JP4034524B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4034524B2
JP4034524B2 JP2001096680A JP2001096680A JP4034524B2 JP 4034524 B2 JP4034524 B2 JP 4034524B2 JP 2001096680 A JP2001096680 A JP 2001096680A JP 2001096680 A JP2001096680 A JP 2001096680A JP 4034524 B2 JP4034524 B2 JP 4034524B2
Authority
JP
Japan
Prior art keywords
film
wiring
insulating film
semiconductor device
sion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001096680A
Other languages
Japanese (ja)
Other versions
JP2002299438A (en
Inventor
浩史 久保田
幸男 西山
桂 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001096680A priority Critical patent/JP4034524B2/en
Publication of JP2002299438A publication Critical patent/JP2002299438A/en
Application granted granted Critical
Publication of JP4034524B2 publication Critical patent/JP4034524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素を添加したシリコン酸化膜を層間絶縁膜として用いた半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
半導体装置の高集積化・高速化に伴い、配線間容量および層間容量の低減化が求められており、そのために金属配線の低抵抗化技術および層間絶縁膜の低誘電率化技術の開発が進んでいる。
【0003】
層間絶縁膜の低誘電率化技術としては、従来から使用されてきたシリコン酸化膜にフッ素を添加した膜(以下、FSG膜という。)と呼ばれている絶縁膜の導入が知られている。
【0004】
図4に、FSG膜を用いた従来の多層配線構造を示す。図4において、71はTEOS酸化膜、72はTi/TiN膜、73はAl配線、74はTi/TiN膜、75はFSG膜、76はSiON膜、77はTi/TiN膜、78は最上層のAl配線、79はTi/TiN膜、80はTEOS酸化膜、81はSiN膜をそれぞれ示している。
【0005】
FSG膜75は、熱工程で、フッ素を放出する。そのため、FSG膜75上に配線層77〜79を直接形成すると、放出したフッ素が配線層77〜79中に拡散し、FSG膜75と配線層77〜79の密着性が低下する。特に、最上配線層である配線層77〜79は、ワイヤーボンディングするために強い密着性が要求されるため、密着性の低下は大きな問題となる。そこで、図4に示したように、FSG膜75をガス透過性が低い膜であるSiON膜76でキャップしている。
【0006】
最上配線層である配線層77〜79下にガス透過性の少ないSiON膜76を用いると、配線層77〜79を形成した後に行われる熱処理工程により、TEOS酸化膜71中から脱水縮合した水(H2 O)が、SiON膜76が存在するために、抜けられずに高圧であぶられる。
【0007】
その結果、FSG膜75中のSi−F結合が上記水によって加水分解反応を起こし、腐食性のHFが発生する。このHFによってFSG膜75とSiON膜76との界面に空洞ができ、FSG膜75とSiON膜76の密着性が低下し、最悪の場合、FSG膜75とSiON膜76との界面で剥離が生じる。さらに、下層の配線層72〜74中にHFが拡散し、配線層72〜74が腐食し、配線抵抗が上昇するという問題も生じる。
【0008】
【発明が解決しようとする課題】
上述の如く、FSG膜中から放出するフッ素起因の問題を解決するために、FSG膜をガス透過性の低いSiON膜でキャップすると、最上配線層の形成後の熱処理工程でTEOS酸化膜から発生し、抜けられずに高圧であぶられたH2 Oによって、FSG膜中のSi−F結合が加水分解反応を起こし、腐食性のHFが発生するという問題がある。
【0009】
本発明は、上記事情を考慮してなされたもので、その目的とするところは、配線間の層間絶縁膜にフッ素を含む絶縁膜を用いた場合における同膜中からのフッ素の放出およびFを含む物質の発生を防止できる半導体装置およびその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば下記の通りである。すなわち、上記目的を達成するために、本発明に係る半導体装置は、半導体基板上に形成されたTEOS酸化膜と、このTEOS酸化膜上に形成された第1の配線と、前記TEOS酸化膜上に前記第1の配線を覆うように形成され、フッ素を含む絶縁膜と、このフッ素を含む絶縁膜上に形成された第2の配線と、この第2の配線と前記フッ素を含む絶縁膜との間に選択的に前記フッ素を含む絶縁膜に接して形成されたSiON膜とを備えていることを特徴とする。
