JP2000208520A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JP2000208520A
JP2000208520A JP2000049519A JP2000049519A JP2000208520A JP 2000208520 A JP2000208520 A JP 2000208520A JP 2000049519 A JP2000049519 A JP 2000049519A JP 2000049519 A JP2000049519 A JP 2000049519A JP 2000208520 A JP2000208520 A JP 2000208520A
Authority
JP
Japan
Prior art keywords
film
barrier metal
depositing
wiring
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049519A
Other languages
Japanese (ja)
Inventor
Masayasu Suzuki
正恭 鈴樹
Shinji Nishihara
晋治 西原
Masashi Sawara
政司 佐原
Shinichi Ishida
進一 石田
Hiromi Abe
宏美 阿部
Sonoko Toda
園子 遠田
Hiroyuki Uchiyama
博之 内山
Hideaki Tsugane
秀明 津金
Aimei Yoshiura
愛明 吉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Solutions Technology Ltd
Original Assignee
Hitachi Ltd
Hitachi ULSI Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi ULSI Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP2000049519A priority Critical patent/JP2000208520A/en
Publication of JP2000208520A publication Critical patent/JP2000208520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PROBLEM TO BE SOLVED: To enhance adhesion of a bonding pad to a wire. SOLUTION: In this semiconductor integrated circuit device, an Al wire 35 of an uppermost layer is constituted by a composite film, comprising a first barrier metal constituted by lamination films of a Ti film 30 and a TiN film 32, and a second barrier metal constituted by an Al-Si-Cu film 33 deposited on this barrier metal and a TiN film 34 deposited on the Al-Si-Cu film 33, thereby preventing deposition of a reaction product of Al and Ti on the surface of a bonding pad.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路装
置およびその製造技術に関し、特に、多層配線を有する
LSIの配線構造ならびに配線加工プロセスに適用して
有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device and a manufacturing technique therefor, and more particularly to a technique effective when applied to a wiring structure and a wiring processing process of an LSI having a multilayer wiring.

【0002】[0002]

【従来の技術】近年、LSIの集積化が進み、上層のA
l配線と下層のAl配線とを接続する接続孔のアスペク
ト比(接続孔の深さ/径)が増大していることから、接
続孔の内部でのAl配線の導通を確保するために、接続
孔にW(タングステン)膜を埋め込む、いわゆるタング
ステンプラグ技術が利用されている。
2. Description of the Related Art In recent years, the integration of LSIs has advanced, and A
Since the aspect ratio (depth / diameter of the connection hole) of the connection hole for connecting the 1 wiring and the lower Al wiring is increased, the connection is required to secure the conduction of the Al wiring inside the connection hole. A so-called tungsten plug technique for embedding a W (tungsten) film in a hole is used.

【0003】接続孔にW膜を埋め込むには、接続孔を形
成した絶縁膜上の全面にCVD法でW膜を堆積し、次い
で、絶縁膜上のW膜をエッチバックで除去して接続孔の
内部のみにW膜を残す。このとき、W膜のエッチバック
にはF(フッ素)プラズマを用いるので、下地の絶縁膜
(酸化シリコン膜)がFプラズマによって削られるのを
防止するために、あらかじめW膜の下にTi膜とTiN
膜との積層膜で構成されたバリアメタルを敷いておく。
In order to bury a W film in a connection hole, a W film is deposited on the entire surface of the insulating film in which the connection hole is formed by a CVD method, and then the W film on the insulation film is removed by etch-back. The W film is left only in the inside. At this time, F (fluorine) plasma is used for the etch back of the W film. Therefore, in order to prevent the underlying insulating film (silicon oxide film) from being etched by the F plasma, a Ti film is previously formed under the W film. TiN
A barrier metal composed of a laminated film with a film is laid.

【0004】また、上記Ti/TiN積層膜で構成され
たバリアメタルは、エレクトロマイグレーションやスト
レスマイグレーションに対する耐性が大きく、かつ露光
光によるフォトレジストのハレーション防止効果も高い
ことから、サブミクロン・オーダーのデザインルールで
製造されるLSIの配線には、Al膜の上下にこのバリ
アメタルを積層したAl複合膜(TiN/Ti/Al−
Si−Cu/Ti/TiN)が用いられている。なお、
Ti/TiN積層膜で構成されたバリアメタルについて
は、例えば株式会社プレスジャーナル、1992年11月20日
発行の「セミコンダクターワールド」p196〜p205などに
記載がある。
The barrier metal composed of the Ti / TiN laminated film has a high resistance to electromigration and stress migration, and has a high effect of preventing photoresist from being halated by exposure light. The wiring of the LSI manufactured according to the rule includes an Al composite film (TiN / Ti / Al-) in which the barrier metal is laminated above and below the Al film.
(Si-Cu / Ti / TiN) is used. In addition,
The barrier metal composed of the Ti / TiN laminated film is described in, for example, “Semiconductor World”, published on November 20, 1992, pages 196 to 205, by Press Journal.

【0005】[0005]

【発明が解決しようとする課題】本発明者が検討したと
ころによると、前記従来の技術には次のような問題点が
ある。 (1)接続孔にW膜を埋め込むプロセスでは、前述した
ようにF(フッ素)プラズマを用いたエッチバックで絶
縁膜上のW膜を除去するため、このエッチバックによっ
て露出した絶縁膜上のバリアメタル(Ti/TiN積層
膜)の表面にプラズマ中のFの一部が残留する。そのた
め、エッチバックに引き続いてこのバリアメタル上に上
層配線のバリアメタル(Ti膜)あるいはAl膜を堆積
すると、この2層の膜の界面の接着力がF残渣の影響で
低下する。
According to studies made by the present inventors, the above-mentioned prior art has the following problems. (1) In the process of embedding the W film in the connection hole, the W film on the insulating film is removed by the etch back using the F (fluorine) plasma as described above. Part of F in the plasma remains on the surface of the metal (Ti / TiN laminated film). Therefore, if a barrier metal (Ti film) or an Al film of the upper wiring is deposited on the barrier metal subsequent to the etch back, the adhesive force at the interface between the two layers is reduced by the influence of the F residue.

【0006】特に、このような現象が最上層配線のバリ
アメタルとその下層のバリアメタルとの界面で起こる
と、最上層配線の一部によって構成されるボンディング
パッドにワイヤをボンディングした際の衝撃でボンディ
ングパッドが剥離することがある。 (2)また、接続孔にW膜を埋め込むプロセスでは、接
続孔の内部のみにW膜を残すために、絶縁膜上のW膜を
オーバーエッチングで完全に除去しなければならない。
このとき、接続孔内のW膜の表面もこのオーバーエッチ
ングで削られるため、絶縁膜の表面と接続孔内のW膜の
表面との間に段差が発生する。
In particular, when such a phenomenon occurs at the interface between the barrier metal of the uppermost layer wiring and the barrier metal of the lower layer, the impact caused when the wire is bonded to the bonding pad formed by a part of the uppermost layer wiring is obtained. The bonding pad may peel off. (2) In the process of embedding the W film in the connection hole, the W film on the insulating film must be completely removed by overetching in order to leave the W film only inside the connection hole.
At this time, since the surface of the W film in the connection hole is also shaved by this over-etching, a step is generated between the surface of the insulating film and the surface of the W film in the connection hole.

