央タップから得られ る、請求項15記載のデータ通信用の受信機。 17.前記所定の時は周期的に起こり、前記所定の時の間は前記伝送媒体でデ ータが伝送されない、請求項13記載のデータ通信用の受信機。 18.前記所定の時は沈黙期間中に起こり、前記沈黙期間は前記伝送媒体で伝 送されるデータのブロックの部分の間に散在する、請求項17記載のデータ通信 用の受信機。 19.前記適応フィルタは前記基準ノイズ信号にある係数を乗算してノイズ・ キャンセル信号の少なくとも1つの成分を決定し、前記係数は前記基準ノイズ信 号と前記差分信号との積分された積により決定される、請求項17記載のデータ 通信用の受信機。 20.前記無線周波数ノイズ・キャンセラは、前記差分信号に関連するDCオ フセットを打ち消すDCオフセット・キャンセラを更に備える、請求項17記載 のデータ通信用の受信機。 21.前記DCオフセット・キャンセラは、データ伝送中に前記基準ノイズ信 号と前記差分信号との積分された積によりDCオフセット打消し信号のレートを 決定する、請求項20記載のデータ通信用の受信機。 22.前記DCオフセット打消し信号が決定されるのは、前記データ伝送中に 前記変圧器により前記差分信号の部分が出力されたときであって前記沈黙期間中 ではない、請求項21記載のデータ通信用の受信機。 23.前記差分信号は前記伝送媒体で時分割二重方式により受信する第1およ び第2信号から形成され、 前記所定の時はデータ伝送の方向を切り換えるときに起こる、 請求項17記載のデータ通信用の受信機。 24.前記適応フィルタは、 前記基準ノイズ信号にある係数を乗算して前記ノイズ・キャンセル信号の少な くとも1つの成分を決定する第1の乗算器と、 前記差分信号と前記基準ノイズ信号とを乗算して積信号を作る第2の乗算器と 、 前記積信号を積分して前記係数を決定する積分器と、 を少なくとも含む、請求項13記載のデータ通信用の受信機。 25.全てのチャンネルのデータ伝送の方向が周期的に切り換わり、各方向変 化の間にデータがどちらの方向にも伝送されない沈黙期間がある、時分割多重化 データ伝送を用いる同期DMTシステムにおいて、受信装置であって、 伝送媒体に結合された少なくとも1個の入力端子と、差分信号を出力する出力 端子と、コモン・モード信号を出力するコモン・モード端子とを有する変圧器と 、 該変圧器に結合されて前記差分信号と前記コモン・モード信号を受け、前記差 分信号からある無線周波数ノイズを打ち消してノイズ・キャンセル差分信号を作 る、無線周波数ノイズ・キャンセラであって、 フィルタ・パラメータに従って前記コモン・モード信号を濾波することによ りノイズ・キャンセル信号を作る適応フィルタと、 前記差分信号から前記ノイズ・キャンセル信号を引いて前記ノイズ・キャン セル差分信号を作る減算器と、 そのときに存在する前記ノイズ・キャンセル差分信号に基づいて前記適応フ ィルタのパラメータを前記沈黙期間の一部または全ての間に修正する更新回路と 、 を少なくとも含む無線周波数ノイズ・キャンセラと、 前記ノイズ・キャンセル差分信号を復号してデータを得る処理回路と、 を備える受信装置。 26.前記伝送媒体はツイスト・ペア電話回線である、請求項25記載の受信 装置。 27.前記無線周波数ノイズ・キャンセラにより打ち消される前記ある無線周 波数ノイズは、その周波数を頻繁に変える無線周波数ノイズ源により作られ、 前記更新回路による前記フィルタ・パラメータの更新の頻度は十分であって、 前記適応フィルタは前記無線周波数ノイズ源の周波数のいかなる変化にも応答し て適応することができる、 請求項26記載の受信装置。 28.前記適応フィルタは、 同相回路であって、 前記コモン・モード信号に同相係数を乗算して前記ノイズ・キャンセル信号 の同相成分を決定する第1の乗算器と、 前記差分信号と前記コモン・モード信号とを乗算して同相信号を作る第2の 乗算器と、 前記同相信号を積分して前記同相係数を決定する第1の積分器と、 を少なくとも含む同期回路と、 直交位相回路であって、 前記コモン・モード信号から直交位相コモン・モード信号を作る移相器と、 前記直交位相コモン・モード信号に直交位相係数を乗算して前記ノイズ・キ ャンセル信号の直交位相成分を決定する第3の乗算器と、 前記差分信号と直交位相コモン・モード信号とを乗算して直交信号を作る第 4の乗算器と、 前記直交信号を積分して前記直交位相係数を決定する第2の積分器と、 を少なくとも含む直交位相回路と、 前記同相成分と前記直交位相成分とを加算して前記ノイズ・キャンセル信号を 得る加算器と、 を備える、請求項27記載の受信装置。 29.前記受信装置は、前記差分信号に関連するDCオフセットを打ち消すD Cオフセット・キャンセラを更に備え、 前記DCオフセット・キャンセラは、 前記同相信号および/または前記直交信号からDCオフセット打消し信号を引 いて調整ディジタル信号を作る減算器と、 沈黙期間でない間に前記調整ディジタル信号を積分してDCオフセット情報を 作る第3の積分器と、 前記DCオフセット情報に基づいて前記DCオフセット打消し信号を決定する レート乗算器とを少なくとも含む、 請求項28記載の受信装置。 30.前記適応フィルタはディジタル信号プロセッサにより実現される、請求 項27記載の受信装置。 31.伝送媒体に結合することによって該伝送媒体を介して伝送されるデータ の受信を妨害する望ましくない無線周波数源に起因する無線周波数妨害を除去す る方法であって、 (a)差分データ信号と基準ノイズ信号とを受信し、 (b)推定ノイズ信号を作り、 (c)前記差分データ信号から前記推定ノイズ信号を引いて、無線周波数妨害が 実質的に除去されたノイズ・キャンセル差分データ信号を作り、 (d)データ伝送の沈黙期間中に前記推定ノイズ信号の推定値を更新する、 無線周波数妨害を除去する方法。 32.前記更新(d)は、前記沈黙期間中に前記基準ノイズ信号と前記ノイズ ・キャンセル差分出力とに基づいて前記推定ノイズ信号を更新する、請求項31 記載の無線周波数妨害を除去する方法。 33.前記沈黙期間中は前記差分データ信号は主として無線周波数妨害からな り、 前記データ伝送中の前記沈黙期間以外の時は、前記差分データ信号はデータと 前記無線周波数ノイズからなる、 請求項32記載の無線周波数妨害を除去する方法。 34.前記方法は、(e)DCオフセット推定値に従って前記ノイズ・キャン セル差分信号からDCオフセットを除去し、 前記DCオフセット推定値は前記データ伝送中の前記沈黙期間以外の時に更新 される、 請求項32記載の無線周波数妨害を除去する方法。