【0011】
上記本発明に係る半導体装置において、請求項2〜請求項に記載の限定事項を同時に2つ以上備えていても良い。
【0012】
また、本発明に係る半導体装置の製造方法は、半導体基板上にTEOS酸化膜を形成する工程と、このTEOS酸化膜上に第1の配線を形成する工程と、前記TEOS酸化膜上に前記第1の配線を覆うようにフッ素を含む絶縁膜を形成する工程と、このフッ素を含む絶縁膜上にSiON膜前記フッ素を含む絶縁膜に接して形成する工程と、前記SiON膜上に第2の配線となる導電膜を形成する工程と、前記導電膜および前記SiON膜をエッチングし、前記フッ素を含む絶縁膜上に前記導電膜からなる第2の配線を形成するとともに、前記SiON膜を前記第2の配線下のみに残置させる工程とを有することを特徴とする。
【0013】
本発明では、フッ素を含む絶縁膜上の全体ではなく、第2の配線下のフッ素を含む絶縁膜上にだけに、SiON膜を設ける。そのため、第2の配線の形成後の熱処理によりTEOS酸化膜で発生したガスは、フッ素を含む絶縁膜から外部に放出できる。したがって、TEOS酸化膜中で発生したガスとフッ素を含む絶縁膜中のフッ素とが反応し、Fを含む物質が発生することを防止できる。また、第2の配線下のフッ素を含む絶縁膜SiON膜によりキャップされるので、配線中へのフッ素の拡散は防止され、第2の配線の密着性の低下を防止できる。
【0014】
本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記載および添付図面によって明らかになるであろう。
【0015】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態(以下、実施形態という)を説明する。
【0016】
図1および図2は、本発明の一実施形態に係る半導体装置の製造方法を示す工程断面図である。
【0017】
まず、図1(a)に示すように、周知の方法に従って、RIE(Reactive Ion Etching)配線を図示しないSi基板上に形成する。図において、1はTEOS酸化膜、2はTi/TiN膜、3はAl配線、4はTi/TiN膜をそれぞれ示している。上記Si基板にはMOSトランジスタ等の素子が集積形成されている。
【0018】
次に、図1(b)に示すように、下層の配線層2〜4を覆うようにFSG膜5を全面に堆積するとともに、表面を平坦にした後、FSG膜5上にアンドープのSiON膜6、Ti/TiN膜7、Al膜8、Ti/TiN膜9を順次堆積する。FSG膜5は例えばプラズマCVD法を用いて堆積する。FSG膜5の比誘電率は例えば4.0以下である。
【0019】
次に、図1(c)に示すように、Ti/TiN膜9上にフォトレジストパターン10を形成した後、フォトレジストパターン10をマスクにして、Ti/TiN膜9、Al膜8、Ti/TiN膜7、SiON膜6をRIE法によりエッチングし、最上層の配線層6〜9を形成する。このとき、SiON膜6はAl配線8下には存在するが、その他の領域には存在しない。これが従来との構造上の相違点である。
【0020】
次に、フォトレジストパターン7をアッシングにより剥離した後、図2(d)に示すように、配線層6〜9を覆うように全面にTEOS酸化膜11を堆積するとともに、表面を平坦にする。
【0021】
この後、最上層の配線層6〜9の信頼性向上のために、400℃、20分の熱処理を行う。このとき、TEOS酸化膜1中から脱水結合したH2 Oは、SiON膜6が形成されていない領域のFSG膜5から外部に抜けることができる。
【0022】
したがって、FSG膜5中のSi−F結合の加水分解反応は起こらず、腐食性のHFは発生しない。さらに、HFに起因する種々の問題、すなわちFSG膜5とSiON膜6との間に空洞が発生することによるFSG膜5とSiON膜6の密着性の低下、配線層6〜9の剥離、下層の配線層2〜4の配線抵抗の上昇などの問題も当然に生じない。
【0023】
また、配線層6〜9下のFSG膜5はSiON膜6によりキャップされているので、上記熱処理でFSG膜5中から放出したフッ素が配線層6〜9中に拡散し、FSG膜5と配線層6〜9との密着性が低下するという問題は生じない。
【0024】
次に、図2(e)に示すように、TEOS酸化膜11上にSiN膜12を堆積するとともに、表面を平坦にする。
【0025】
この後、Si基板に形成されているMOSトランジスタ等の素子の信頼性向上のために、400℃、60分の熱処理を行う。
【0026】
このとき、TEOS酸化膜1中から脱水縮合したH2 Oは、SiON膜6が形成されていない領域のFSG膜5およびその上のSiN膜12から外部に抜けることができるので、図1(c)の工程の場合と同様に、HFは発生しない。