【0007】そのため、この絶縁膜上にAl配線を形成
すると、上記段差に起因して接続孔の真上のAl配線の
表面にも段差ができる。その結果、接続孔の真上の層間
絶縁膜に上記Al配線とさらに上層のAl配線とを接続
する第2の接続孔を形成しようとすると、第2の接続孔
の加工精度が低下するため、接続孔の真上に上層の接続
孔を配置する、いわゆるスタックオンプラグ(Stack On
Plug) 構造を実現することができない。 (3)前述したように、Al配線は、Al膜の上下にバ
リアメタルを積層したAl複合膜(TiN/Ti/Al
−Si−Cu/Ti/TiN)で構成される。ところ
が、最上層配線をこのAl複合膜で構成すると、最上層
配線を覆うパッシベーション膜の一部をエッチングで除
去してボンディングパッドを形成する際、Al膜とその
表面のバリアメタル(Ti/TiN積層膜)との界面に
AlとTiとが反応してできた化合物が析出し、その影
響でボンディングパッドとワイヤの接着力が低下する。 (4)Al配線は、スパッタ法で堆積したAl複合膜を
ドライエッチングで加工して形成する。しかし、Al複
合膜を堆積する際に下地段差の影響でAl膜のカバレー
ジが低下すると、ドライエッチングによる配線の加工精
度が低下する。そこで、その対策として、半導体基板を
高温に保ち、Al膜をその熱でリフローさせながら堆積
することによりカバレージを確保する、いわゆる高温A
lスパッタ技術が提案されている。
Therefore, when an Al wiring is formed on this insulating film, a step is formed on the surface of the Al wiring just above the connection hole due to the above-mentioned step. As a result, if it is attempted to form a second connection hole for connecting the Al wiring and the Al wiring in the upper layer in the interlayer insulating film immediately above the connection hole, the processing accuracy of the second connection hole is reduced. A so-called Stack-On-Plug (Stack On Plug) that arranges the upper layer connection hole directly above the connection hole
Plug) structure cannot be realized. (3) As described above, the Al wiring is made of an Al composite film (TiN / Ti / Al) in which a barrier metal is laminated above and below the Al film.
-Si-Cu / Ti / TiN). However, when the uppermost layer wiring is formed of this Al composite film, when a part of the passivation film covering the uppermost layer wiring is removed by etching to form a bonding pad, the Al film and a barrier metal (Ti / TiN laminate) on the surface thereof are formed. A compound formed by the reaction of Al and Ti precipitates at the interface with the film), and the adhesive force between the bonding pad and the wire is reduced due to the effect. (4) The Al wiring is formed by processing an Al composite film deposited by a sputtering method by dry etching. However, if the coverage of the Al film is reduced due to the influence of the step of the base when depositing the Al composite film, the processing accuracy of the wiring by dry etching is reduced. Therefore, as a countermeasure, a so-called high-temperature A is used in which the semiconductor substrate is kept at a high temperature and the Al film is deposited while being reflowed by the heat to secure coverage.
1 Sputter technology has been proposed.

【0008】ところが、Al膜、特にCuを添加したA
l−Si−Cu膜やAl−Cu膜を高温スパッタで堆積
すると、膜中に反応析出物が生じ、これがドライエッチ
ングによるAl配線の加工精度を低下させる新たな原因
となる。
However, an Al film, particularly, A
When an l-Si-Cu film or an Al-Cu film is deposited by high-temperature sputtering, reaction precipitates are generated in the film, and this is a new cause of lowering the processing accuracy of the Al wiring by dry etching.

【0009】本発明の目的は、Al複合膜によって構成
されたボンディングパッドの剥離を防止することのでき
る技術を提供することにある。
An object of the present invention is to provide a technique capable of preventing peeling of a bonding pad formed of an Al composite film.

【0010】本発明の他の目的は、Al複合膜によって
構成されたボンディングパッドとワイヤの接着力を向上
させることのできる技術を提供することにある。
Another object of the present invention is to provide a technique capable of improving the adhesive force between a bonding pad formed of an Al composite film and a wire.

【0011】本発明の他の目的は、接続孔の真上の層間
絶縁膜に上層の接続孔を配置するスタックオンプラグ構
造を実現することのできる技術を提供することにある。
Another object of the present invention is to provide a technique capable of realizing a stack-on-plug structure in which an upper-layer connection hole is arranged in an interlayer insulating film immediately above a connection hole.

【0012】本発明の他の目的は、高温Alスパッタ法
でAl膜を堆積する際に、Al膜中に反応析出物が生じ
るのを防止することのできる技術を提供することにあ
る。
Another object of the present invention is to provide a technique capable of preventing a reaction precipitate from being formed in an Al film when the Al film is deposited by a high-temperature Al sputtering method.

【0013】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0014】[0014]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。 (1)本発明の半導体集積回路装置は、半導体基板上の
複数層のAl配線のうち、最上層配線が、Ti膜とTi
N膜との積層膜で構成される第1のバリアメタルと、前
記第1のバリアメタル上に堆積したAl膜と、前記Al
膜上に堆積したTiN膜で構成される第2のバリアメタ
ルとの複合膜で構成され、他の配線層のAl配線が、A
l膜の上下にTi膜とTiN膜との積層膜で構成される
バリアメタルを積層した複合膜で構成されているもので
ある。 (2)本発明の半導体集積回路装置の製造方法は、
(a)接続孔を形成した絶縁膜上にTi膜とTiN膜と
の積層膜で構成される第1のバリアメタルを堆積する工
程、(b)前記第1のバリアメタル上にW膜を堆積した
後、フッ素を含んだプラズマで前記W膜をエッチバック
することにより、前記接続孔の内部のみに前記W膜を残
す工程、(c)前記第1のバリアメタルの表面をスパッ
タエッチングすることにより、前記第1のバリアメタル
の表面に残ったフッ素を除去する工程、(d)前記第1
のバリアメタル上に、Ti膜で構成される第3のバリア
メタルと、Al膜と、Ti膜とTiN膜との積層膜で構
成される第4のバリアメタルとを順次堆積した後、前記
第4のバリアメタル、前記Al膜、前記第3のバリアメ
タルおよび前記第1のバリアメタルをパターニングして
配線を形成する工程、を備えている。 (3)本発明の半導体集積回路装置の製造方法は、半導
体基板上にスパッタ法でAl膜を堆積する際、低温、高
スパッタレートでAl膜を堆積する第1の工程と、高
温、低スパッタレートでさらにAl膜を堆積する第2の
工程とを備えている。 (4)本発明の半導体集積回路装置の製造方法は、
(a)接続孔を形成した絶縁膜上にW膜を堆積した後、
前記W膜をエッチバックすることにより、前記接続孔の
内部のみに前記W膜を残す工程、(b)前記絶縁膜上に
スパッタ法でAl膜を堆積する工程、(c)前記Al膜
を高温でリフローする工程、(d)前記Al膜をパター
ニングしてAl配線を形成する工程、を備えている。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows. (1) In a semiconductor integrated circuit device according to the present invention, among a plurality of layers of Al wiring on a semiconductor substrate, the uppermost layer wiring is composed of a Ti film and a Ti film.
A first barrier metal formed of a laminated film of an N film, an Al film deposited on the first barrier metal,
It is composed of a composite film with a second barrier metal composed of a TiN film deposited on the film, and the Al wiring of the other wiring layer is made of A
It is composed of a composite film in which a barrier metal composed of a laminated film of a Ti film and a TiN film is laminated above and below the l film. (2) The method for manufacturing a semiconductor integrated circuit device according to the present invention includes:
(A) a step of depositing a first barrier metal composed of a laminated film of a Ti film and a TiN film on an insulating film having connection holes formed therein, and (b) depositing a W film on the first barrier metal. After that, a step of leaving the W film only inside the connection hole by etching back the W film with a plasma containing fluorine, and (c) performing a sputter etching on a surface of the first barrier metal. Removing fluorine remaining on the surface of the first barrier metal; (d) removing the first barrier metal;
After sequentially depositing a third barrier metal composed of a Ti film, an Al film, and a fourth barrier metal composed of a laminated film of a Ti film and a TiN film on the barrier metal, 4) forming a wiring by patterning the barrier metal, the Al film, the third barrier metal, and the first barrier metal. (3) In the method of manufacturing a semiconductor integrated circuit device according to the present invention, when an Al film is deposited on a semiconductor substrate by a sputtering method, a first step of depositing the Al film at a low temperature and a high sputter rate; A second step of further depositing an Al film at a rate. (4) The method of manufacturing a semiconductor integrated circuit device of the present invention
(A) After depositing a W film on the insulating film in which the connection hole is formed,
A step of leaving the W film only inside the connection hole by etching back the W film, (b) depositing an Al film on the insulating film by a sputtering method, and (c) heating the Al film at a high temperature. And (d) forming an Al wiring by patterning the Al film.