JP53817797A 1996-04-19 1997-04-17 無線周波数ノイズ・キャンセラ Expired - Lifetime JP3988802B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1625196P 1996-04-19 1996-04-19
US60/016,251 1996-04-19
PCT/US1997/006381 WO1997040587A1 (en) 1996-04-19 1997-04-17 Radio frequency noise canceller

Publications (2)

Publication Number Publication Date
JP2000509577A true JP2000509577A (ja) 2000-07-25
JP3988802B2 JP3988802B2 (ja) 2007-10-10

Family

ID=21776160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53817797A Expired - Lifetime JP3988802B2 (ja) 1996-04-19 1997-04-17 無線周波数ノイズ・キャンセラ

Country Status (9)

Country Link
US (1) US5995567A (ja)
EP (1) EP0894364B1 (ja)
JP (1) JP3988802B2 (ja)
CN (1) CN1211944C (ja)
AU (1) AU727612B2 (ja)
CA (1) CA2251887C (ja)
DE (1) DE69720436T2 (ja)
IL (1) IL126653A0 (ja)
WO (1) WO1997040587A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013343A (ja) * 1998-04-08 2000-01-14 Fujitsu Ltd 加入者線用伝送方法
JP2004236317A (ja) * 2003-01-28 2004-08-19 Agere Systems Inc 同相モード成分を用いて不平衡チャネルにおけるノイズを低減する方法および装置
JP2005086779A (ja) * 2003-09-11 2005-03-31 Aisin Seiki Co Ltd ディジタル受信装置及び無線通信システム
JP2007520978A (ja) * 2004-02-05 2007-07-26 クゥアルコム・インコーポレイテッド 多数の並列データストリームをもつ無線通信システムのためのチャネル推定
JP2012522432A (ja) * 2009-03-27 2012-09-20 クゥアルコム・インコーポレイテッド スプール減衰デバイス、システム、および方法
US8774314B2 (en) 2009-06-23 2014-07-08 Qualcomm Incorporated Transmitter architectures
JP5686181B2 (ja) * 2011-03-18 2015-03-18 富士通株式会社 ノイズキャンセルパラメータの設定を行う情報処理装置およびノイズキャンセルパラメータ設定プログラム
US10305522B1 (en) 2018-03-13 2019-05-28 Qualcomm Incorporated Communication circuit including voltage mode harmonic-rejection mixer (HRM)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785636A3 (en) * 1996-01-19 2001-11-07 Texas Instruments Incorporated Apparatus and method in or relating to signal processing techniques
DE19646164A1 (de) * 1996-11-08 1998-05-14 Deutsche Telekom Ag Verfahren zur Übertragung digitaler Signale
US6330275B1 (en) * 1997-06-23 2001-12-11 Paradyne Corporation Method and apparatus for overcoming periodic disturbances in digital subscriber loops
US6459914B1 (en) * 1998-05-27 2002-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
CA2239675C (en) * 1998-06-04 2007-11-13 Tet Hin Yeap Suppression of rfi and impulse noise in communications channels
SE512979C2 (sv) * 1998-10-23 2000-06-12 Ericsson Telefon Ab L M Anordning och förfarande för störningsdämpning av elektromagnetiska störningar
ES2183530T3 (es) * 1999-03-03 2003-03-16 Siemens Ag Transmisor de multiplexion de frecuencia y procedimiento para la eliminacion de diafonias.
US7027537B1 (en) 1999-03-05 2006-04-11 The Board Of Trustees Of The Leland Stanford Junior University Iterative multi-user detection
US6295326B1 (en) * 1999-03-08 2001-09-25 Bandspeed, Inc. Kalman filter based equalization for digital multicarrier communications systems
