JP2000119034A - Production of quartz glass preform for optical fiber - Google Patents

Production of quartz glass preform for optical fiber

Info

Publication number
JP2000119034A
JP2000119034A JP10287060A JP28706098A JP2000119034A JP 2000119034 A JP2000119034 A JP 2000119034A JP 10287060 A JP10287060 A JP 10287060A JP 28706098 A JP28706098 A JP 28706098A JP 2000119034 A JP2000119034 A JP 2000119034A
Authority
JP
Japan
Prior art keywords
quartz glass
optical fiber
preform
glass tube
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10287060A
Other languages
Japanese (ja)
Inventor
Atsushi Shimada
敦之 嶋田
Toshiyuki Kato
俊幸 加藤
Masanori Suzuki
正則 鈴木
Yutaka Watabe
豊 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP10287060A priority Critical patent/JP2000119034A/en
Priority to AT99119431T priority patent/ATE314323T1/en
Priority to DE69929152T priority patent/DE69929152T2/en
Priority to EP99119431A priority patent/EP1000908B1/en
Priority to KR1019990043327A priority patent/KR100314699B1/en
Publication of JP2000119034A publication Critical patent/JP2000119034A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a large-sized quartz glass preform for an optical fiber free from any bubbles on a welded surface suitable for mass production and lower cost. SOLUTION: This method uses a quartz glass tube for a preform prepared by mechanically grinding the inner and outer peripheral surfaces of a high-purity quartz glass ingot with diamond abrasive grains and mechanically polishing the inner peripheral surface with cerium oxide abrasive grains in the method for producing the quartz glass preform for an optical fiber comprising inserting a core glass rod for the preform for the optical fiber into a quartz glass tube for the preform for the optical fiber, heating, welding and integrating both.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ用石英ガラ
ス母材の製造方法、さらに詳しくは、面精度の高い母材
用石英ガラス管を用い、母材用コアガラスロッドとの溶
着界面に気泡が存在しない光ファイバ用石英ガラス母材
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a quartz glass preform for an optical fiber, and more particularly, to a method for producing a quartz glass tube having a high surface accuracy using a quartz glass tube for a preform, which is welded to a core glass rod for a preform. The present invention relates to a method for producing a quartz glass preform for an optical fiber having no bubbles.

【0002】[0002]

【従来の技術】近年、光ファイバが大量に利用されるよ
うになるに従いその量産化、低コスト化が熱望されるよ
うになってきた。前記量産化、低コスト化には大型の光
ファイバ母材を作成し、それを線引きするのが最も簡便
な方法とされるが、従来実用化されてきた軸付け法(V
AD法)や外付け法(OVD法)では、コア部もクラッ
ド部も全てVAD法やOVD法で作成するところから、
さらなる大型化を図ろうとすると、光ファイバ用母材の
生産性を低下させかねないという欠点があった。また、
該母材が透明ガラス化される前の多孔質体(シリカガラ
ス微粒子が堆積したスート体のことで、以下「多孔質ス
ート体」という)そのものを大きく形成しようとする
と、クラックが発生したり、多孔質スート体の落下等の
トラブルが生じたりすることにより生産性を著しく低下
させる虞れがあるという問題点があった。この問題点を
解消する光ファイバの製造方法として断面積の80%以
上を占めるクラッド部を高性能で低コスト化が可能な方
法で作成し、これとVAD法やOVD法で作成したコア
ガラスロッドとを一体化する製造方法が特開平7−10
9141号公報等で提案されている。
2. Description of the Related Art In recent years, as optical fibers have been used in large quantities, mass production and cost reduction have been eagerly desired. For mass production and cost reduction, it is the easiest method to prepare a large optical fiber preform and draw it. However, the shafting method (V
In the AD method) or the external method (OVD method), both the core and the clad are made by the VAD method or the OVD method.
Attempts to further increase the size have the disadvantage that the productivity of the optical fiber preform may be reduced. Also,
When the base material is formed into a large porous body (a soot body on which silica glass fine particles are deposited, hereinafter referred to as a "porous soot body") itself before being made into a transparent glass, cracks occur, There is a problem that productivity may be significantly reduced due to troubles such as dropping of the porous soot body. As a method for manufacturing an optical fiber that solves this problem, a clad portion occupying 80% or more of the cross-sectional area is formed by a method capable of reducing cost and high performance, and a core glass rod formed by a VAD method or an OVD method. JP-A-7-10
9141 and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報等に記載の製造方法にあっては、石英ガラス管の内周
面を機械的研削及び研磨加工で形成する反面、外周面を
機械的削加工するにとどまるところから、外周面の加工
状態が粗く凹凸やクラックの発生があり、そこに研削時
のクーラントや研削粉、砥石粉が入り込み、加工後のフ
ッ酸による洗浄によっても前記異物が充分に除去でき
ず、コアガラスロッドとの溶着一体化時に泡が発生し、
その泡の残存等により線引き後の光ファイバの接続に支
障をきたしたりする等の欠点があった。この凹凸やクラ
ックの完全除去のため強力なエッチング処理も考えられ
るが、このエッチング処理では石英ガラス管のくぼみや
キズが選択的にエッチングされ、それが石英ガラス管の
内外表面を一層粗いものにし前記欠点を解消するもので
はなかった。しかし、前記特開平7−109141号公
報等に記載の光ファイバの製造方法は光ファイバ用母材
の大型化が容易であり、量産化、低コスト化に適した製
造方法であることから、その製造方法の改善を図るべく
本発明者等は鋭意研究したところ、石英ガラスインゴッ
トの内外周面の研削を、ダイヤモンド砥粒で正確に行
い、次いで内周面を酸化セリウム砥粒で研磨し、面精度
を高めることで前記欠点が解決できることを見出して、
本発明を完成したものである。すなわち、
However, in the manufacturing method described in the above publication, the inner peripheral surface of the quartz glass tube is formed by mechanical grinding and polishing, while the outer peripheral surface is mechanically ground. From the point where the processing state of the outer peripheral surface is rough, irregularities and cracks are generated, coolant and grinding powder at the time of grinding enter there, and the foreign matter is sufficiently removed even by washing with hydrofluoric acid after processing. It cannot be removed, bubbles are generated when welding and integrating with the core glass rod,
There are drawbacks such as that the connection of the optical fiber after drawing is hindered due to the remaining bubbles and the like. Although a strong etching process may be considered to completely remove the irregularities and cracks, the etching process selectively etches the dents and scratches of the quartz glass tube, which further roughens the inner and outer surfaces of the quartz glass tube. It did not eliminate the shortcomings. However, the method of manufacturing an optical fiber described in JP-A-7-109141 is easy to increase the size of the optical fiber preform, and is a manufacturing method suitable for mass production and cost reduction. The present inventors have conducted intensive studies to improve the manufacturing method and found that the inner and outer peripheral surfaces of the quartz glass ingot were accurately ground with diamond abrasive grains, and then the inner peripheral surface was polished with cerium oxide abrasive grains. Finding that the above disadvantage can be solved by increasing the accuracy,
The present invention has been completed. That is,