【0015】上記した手段(1)によれば、最上層配線
の表面のバリアメタルをTiN膜で構成することによ
り、最上層配線を覆うパッシベーション膜の一部をエッ
チングで除去してボンディングパッドを形成する際、A
l膜とその表面のバリアメタルとの界面に反応物が析出
するのを防止することができる。
According to the above means (1), by forming the barrier metal on the surface of the uppermost layer wiring by a TiN film, a part of the passivation film covering the uppermost layer wiring is removed by etching to form a bonding pad. When doing, A
It is possible to prevent a reactant from being deposited at the interface between the film and the barrier metal on the surface.

【0016】上記した手段(2)によれば、第1のバリ
アメタルの表面をスパッタエッチングしてその表面に残
ったフッ素を除去することにより、このバリアメタルと
その上に堆積する上層配線のバリアメタルの界面の接着
力が向上する。
According to the above-mentioned means (2), the surface of the first barrier metal is sputter-etched to remove fluorine remaining on the surface, whereby the barrier metal and the barrier of the upper wiring deposited thereon are removed. The adhesive strength at the metal interface is improved.

【0017】上記した手段(3)によれば、低温、高ス
パッタレートでAl膜を堆積する第1の工程と、高温、
低スパッタレートでさらにAl膜を堆積する第2の工程
の2段階でAl膜を堆積することにより、Al膜中に反
応物が析出するのを防止することができるので、カバレ
ージが良好で、かつ表面凹凸の少ないAl膜が得られ
る。
According to the above means (3), the first step of depositing an Al film at a low temperature and a high sputtering rate,
By depositing the Al film in two stages of the second step of further depositing the Al film at a low sputter rate, it is possible to prevent a reactant from being deposited in the Al film, so that the coverage is good and An Al film with less surface irregularities can be obtained.

【0018】上記した手段(4)によれば、スパッタ法
でAl膜を堆積した後、このAl膜を高温でリフローす
ることにより、W膜を埋め込んだ接続孔の真上のAl配
線の表面を平坦化することができる。
According to the above means (4), after the Al film is deposited by the sputtering method, the Al film is reflowed at a high temperature, so that the surface of the Al wiring just above the connection hole in which the W film is embedded is removed. It can be planarized.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。なお、実施の形態を説明す
るための全図において同一機能を有するものは同一の符
号を付し、その繰り返しの説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. In all the drawings for describing the embodiments, components having the same function are denoted by the same reference numerals, and the repeated description thereof will be omitted.

【0020】本実施の形態は、3層配線を備えたMOS
・LSIに適用したものであり、その製造方法を図1〜
図17を用いて工程順に説明する。
In this embodiment, a MOS having three-layer wiring
-Applied to LSI, and its manufacturing method is shown in Figs.
The steps will be described with reference to FIG.

【0021】まず、図1に示すように、p- 型の単結晶
シリコンからなる半導体基板1の主面にp型不純物(ホ
ウ素)をイオン注入してp型ウエル2を形成した後、p
型ウエル2の主面に選択酸化(LOCOS)法でフィー
ルド酸化膜3を形成する。続いて、フィールド酸化膜3
で囲まれたp型ウエル2の主面に熱酸化法でゲート酸化
膜5を形成した後、p型ウエル2にp型不純物(ホウ
素)をイオン注入し、フィールド酸化膜3の下部を含む
p型ウエル2にp型のチャネルストッパ層4を形成す
る。
First, as shown in FIG. 1, a p-type impurity (boron) is ion-implanted into a main surface of a semiconductor substrate 1 made of p- type single crystal silicon to form a p-type well 2, and then a p-type well 2 is formed.
A field oxide film 3 is formed on the main surface of the mold well 2 by a selective oxidation (LOCOS) method. Subsequently, the field oxide film 3
After a gate oxide film 5 is formed by thermal oxidation on the main surface of the p-type well 2 surrounded by a circle, p-type impurities (boron) are ion-implanted into the p-type well 2 to form a p-type impurity including the lower portion of the field oxide film 3. A p-type channel stopper layer 4 is formed in the mold well 2.

【0022】次に、半導体基板1上にCVD法で多結晶
シリコン膜および酸化シリコン膜9を順次堆積した後、
フォトレジストをマスクにしたドライエッチングで上記
2層の膜をパターニングすることにより、多結晶シリコ
ン膜でMISFETのゲート電極6を形成する。ゲート
電極6を構成する多結晶シリコン膜には、その抵抗値を
低減するためにn型の不純物(例えばP)を導入する。
なお、ゲート電極6は、多結晶シリコン膜の上部にWS
ix 、MoSix 、TiSix 、TaSix などの高融
点金属シリサイド膜を積層したポリサイド膜で構成して
もよい。
Next, after a polycrystalline silicon film and a silicon oxide film 9 are sequentially deposited on the semiconductor substrate 1 by the CVD method,
The gate electrode 6 of the MISFET is formed of a polycrystalline silicon film by patterning the two layers by dry etching using a photoresist as a mask. An n-type impurity (for example, P) is introduced into the polycrystalline silicon film forming the gate electrode 6 in order to reduce the resistance value.
The gate electrode 6 has a WS
It may be constituted by a polycide film in which a high melting point metal silicide film such as ix, MoSix, TiSix, TaSix or the like is laminated.

【0023】次に、半導体基板1上にCVD法で酸化シ
リコン膜を堆積した後、反応性イオンエッチング(RI
E)法でこの酸化シリコン膜を異方性エッチングするこ
とにより、ゲート電極6の側壁にサイドウォールスペー
サ9を形成する。
Next, after depositing a silicon oxide film on the semiconductor substrate 1 by the CVD method, reactive ion etching (RI
The side wall spacer 9 is formed on the side wall of the gate electrode 6 by anisotropically etching the silicon oxide film by the method E).

【0024】次に、p型ウエル2にn型不純物(リン)
をイオン注入してゲート電極6の両側のp型ウエル2に
MISFETのソース、ドレイン領域を構成するn型半
導体領域7,7を形成する。
Next, an n-type impurity (phosphorus) is added to the p-type well 2.
Are implanted into the p-type well 2 on both sides of the gate electrode 6 to form n-type semiconductor regions 7 and 7 constituting source and drain regions of the MISFET.

【0025】次に、図2に示すように、半導体基板1上
にCVD法で酸化シリコン膜10およびBPSG膜11
を順次堆積した後、フォトレジストをマスクにしたドラ
イエッチングで上記BPSG膜11、酸化シリコン膜1
0およびゲート酸化膜5をエッチングすることにより、
MISFETの一方の半導体領域7に達する接続孔12
を形成する。
Next, as shown in FIG. 2, a silicon oxide film 10 and a BPSG film 11 are formed on the semiconductor substrate 1 by CVD.
BPSG film 11 and silicon oxide film 1 by dry etching using a photoresist as a mask.
0 and the gate oxide film 5 are etched,
Connection hole 12 reaching one semiconductor region 7 of MISFET
To form

【0026】次に、図3に示すように、接続孔12の内
部を含むBPSG膜11上にスパッタ法でTi膜13
(膜厚30nm)およびTiN膜14(膜厚70nm)から
なるバリアメタルを堆積した後、TiN膜14上にCV
D法でW膜15(膜厚250nm)を堆積し、続いて図4
に示すように、フォトレジストをマスクにしたドライエ
ッチングで上記W膜15、バリアメタル(TiN膜1
4、Ti膜13)をパターニングすることにより、第1
層目の配線であるW配線16を形成する。
Next, as shown in FIG. 3, a Ti film 13 is formed on the BPSG film 11 including the inside of the connection hole 12 by sputtering.
(Thickness 30 nm) and a barrier metal composed of a TiN film 14 (thickness 70 nm) are deposited.
A W film 15 (250 nm thick) is deposited by the D method.
As shown in FIG. 5, the W film 15 and the barrier metal (TiN film 1) are dry-etched using a photoresist as a mask.
4, by patterning the Ti film 13), the first
The W wiring 16 which is the wiring of the layer is formed.