US6142942A (en) * 1999-03-22 2000-11-07 Agilent Technologies, Inc. Ultrasound imaging system and method employing an adaptive filter
US7050458B1 (en) 1999-10-28 2006-05-23 Tioga Technologies Ltd. Efficient framing for ADSL transceivers
US6741604B1 (en) * 1999-11-12 2004-05-25 Tioga Technologies, Inc. ADSL transmission in the presence of low-frequency network services
US6459739B1 (en) 1999-12-30 2002-10-01 Tioga Technologies Inc. Method and apparatus for RF common-mode noise rejection in a DSL receiver
EP1157512A1 (en) 1999-12-30 2001-11-28 Bandspeed, Inc. Approach for processing data received from a communications channel in finite precision arithmetic applications
US6683913B1 (en) 1999-12-30 2004-01-27 Tioga Technologies Inc. Narrowband noise canceller
WO2001052494A1 (en) * 2000-01-10 2001-07-19 Koninklijke Philips Electronics N.V. Multicarrier transmission system with interference detection and removal
US6785556B2 (en) * 2000-08-11 2004-08-31 Novatel Wireless, Inc. Method and apparatus for a software configurable wireless modem adaptable for multiple modes of operation
US7095957B1 (en) 2000-08-17 2006-08-22 At&T Corp. Optical/radio local access network
US6567649B2 (en) 2000-08-22 2003-05-20 Novatel Wireless, Inc. Method and apparatus for transmitter noise cancellation in an RF communications system
US6470059B2 (en) * 2000-12-28 2002-10-22 Sbc Technology Resources, Inc. Automatic filter for asymmetric digital subscriber line system
US6826242B2 (en) * 2001-01-16 2004-11-30 Broadcom Corporation Method for whitening colored noise in a communication system
US6798854B2 (en) * 2001-01-16 2004-09-28 Broadcom Corporation System and method for canceling interference in a communication system
US6996199B2 (en) 2001-01-25 2006-02-07 Bandspeed, Inc. Approach for processing data received from a communications channel to reduce noise power and optimize impulse response length to reduce inter-symbol interference and inter-channel interference
DE10112815A1 (de) * 2001-03-16 2002-09-26 Siemens Ag Verfahren zum Verbessern der Übertragungsqualität zwischen Telekommunikationseinrichtungen
EP1667333B1 (en) 2001-04-12 2009-11-18 Juniper Networks, Inc. Ingress noise reduction in a digital receiver
EP1255359A1 (en) * 2001-05-04 2002-11-06 STMicroelectronics N.V. Method and apparatus for cancelling radio frequency interference
US20020168972A1 (en) * 2001-05-11 2002-11-14 Justiss James E. Antenna feedforward interference cancellation system
US20090031419A1 (en) 2001-05-24 2009-01-29 Indra Laksono Multimedia system and server and methods for use therewith
US8291457B2 (en) 2001-05-24 2012-10-16 Vixs Systems, Inc. Channel selection in a multimedia system
US7158563B2 (en) * 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
GB2376607B (en) * 2001-06-15 2003-06-18 Motorola Inc A method for reducing interference to communications in time division duplexing (TDD) mode between a TDD mobile and a TDD base station