【0004】本発明は、光ファイバ母材用の石英ガラス
管とコアガラスロッドとの溶着界面に気泡が存在しない
光ファイバ用石英ガラス母材の製造方法を提供すること
を目的とする。
An object of the present invention is to provide a method of manufacturing a quartz glass preform for an optical fiber in which no bubbles are present at a welding interface between a quartz glass tube for an optical fiber preform and a core glass rod.

【0005】また、本発明は、量産化、低コスト化に好
適な大型の光ファイバ用石英ガラス母材の製造方法を提
供することを目的とする。
Another object of the present invention is to provide a method for producing a large-sized quartz glass preform for an optical fiber suitable for mass production and cost reduction.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明は、光ファイバ母材用石英ガラス管中に光ファイバ母
材用コアガラスロッドを挿入し、加熱し溶着一体化する
光ファイバ用石英ガラス母材の製造方法において、前記
母材用石英ガラス管が高純度の石英ガラスインゴットの
内外周面をダイヤモンド砥粒で機械的研削加工したの
ち、内周面を酸化セリウム砥粒で機械的研磨加工した石
英ガラス管であることを特徴とする光ファイバ用石英ガ
ラス母材の製造方法に係る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a quartz for optical fiber in which a core glass rod for an optical fiber preform is inserted into a quartz glass tube for an optical fiber preform, which is heated and welded and integrated. In the method of manufacturing a glass base material, the quartz glass tube for the base material is subjected to mechanical grinding of the inner and outer peripheral surfaces of a high-purity quartz glass ingot with diamond abrasive grains, and then the inner peripheral surface is mechanically polished with cerium oxide abrasive grains. The present invention relates to a method for producing a quartz glass preform for an optical fiber, which is a processed quartz glass tube.