【0027】次に、図5に示すように、W配線16の上
層に第1の層間絶縁膜17を堆積する。層間絶縁膜17
は、例えばCVD法で堆積した酸化シリコン膜、スピン
塗布法で堆積したスピンオングラス膜およびCVD法で
堆積した酸化シリコン膜の3層膜で構成する。
Next, as shown in FIG. 5, a first interlayer insulating film 17 is deposited on the W wiring 16. Interlayer insulating film 17
Is composed of, for example, a three-layer film of a silicon oxide film deposited by a CVD method, a spin-on-glass film deposited by a spin coating method, and a silicon oxide film deposited by a CVD method.

【0028】次に、フォトレジストをマスクにしたドラ
イエッチングでW配線16上の層間絶縁膜17に接続孔
18を形成した後、接続孔18の内部を含む層間絶縁膜
17上にスパッタ法でTi膜19(膜厚30nm)および
TiN膜20(膜厚100nm)からなるバリアメタルを
堆積し、続いてTiN膜20上にCVD法でW膜21
(膜厚500nm)を堆積する。
Next, after a connection hole 18 is formed in the interlayer insulation film 17 on the W wiring 16 by dry etching using a photoresist as a mask, Ti is deposited on the interlayer insulation film 17 including the inside of the connection hole 18 by sputtering. A barrier metal comprising a film 19 (thickness 30 nm) and a TiN film 20 (thickness 100 nm) is deposited, and then a W film 21 is formed on the TiN film 20 by CVD.
(Thickness: 500 nm).

【0029】次に、図6に示すように、F(フッ素)プ
ラズマを用いたエッチバックで層間絶縁膜17上のW膜
21を除去し、接続孔18の内部にのみW膜21を残
す。このとき、層間絶縁膜17上のW膜21を完全に除
去するためにW膜21をオーバーエッチングするので、
接続孔18の内部のW膜21の表面もある程度削られ、
層間絶縁膜17の表面との間に段差が発生する。
Next, as shown in FIG. 6, the W film 21 on the interlayer insulating film 17 is removed by etch back using F (fluorine) plasma, and the W film 21 is left only inside the connection hole 18. At this time, since the W film 21 is over-etched to completely remove the W film 21 on the interlayer insulating film 17,
The surface of the W film 21 inside the connection hole 18 is also shaved to some extent,
A step occurs between the surface of the interlayer insulating film 17 and the surface.

【0030】次に、図7に示すように、TiN膜20上
にスパッタ法でTi膜22(膜厚10nm)およびAl−
Si−Cu膜23(膜厚400nm)を順次堆積する。こ
のとき、層間絶縁膜17に形成された接続孔18の真上
に位置するAl−Si−Cu膜23の表面には、前述し
た層間絶縁膜17の表面と接続孔18内のW膜21の表
面との段差に起因して段差が生じる。
Next, as shown in FIG. 7, a Ti film 22 (10 nm thick) and an Al-
An Si-Cu film 23 (thickness: 400 nm) is sequentially deposited. At this time, the surface of the Al-Si-Cu film 23 located immediately above the connection hole 18 formed in the interlayer insulating film 17 has the surface of the interlayer insulating film 17 and the W film 21 in the connection hole 18 described above. A step occurs due to the step with the surface.

【0031】そこで、本実施の形態では上記Al−Si
−Cu膜23を堆積した後、図8に示すように、半導体
基板1を加熱してAl−Si−Cu膜23をリフローさ
せ、その表面を平坦化する。このときのリフロー条件
は、基板温度450℃、圧力1mTorr 、加熱時間180
秒であり、リフロー後のAl−Si−Cu膜23の表面
の反射率は91%(波長365nm)であった。
Therefore, in the present embodiment, the above Al-Si
After depositing the -Cu film 23, as shown in FIG. 8, the semiconductor substrate 1 is heated to reflow the Al-Si-Cu film 23, and the surface thereof is planarized. The reflow conditions at this time are as follows: substrate temperature 450 ° C., pressure 1 mTorr, heating time 180
Seconds, and the reflectivity of the surface of the Al—Si—Cu film 23 after the reflow was 91% (wavelength 365 nm).

【0032】次に、図9に示すように、Al−Si−C
u膜23上にスパッタ法でTi膜24(膜厚10nm)お
よびTiN膜25(膜厚60nm)からなるバリアメタル
を堆積した後、フォトレジストをマスクにしたドライエ
ッチングで上記TiN膜25、Ti膜24、Al−Si
−Cu膜23、TiN膜20およびTi膜19をパター
ニングすることにより、第2層目の配線であるAl配線
26を形成する。
Next, as shown in FIG.
After depositing a barrier metal comprising a Ti film 24 (thickness 10 nm) and a TiN film 25 (thickness 60 nm) on the u film 23 by a sputtering method, the TiN film 25 and the Ti film are dry-etched using a photoresist as a mask. 24, Al-Si
By patterning the Cu film 23, the TiN film 20, and the Ti film 19, an Al wiring 26 as a second layer wiring is formed.

【0033】次に、図10に示すように、Al配線26
の上層に第2の層間絶縁膜27を堆積する。層間絶縁膜
27は、例えばCVD法で堆積した酸化シリコン膜、ス
ピン塗布法で堆積したスピンオングラス膜、CVD法で
堆積した酸化シリコン膜の3層膜で構成する。
Next, as shown in FIG.
A second interlayer insulating film 27 is deposited on the upper layer. The interlayer insulating film 27 is composed of, for example, a three-layer film of a silicon oxide film deposited by a CVD method, a spin-on glass film deposited by a spin coating method, and a silicon oxide film deposited by a CVD method.

【0034】次に、フォトレジストをマスクにしたドラ
イエッチングで前記第1の層間絶縁膜17に形成した接
続孔18の真上に位置する層間絶縁膜27に接続孔28
を形成する。このとき、Al配線26の表面(接続孔2
8の底部)は前記リフローによって平坦化されているの
で、接続孔18の真上に接続孔28を配置しても接続孔
28の加工性が低下することはない。
Next, a contact hole 28 is formed in the interlayer insulating film 27 located immediately above the contact hole 18 formed in the first interlayer insulating film 17 by dry etching using a photoresist as a mask.
To form At this time, the surface of the Al wiring 26 (connection hole 2
Since the bottom portion 8 is flattened by the reflow, the workability of the connection hole 28 does not decrease even if the connection hole 28 is arranged right above the connection hole 18.

【0035】次に、図11に示すように、接続孔28の
内部を含む層間絶縁膜27上にスパッタ法でTi膜29
(膜厚30nm)およびTiN膜30(膜厚100nm)か
らなるバリアメタルを堆積した後、TiN膜30上にC
VD法でW膜31(膜厚500nm)を堆積する。続い
て、Fプラズマを用いたエッチバックで層間絶縁膜27
上のW膜31を除去し、接続孔28の内部にのみW膜3
1を残す。このとき、エッチバックによって露出した層
間絶縁膜27上のTiN膜30の表面にプラズマ中のF
の一部が残留するので、TiN膜30の表面を熱酸化膜
(酸化シリコン膜)換算で15nm程度スパッタエッチン
グしてFを除去する。
Next, as shown in FIG. 11, a Ti film 29 is formed on the interlayer insulating film 27 including the inside of the connection hole 28 by sputtering.
(Thickness: 30 nm) and a barrier metal composed of a TiN film 30 (thickness: 100 nm),
A W film 31 (thickness: 500 nm) is deposited by the VD method. Subsequently, the interlayer insulating film 27 is etched back using F plasma.
The upper W film 31 is removed, and the W film 3 is formed only inside the connection hole 28.
Leave one. At this time, the surface of the TiN film 30 on the interlayer insulating film 27 exposed by the etch back
Is removed, the surface of the TiN film 30 is sputter-etched by about 15 nm in terms of a thermal oxide film (silicon oxide film) to remove F.