EP1276249A1 (de) * 2001-07-13 2003-01-15 Reinhard Hecht Vorrichtung zur Verbesserung der Übertragungseigenschaften eines Bündels elektrischer Datenleitungen und Anordnung zur Datenübertragung
US7388930B1 (en) 2001-08-10 2008-06-17 Bandspeed, Inc. Method and apparatus for removing crosstalk and other interference in communications systems
US6563885B1 (en) * 2001-10-24 2003-05-13 Texas Instruments Incorporated Decimated noise estimation and/or beamforming for wireless communications
US7218904B2 (en) * 2001-10-26 2007-05-15 Texas Instruments Incorporated Removing close-in interferers through a feedback loop
EP1318603B1 (en) * 2001-12-05 2007-07-11 Sony Deutschland GmbH FM receiver with digital bandwidth control
EP1318642A1 (en) * 2001-12-07 2003-06-11 BRITISH TELECOMMUNICATIONS public limited company Cancellation of interference in mutlicarrier receivers
US7200193B2 (en) * 2002-01-30 2007-04-03 The Aerospace Corporation Quadrature vestigial sideband digital communications method and system with correlated noise removal
WO2003081869A1 (en) 2002-03-21 2003-10-02 Globespan Virata Incorporated Adaptive rfi canceller for dsl
GB2388500A (en) * 2002-05-09 2003-11-12 Sony Uk Ltd Noise burst estimation and cancellation in OFDM carriers
US7418026B2 (en) 2002-05-09 2008-08-26 Sony United Kingdom Limited Receiver for a multi-carrier modulated symbol
KR100539223B1 (ko) * 2002-06-05 2005-12-27 삼성전자주식회사 Hpf의 통과대역을 조정할 수 있는 방법 및 장치
JP3986929B2 (ja) * 2002-08-27 2007-10-03 富士通株式会社 電力線搬送通信における漏洩電磁界抑圧送信方法及び漏洩電磁界抑圧送信装置
FR2846814B1 (fr) * 2002-10-31 2006-03-10 Imra Europe Sa Ameliorations se rapportant a la reduction des interferences pour la reception sans fil et ameliorations se rapportant au traitement d'un signal code par saut de frequence
DE10350700A1 (de) * 2002-10-31 2004-05-19 Imra Europe S.A.S. Verbesserungen beim Unterdrücken von Störungen für drahtlosen Empfang und Verbesserungen bei der Verarbeitung eines Frequenzumtastungssignals
US7620154B2 (en) 2002-12-23 2009-11-17 Cambron G Keith Equivalent working length determinative system for digital subscriber line circuits
US20040173277A1 (en) * 2003-01-22 2004-09-09 Brandel Lennart J. Glass textile fabric
FR2853169B1 (fr) * 2003-03-24 2005-12-30 Imra Europe Sa Amelioration se rapportant a la reduction des interferences pour la reception sans fil et a la demodulation d'un signal code par saut de frequence
US20050042663A1 (en) * 2003-08-19 2005-02-24 Blinov Michael L. Rule-based modeling of biochemical networks
US7315592B2 (en) * 2003-09-08 2008-01-01 Aktino, Inc. Common mode noise cancellation
US8082637B2 (en) * 2003-10-15 2011-12-27 Velcro Industries B.V. Low profile touch fastener
US7125469B2 (en) * 2003-10-16 2006-10-24 The Procter & Gamble Company Temporary wet strength resins
US7660275B2 (en) * 2003-10-24 2010-02-09 Qualcomm Incorporated Local and wide-area transmissions in a wireless broadcast network