【0007】上述のとおり、本発明の製造方法にあって
は、高純度の石英ガラスインゴットの内外周面を研削速
度が速く、研削面の荒れが小さい上に砥石の劣化が少な
いダイヤモンド砥粒で機械的に研削加工し、次いで内周
面を酸化セリウム砥粒で機械的に研磨して面精度を高め
ることを必須とする。前記面精度は石英ガラス管の内周
面の最大粗さRmaxが1μm以下、中心線平均粗さR
aが0.1μm以下、外周面の最大粗さRmaxが10
μm以下、中心線平均粗さRaが1μm以下である。周
面の最大粗さ及び中心線平均粗さが前記範囲を超える
と、光ファイバ用母材の溶着界面に気泡が発生すること
があり好ましくない。前記ダイヤモンド砥粒による機械
的研削加工では、粒度の異なるダイヤモンド砥粒を用
い、最初粒度の粗いダイヤモンド砥粒で粗削りし、次い
で粒度の細かいダイヤモンド砥粒で仕上げ研削するのが
よい。このダイヤモンド砥粒による研削では石英ガラス
管の内外周面に微細なクラックが発生するが、外周面の
クラックはコアガラスロッドとの溶着一体化時の加熱溶
融により平滑化する。一方、内周面は相対的に加熱温度
が低いことから、微細クラックが充分に溶けず、そのま
ま残るので酸化セリウム砥粒による研磨を必要とする。
より好ましくは前記研磨の後に加熱溶融し、石英ガラス
管の内外周面の最大粗さRmaxを0.5μm以下、中
心線平均粗さRaを0.1μm以下に鏡面化処理するの
がよい。前記加熱溶融には酸水素またはプロパン等の火
炎による溶融または電気炉等による外部加熱溶融等が使
用できる。これらの加熱溶融によって鏡面化された石英
ガラス管をコアガラスロッドのクラッド用(またはオー
バークラッド用)の管として用いることにより、母材用
コアガラスロッドとの溶着界面に気泡が存在しない良好
な光ファイバ用石英ガラス母材が製造でき、また、該母
材用石英ガラス管と母材用コアガラスロッドとの溶着一
体化の後ついで別の石英ガラス管を1または複数さらに
溶着一体化する場合においても、同様に良好な光ファイ
バ用石英ガラス母材が製造でる。
As described above, in the manufacturing method of the present invention, the inner and outer peripheral surfaces of a high-purity quartz glass ingot are made of diamond abrasive grains having a high grinding speed, a small roughness of the ground surface, and little deterioration of the grinding wheel. It is essential to mechanically grind and then mechanically polish the inner peripheral surface with cerium oxide abrasive grains to increase the surface accuracy. The surface accuracy is such that the maximum roughness Rmax of the inner peripheral surface of the quartz glass tube is 1 μm or less, and the center line average roughness R
a is 0.1 μm or less, and the maximum roughness Rmax of the outer peripheral surface is 10
μm or less, and the center line average roughness Ra is 1 μm or less. If the maximum roughness and the center line average roughness of the peripheral surface exceed the above ranges, bubbles may be generated at the welding interface of the optical fiber base material, which is not preferable. In the mechanical grinding process using the diamond abrasive grains, it is preferable to use diamond abrasive grains having different grain sizes, first rough-cut with diamond grain of coarse grain size, and then finish-grind with diamond abrasive grain of fine grain size. Although fine cracks are generated on the inner and outer peripheral surfaces of the quartz glass tube by the grinding with the diamond abrasive grains, the cracks on the outer peripheral surface are smoothed by heating and melting during welding and integration with the core glass rod. On the other hand, since the inner peripheral surface has a relatively low heating temperature, fine cracks are not sufficiently melted and remain as they are, so that polishing with cerium oxide abrasive grains is required.
More preferably, after the polishing, the quartz glass tube is heated and melted, and the inner and outer peripheral surfaces of the quartz glass tube are mirror-finished to have a maximum roughness Rmax of 0.5 μm or less and a center line average roughness Ra of 0.1 μm or less. For the heating and melting, melting by a flame such as oxyhydrogen or propane, external heating and melting by an electric furnace or the like can be used. By using the quartz glass tube mirror-finished by heating and melting as a tube for cladding (or for over cladding) the core glass rod, good light free of bubbles at the welding interface with the core glass rod for the base material can be obtained. In the case where a quartz glass preform for fiber can be manufactured, and one or a plurality of other quartz glass tubes are further fused and integrated after welding and integrating the quartz glass tube for the preform and the core glass rod for the preform. Similarly, a good quartz glass preform for an optical fiber can be manufactured.

【0008】上記石英ガラスインゴットは、四塩化珪
素、有機珪素化合物等のシロキサン化合物を酸水素火炎
中で火炎加水分解して生成したシリカ微粒子を堆積し、
脱水処理したのち溶融ガラス化する方法、または天然に
産出する水晶を粉砕し化学処理により純化を行った水晶
粉を酸水素炎によるベルヌーイ法で製造する方法等で作
成されるが、好ましくは大型で長尺のインゴットがよ
い。この大型で長尺のインゴットを用いることで光ファ
イバの量産化、低コスト化が好適に行える。
In the quartz glass ingot, silica fine particles formed by flame hydrolysis of a siloxane compound such as silicon tetrachloride or an organic silicon compound in an oxyhydrogen flame are deposited.
Melt vitrification after dehydration treatment, or a method in which quartz produced naturally is crushed and purified by chemical treatment to produce quartz powder by the Bernoulli method using an oxyhydrogen flame, etc. A long ingot is good. By using this large and long ingot, mass production of optical fibers and cost reduction can be suitably performed.