【0036】ここでTiN膜30の表面をスパッタエッ
チングするのは、TiN膜30の表面がFによって汚染
されると、その上に堆積する膜との界面の接着性が低下
し、後の工程でボンディングパッドにワイヤをボンディ
ングした際、ボンディングパッド直下の上記界面に剥離
が生じることを本発明者は見出したからである。
Here, the reason why the surface of the TiN film 30 is sputter-etched is that when the surface of the TiN film 30 is contaminated with F, the adhesiveness of the interface with the film deposited thereon is reduced, and in a later step, This is because the present inventor has found that when the wire is bonded to the bonding pad, separation occurs at the interface immediately below the bonding pad.

【0037】図12は、スパッタエッチング前のTiN
膜30の表面のAES(オージェ電子分光)スペクトル
を示すグラフ図である。このスペクトル分析から、Ti
N膜30の表面のF量は、12atm %と算出される。
FIG. 12 shows TiN before sputter etching.
FIG. 3 is a graph showing an AES (Auger electron spectroscopy) spectrum of the surface of a film 30. From this spectral analysis,
The amount of F on the surface of the N film 30 is calculated as 12 atm%.

【0038】図13は、後述するように、TiN膜30
の上にスパッタ法でTi膜32、Al−Si−Cu膜3
3を順次堆積した後にSIMS分析で測定したTiN膜
30とTi膜32の界面のFイオン強度と上記スパッタ
エッチング量との関係を示すグラフ図である。ここでは
便宜上、TiN膜30のスパッタエッチング量を熱酸化
で形成した酸化シリコン膜のスパッタエッチング量に換
算して示す(TiN膜のスパッタエッチング速度は、酸
化シリコン膜のスパッタエッチング速度の40%)。こ
れにより、スパッタエッチングを行わなかったとき(図
中のA点)のF量は12atm %、スパッタエッチング量
が5nmのとき(図中のB点)のF量は6atm %と算出さ
れる。
FIG. 13 shows a TiN film 30 as will be described later.
Film 32, Al-Si-Cu film 3 by sputtering
3 is a graph showing the relationship between the F ion intensity at the interface between the TiN film 30 and the Ti film 32 measured by SIMS analysis after sequentially depositing No. 3 and the amount of sputter etching. Here, for convenience, the sputter etching amount of the TiN film 30 is shown in terms of the sputter etching amount of a silicon oxide film formed by thermal oxidation (the sputter etching rate of the TiN film is 40% of the sputter etching rate of the silicon oxide film). As a result, the amount of F when the sputter etching is not performed (point A in the figure) is calculated as 12 atm%, and the amount of F when the sputter etching amount is 5 nm (point B in the figure) is calculated as 6 atm%.

【0039】図14は、上記図12のAESスペクトル
と図13のSIMS分析の結果から求めたTiN膜30
/Ti膜32界面のF量とスパッタエッチング量(酸化
シリコン膜換算)との関係を示すグラフ図である。ま
た、このスパッタエッチング量とボンディング不良との
関係を表1に示す。
FIG. 14 shows the TiN film 30 obtained from the AES spectrum of FIG. 12 and the result of the SIMS analysis of FIG.
FIG. 6 is a graph showing the relationship between the amount of F at the interface of the / Ti film 32 and the amount of sputter etching (in terms of a silicon oxide film). Table 1 shows the relationship between the sputter etching amount and the bonding failure.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかなように、TiN膜30の
表面をスパッタエッチングしなかったときはボンディン
グパッドの剥がれが発生したが、スパッタエッチング量
が5、10、20、30、50nmのときはいずれもボン
ディングパッドの剥がれが発生しなかった。以上のこと
から、TiN膜30/Ti膜32界面のF量が6atm%
以下(スパッタエッチング量が5nm以上)になるまでス
パッタエッチングを行うことにより、ボンディングパッ
ドの剥離を防止できることが判明した。
As is apparent from Table 1, when the surface of the TiN film 30 was not sputter-etched, peeling of the bonding pad occurred. However, when the sputter-etching amount was 5, 10, 20, 30, or 50 nm, any Also, peeling of the bonding pad did not occur. From the above, the F content at the interface between the TiN film 30 and the Ti film 32 is 6 atm%.
It has been found that by performing sputter etching until the amount becomes less than or equal to (the sputter etching amount is 5 nm or more), peeling of the bonding pad can be prevented.

【0042】なお、前記第2層目の配線(Al配線2
6)にはボンディングパッドを形成しないので上記のよ
うな問題は生じないが、Ti膜19の表面がFで汚染さ
れると、その上に堆積するTiN膜20との界面の接着
力が低下する。従って、TiN膜20を堆積する前にT
i膜19の表面をスパッタエッチングすることが望まし
い。また、Fによる接着力の低下は、Ti膜の上にTi
N膜を堆積する場合にのみ生じるとは限らず、例えばT
i膜の上に直接Al−Si−Cu膜を堆積するような場
合にも生じる可能性が高い。従って、この場合も、Al
−Si−Cu膜を堆積する前にTi膜の表面をスパッタ
エッチングすることが望ましい。
The second layer wiring (Al wiring 2)
In 6), since no bonding pad is formed, the above problem does not occur. However, when the surface of the Ti film 19 is contaminated with F, the adhesive force at the interface with the TiN film 20 deposited thereon is reduced. . Therefore, before depositing the TiN film 20, T
It is desirable to sputter-etch the surface of the i-film 19. Also, the decrease in the adhesive force due to F is caused by the Ti film on the Ti film.
This does not necessarily occur only when an N film is deposited.
This is also likely to occur when depositing an Al-Si-Cu film directly on the i-film. Therefore, also in this case, Al
It is desirable to sputter-etch the surface of the Ti film before depositing the -Si-Cu film.

【0043】次に、図15に示すように、TiN膜30
上にスパッタ法でTi膜32(膜厚20nm)およびAl
−Si−Cu膜33(膜厚600nm)を順次堆積する。
このとき、本実施の形態ではAl−Si−Cu膜33の
堆積を2段階に分けて行う。具体的には、まず半導体基
板1の温度を150℃以下に保ち、スパッタレート13
00〜1700nm/min程度で1段階目の堆積を行う(膜
厚300nm)。続いて半導体基板1の温度を250〜3
50℃に保ち、スパッタレート400〜800nm/min程
度で2段階目の堆積を行う(膜厚300nm)。
Next, as shown in FIG.
Ti film 32 (thickness 20 nm) and Al
-An Si-Cu film 33 (600 nm thick) is sequentially deposited.
At this time, in the present embodiment, the deposition of the Al—Si—Cu film 33 is performed in two stages. Specifically, first, the temperature of the semiconductor substrate 1 is kept at 150 ° C. or lower, and the
The first-stage deposition is performed at about 00 to 1700 nm / min (thickness: 300 nm). Subsequently, the temperature of the semiconductor substrate 1 is set to 250 to 3
The second-stage deposition is performed at a sputtering rate of about 400 to 800 nm / min while maintaining the temperature at 50 ° C. (thickness: 300 nm).

【0044】上記の条件で堆積したAl−Si−Cu膜
33のシート抵抗と反射率とを表2に示す。表2のAは
基板温度を165℃に保ち、1段階でAl−Si−Cu
膜33を堆積した場合である。また、B,C,Dは基板
温度をそれぞれ250℃、300℃、350℃に保ち、
2段階でAl−Si−Cu膜33を堆積した場合であ
る。
Table 2 shows the sheet resistance and the reflectance of the Al—Si—Cu film 33 deposited under the above conditions. A in Table 2 indicates that the substrate temperature was maintained at 165 ° C., and Al—Si—Cu
This is the case where the film 33 is deposited. B, C, and D maintain the substrate temperature at 250 ° C., 300 ° C., and 350 ° C., respectively.
This is a case where the Al—Si—Cu film 33 is deposited in two stages.