US7711329B2 (en) * 2003-11-12 2010-05-04 Qualcomm, Incorporated Adaptive filter for transmit leakage signal rejection
KR100943582B1 (ko) * 2003-12-12 2010-02-23 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 매체 접속 제어 계층의동작 스테이트 제어 시스템 및 방법
NZ550373A (en) * 2004-04-28 2009-07-31 Electrolux Home Prod Inc Wireless communication with household appliances
US7072617B1 (en) 2004-05-19 2006-07-04 Analog Devices, Inc. System and method for suppression of RFI interference
US7573943B2 (en) 2004-08-20 2009-08-11 Adaptive Spectrum And Signal Alignment, Inc. Interference cancellation system
US7233777B2 (en) * 2004-08-31 2007-06-19 L-3 Integrated Systems Company Separation of AM cochannel signals in an overloaded signal environment
DE102004047717B4 (de) * 2004-09-30 2008-07-10 Infineon Technologies Ag Verfahren und Schaltungsanordung zur Reduzierung von RFI-Störungen
DE102004047718B4 (de) * 2004-09-30 2009-01-02 Infineon Technologies Ag Verfahren und Empfängerschaltung zur Reduzierung von RFI-Störungen
DE202005022046U1 (de) 2004-10-29 2012-08-24 Sharp Kabushiki Kaisha Funksender und Funkempfänger
EP1813030B1 (en) * 2004-11-15 2012-01-18 Qualcomm Incorporated Adaptive filter for transmit leakage signal rejection
JPWO2006077696A1 (ja) 2005-01-18 2008-06-19 シャープ株式会社 無線通信装置、携帯端末および無線通信方法
US20060211389A1 (en) * 2005-03-21 2006-09-21 Intel Corporation Method and apparatus for narrowband platform interference mitigation
US7542531B2 (en) * 2005-03-24 2009-06-02 Realtek Semiconductor Corp. Digital cancellation of radio frequency interference
US7426378B2 (en) 2005-04-05 2008-09-16 L-3 Communications Integrated Systems, L.P. Separation of cochannel FM signals
US20070082617A1 (en) * 2005-10-11 2007-04-12 Crestcom, Inc. Transceiver with isolation-filter compensation and method therefor
JP4277848B2 (ja) * 2005-11-21 2009-06-10 トヨタ自動車株式会社 車載受信装置
US7720457B2 (en) * 2006-10-19 2010-05-18 Motorola, Inc. Method and apparatus for minimizing noise on a power supply line of a mobile radio
US8144807B2 (en) * 2007-07-30 2012-03-27 Texas Instruments Incorporated Crosstalk cancellation in digital subscriber line communications
ATE545211T1 (de) 2007-09-26 2012-02-15 Nokia Siemens Networks Oy Verfahren und vorrichtung zur datenverarbeitung und kommunikationssystem mit einer derartigen vorrichtung
CN101453245B (zh) * 2007-11-29 2012-08-08 华为技术有限公司 一种消除数字用户线串扰的方法、设备和系统
US8369252B2 (en) * 2008-06-11 2013-02-05 Broadcom Corporation Method and system for time division duplex hum noise cancellation
US8477888B2 (en) * 2008-06-24 2013-07-02 Qualcomm Incorporated Phase-noise resilient generation of a channel quality indicator
US20090323856A1 (en) * 2008-06-27 2009-12-31 Crestcom, Inc. Transmit-canceling transceiver responsive to heat signal and method therefor
US8625704B1 (en) 2008-09-25 2014-01-07 Aquantia Corporation Rejecting RF interference in communication systems