【0009】一方、光ファイバ用コアガラスロッドとし
ては、光の伝送部であって、石英ガラスロッドまたはそ
の周囲に光学的クラッド部が形成された石英ガラスロッ
ドが挙げられる。すなわち、本発明にあっては「コアガ
ラスロッド」とは、コアロッドとクラッド付きコアロッ
ドとを総称する。クラッド部を有さないコアロッドは、
公知のVAD法やOVD法等により形成することがで
き、また、クラッド付きコアロッドを作成する手段とし
ては、コアロッドに石英ガラス管をジャケットする方法
や、コアロッドの周囲にOVD法等によりクラッド部を
形成する方法が挙げられる。
On the other hand, as a core glass rod for an optical fiber, there is a quartz glass rod which is a light transmitting portion and has an optical cladding portion formed around the quartz glass rod. That is, in the present invention, the “core glass rod” is a general term for the core rod and the clad core rod. Core rod without cladding
It can be formed by a known VAD method, OVD method, or the like. As means for producing a core rod with a clad, a method of jacketing a quartz glass tube on the core rod, or forming a clad portion around the core rod by an OVD method, or the like. Method.

【0010】上記光ファイバ母材用コアガラスロッド及
び光ファイバ母材用石英ガラス管を用いた光ファイバ用
石英ガラス母材の製造に当っては、母材用コアガラスロ
ッドを母材用石英ガラス管中に管内周面と接触すること
がないように注意深く挿入し、母材用コアガラスロッド
と母材用石英ガラス管の各円中心を合わせ固定し、好ま
しくは両端をダミー石英材料に繋いだ上で、全体を回転
させながら接続加工による曲がり、捻じれを矯正し、下
端部から縦型電気炉の上方より挿入し、温度1900〜
2800℃で順次帯状に加熱することにより溶着一体化
するのがよい。前記順次帯状に加熱するとは、いわゆる
ゾーンメルトと呼ばれるものであり、加熱域が次第に移
動する加熱をいう。
In the production of a quartz glass preform for an optical fiber using the core glass rod for an optical fiber preform and the quartz glass tube for an optical fiber preform, the core glass rod for the preform is made of quartz glass for the preform. Carefully insert into the tube so that it does not come into contact with the inner peripheral surface of the tube, fix the core glass rod for the base material and the center of each circle of the quartz glass tube for the base material and fix them, and preferably connect both ends to the dummy quartz material Above, bend by connection processing while rotating the whole, to correct the twist, inserted from above the vertical electric furnace from the lower end, temperature 1900
It is preferable to perform welding and integration by sequentially heating at 2800 ° C. in a belt shape. The above-mentioned sequential heating in a strip shape is what is called a zone melt, and refers to heating in which a heating area gradually moves.

【0011】[0011]

【発明の実施の形態】次に本発明の実施例について述べ
るがこれによって本発明はなんら限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described, but the present invention is not limited thereto.

【0012】なお、本発明における最大粗さRmax及
び中心線平均粗さRaは、日本工業規格(JIS)B0
601の定義により、その測定法は、接触式簡易粗さ計
(東京精密(株)製、Surfcom 300B)で1
0mmの長さ毎に測定し、そのときの最大粗さRmax
と中心線平均粗さRaを求める方法による。
In the present invention, the maximum roughness Rmax and the center line average roughness Ra are defined by Japanese Industrial Standard (JIS) B0.
According to the definition of No. 601, the measuring method is 1 with a contact type simple roughness meter (Surfcom 300B, manufactured by Tokyo Seimitsu Co., Ltd.).
Measured at every 0 mm length, the maximum roughness Rmax at that time
And the method of obtaining the center line average roughness Ra.

【0013】[0013]

