JP2000308355A - 圧電トランス式電力変換装置 - Google Patents

圧電トランス式電力変換装置

Info

Publication number
JP2000308355A
JP2000308355A JP11107787A JP10778799A JP2000308355A JP 2000308355 A JP2000308355 A JP 2000308355A JP 11107787 A JP11107787 A JP 11107787A JP 10778799 A JP10778799 A JP 10778799A JP 2000308355 A JP2000308355 A JP 2000308355A
Authority
JP
Japan
Prior art keywords
piezoelectric transformer
voltage
input
component
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11107787A
Other languages
English (en)
Inventor
Toru Abe
徹 阿部
Noboru Abe
昇 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11107787A priority Critical patent/JP2000308355A/ja
Publication of JP2000308355A publication Critical patent/JP2000308355A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

(57)【要約】 【課題】 圧電トランス励振電圧の直流分を抑制もしく
は除去した圧電トランス式電力変換装置を提供する 【解決手段】 直流入力電源と、前記直流入力電源の一
端と一端が接続されるインダクタと、前記インダクタの
他端と一端が接続され他端が前記直流入力電源の他端と
接続されるスイッチ手段と、前記スイッチ手段に並列接
続される圧電トランス入力とキャパシタの直列回路と、
前記スイッチ手段の駆動・発振手段とを備えた圧電トラ
ンス式電力変換装置。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば液晶ディス
プレイのバックライト用インバータやDC−DCコンバ
ータに用いられる圧電トランス式電力変換装置に関す
る。
【0002】
【従来の技術】一般に、液晶ディスプレイにあっては液
晶自身が発光しないことから液晶表示体の背面や側面に
冷陰極管等の放電管を配置するバックライト方式が主流
となっている。
【0003】この放電管を駆動するためには、これ自体
の長さや直径にもよるが数100ボルト以上の交流高電
圧が要求される。この交流高電圧を発生させる方法とし
て圧電トランスを用いたインバータが特開平5−114
492号公報に示されている。圧電トランスは構造が非
常に簡素であるため小型・薄型化、低コスト化が可能で
ある。この圧電トランスの原理と特徴は学献社発行の専
門誌「エレクトロニク・セラミクス」1971年7月号
の「圧電トランスの特性とその応用」に示されている。
【0004】1956年に米国のC.A.Rosenが発
表したローゼン型圧電トランスを図6に示す。図6を参
照してこのローゼン型圧電トランスの原理を説明する
と、2は例えばチタン酸ジルコン酸鉛系(PZT)より
なる板状の圧電セラミックス素子であり、このセラミッ
ク素子の図中左半分の上下面に例えば銀焼付けなどによ
り設けられた入力電極4、5の対を形成し、右側端面に
も同様な方法で出力電極6を形成する。そして、セラミ
ック素子2の左半分の駆動部は厚み方向に、右半分の発
電部は長手方向に分極処理を施す。
【0005】このように形成された圧電トランスにおい
て、入力電極4、5間に交流電圧源8よりセラミック素
子2の長さ方向の共振周波数とほぼ同じ周波数の交流電
圧を印加するとこのセラミック素子2は逆圧電効果によ
り長手方向に強い機械振動を生ずる。これにより右半分
の発電部では圧電効果により電荷が発生し、出力電極6
と入力電極の一方、例えば入力電極5との間に出力電圧
が生ずる。この振動モードの主なものは図7に示す
ように、長手方向に半波長で共振する半波長モード(図
中ではλ/2モード)と、一波長で共振する全波長モー
ド(図中ではλモード)の2つである。
【0006】図8に他のタイプの積層型圧電トランスの
説明図を示し、その駆動部の断面図を図9に示す。この
積層圧電トランスの駆動部には積層された薄い各層に交
流電圧が印加されるため、単板型に比べ昇圧比がおよそ
積層数倍に増大する。この積層型圧電トランスの作製方
法は、PZT系セラミックスのグリーンシートをドクタ
ブレード法により作製し、このグリーンシート上の一部
にスクリーン印刷法を用いて銀−パラジウム合金の内部
電極57、58を印刷し、このシートを積層圧着して焼
結する。その後、切断、研磨を行い、銀焼付けにより入
力の外部電極51、52と出力電極55を設け、内部電
極57を外部電極51と接続し、内部電極58を外部電
極52と接続する。そして、駆動部の厚み方向と発電部
の長手方向の分極処理を行い完成する。ここで、駆動部
の上端と下端は分極されていないためダミー層となって
いるが、駆動部の上下面に電極を設けてそれぞれを外部
電極52、51と接続することにより、ダミー層を無く
することもできる。
【0007】この圧電トランスを使った冷陰極管駆動装
置の回路例を図10に、この回路の圧電トランス50の
出力電圧Vと励振電圧Vの波形を図11に示す。以
下、その動作を説明する。冷陰極管60を発光させるた
めに圧電トランス50をその固有共振周波数近傍で駆動
して高周波高電圧の出力電圧Vを得ている。発光量を
調整するため、冷陰極管60の管電流Iを出力電流検
出部70で検出し、この検出結果に基づいて周波数可変
部80で駆動周波数を可変し、駆動部10を介して主ス
イッチであるMOSFET20を駆動している。励振電
圧Vは、インダクタ30のインダクタンスとMOSF
ET20の出力静電容量による共振により、図11のよ
うに半波正弦波状となる。このため、MOSFET21
のスイッチング損失が少なくなり良好な効率が得られる
が、半波正弦波には入力電圧Vとほぼ同じ値の直流電
圧分が含まれており、圧電トランス入力には大きな直流
電圧分を含む電圧が印加されている。
【0008】
【発明が解決しようとする課題】前述のように圧電トラ
ンスの電極には銀また銀を含む合金が用いられるが、図
10の回路構成では圧電トランスの励振電圧に直流分が
含まれているため、マイグレーションなどの発生により
圧電体の絶縁性が劣化して圧電トランスの入力抵抗が低
下する問題点があった。圧電トランス入力抵抗が低下す
ると、圧電トランス式電力変換装置の入力電流が増大し
てその構成部品が破損に至る場合があった。
【0009】本発明は、以上のような問題点に着目し、
これらを有効に解決すべく創案されたものである。本発
明の目的は、圧電トランス励振電圧の直流分を抑制もし