US9912375B1 (en) 2008-09-25 2018-03-06 Aquantia Corp. Cancellation of alien interference in communication systems
US8442099B1 (en) 2008-09-25 2013-05-14 Aquantia Corporation Crosstalk cancellation for a common-mode channel
US8320411B1 (en) 2009-01-29 2012-11-27 Aquantia Corporation Fast retraining for transceivers in communication systems
US8472532B2 (en) 2008-10-30 2013-06-25 2Wire, Inc. Method and apparatus for generating a common-mode reference signal
CN102227877B (zh) * 2008-11-27 2014-03-26 爱立信电话股份有限公司 管理数字通信系统中传送资源的方法和系统
US8331894B2 (en) * 2009-01-13 2012-12-11 Mediatek Inc. Method for performing active jammer suppression on electronic device, and associated apparatus
US9819388B2 (en) * 2009-03-04 2017-11-14 Mark B. Flowers DSL noise cancellation
US8514951B2 (en) * 2009-09-18 2013-08-20 Broadcom Corporation Method and system for interference cancellation
US20110143697A1 (en) * 2009-12-11 2011-06-16 Qualcomm Incorporated Separate i and q baseband predistortion in direct conversion transmitters
US8880010B2 (en) * 2009-12-30 2014-11-04 Qualcomm Incorporated Dual-loop transmit noise cancellation
US8532238B2 (en) 2010-02-08 2013-09-10 Electronics And Telecommunications Research Institute Subsampling based receiver using frequency selective noise canceller
KR101408094B1 (ko) * 2010-02-08 2014-06-17 한국전자통신연구원 주파수 선택적 잡음 제거기를 이용한 서브샘플링 기반 수신기
US8891595B1 (en) 2010-05-28 2014-11-18 Aquantia Corp. Electromagnetic interference reduction in wireline applications using differential signal compensation
US8724678B2 (en) 2010-05-28 2014-05-13 Aquantia Corporation Electromagnetic interference reduction in wireline applications using differential signal compensation
US9118469B2 (en) 2010-05-28 2015-08-25 Aquantia Corp. Reducing electromagnetic interference in a received signal
US8792597B2 (en) 2010-06-18 2014-07-29 Aquantia Corporation Reducing electromagnetic interference in a receive signal with an analog correction signal
US8861663B1 (en) 2011-12-01 2014-10-14 Aquantia Corporation Correlated noise canceller for high-speed ethernet receivers
US8929468B1 (en) 2012-06-14 2015-01-06 Aquantia Corp. Common-mode detection with magnetic bypass
CN102749096B (zh) * 2012-06-25 2014-11-05 北京航空航天大学 一种对双观测系统量测噪声方差阵的自适应同步估计方法
CN103018637B (zh) * 2012-12-13 2015-08-05 广州供电局有限公司 输电线路行波测量减噪装置和减噪方法
US20150051880A1 (en) * 2013-08-13 2015-02-19 David Arditti Ilitzky Adaptive mitigation of platform-generated radio-frequency interference
US9430270B2 (en) * 2013-08-29 2016-08-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for multiple sensor noise predictive filtering
US10128879B2 (en) * 2014-03-31 2018-11-13 Intel IP Corporation Enhanced receive sensitivity for concurrent communications
US9525441B2 (en) * 2014-12-11 2016-12-20 Intel Corporation Common mode noise introduction to reduce radio frequency interference