【実施例】実施例1 OVD法を用い、四塩化珪素を気化し、酸水素炎中で火
炎加水分解し、回転する基体の周囲にシリカガラス微粒
子を堆積させて大型多孔質スート体を作成した。この多
孔質スート体を電気炉に入れ、コアガラスロッドの屈折
率等の条件を考慮し、He、Cl2混合ガスにより11
00℃で加熱脱水し、引き続きHe雰囲気中で1600
℃で透明ガラス化し、円筒状石英ガラスインゴットを製
造した。この円筒状石英ガラスインゴットの両端を切断
し、その外径を#100ダイヤモンド砥粒で所定の寸法
近くまで研削し、次いで#300ダイヤモンド砥粒で研
削したのち、レーザ外径測定機で寸法測定を行い、外径
の円中心を求め、この外径の円中心に合わせてコアドリ
ル穴開け装置の#150ダイヤモンド砥粒で所定の寸法
近くまで研削し、次いで#1000及び#3000の酸
化セリウム砥粒で研磨加工した。得られた石英ガラス管
をフッ酸によるエッチング、純水による水洗、及び乾燥
を行って高精度の石英ガラス管を作成した。この石英ガ
ラス管についてレーザ外径測定機及び肉厚測定機で寸法
測定を行ったところ、長さは3500mm、外径は20
0mm、内径は40mmであった。また、内外周面の表
面粗さについては、内周面の最大粗さRmaxが0.7
μm、中心線平均粗さRaが0.06μm、外周面の最
大粗さRmaxが5.5μm、中心線平均粗さRaが
0.5μmであった。
Example 1 Using OVD, silicon tetrachloride was vaporized, flame-hydrolyzed in an oxyhydrogen flame, and silica glass particles were deposited around a rotating substrate to produce a large porous soot body. . The porous soot body is placed in an electric furnace, and a mixture of He and Cl2 is used in consideration of conditions such as the refractive index of the core glass rod.
Dehydration by heating at 00 ° C., followed by 1600 in a He atmosphere
Transparent vitrification was performed at ℃ to produce a cylindrical quartz glass ingot. Both ends of this cylindrical quartz glass ingot are cut, and the outer diameter is ground to a predetermined size with # 100 diamond abrasive grains, and then ground with # 300 diamond abrasive grains. Then, the center of the outer diameter is determined, and the center of the outer diameter is determined, and ground to near a predetermined size with a # 150 diamond abrasive of a core drilling device, and then with # 1000 and # 3000 cerium oxide abrasives. Polished. The obtained quartz glass tube was etched with hydrofluoric acid, washed with pure water, and dried to prepare a highly accurate quartz glass tube. When the dimensions of the quartz glass tube were measured with a laser outer diameter measuring machine and a wall thickness measuring machine, the length was 3500 mm and the outer diameter was 20 mm.
0 mm and the inner diameter was 40 mm. Further, regarding the surface roughness of the inner and outer peripheral surfaces, the maximum roughness Rmax of the inner peripheral surface is 0.7
μm, the center line average roughness Ra was 0.06 μm, the maximum outer surface roughness Rmax was 5.5 μm, and the center line average roughness Ra was 0.5 μm.

【0014】一方、VAD法によりクラッド付きのコア
ロッドを作成し、外径制御付き精密自動延伸機で石英ガ
ラス管の内径に対して外径を39mmに合わせて加熱延
伸した。このコアガラスロッドを上記石英ガラス管中に
管内周面と接触することがないように注意深く挿入し、
母材用コアロッド及び母材用石英ガラス管の各円中心を
合わせて固定し、両端をダミー石英材料に繋いだ上で、
下端部から2000℃の電気炉の上方より挿入し、下端
部を溶着させたのち、真空ポンプで石英ガラス管内を減
圧し順次帯状に加熱して溶着一体化し、光ファイバ用石
英ガラス母材を製造した。得られた母材を1000mm
毎にカットし、その1つについて暗室において端部から
白色光を当てたところ、1000mm当り目視により確
認できる最小単位が約0.1mm以上の気泡数は9個で
あった。また、外径の寸法についてレーザ外径測定機で
50mm間隔で測定したところ、寸法誤差は±0.2m
m以下であった。さらに光ファイバ用石英ガラス母材を
プリフォームアナライザーで測定したところ、円中心の
ズレはみられなかった。
On the other hand, a core rod with a clad was prepared by the VAD method, and heated and stretched by a precision automatic stretching machine with outer diameter control so that the outer diameter was adjusted to 39 mm with respect to the inner diameter of the quartz glass tube. Carefully insert this core glass rod into the quartz glass tube so as not to contact the inner surface of the tube,
The core rod for the base material and the quartz glass tube for the base material are fixed at the center of each circle, and both ends are connected to the dummy quartz material.
After inserting the lower end from above the electric furnace at 2000 ° C and welding the lower end, the inside of the quartz glass tube is depressurized with a vacuum pump and sequentially heated to form a strip to be welded and integrated to produce a quartz glass preform for optical fibers. did. 1000 mm of the obtained base material
Each was cut, and one of the cut pieces was exposed to white light from the end in a dark room. As a result, the number of bubbles whose minimum unit visually permissible was about 0.1 mm or more per 1000 mm was 9 pieces. The outer diameter was measured at intervals of 50 mm with a laser outer diameter measuring instrument, and the dimensional error was ± 0.2 m.
m or less. Further, when the quartz glass base material for optical fiber was measured with a preform analyzer, no deviation of the center of the circle was observed.