くは除去した圧電トランス式電力変換装置を提供するこ
とである。
【0010】
【課題を解決するための手段】本発明は、前記問題点を
解決するために、直流入力電源と、前記直流入力電源の
一端と一端が接続されるインダクタと、前記インダクタ
の他端と一端が接続され他端が前記直流入力電源の他端
と接続されるスイッチ手段と、前記スイッチ手段に並列
接続される圧電トランス入力とキャパシタの直列回路
と、前記スイッチ手段の駆動・発振手段とを備えた圧電
トランス式電力変換装置である。また、前記圧電トラン
ス入力と並列に抵抗体を接続し、前記抵抗体の抵抗値が
前記キャパシタの等価並列抵抗値以下であることを特徴
とする圧電トランス式電力変換装置である。さらに、前
記圧電トランスが、駆動部領域が圧電体と内部電極が交
互に積層され、前記内部電極が外部電極と1層おきに接
続された積層圧電トランスであることを特徴とする圧電
トランス式電力変換装置である。
【0011】本発明は以上のように、直列キャパシタが
圧電トランス入力と直列に接続されているため、半波正
弦波V21は直列キャパシタと圧電トランス入力で分圧
される。半波正弦波V21に含まれる直流電圧分は、直
列キャパシタの等価並列抵抗RPCと圧電トランス入力
の等価並列抵抗RPTの抵抗値に比例した負担で分圧さ
れる。従って、抵抗RPCと抵抗RPTが同程度の抵抗
値であれば圧電トランス励振電圧に含まれる直流分は入
力電圧Vの半分となり、抵抗RPCが抵抗R PTより
十分大きい(例えば2桁以上大きい)抵抗値であれば圧
電トランス励振電圧に含まれる直流分はほぼゼロとな
る。マイグレ−ションの発生は印加直流電圧が高いほど
顕著になることから、適切な等価並列抵抗RPCをもつ
直列キャパシタを設ければ圧電トランスの電極に銀また
は銀を含む合金を用いてもマイグレーション等は発生せ
ず、圧電トランスの入力抵抗の低下も生じない。また、
圧電トランス入力の等価並列抵抗RPTの抵抗値が大き
い場合には、圧電トランス入力と並列に抵抗体を設けて
圧電トランス励振電圧の直流成分を抑制もしくは除去で
きる。なお等価並列抵抗は絶縁抵抗計にて測定される。
【0012】
【実施例】以下、本発明の実施例について図面を参照し
て説明する。本発明に係る圧電トランス式電力変換装置
の第一の実施例の回路図を図1に示す。本実施例は積層
型圧電トランスを使った冷陰極管駆動装置の回路例であ
り、入力電圧Vは10V、直列キャパシタ90は静電
容量C=10μF(等価並列抵抗RPC=1GΩ)、
圧電トランス50は入力静電容量CT1=110nF
(等価並列抵抗RPT=5GΩ)、付加並列抵抗100
は抵抗値R=2MΩである。駆動周波数は58〜63
kHzである。図2に示すように半波正弦波V21は従
来例の励振電圧Vと同様な直流分を含め電圧波形であ
るが、圧電トランスの励振電圧V22は正負に振れる波
形となり含まれる直流分はほぼゼロである。半波正弦波
電圧V は図3のように分圧されて励振電圧V22
なる。この駆動周波数域では静電容量C、CT1のイ
ンピーダンスが等価並列抵抗RPC 、 RPTおよび付
加並列抵抗値Rより十分小さいため、交流的には静電
容量C、CT1で分圧される。本実施例ではCT1
より十分小さいため、交流成分はほとんど圧電トラ
ンス入力に印加される。直流的には抵抗成分で分圧さ
れ、本実施例ではRがRPCより十分小さいため、圧
電トランス入力に印加される直流電圧はほぼゼロ(約2
0mV)である。
【0013】本発明に係る圧電トランス式電力変換装置
の第二の実施例の回路図を図4に示す。本実施例は単板
型圧電トランスを使った冷陰極管駆動装置の回路例であ
り、入力電圧Vは105V、直列キャパシタ90はフ
ィルムコンデンサ10nF(等価並列抵抗500G
Ω)、圧電トランス50は単板構造(素子厚1mm)で
入力静電容量500pF(等価並列抵抗25GΩ)であ
る。このときの圧電トランス励振電圧をオシロスコープ
で観測しても、オシロスコーププローブの入力インピー
ダンスが圧電トランス50の入力等価並列抵抗に比べて
小さいため、実際波形とは異なる。圧電トランス励振電
圧V22の直流分を等価並列抵抗から推定すると 10
5V×25G÷525G=5V となる。本実施例の単
板構造圧電トランスは入力電極間距離が素子厚と同じ1
mmあるため、印加直流電界は5千V/mとなり、マイ
グレーション発生が危惧されるレベル10万V/mより
十分小さい。従って、マイグレーション発生の恐れは無
い。
【0014】本発明に係る圧電トランス式電力変換装置
の第三の実施例の回路図を図5に示す。本実施例は圧電
トランスを使ったDC−DCコンバータの回路例であ
る。圧電トランスの交流出力を整流ダイオード110と
平滑コンデンサ120で直流に変換している。出力電圧
検出部71により直流出力電圧VODを検出し、この検
出電圧に基ずき周波数可変部80で駆動周波数を可変
し、駆動部11を介して主スイッチであるMOSFET
20を駆動している。本実施例でも前述の実施例と同様
に励振電圧V22の直流成分は抑制もしくは除去される
【0015】
【発明の効果】本発明によれば、圧電トランス励振電圧
の直流成分は抑制もしくは除去される。従って、圧電ト
ランスの電極材に銀または銀を含む合金を用いてもマイ
グレーションは発生せず圧電体の絶縁性が劣化すること
は無い。また、本発明は銀に起因するマイグレーション
の防止に限定されるわけではなく、圧電トランス励振電
圧に直流分が含まれることに起因する圧電トランス特性
の劣化現象に対しては、全てその発生防止に有効に作用
するものである。
【図面の簡単な説明】
【図1】本発明に係る圧電トランス式電力変換装置の第
一の実施例を示す回路図である。
【図2】図1の回路の出力電圧V、半波正弦波
21、励振電圧V22を示す波形図である。
【図3】本発明に係る圧電トランス励振電圧を説明する
図である。
【図4】本発明に係る圧電トランス式電力変換装置の第
二の実施例を示す回路図である。
【図5】本発明に係る圧電トランス式電力変換装置の第
三の実施例を示す回路図である。
【図6】圧電トランスの動作原理を示す説明図である。
【図7】圧電トランスの振動モードを示す説明図であ
る。
【図8】積層型圧電トランスの斜視図である。
【図9】積層型圧電トランスの駆動部の断面図である。
【図10】圧電トランスを使った電力変換装置の従来例
を示す回路図である。
【図11】図10の回路の出力電圧Vと励振電圧V
を示す波形図である。
【符号の説明】
10 駆動部 20 MOSFET 30 インダクタ 50 圧電トランス 51 入力電極 52 入力電極(共通電極) 55、56 出力電極 57、58 内部電極 59 絶縁層 60 冷陰極管 65 負荷 70 出力電流検出部 80 周波数可変発振部 90 直列キャパシタ 100 付加並列抵抗 110 整流ダイオード 120 平滑コンデンサ
フロントページの続き Fターム(参考) 5H007 AA06 BB03 CB04 CB07 CB09 CC07 CC32 DA03 DA05 DB01 DC02 FA00 5H730 AA20 AS04 AS11 BB57 BB61 DD04 EE48 EE59 EE79 FD01 FD31 FG07