US9602317B1 (en) * 2015-10-12 2017-03-21 Qualcomm Incorporated Apparatus and method for combining currents from passive equalizer in sense amplifier
US11115151B1 (en) 2019-03-22 2021-09-07 Marvell Asia Pte, Ltd. Method and apparatus for fast retraining of ethernet transceivers based on trickling error
US11228465B1 (en) 2019-03-22 2022-01-18 Marvell Asia Pte, Ltd. Rapid training method for high-speed ethernet
US10771100B1 (en) 2019-03-22 2020-09-08 Marvell Asia Pte., Ltd. Method and apparatus for efficient fast retraining of ethernet transceivers
US11063629B1 (en) * 2020-10-14 2021-07-13 Nvidia Corporation Techniques for detecting wireless communications interference from a wired communications channel
CN113162748A (zh) * 2021-01-26 2021-07-23 湖北民族大学 基于双功放驱动电阻法的全双工电话电路及其控制方法
CN112910885A (zh) * 2021-01-29 2021-06-04 湖北民族大学 一种基于惠更斯电桥平衡法的保密通信系统、方法
CN116539965A (zh) * 2021-12-23 2023-08-04 曼森伯格(深圳)科技发展有限公司 一种消除测量系统中电和磁干扰的通用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733171A (en) * 1987-02-04 1988-03-22 General Electric Company Differential switched-capacitor dual slope watthour meter circuit
US4992747A (en) * 1988-08-16 1991-02-12 Myers Glen A Multiple reuse of an FM band
US4859958A (en) * 1988-08-16 1989-08-22 Myers Glen A Multiple reuse of an FM band
US4995104A (en) * 1989-05-08 1991-02-19 At&T Bell Laboratories Interference cancelling circuit and method
DE69126862T2 (de) * 1990-01-23 1998-02-05 Governors Of Paisley College O Amplitudenregelkreisschaltungen
US5046063A (en) * 1990-02-13 1991-09-03 Industrial Technology, Inc. Method and apparatus for achieving communication at all locations along a ping pong communications channel
US5038115A (en) * 1990-05-29 1991-08-06 Myers Glen A Method and apparatus for frequency independent phase tracking of input signals in receiving systems and the like
US5109206A (en) * 1991-02-07 1992-04-28 Ungermann-Bass, Inc. Balanced low-pass common mode filter
US5430894A (en) * 1992-03-11 1995-07-04 Matsushita Electric Industrial Co., Ltd. Radio receiver noise suppression system
JP3176474B2 (ja) * 1992-06-03 2001-06-18 沖電気工業株式会社 適応ノイズキャンセラ装置
US5285474A (en) * 1992-06-12 1994-02-08 The Board Of Trustees Of The Leland Stanford, Junior University Method for equalizing a multicarrier signal in a multicarrier communication system
US5623513A (en) * 1993-12-13 1997-04-22 Amati Communications Corporation Mitigating clipping and quantization effects in digital transmission systems
CA2196601A1 (en) * 1994-08-03 1996-02-15 Lewis Freeth Harpham Electromagnetic interference isolator
US5745564A (en) * 1995-01-26 1998-04-28 Northern Telecom Limited Echo cancelling arrangement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013343A (ja) * 1998-04-08 2000-01-14 Fujitsu Ltd 加入者線用伝送方法
JP2004236317A (ja) * 2003-01-28 2004-08-19 Agere Systems Inc 同相モード成分を用いて不平衡チャネルにおけるノイズを低減する方法および装置
JP4643151B2 (ja) * 2003-01-28 2011-03-02 アギア システムズ インコーポレーテッド 同相モード成分を用いて不平衡チャネルにおけるノイズを低減する方法および装置