【0015】実施例2 VAD法を用い、四塩化珪素を気化し、酸水素炎中で火
炎加水分解し、回転する石英ガラス棒にシリカガラス微
粒子を堆積させて大型多孔質スート体を作成した。この
多孔質スート体を電気炉に入れ、コアガラスロッドの屈
折率等の条件を考慮し、He、Cl2混合ガスにより1
100℃で加熱脱水し、引き続きHe雰囲気中で160
0℃で透明ガラス化し、円柱状石英ガラスインゴットを
製造した。この円柱状石英ガラスインゴットの両端を切
断し、それを円筒研削装置の#100ダイヤモンド砥粒
で所定の寸法近くまで外径研削し、次いで#300ダイ
ヤモンド砥粒で研削したのち、レーザ外径測定機で寸法
測定を行い、外径の円中心を求め、この外径の円中心に
合わせてコアドリル穴開け装置で開孔し、精密ホーニン
グ加工装置を用いて#1000及び#3000の酸化セ
リウム砥粒で研磨した。研磨した石英ガラス管を電気炉
内に不活性ガスを流しながら2000℃で加熱し、表面
の溶融鏡面化処理を行ったのち、フッ酸によるエッチン
グ、純水による水洗、及び乾燥を行って高精度の石英ガ
ラス管を作成した。この石英ガラス管についてレーザ外
径測定機及び肉厚測定機で寸法測定したところ、長さは
1000mm、外径は60mm、内径は20mmであっ
た。また、内外周面の表面粗さを調べたところ、内周面
の最大粗さRmaxは0.2μm、中心線平均粗さRa
は0.03μm、外周面の最大粗さRmaxは0.3μ
m、中心線平均粗さRaは0.05μmであった。
Example 2 Using a VAD method, silicon tetrachloride was vaporized, flame-hydrolyzed in an oxyhydrogen flame, and silica glass particles were deposited on a rotating quartz glass rod to produce a large porous soot body. This porous soot body is placed in an electric furnace, and a mixed gas of He and Cl2 is used in consideration of conditions such as the refractive index of the core glass rod.
Heat dehydration at 100 ° C., and subsequently 160
It was made transparent at 0 ° C. to produce a cylindrical quartz glass ingot. After cutting both ends of this cylindrical quartz glass ingot, the outer diameter of the ingot is cut to near a predetermined size with a # 100 diamond abrasive grain of a cylindrical grinding device, and then ground with a # 300 diamond abrasive grain. The center of the outer diameter is determined, the core is drilled in accordance with the center of the outer diameter with a core drilling machine, and # 1000 and # 3000 cerium oxide abrasive grains are used with a precision honing machine. Polished. The polished quartz glass tube is heated at 2000 ° C. while flowing an inert gas into an electric furnace, and the surface is melt-mirrorized. Then, etching with hydrofluoric acid, washing with pure water, and drying are performed to achieve high precision. Was prepared. When the dimensions of this quartz glass tube were measured with a laser outer diameter measuring device and a wall thickness measuring device, the length was 1000 mm, the outer diameter was 60 mm, and the inner diameter was 20 mm. Further, when the surface roughness of the inner and outer peripheral surfaces was examined, the maximum roughness Rmax of the inner peripheral surface was 0.2 μm, and the center line average roughness Ra was
Is 0.03 μm, and the maximum roughness Rmax of the outer peripheral surface is 0.3 μm.
m, and the center line average roughness Ra was 0.05 μm.

【0016】一方、VAD法によりクラッド付きのコア
ロッドを製造し、外径制御付き精密自動延伸機で石英ガ
ラス管の内径に対して外径を19mmに合わせて加熱延
伸した。このコアガラスロッドを上記石英ガラス管中に
管内周面と接触することがないように注意深く挿入し、
コアロッド及び石英ガラス管の各円中心を合わせて固定
し、両端をダミー石英材料に繋いだ上で、下端部から2
000℃の電気炉の上方より挿入し、下端部を溶着させ
たのち、真空ポンプで石英ガラス管内を減圧し順次帯状
に加熱して溶着一体化し光ファイバ用石英ガラス母材を
製造した。得られた母材を1000mm毎にカットし、
その1つについて暗室において端部から白色光を当てた
ところ、1000mm当り目視により確認できる最小単
位が約0.1mm以上の気泡数は4個であった。また、
外径の寸法についてレーザ外径測定機で50mm間隔で
測定したところ、寸法誤差は±0.2mm以下であっ
た。さらに光ファイバ用石英ガラス母材をプリフォーム
アナライザーで測定したところ、円中心のズレはみられ
なかった。
On the other hand, a core rod with a clad was manufactured by the VAD method, and the core rod was heated and stretched by a precision automatic stretching machine with outer diameter control so that the outer diameter was adjusted to 19 mm with respect to the inner diameter of the quartz glass tube. Carefully insert this core glass rod into the quartz glass tube so as not to contact the inner surface of the tube,
Fix the core rod and the quartz glass tube so that the centers of the circles are aligned and connect both ends to the dummy quartz material.
After inserting from above the electric furnace at 000 ° C. and welding the lower end, the inside of the quartz glass tube was depressurized by a vacuum pump and sequentially heated in a belt shape to be welded and integrated to produce a quartz glass preform for optical fiber. The obtained base material is cut every 1000 mm,
When white light was applied from one end in a dark room to one of them, the number of bubbles having a minimum unit visually observable of about 0.1 mm or more per 1000 mm was four. Also,
When the outer diameter was measured at intervals of 50 mm with a laser outer diameter measuring instrument, the dimensional error was ± 0.2 mm or less. Further, when the quartz glass base material for optical fiber was measured with a preform analyzer, no deviation of the center of the circle was observed.