【0027】
また、図1(c)の工程の場合と同様に、配線層6〜9下のFSG膜5はSiON膜6でキャップされているので、上記熱処理でFSG膜5中から放出したフッ素によって、FSG膜5と配線層6〜9との密着性が低下するという問題も生じない。
【0028】
図2(e)の工程の後は、最上層の配線層6〜9に対するヴィアホールをSiN膜12に開口し、ワイヤーボンディングを取る等の周知のプロセスが続く。
【0029】
図3に、本発明および従来のAlの多層配線層構造のそれぞれについて、ワイヤーボンディングによるパッド剥がれ強度試験を試した結果を示す。図から、従来よりもSiON膜が少ない本発明の多層配線構造でも、従来と同じワイヤーボンディング強度が得られることが分かる。
【0030】
また、断面SEM観察によりFSG膜5とSiON膜6との界面を調べたところ、何ら異常がないことを確認した。
【0031】
なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、フッ素を含む絶縁膜としてFSG膜5(SiOF膜)を使用したが、SiONF膜を使用しても良い。また、TEOS酸化膜1,11の代わりに、アンドープのSiN膜、シリコン酸化膜を使用しても良い。
【0032】
また、上記実施形態では、ライナー膜としてTi/TiN膜を用いたが、Nb膜等の他の膜を使用しても良い。
【0033】
さらに、Al配線3,8に用いるAl膜は、純Al膜でも良いし、あるいはCuを少量添加したAlCu膜でも良い。
【0034】
また、上記実施形態では、最上層の各配線層6〜9を2つの下層の配線層2〜4の間に形成したが、本発明の効果を高めるためには、最上層の各配線層6〜9を下層の配線層2〜4直上に形成することが好ましい。
【0035】
さらまた、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決できる場合には、この構成要件が削除された構成が発明として抽出され得る。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施できる。
【0036】
【発明の効果】
以上詳説したように本発明によれば、配線間の層間絶縁膜にフッ素を含む絶縁膜を用いた場合における同膜中からのフッ素の放出およびフッ素を含む物質の発生を防止できる半導体装置およびその製造方法を実現できるようになる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る半導体装置の製造方法を示す工程断面図
【図2】図1に続く同半導体装置の製造方法を示す工程断面図
【図3】本発明および従来のAlの多層配線構造のそれぞれについて、ワイヤーボンディングによるパッド剥がれ強度試験を試した結果を示す図
【図4】従来の層間絶縁膜にFSG膜を用いた多層構造のAl配線を示す断面図
【符号の説明】
1…TEOS酸化膜(第1の絶縁膜)
2…Ti/TiN膜
3…Al配線(第1の配線)
4…Ti/TiN膜
5…FSG膜(第2の絶縁膜)
6…SiON膜(第3の絶縁膜)
7…Ti/TiN膜
8…Al膜(Al配:第2の配線)
9…Ti/TiN膜
10…フォトレジストパターン
11…TEOS酸化膜
12…SiN膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device using a silicon oxide film doped with fluorine as an interlayer insulating film and a method for manufacturing the same.
[0002]
[Prior art]
With higher integration and higher speed of semiconductor devices, reduction of inter-wiring capacitance and inter-layer capacitance is required. To that end, development of technology for lowering resistance of metal wiring and lowering dielectric constant of inter-layer insulation film is progressing. It is out.
[0003]
As a technique for reducing the dielectric constant of an interlayer insulating film, the introduction of an insulating film called a film obtained by adding fluorine to a silicon oxide film that has been used conventionally (hereinafter referred to as an FSG film) is known.