JP2005086779A (ja) * 2003-09-11 2005-03-31 Aisin Seiki Co Ltd ディジタル受信装置及び無線通信システム
JP2007520978A (ja) * 2004-02-05 2007-07-26 クゥアルコム・インコーポレイテッド 多数の並列データストリームをもつ無線通信システムのためのチャネル推定
JP2012522432A (ja) * 2009-03-27 2012-09-20 クゥアルコム・インコーポレイテッド スプール減衰デバイス、システム、および方法
JP2015065685A (ja) * 2009-03-27 2015-04-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated スプール減衰デバイス、システム、および方法
US8774314B2 (en) 2009-06-23 2014-07-08 Qualcomm Incorporated Transmitter architectures
JP5686181B2 (ja) * 2011-03-18 2015-03-18 富士通株式会社 ノイズキャンセルパラメータの設定を行う情報処理装置およびノイズキャンセルパラメータ設定プログラム
US10305522B1 (en) 2018-03-13 2019-05-28 Qualcomm Incorporated Communication circuit including voltage mode harmonic-rejection mixer (HRM)
US10454509B2 (en) 2018-03-13 2019-10-22 Qualcomm Incorporated Communication circuit including a transmitter

Also Published As

Publication number Publication date
CA2251887C (en) 2005-10-11
CA2251887A1 (en) 1997-10-30
CN1222269A (zh) 1999-07-07
AU727612B2 (en) 2000-12-14
DE69720436T2 (de) 2003-11-20
US5995567A (en) 1999-11-30
CN1211944C (zh) 2005-07-20
EP0894364A1 (en) 1999-02-03
JP3988802B2 (ja) 2007-10-10
IL126653A0 (en) 1999-08-17
AU2461897A (en) 1997-11-12
WO1997040587A1 (en) 1997-10-30
EP0894364B1 (en) 2003-04-02
DE69720436D1 (de) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3988802B2 (ja) 無線周波数ノイズ・キャンセラ
US5623513A (en) Mitigating clipping and quantization effects in digital transmission systems
US5887032A (en) Method and apparatus for crosstalk cancellation
US9160381B2 (en) Adaptive frequency-domain reference noise canceller for multicarrier communications systems
US7577084B2 (en) ISDN crosstalk cancellation in a DSL system
Ho et al. Discrete multitone echo cancelation
JP2001527704A (ja) デジタル無線周波数干渉打消器
WO2001047138A2 (en) Device for use in communication systems
US6157680A (en) Audio distortion canceler method and apparatus
US6870893B2 (en) Receiver and method for avoiding intersymbol interference in a high speed transmission system
US6173021B1 (en) Method and apparatus for reducing interference in a twisted wire pair transmission system
US8064501B2 (en) Method and apparatus for generating a periodic training signal
US7519109B2 (en) Process for configuring an xDSL modem and xDSL modem having such a process
US6330275B1 (en) Method and apparatus for overcoming periodic disturbances in digital subscriber loops
EP1817847B1 (en) System and method of echo cancellation
US6741701B1 (en) Dual echo canceller and method for increasing dynamic range of a receiver
US6781965B1 (en) Method and apparatus for echo cancellation updates in a multicarrier transceiver system
KR100456759B1 (ko) 무선주파수노이즈소거기
JP3502607B2 (ja) 離散型マルチトーン変調により生成した信号のためのデジタル受信機
JP3653045B2 (ja) 全二重伝送システム用の受信方法および受信器
KR20070061745A (ko) 주파수 대역의 부분적인 중첩에 따른 간섭 신호를 제거하는장치 및 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term