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 直流入力電源と、前記直流入力電源の一
    端と一端が接続されるインダクタと、前記インダクタの
    他端と一端が接続され他端が前記直流入力電源の他端と
    接続されるスイッチ手段と、前記スイッチ手段に並列接
    続される圧電トランス入力とキャパシタの直列回路と、
    前記スイッチ手段の駆動・発振手段とを備えた圧電トラ
    ンス式電力変換装置。
  2. 【請求項2】 前記圧電トランス入力と並列に抵抗体を
    接続し、前記抵抗体の抵抗値が前記キャパシタの等価並
    列抵抗値以下であることを特徴とする請求項1に記載の
    圧電トランス式電力変換装置。
  3. 【請求項3】 前記圧電トランスが、駆動部領域が圧電
    体と内部電極が交互に積層され、前記内部電極が外部電
    極と1層おきに接続された積層圧電トランスであること
    を特徴とする請求項1又は2に記載の圧電トランス式電
    力変換装置。
JP11107787A 1999-04-15 1999-04-15 圧電トランス式電力変換装置 Pending JP2000308355A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11107787A JP2000308355A (ja) 1999-04-15 1999-04-15 圧電トランス式電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11107787A JP2000308355A (ja) 1999-04-15 1999-04-15 圧電トランス式電力変換装置