[0004]
FIG. 4 shows a conventional multilayer wiring structure using an FSG film. 4, 71 is a TEOS oxide film, 72 is a Ti / TiN film, 73 is an Al wiring, 74 is a Ti / TiN film, 75 is an FSG film, 76 is a SiON film, 77 is a Ti / TiN film, and 78 is the uppermost layer. Al wiring, 79 is a Ti / TiN film, 80 is a TEOS oxide film, and 81 is a SiN film.
[0005]
The FSG film 75 releases fluorine in a thermal process. Therefore, when the wiring layers 77 to 79 are directly formed on the FSG film 75, the released fluorine diffuses into the wiring layers 77 to 79, and the adhesion between the FSG film 75 and the wiring layers 77 to 79 is lowered. In particular, since the wiring layers 77 to 79 which are the uppermost wiring layers are required to have strong adhesiveness for wire bonding, deterioration of the adhesiveness becomes a serious problem. Therefore, as shown in FIG. 4, the FSG film 75 is capped with a SiON film 76 which is a film having low gas permeability.
[0006]
When the SiON film 76 having low gas permeability is used under the wiring layers 77 to 79 which are the uppermost wiring layers, water (dehydrated and condensed) from the TEOS oxide film 71 is formed by a heat treatment process performed after the wiring layers 77 to 79 are formed. H 2 O) is blown at high pressure without being removed due to the presence of the SiON film 76.
[0007]
As a result, the Si—F bond in the FSG film 75 causes a hydrolysis reaction with the water, and corrosive HF is generated. This HF creates a cavity at the interface between the FSG film 75 and the SiON film 76, and the adhesion between the FSG film 75 and the SiON film 76 decreases. In the worst case, peeling occurs at the interface between the FSG film 75 and the SiON film 76. . Further, HF diffuses into the lower wiring layers 72 to 74, and the wiring layers 72 to 74 are corroded, resulting in an increase in wiring resistance.
[0008]
[Problems to be solved by the invention]
As described above, in order to solve the problem caused by fluorine released from the FSG film, if the FSG film is capped with a SiON film having a low gas permeability, it is generated from the TEOS oxide film in the heat treatment process after the formation of the uppermost wiring layer. There is a problem that the Si—F bond in the FSG film undergoes a hydrolysis reaction due to H 2 O which is blown at a high pressure without being released, and corrosive HF is generated.
[0009]
The present invention has been made in view of the above circumstances, and the object of the present invention is to release fluorine and F from the same film when an insulating film containing fluorine is used as an interlayer insulating film between wirings. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same that can prevent generation of a contained substance.
[0010]
[Means for Solving the Problems]
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows. In other words, in order to achieve the above object, a semiconductor device according to the present invention includes a TEOS oxide film formed on a semiconductor substrate, a first wiring formed on the TEOS oxide film, and the TEOS oxide film. the formed to cover the first wiring, an insulating film containing fluorine, and a second wiring formed on an insulating film including the fluorine, an insulating film containing fluorine and the second wiring And an SiON film formed in contact with the insulating film containing fluorine selectively.
[0011]
The semiconductor device according to the present invention may include two or more of the limitations described in claims 2 to 4 at the same time.
[0012]
The method for manufacturing a semiconductor device according to the present invention includes a step of forming a TEOS oxide film on a semiconductor substrate, a step of forming a first wiring on the TEOS oxide film, and the first step on the TEOS oxide film. forming an insulating film containing fluorine so as to cover the first wiring, forming in contact with the SiON film to the insulating film containing fluorine on an insulating layer including the fluorine, the second on the SiON film A step of forming a conductive film to be a wiring, and etching the conductive film and the SiON film to form a second wiring made of the conductive film on the insulating film containing fluorine, and forming the SiON film on the insulating film And a step of leaving only under the second wiring.