【0045】[0045]

【表2】 [Table 2]

【0046】この結果、低温(165℃)、高スパッタ
レート(1500nm/min)および高温(250〜350
℃)、低スパッタレート(600nm/min)の2段階スパ
ッタでAl−Si−Cu膜33を堆積した場合(B,
C,D)は、いずれもシート抵抗および反射率が1段階
スパッタの場合(A)と同程度で、しかも表面凹凸や膜
中の反応析出物が少なく、カバレージの良好なAl−S
i−Cu膜33が得られた。
As a result, a low temperature (165 ° C.), a high sputter rate (1500 nm / min), and a high temperature (250 to 350
° C), and the Al-Si-Cu film 33 is deposited by two-step sputtering at a low sputtering rate (600 nm / min) (B,
C and D) have the same sheet resistance and reflectivity as those in the case of one-step sputtering (A), and have less surface irregularities and reaction precipitates in the film, and have good coverage, and have good coverage.
An i-Cu film 33 was obtained.

【0047】次に、図16に示すように、Al−Si−
Cu膜33上にバリアメタルを堆積する。このバリアメ
タルは、スパッタ法で堆積したTiN膜34(膜厚60
nm)の単層で構成する。なお、Al−Si−Cu膜33
を堆積した後、前述したリフローを行ってその表面をさ
らに平坦化してもよい。また、Al−Si−Cu膜33
を堆積した後、半導体基板1を一旦スパッタ装置の外に
取り出し、Al−Si−Cu膜33を大気に曝してその
表面に酸化膜を形成してからバリアメタル(TiN膜3
4)を堆積してもよい。
Next, as shown in FIG.
A barrier metal is deposited on the Cu film 33. This barrier metal is formed of a TiN film 34 (film thickness 60) deposited by a sputtering method.
nm). Note that the Al—Si—Cu film 33
After depositing, the surface may be further flattened by performing the above-described reflow. The Al-Si-Cu film 33
Is deposited, the semiconductor substrate 1 is once taken out of the sputtering apparatus, the Al-Si-Cu film 33 is exposed to the air to form an oxide film on the surface thereof, and then the barrier metal (TiN film 3) is formed.
4) may be deposited.

【0048】次に、フォトレジストをマスクにしたドラ
イエッチングで上記TiN膜34、Al−Si−Cu膜
33、Ti膜32、TiN膜30およびTi膜29をパ
ターニングすることにより、最上層の配線であるAl配
線35を形成した後、Al配線35の上層にパッシベー
ション膜36を堆積する。パッシベーション膜36は、
例えばCVD法で堆積した酸化シリコン膜とCVD法で
堆積した窒化シリコン膜の2層膜で構成する。
Next, the TiN film 34, the Al—Si—Cu film 33, the Ti film 32, the TiN film 30, and the Ti film 29 are patterned by dry etching using a photoresist as a mask, so that the uppermost wiring is formed. After a certain Al wiring 35 is formed, a passivation film 36 is deposited on the Al wiring 35. The passivation film 36
For example, it is composed of a two-layer film of a silicon oxide film deposited by a CVD method and a silicon nitride film deposited by a CVD method.

【0049】次に、図17に示すように、フォトレジス
トをマスクにしたドライエッチングでパッシベーション
膜36の一部を開孔し、Al配線35の一部を露出させ
ることにより、ボンディングパッド37を形成する。こ
のとき、ボンディングパッド37(Al配線35)の表
面のバリアメタルがTiN膜(34)の単層(Al−S
i−Cu膜33の表面を酸化した場合は、TiN膜と酸
化膜)で構成されているので、このバリアメタルをTi
N膜とTi膜の積層膜で構成した場合と異なり、ボンデ
ィングパッド37の表面にAlとTiの化合物が析出す
るようなことはない。
Next, as shown in FIG. 17, a portion of the passivation film 36 is opened by dry etching using a photoresist as a mask, and a portion of the Al wiring 35 is exposed to form a bonding pad 37. I do. At this time, the barrier metal on the surface of the bonding pad 37 (Al wiring 35) is a single layer (Al-S) of the TiN film (34).
When the surface of the i-Cu film 33 is oxidized, it is composed of a TiN film and an oxide film.
Unlike the case where the semiconductor device is constituted by a laminated film of the N film and the Ti film, the compound of Al and Ti does not precipitate on the surface of the bonding pad 37.

【0050】従って、本実施の形態によれば、ボンディ
ングパッド37の表面にAuのワイヤ38をボンディン
グしたときに、ボンディングパッド37とワイヤ38の
接着力を十分に確保することができる。
Therefore, according to the present embodiment, when the Au wire 38 is bonded to the surface of the bonding pad 37, the bonding strength between the bonding pad 37 and the wire 38 can be sufficiently ensured.

【0051】また、本実施の形態によれば、最上層のA
l配線35の一部を構成するTiN膜30の表面のFを
スパッタエッチングで除去したことにより、TiN膜3
0とその上に堆積したTi膜32の界面の接着力を十分
に確保することができるので、ボンディングパッド37
の表面にワイヤ38をボンディングしたときの衝撃など
によってボンディングパッド37が剥離することもな
い。
According to the present embodiment, the uppermost layer A
By removing the F on the surface of the TiN film 30 forming a part of the l wiring 35 by sputter etching, the TiN film 3
0 and the Ti film 32 deposited thereon can sufficiently secure the adhesive force at the interface.
The bonding pad 37 does not peel off due to an impact when the wire 38 is bonded to the surface of the bonding pad 37.

【0052】以上、本発明者によってなされた発明を実
施の形態に基づき具体的に説明したが、本発明は前記実
施の形態に限定されるものではなく、その要旨を逸脱し
ない範囲で種々変更可能であることはいうまでもない。
Although the invention made by the inventor has been specifically described based on the embodiment, the invention is not limited to the embodiment and can be variously modified without departing from the gist of the invention. Needless to say,

【0053】前記実施の形態では、3層配線を備えたM
OS・LSIに適用した場合について説明したが、4層
またはそれ以上の多層配線を備えたLSIにも広く適用
することができる。
In the above embodiment, M
Although the case where the present invention is applied to an OS / LSI has been described, the present invention can be widely applied to an LSI having four or more multi-layer wirings.

【0054】[0054]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下の通りである。 (1)本発明によれば、ボンディングパッドとワイヤの
接着力が増加するため、ボンディングパッドとワイヤの
接続信頼性が向上する。 (2)本発明によれば、最上層配線のバリアメタルの界
面の接着力が増加するため、ボンディングパッドの剥離
を防止することができる。 (3)本発明によれば、カバレージが良好で、かつ表面
凹凸の少ないAl膜が得られるので、Al配線の加工性
が向上する。 (4)本発明によれば、接続孔の真上の層間絶縁膜に上
層の接続孔を配置するスタックオンプラグ構造を実現す
ることができるので、チップ面積を縮小することができ
る。
Advantageous effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows. (1) According to the present invention, since the bonding force between the bonding pad and the wire increases, the connection reliability between the bonding pad and the wire improves. (2) According to the present invention, the bonding force at the interface of the barrier metal of the uppermost layer wiring is increased, so that peeling of the bonding pad can be prevented. (3) According to the present invention, an Al film having good coverage and small surface irregularities can be obtained, so that the workability of the Al wiring is improved. (4) According to the present invention, it is possible to realize a stack-on-plug structure in which an upper-layer connection hole is arranged in an interlayer insulating film immediately above a connection hole, so that a chip area can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 1 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method of manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention.