【0017】[0017]

【発明の効果】本発明の製造方法では、面精度の高い光
ファイバ母材用石英ガラス管を用いることで光ファイバ
母材用コアガラスロッドとの溶着界面に気泡の存在のな
い良好な光ファイバ用石英ガラス母材が製造できる。特
に大型で、長尺の光ファイバ用石英ガラス母材が低コス
ト製造でき、それを線引きすることで高品質の光ファイ
バを生産性よく製造できる。
According to the manufacturing method of the present invention, by using a quartz glass tube for an optical fiber preform having a high surface accuracy, a good optical fiber having no bubbles at the welding interface with the core glass rod for the optical fiber preform can be obtained. Quartz glass base material can be manufactured. In particular, a large and long quartz glass preform for an optical fiber can be manufactured at low cost, and a high-quality optical fiber can be manufactured with high productivity by drawing it.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 正則 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社郡山工場内 (72)発明者 渡部 豊 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社郡山工場内 Fターム(参考) 4G021 BA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanori Suzuki 88 Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Prefecture Inside the Koriyama Plant, Shin-Etsu Quartz Co., Ltd. Shin-Etsu Quartz Co., Ltd. Koriyama Factory F-term (reference) 4G021 BA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ母材用石英ガラス管中に光ファ
イバ母材用コアガラスロッドを挿入し、加熱し溶着一体
化する光ファイバ用石英ガラス母材の製造方法におい
て、前記母材用石英ガラス管が高純度の石英ガラスイン
ゴットの内外周面をダイヤモンド砥粒で機械的研削加工
したのち、内周面を酸化セリウム砥粒で機械的研磨加工
した石英ガラス管であることを特徴とする光ファイバ用
石英ガラス母材の製造方法。
1. A method for manufacturing a quartz glass preform for an optical fiber, comprising inserting a core glass rod for an optical fiber preform into a quartz glass tube for an optical fiber preform, heating and fusing and integrating the core glass rod. The glass tube is a quartz glass tube obtained by mechanically grinding the inner and outer peripheral surfaces of a high-purity quartz glass ingot with diamond abrasive grains and then mechanically polishing the inner peripheral surface with cerium oxide abrasive grains. A method for producing a quartz glass preform for a fiber.
【請求項2】光ファイバ母材用石英ガラス管の内周面の
最大粗さRmaxが1μm以下、中心線平均粗さRaが
0.1μm以下、外周面の最大粗さRmaxが10μm
以下、中心線平均粗さRaが1μm以下であることを特
徴とする請求項1記載の光ファイバ用石英ガラス母材の
製造方法。
2. The quartz glass tube for an optical fiber preform has a maximum inner surface roughness Rmax of 1 μm or less, a center line average roughness Ra of 0.1 μm or less, and a maximum outer surface roughness Rmax of 10 μm.
2. The method of claim 1, wherein the center line average roughness Ra is 1 μm or less.
【請求項3】請求項1記載の石英ガラス管の内外周面を
更に加熱溶融し鏡面化することを特徴とする光ファイバ
用石英ガラス母材の製造方法。
3. A method for producing a quartz glass preform for an optical fiber, wherein the inner and outer peripheral surfaces of the quartz glass tube according to claim 1 are further melted by heating and mirror-finished.
【請求項4】光ファイバ母材用石英ガラス管の内外周面
の最大粗さRmaxが各々0.5μm以下、内周面の中
心線平均粗さRaが0.05μm以下、外周面の中心線
平均粗さRaが0.1μm以下であることを特徴とする
請求項3記載の光ファイバ用石英ガラス母材の製造方
法。
4. The quartz glass tube for an optical fiber preform has a maximum roughness Rmax of 0.5 μm or less on the inner and outer peripheral surfaces, a center line average roughness Ra of 0.05 mm or less on the inner peripheral surface, and a center line of the outer peripheral surface. The method for producing a quartz glass preform for an optical fiber according to claim 3, wherein the average roughness Ra is 0.1 µm or less.
JP10287060A 1998-10-08 1998-10-08 Production of quartz glass preform for optical fiber Pending JP2000119034A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10287060A JP2000119034A (en) 1998-10-08 1998-10-08 Production of quartz glass preform for optical fiber
AT99119431T ATE314323T1 (en) 1998-10-08 1999-09-30 METHOD FOR PRODUCING A PREFORM FROM QUARTZ GLASS FOR OPTICAL FIBERS AND THE QUARTZ GLASS TUBE USED THEREFOR
DE69929152T DE69929152T2 (en) 1998-10-08 1999-09-30 Method for producing a quartz glass preform for optical fibers and the quartz glass tube used therefor
EP99119431A EP1000908B1 (en) 1998-10-08 1999-09-30 Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
KR1019990043327A KR100314699B1 (en) 1998-10-08 1999-10-07 Manufacturing method of Qurtz Glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10287060A JP2000119034A (en) 1998-10-08 1998-10-08 Production of quartz glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JP2000119034A true JP2000119034A (en) 2000-04-25