[0013]
In the present invention, the fluorine rather than the entire surface of the insulating film including only the on the insulating film including the second fluorine under wiring provided SiON film. Therefore, the gas generated in the TEOS oxide film by the heat treatment after the formation of the second wiring can be released to the outside from the insulating film containing fluorine . Accordingly, it is possible to prevent the gas generated in the TEOS oxide film from reacting with the fluorine in the insulating film containing fluorine to generate a substance containing F. In addition, since the insulating film containing fluorine under the second wiring is capped by the SiON film , diffusion of fluorine into the wiring is prevented, and deterioration of the adhesion of the second wiring can be prevented.
[0014]
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0016]
1 and 2 are process cross-sectional views illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention.
[0017]
First, as shown in FIG. 1A, RIE (Reactive Ion Etching) wiring is formed on a Si substrate (not shown) according to a known method. In the figure, 1 is a TEOS oxide film, 2 is a Ti / TiN film, 3 is an Al wiring, and 4 is a Ti / TiN film. Elements such as MOS transistors are integrated on the Si substrate.
[0018]
Next, as shown in FIG. 1B, an FSG film 5 is deposited on the entire surface so as to cover the lower wiring layers 2 to 4 and the surface is flattened, and then an undoped SiON film is formed on the FSG film 5. 6. Ti / TiN film 7, Al film 8 and Ti / TiN film 9 are sequentially deposited. The FSG film 5 is deposited using, for example, a plasma CVD method. The relative dielectric constant of the FSG film 5 is, for example, 4.0 or less.
[0019]
Next, as shown in FIG. 1C, after forming a photoresist pattern 10 on the Ti / TiN film 9, using the photoresist pattern 10 as a mask, the Ti / TiN film 9, the Al film 8, Ti / TiN The TiN film 7 and the SiON film 6 are etched by the RIE method to form the uppermost wiring layers 6-9. At this time, the SiON film 6 exists under the Al wiring 8, but does not exist in other regions. This is a structural difference from the prior art.
[0020]
Next, after removing the photoresist pattern 7 by ashing, as shown in FIG. 2D, a TEOS oxide film 11 is deposited on the entire surface so as to cover the wiring layers 6 to 9, and the surface is flattened.
[0021]
Thereafter, in order to improve the reliability of the uppermost wiring layers 6 to 9, heat treatment is performed at 400 ° C. for 20 minutes. At this time, H 2 O dehydrated from the TEOS oxide film 1 can escape to the outside from the FSG film 5 in the region where the SiON film 6 is not formed.
[0022]
Therefore, the hydrolysis reaction of the Si—F bond in the FSG film 5 does not occur, and corrosive HF does not occur. Furthermore, various problems caused by HF, that is, the adhesion between the FSG film 5 and the SiON film 6 due to the generation of a cavity between the FSG film 5 and the SiON film 6, peeling of the wiring layers 6 to 9, and the lower layer Naturally, problems such as an increase in the wiring resistance of the wiring layers 2 to 4 do not occur.
[0023]
Further, since the FSG film 5 under the wiring layers 6 to 9 is capped with the SiON film 6, the fluorine released from the FSG film 5 by the heat treatment diffuses into the wiring layers 6 to 9, and the FSG film 5 and the wiring There is no problem that the adhesion with the layers 6 to 9 is lowered.
[0024]
Next, as shown in FIG. 2E, a SiN film 12 is deposited on the TEOS oxide film 11 and the surface is flattened.
[0025]
Thereafter, heat treatment is performed at 400 ° C. for 60 minutes in order to improve the reliability of elements such as MOS transistors formed on the Si substrate.
[0026]
At this time, H 2 O dehydrated and condensed from the TEOS oxide film 1 can escape to the outside from the FSG film 5 in the region where the SiON film 6 is not formed and the SiN film 12 thereon, so that FIG. HF is not generated, as in the case of the process (1).
[0027]
Further, as in the case of the process of FIG. 1C, since the FSG film 5 under the wiring layers 6 to 9 is capped with the SiON film 6, the FSG releases FSG by fluorine released from the FSG film 5 by the heat treatment. There is no problem that the adhesion between the film 5 and the wiring layers 6 to 9 is lowered.
[0028]
2E is followed by a known process such as opening a via hole in the uppermost wiring layers 6 to 9 in the SiN film 12 and taking wire bonding.