【図2】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 2 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図3】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 3 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図4】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 4 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図5】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 5 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図6】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 6 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図7】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 7 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図8】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 8 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図9】本発明の一実施の形態である半導体集積回路装
置の製造方法を示す半導体基板の要部断面図である。
FIG. 9 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図10】本発明の一実施の形態である半導体集積回路
装置の製造方法を示す半導体基板の要部断面図である。
FIG. 10 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図11】本発明の一実施の形態である半導体集積回路
装置の製造方法を示す半導体基板の要部断面図である。
FIG. 11 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図12】スパッタエッチングを行う前のTiN膜の表
面のAESスペクトルを示すグラフ図である。
FIG. 12 is a graph showing an AES spectrum of the surface of the TiN film before performing sputter etching.

【図13】スパッタエッチング量とTi/TiN膜界面
のF量との関係を示すグラフ図である。
FIG. 13 is a graph showing the relationship between the amount of sputter etching and the amount of F at the interface of the Ti / TiN film.

【図14】スパッタエッチング量とTi/TiN膜界面
のFイオン強度との関係を示すグラフ図である。
FIG. 14 is a graph showing a relationship between a sputter etching amount and an F ion intensity at a Ti / TiN film interface.

【図15】本発明の一実施の形態である半導体集積回路
装置の製造方法を示す半導体基板の要部断面図である。
FIG. 15 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図16】本発明の一実施の形態である半導体集積回路
装置の製造方法を示す半導体基板の要部断面図である。
FIG. 16 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【図17】本発明の一実施の形態である半導体集積回路
装置の製造方法を示す半導体基板の要部断面図である。
FIG. 17 is a fragmentary cross-sectional view of the semiconductor substrate, illustrating the method for manufacturing the semiconductor integrated circuit device according to one embodiment of the present invention;

【符号の説明】[Explanation of symbols]

1 半導体基板 2 p型ウエル 3 フィールド酸化膜 4 チャネルストッパ領域 5 ゲート酸化膜 6 ゲート電極 7 n型半導体領域(ソース、ドレイン領域) 8 サイドウォールスペーサ 9 酸化シリコン膜 10 酸化シリコン膜 11 BPSG膜 12 接続孔 13 Ti膜 14 TiN膜 15 W膜 16 W配線 17 層間絶縁膜 18 接続孔 19 Ti膜 20 TiN膜 21 W膜 22 Ti膜 23 Al−Si−Cu膜 24 Ti膜 25 TiN膜 26 Al配線 27 層間絶縁膜 28 接続孔 29 Ti膜 30 TiN膜 31 W膜 32 Ti膜 33 Al−Si−Cu膜 34 TiN膜 35 Al配線 36 パッシベーション膜 37 ボンディングパッド 38 ワイヤ Reference Signs List 1 semiconductor substrate 2 p-type well 3 field oxide film 4 channel stopper region 5 gate oxide film 6 gate electrode 7 n-type semiconductor region (source / drain region) 8 sidewall spacer 9 silicon oxide film 10 silicon oxide film 11 BPSG film 12 connection Hole 13 Ti film 14 TiN film 15 W film 16 W wiring 17 Interlayer insulating film 18 Connection hole 19 Ti film 20 TiN film 21 W film 22 Ti film 23 Al-Si-Cu film 24 Ti film 25 TiN film 26 Al wiring 27 interlayer Insulating film 28 Connection hole 29 Ti film 30 TiN film 31 W film 32 Ti film 33 Al-Si-Cu film 34 TiN film 35 Al wiring 36 Passivation film 37 Bonding pad 38 Wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西原 晋治 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 佐原 政司 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 石田 進一 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 阿部 宏美 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 遠田 園子 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 内山 博之 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 (72)発明者 津金 秀明 東京都小平市上水本町5丁目20番1号 日 立超エル・エス・アイ・エンジニアリング 株式会社内 (72)発明者 吉浦 愛明 東京都小平市上水本町5丁目22番1号 株 式会社日立マイコンシステム内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinji Nishihara 5-20-1, Kamisumihonmachi, Kodaira-shi, Tokyo Inside Semiconductor Division, Hitachi, Ltd. No. 20-1, Hitachi Semiconductor Co., Ltd. Semiconductor Division (72) Inventor Shinichi Ishida 5-2-1, Josuihoncho, Kodaira-shi, Tokyo Incorporated Hitachi Semiconductor Co., Ltd. (72) Inventor Hiromi Abe Tokyo 5-20-1, Josuihonmachi, Kodaira-shi, Semiconductor Division, Hitachi, Ltd. (72) Inventor Sonoko Toda 5-2-1, Josuihoncho, Kodaira-shi, Tokyo, Semiconductor Division, Hitachi, Ltd. (72) Inventor Hiroyuki Uchiyama 5-2-1, Josuihoncho, Kodaira-shi, Tokyo Inside Semiconductor Division, Hitachi, Ltd. (72) Inventor Hideaki Tsugane Tokyo Hitachi, Ltd. 5-2-1, Joami Honcho, Kochidaira, Tokyo 5-72-1, Kamizuhoncho, Kodaira-shi, Tokyo In microcomputer system