Family

ID=17712543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10287060A Pending JP2000119034A (en) 1998-10-08 1998-10-08 Production of quartz glass preform for optical fiber

Country Status (2)

Country Link
JP (1) JP2000119034A (en)
KR (1) KR100314699B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012433A (en) * 2000-06-26 2002-01-15 Sumitomo Metal Ind Ltd Quarts glass cylinder, quarts glass tube and method of producing the same
JP2003020238A (en) * 2001-07-02 2003-01-24 Furukawa Electric Co Ltd:The Method for producing optical fiber preform
JP2004051455A (en) * 2002-07-23 2004-02-19 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2006517471A (en) * 2003-02-12 2006-07-27 信越石英株式会社 Method for polishing inner surface of tubular brittle material and tubular brittle material obtained by the polishing method
JP2006520738A (en) * 2003-03-21 2006-09-14 ヘレウス・テネボ・アクチェンゲゼルシャフト Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
JP2006526560A (en) * 2003-06-04 2006-11-24 ヘレーウス テネーヴォ ゲゼルシャフト ミット ベシュレンクテル ハフツング Quartz glass cylinder for producing optical components and method for producing the same
CN113979631A (en) * 2021-10-12 2022-01-28 桂林电子科技大学 Preparation method of large-size multi-core optical fiber preform based on perfect combination of special-shaped sleeves
CN115353287A (en) * 2022-09-09 2022-11-18 中国建筑材料科学研究总院有限公司 Phi 40mm large-size optical fiber image inverter and surface processing method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012433A (en) * 2000-06-26 2002-01-15 Sumitomo Metal Ind Ltd Quarts glass cylinder, quarts glass tube and method of producing the same
JP2003020238A (en) * 2001-07-02 2003-01-24 Furukawa Electric Co Ltd:The Method for producing optical fiber preform
JP2004051455A (en) * 2002-07-23 2004-02-19 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2006517471A (en) * 2003-02-12 2006-07-27 信越石英株式会社 Method for polishing inner surface of tubular brittle material and tubular brittle material obtained by the polishing method
US7238089B2 (en) 2003-02-12 2007-07-03 Heraeus Tenevo Gmbh Polishing method for inner surface of tubular brittle material and tubular brittle material obtained by polishing method
JP2006520738A (en) * 2003-03-21 2006-09-14 ヘレウス・テネボ・アクチェンゲゼルシャフト Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
JP2006526560A (en) * 2003-06-04 2006-11-24 ヘレーウス テネーヴォ ゲゼルシャフト ミット ベシュレンクテル ハフツング Quartz glass cylinder for producing optical components and method for producing the same
CN113979631A (en) * 2021-10-12 2022-01-28 桂林电子科技大学 Preparation method of large-size multi-core optical fiber preform based on perfect combination of special-shaped sleeves
CN113979631B (en) * 2021-10-12 2023-10-03 桂林电子科技大学 Preparation method of large-size multi-core optical fiber preform based on perfect combination of special-shaped sleeves
CN115353287A (en) * 2022-09-09 2022-11-18 中国建筑材料科学研究总院有限公司 Phi 40mm large-size optical fiber image inverter and surface processing method and application thereof
CN115353287B (en) * 2022-09-09 2023-07-14 中国建筑材料科学研究总院有限公司 Phi 40mm large-size optical fiber image inverter and surface processing method and application thereof

Also Published As

Publication number Publication date
KR20000028910A (en) 2000-05-25
KR100314699B1 (en) 2001-11-15

Similar Documents

Publication Publication Date Title
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
EP0147225A2 (en) Method of forming an optical fiber
JP2006335577A (en) Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
EP1924431A2 (en) Fused silica body and thermal reflow of glass
JP2980501B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
KR100782393B1 (en) A method of manufacturing a preform ingot for optical fiber
JP2000119034A (en) Production of quartz glass preform for optical fiber
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
EP1000908B1 (en) Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
JP3529149B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
JP2000203860A (en) Large-sized quartz glass reform
JPH1171125A (en) Production of preform for optical fiber
JP4565221B2 (en) Optical fiber preform
EP1229004B1 (en) Method of producing a quartz glass preform for optical fibers by drawing a tube
EP2481715B1 (en) Method of manufacturing an optical fiber preform
JPS62167235A (en) Production of base material for optical fiber
EP0994078A2 (en) Method for producing quartz glass preform for optical fibers
JPWO2005101456A1 (en) Synthetic quartz glass tube for excimer UV lamp and manufacturing method thereof
JP4413738B2 (en) Quartz glass tube for manufacturing optical fiber, quartz glass tube for manufacturing optical fiber, preform for manufacturing optical fiber, and method for manufacturing optical fiber
JP4495838B2 (en) Manufacturing method of glass preform for optical fiber
JP2006327858A (en) Method of treating quartz glass base material and method of manufacturing optical fiber preform
JPS5951502B2 (en) Optical fiber manufacturing method
JPS6054935A (en) Manufacture of preform rod for optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801