[0029]
FIG. 3 shows the results of a pad peeling strength test by wire bonding for each of the present invention and the conventional Al multilayer wiring layer structure. From the figure, it can be seen that the same wire bonding strength as in the prior art can be obtained even in the multilayer wiring structure of the present invention having fewer SiON films than in the prior art.
[0030]
Further, when the interface between the FSG film 5 and the SiON film 6 was examined by cross-sectional SEM observation, it was confirmed that there was no abnormality.
[0031]
The present invention is not limited to the above embodiment. For example, in the above embodiment, the FSG film 5 (SiOF film) is used as the insulating film containing fluorine, but a SiONF film may be used. Further, instead of the TEOS oxide films 1 and 11, an undoped SiN film or a silicon oxide film may be used.
[0032]
In the above embodiment, the Ti / TiN film is used as the liner film, but other films such as an Nb film may be used.
[0033]
Furthermore, the Al film used for the Al wirings 3 and 8 may be a pure Al film or an AlCu film to which a small amount of Cu is added.
[0034]
In the above embodiment, the uppermost wiring layers 6-9 are formed between the two lower wiring layers 2-4. However, in order to enhance the effect of the present invention, the uppermost wiring layers 6-9 are formed. -9 are preferably formed immediately above the lower wiring layers 2-4.
[0035]
Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem described in the column of the problem to be solved by the invention can be solved, the configuration in which this constituent requirement is deleted Can be extracted as an invention. In addition, various modifications can be made without departing from the scope of the present invention.
[0036]
【The invention's effect】
As described in detail above, according to the present invention, when an insulating film containing fluorine is used as an interlayer insulating film between wirings, a semiconductor device capable of preventing the release of fluorine from the film and the generation of a substance containing fluorine, and the semiconductor device A manufacturing method can be realized.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 2 is a process cross-sectional view showing a method for manufacturing the semiconductor device following FIG. The figure which shows the result of having tried the pad peeling strength test by wire bonding about each of the multilayer wiring structure of Al. [FIG. 4] Sectional drawing which shows Al wiring of the multilayer structure which used the FSG film for the conventional interlayer insulation film Explanation】
1 ... TEOS oxide film (first insulating film)
2 ... Ti / TiN film 3 ... Al wiring (first wiring)
4 ... Ti / TiN film 5 ... FSG film (second insulating film)
6 ... SiON film (third insulating film)
7 ... Ti / TiN film 8 ... Al film (Al distribution: second wiring)
9 ... Ti / TiN film 10 ... photoresist pattern 11 ... TEOS oxide film 12 ... SiN film

Claims (7)

半導体基板上に形成されたTEOS酸化膜と、
このTEOS酸化膜上に形成された第1の配線と、
前記TEOS酸化膜上に前記第1の配線を覆うように形成され、フッ素を含む絶縁膜と、
このフッ素を含む絶縁膜上に形成された第2の配線と、
この第2の配線と前記フッ素を含む絶縁膜との間に選択的に前記フッ素を含む絶縁膜に接して形成されたSiON膜
を具備してなることを特徴とする半導体装置。
A TEOS oxide film formed on a semiconductor substrate;
A first wiring formed on the TEOS oxide film;
An insulating film formed on the TEOS oxide film so as to cover the first wiring and containing fluorine;
A second wiring formed on the insulating film containing fluorine ;
A semiconductor device comprising: a SiON film selectively formed in contact with the fluorine-containing insulating film between the second wiring and the fluorine-containing insulating film.