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に複数層のAl配線を有す
る半導体集積回路装置であって、前記半導体基板の最上
層配線は、Ti膜とTiN膜との積層膜で構成される第
1のバリアメタルと、前記第1のバリアメタル上に堆積
したAl膜と、前記Al膜上に堆積したTiN膜で構成
される第2のバリアメタルとの複合膜で構成され、他の
配線層のAl配線は、Al膜の上下に前記Ti膜とTi
N膜との積層膜で構成される第1のバリアメタルを積層
した複合膜で構成されていることを特徴とする半導体集
積回路装置。
1. A semiconductor integrated circuit device having a plurality of layers of Al wiring on a semiconductor substrate, wherein an uppermost layer wiring of the semiconductor substrate is a first barrier composed of a laminated film of a Ti film and a TiN film. A metal, an Al film deposited on the first barrier metal, and a composite film of a second barrier metal composed of a TiN film deposited on the Al film; Means that the Ti film and Ti
A semiconductor integrated circuit device comprising a composite film in which a first barrier metal composed of a laminated film with an N film is laminated.
【請求項2】 請求項1記載の半導体集積回路装置であ
って、前記第1のバリアメタルの表面のフッ素量が6.
0atm%以下であることを特徴とする半導体集積回路装
置。
2. The semiconductor integrated circuit device according to claim 1, wherein the amount of fluorine on the surface of said first barrier metal is 6.
A semiconductor integrated circuit device characterized by being at most 0 atm%.
【請求項3】 請求項1記載の半導体集積回路装置の製
造方法であって、前記最上層配線は、前記第1のバリア
メタル上に前記Al膜を堆積した後、前記Al膜上に前
記TiN膜を直接堆積することにより形成し、前記他の
配線層のAl配線は、前記第1のバリアメタル上に前記
Al膜を堆積した後、前記Al膜上に前記Ti膜とTi
N膜とを連続して堆積することにより形成することを特
徴とする半導体集積回路装置の製造方法。
3. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein said uppermost layer wiring comprises: depositing said Al film on said first barrier metal; and forming said TiN film on said Al film. A film is formed by directly depositing a film, and the Al wiring of the other wiring layer is formed by depositing the Al film on the first barrier metal, and then forming the Ti film and the Ti film on the Al film.
A method for manufacturing a semiconductor integrated circuit device, wherein the method is formed by continuously depositing an N film.
【請求項4】 請求項1記載の半導体集積回路装置の製
造方法であって、前記最上層配線は、前記第1のバリア
メタル上に前記Al膜を堆積した後、前記Al膜の表面
を酸化し、次いで前記Al膜上に前記第2のバリアメタ
ルを堆積することにより形成することを特徴とする半導
体集積回路装置の製造方法。
4. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein said uppermost layer wiring oxidizes a surface of said Al film after depositing said Al film on said first barrier metal. Forming the second barrier metal on the Al film by depositing the second barrier metal on the Al film.
【請求項5】 次の工程(a)〜(d)を含むことを特
徴とする半導体集積回路装置の製造方法。 (a)接続孔を形成した絶縁膜上にTi膜とTiN膜と
の積層膜で構成される第1のバリアメタルを堆積する工
程、(b)前記第1のバリアメタル上にW膜を堆積した
後、フッ素を含んだプラズマで前記W膜をエッチバック
することにより、前記接続孔の内部のみに前記W膜を残
す工程、(c)前記第1のバリアメタルの表面をスパッ
タエッチングすることにより、前記第1のバリアメタル
の表面に残ったフッ素を除去する工程、(d)前記第1
のバリアメタル上に、Ti膜で構成される第3のバリア
メタルと、Al膜と、Ti膜とTiN膜との積層膜で構
成される第4のバリアメタルとを順次堆積した後、前記
第4のバリアメタル、前記Al膜、前記第3のバリアメ
タルおよび前記第1のバリアメタルをパターニングして
配線を形成する工程。
5. A method for manufacturing a semiconductor integrated circuit device, comprising the following steps (a) to (d). (A) a step of depositing a first barrier metal composed of a laminated film of a Ti film and a TiN film on an insulating film in which a connection hole is formed; (b) depositing a W film on the first barrier metal After that, a step of leaving the W film only in the inside of the connection hole by etching back the W film with a plasma containing fluorine, and (c) sputter etching the surface of the first barrier metal. Removing fluorine remaining on the surface of the first barrier metal; and (d) removing the first barrier metal.
After sequentially depositing a third barrier metal composed of a Ti film, an Al film, and a fourth barrier metal composed of a laminated film of a Ti film and a TiN film on the barrier metal, And 4. forming a wiring by patterning the barrier metal, the Al film, the third barrier metal, and the first barrier metal.
【請求項6】 次の工程(a)〜(d)を含むことを特
徴とする半導体集積回路装置の製造方法。 (a)接続孔を形成した絶縁膜上にTi膜とTiN膜と
の積層膜で構成される第1のバリアメタルを堆積する工
程、(b)前記第1のバリアメタル上にW膜を堆積した
後、フッ素を含んだプラズマで前記W膜をエッチバック
することにより、前記接続孔の内部のみに前記W膜を残
す工程、(c)前記第1のバリアメタルの表面をスパッ
タエッチングすることにより、前記第1のバリアメタル
の表面に残ったフッ素を除去する工程、(d)前記第1
のバリアメタル上に、Al膜と、Ti膜とTiN膜との
積層膜で構成される第4のバリアメタルとを順次堆積し
た後、前記第4のバリアメタル、前記Al膜および前記
第1のバリアメタルをパターニングして配線を形成する
工程。
6. A method for manufacturing a semiconductor integrated circuit device, comprising the following steps (a) to (d). (A) a step of depositing a first barrier metal composed of a laminated film of a Ti film and a TiN film on an insulating film in which a connection hole is formed; (b) depositing a W film on the first barrier metal After that, a step of leaving the W film only in the inside of the connection hole by etching back the W film with a plasma containing fluorine, and (c) sputter etching the surface of the first barrier metal. Removing fluorine remaining on the surface of the first barrier metal; and (d) removing the first barrier metal.
After sequentially depositing an Al film and a fourth barrier metal composed of a laminated film of a Ti film and a TiN film on the barrier metal, the fourth barrier metal, the Al film and the first A step of forming wiring by patterning a barrier metal.
【請求項7】 次の工程(a)〜(d)を含むことを特
徴とする半導体集積回路装置の製造方法。 (a)接続孔を形成した絶縁膜上にW膜を堆積した後、
前記W膜をエッチバックすることにより、前記接続孔の
内部のみに前記W膜を残す工程、(b)前記絶縁膜上に
スパッタリング法でAl膜を堆積する工程、(c)前記
Al膜を高温でリフローする工程、(d)前記Al膜を
パターニングすることにより、Al配線を形成する工
程。
7. A method for manufacturing a semiconductor integrated circuit device, comprising the following steps (a) to (d). (A) After depositing a W film on the insulating film in which the connection hole is formed,
A step of leaving the W film only inside the connection hole by etching back the W film, (b) depositing an Al film on the insulating film by a sputtering method, and (c) heating the Al film at a high temperature. And (d) forming an Al wiring by patterning the Al film.
【請求項8】 請求項7記載の半導体集積回路装置の製
造方法であって、半導体基板を450℃程度に保って前
記Al膜をリフローすることを特徴とする半導体集積回
路装置の製造方法。
8. The method for manufacturing a semiconductor integrated circuit device according to claim 7, wherein the Al film is reflowed while keeping a semiconductor substrate at about 450 ° C.
JP2000049519A 2000-01-01 2000-02-25 Semiconductor integrated circuit device and its manufacture Pending JP2000208520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049519A JP2000208520A (en) 2000-01-01 2000-02-25 Semiconductor integrated circuit device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049519A JP2000208520A (en) 2000-01-01 2000-02-25 Semiconductor integrated circuit device and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7002551A Division JPH08191104A (en) 1995-01-11 1995-01-11 Semiconductor integrated circuit device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2000208520A true JP2000208520A (en) 2000-07-28

Family

ID=18571447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049519A Pending JP2000208520A (en) 2000-01-01 2000-02-25 Semiconductor integrated circuit device and its manufacture

Country Status (1)

Country Link
JP (1) JP2000208520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019696A (en) * 2003-06-26 2005-01-20 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2009027167A (en) * 2007-07-23 2009-02-05 Natl Semiconductor Corp <Ns> Pad lower side esd and bond pad stack for pad lower side active bonding
CN105720103A (en) * 2014-12-22 2016-06-29 三菱电机株式会社 Semiconductor device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019696A (en) * 2003-06-26 2005-01-20 Seiko Epson Corp Semiconductor device and method of manufacturing the same
JP2009027167A (en) * 2007-07-23 2009-02-05 Natl Semiconductor Corp <Ns> Pad lower side esd and bond pad stack for pad lower side active bonding
CN105720103A (en) * 2014-12-22 2016-06-29 三菱电机株式会社 Semiconductor device and method for manufacturing the same
JP2016119393A (en) * 2014-12-22 2016-06-30 三菱電機株式会社 Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JPH08191104A (en) Semiconductor integrated circuit device and manufacturing method thereof
US4824803A (en) Multilayer metallization method for integrated circuits
US6521523B2 (en) Method for forming selective protection layers on copper interconnects
JP2000077411A (en) Semiconductor device and manufacture thereof
JPH0817925A (en) Semiconductor device and its manufacture
JP2001135723A (en) Semiconductor device and method of manufacturing the same
JP2000208520A (en) Semiconductor integrated circuit device and its manufacture
JP2007220738A (en) Method of manufacturing semiconductor device
JPH04355951A (en) Semiconductor device and manufacture thereof
US20050136645A1 (en) Semiconductor device and fabrication method thereof
JPH11111842A (en) Multilayered wiring structure and its manufacture
KR100363984B1 (en) Semiconductor integrated circuit device and method for making the same
JP3533022B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3099813B2 (en) Method for manufacturing semiconductor device
JPH09326490A (en) Method of manufacturing semiconductor device
JPH02186634A (en) Manufacture of integrated circuit device
JPS60119750A (en) Manufacture of semiconductor device
JPH05175196A (en) Wiring structure of semiconductor device
JP4034524B2 (en) Semiconductor device and manufacturing method thereof
JPH10173051A (en) Wiring forming method
JPH10223753A (en) Manufacture of semiconductor integrated circuit device and semiconductor integrated circuit device
JP2002176098A (en) Method for manufacturing semiconductor device having multilayer interconnection structure
JPH11238800A (en) Manufacture of element with multilayer wiring
JP2000182992A (en) Manufacture of semiconductor device
JPH11297818A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313