Publications (1)

Publication Number Publication Date
JP2000308355A true JP2000308355A (ja) 2000-11-02

Family

ID=14468027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11107787A Pending JP2000308355A (ja) 1999-04-15 1999-04-15 圧電トランス式電力変換装置

Country Status (1)

Country Link
JP (1) JP2000308355A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296772A (ja) * 2003-03-27 2004-10-21 Denshi Seiki:Kk 積層型圧電素子の電気的駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296772A (ja) * 2003-03-27 2004-10-21 Denshi Seiki:Kk 積層型圧電素子の電気的駆動方法

Similar Documents

Publication Publication Date Title
KR100241210B1 (ko) 압전변압기 및 그것을 사용한 전력변환장치
KR100436637B1 (ko) 압전트랜스포머
US20100188068A1 (en) Solid State High Power Piezokinetic Transformer and Method Thereof
KR100485399B1 (ko) 압전 트랜스포머
JPH0869890A (ja) 積層一体型圧電トランス及びそれを用いた放電管の駆動装置
JP2000308355A (ja) 圧電トランス式電力変換装置
JP3706509B2 (ja) 圧電トランス
JP3365248B2 (ja) 圧電トランス及びこれを用いた電力変換装置
JP3580492B2 (ja) 積層型圧電トランス及びそれを用いた電力変換装置
JP4721540B2 (ja) 圧電トランス及び電源装置
JP3659309B2 (ja) 圧電トランス
JPH11145528A (ja) 圧電トランス
JPH08340680A (ja) 電力変換装置
JPH10135529A (ja) 圧電トランスの駆動回路
JPH10223939A (ja) 圧電トランス
JP3239047B2 (ja) 圧電トランスならびにそれを組み込んだインバーターおよび液晶ディスプレー
JP3008255B2 (ja) 圧電トランス
JP2006041150A (ja) 圧電トランス
JP4156713B2 (ja) 圧電トランス
JPH11261125A (ja) 積層型圧電トランス
JPH08236288A (ja) バックライト装置
JP2001148524A (ja) 圧電トランス及びそれを用いた電力変換装置
JP2002232031A (ja) 圧電トランスおよびadコンバータ
JPH0992901A (ja) 圧電トランス
JP2003008097A (ja) 積層型圧電トランス