前記第1および第2の配線は、Al配線であることを特徴とする請求項1に記載の半導体装置。  The semiconductor device according to claim 1, wherein the first and second wirings are Al wirings. 前記フッ素を含む絶縁膜は、SiOF膜であることを特徴とする請求項1に記載の半導体装置。The semiconductor device according to claim 1, wherein the insulating film containing fluorine is a SiOF film. 前記第2の配線は最上層の配線であることを特徴とする請求項1に記載の半導体装置。  The semiconductor device according to claim 1, wherein the second wiring is an uppermost wiring. 半導体基板上にTEOS酸化膜を形成する工程と、
このTEOS酸化膜上に第1の配線を形成する工程と、
前記TEOS酸化膜上に前記第1の配線を覆うようにフッ素を含む絶縁膜を形成する工程と、
このフッ素を含む絶縁膜上にSiON膜前記フッ素を含む絶縁膜に接して形成する工程と、
前記SiON膜上に第2の配線となる導電膜を形成する工程と、
前記導電膜および前記SiON膜をエッチングし、前記フッ素を含む絶縁膜上に前記導電膜からなる第2の配線を形成するとともに、前記SiON膜を前記第2の配線下のみに残置させる工程と
を有することを特徴とする半導体装置の製造方法。
Forming a TEOS oxide film on a semiconductor substrate;
Forming a first wiring on the TEOS oxide film;
Forming an insulating film containing fluorine on the TEOS oxide film so as to cover the first wiring;
Forming contact the SiON film in the insulating film containing fluorine on the insulating film including the fluorine,
Forming a conductive film to be a second wiring on the SiON film ;
Etching the conductive film and the SiON film , forming a second wiring made of the conductive film on the insulating film containing fluorine, and leaving the SiON film only under the second wiring; A method for manufacturing a semiconductor device, comprising:
前記フッ素を含む絶縁膜をプラズマCVD法により形成することを特徴とする請求項に記載の半導体装置の製造方法。6. The method of manufacturing a semiconductor device according to claim 5 , wherein the insulating film containing fluorine is formed by a plasma CVD method. 前記第2の配線およびその下に残置された前記SiON膜を覆うTEOS酸化膜を形成する工程の後に熱処理を行うことを特徴とする請求項に記載の半導体装置の製造方法。6. The method of manufacturing a semiconductor device according to claim 5 , wherein a heat treatment is performed after the step of forming the TEOS oxide film covering the second wiring and the SiON film remaining under the second wiring .
JP2001096680A 2001-03-29 2001-03-29 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4034524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096680A JP4034524B2 (en) 2001-03-29 2001-03-29 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096680A JP4034524B2 (en) 2001-03-29 2001-03-29 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002299438A JP2002299438A (en) 2002-10-11
JP4034524B2 true JP4034524B2 (en) 2008-01-16

Family

ID=18950571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096680A Expired - Fee Related JP4034524B2 (en) 2001-03-29 2001-03-29 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4034524B2 (en)

Also Published As

Publication number Publication date
JP2002299438A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP3248492B2 (en) Semiconductor device and manufacturing method thereof
JP4177993B2 (en) Semiconductor device and manufacturing method thereof
JP2001326222A (en) Semiconductor device, semiconductor wafer, and their manufacturing method
JPH08191104A (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2011009581A (en) Process of producing semiconductor device and the semiconductor device
US6821896B1 (en) Method to eliminate via poison effect
TW200409172A (en) Manufacturing method for semiconductor device and the semiconductor device
US6812113B1 (en) Process for achieving intermetallic and/or intrametallic air isolation in an integrated circuit, and integrated circuit obtained
JP2004235256A (en) Semiconductor device and its fabricating process
JP3526289B2 (en) Method for manufacturing semiconductor device
JP4034524B2 (en) Semiconductor device and manufacturing method thereof
JP3802002B2 (en) Manufacturing method of semiconductor device
US7622331B2 (en) Method for forming contacts of semiconductor device
JP4525534B2 (en) Manufacturing method of semiconductor device
JP2004207604A (en) Semiconductor device and its manufacturing method
JP4160489B2 (en) Manufacturing method of semiconductor device
JP4472286B2 (en) Method for forming metal wiring of semiconductor device using modified dual damascene process
JP3099813B2 (en) Method for manufacturing semiconductor device
JPH08181146A (en) Manufacture of semiconductor device
JP2000306999A (en) Semiconductor device and fabrication thereof
JP2000252286A (en) Manufacture of semiconductor device
JP2007088017A (en) Organic insulation film and its manufacturing method, and semiconductor device using the same
KR100307985B1 (en) A semiconductor device and a manufacturing process therefor
JP2900718B2 (en) Semiconductor device and manufacturing method thereof
TW423105B (en) Manufacturing method of dual damascene structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees