JP2000203860A - Large-sized quartz glass reform - Google Patents

Large-sized quartz glass reform

Info

Publication number
JP2000203860A
JP2000203860A JP2000051053A JP2000051053A JP2000203860A JP 2000203860 A JP2000203860 A JP 2000203860A JP 2000051053 A JP2000051053 A JP 2000051053A JP 2000051053 A JP2000051053 A JP 2000051053A JP 2000203860 A JP2000203860 A JP 2000203860A
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
tube
core
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000051053A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokogawa
清 横川
Masaaki Aoyama
雅明 青山
Masanori Suzuki
正則 鈴木
Toshiyuki Kato
俊幸 加藤
Yutaka Watabe
豊 渡部
Filsmaier Gerhard
ゲアハルト・フィルスマイヤー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Quarzglas GmbH and Co KG
Shin Etsu Quartz Products Co Ltd
Original Assignee
Heraeus Quarzglas GmbH and Co KG
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Quarzglas GmbH and Co KG, Shin Etsu Quartz Products Co Ltd filed Critical Heraeus Quarzglas GmbH and Co KG
Publication of JP2000203860A publication Critical patent/JP2000203860A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large-size quartz glass preform of high accuracy that can attain the mass production of optical fibers of high quality at low cost. SOLUTION: A high-purity natural quartz glass tube or a synthetic quartz glass tube having the outer diameter of 50-300 mm, the ratio of the outer diameter (Do) to the inner diameter (Di) of 1.1-7, the wall thickness of >=10 mm and the wall thickness error of <=2% and the inner surface roughness of <=20 μm and the core glass rod for optical fiber are integrated by fusing and the refractive index of the high-purity natural quartz glass tube or the synthetic quartz glass tube is adjusted to <=0.02% to the designed value. In addition, the difference in the refractive index is <=±0.01 on the boundary between the high-purity natural quartz glass tube or the synthetic quartz glass tube and the core glass rod for optical fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、伝送特性に優れ、かつ
量産性、低コスト化が可能な大型の光ファイバ用石英ガ
ラスプリフォーム、さらに詳しくは石英ガラス管とシン
グルモ−ド用光ファイバコアガラスロッドとが溶着一体
化した大型石英ガラスプリフォ−ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-sized quartz glass preform for an optical fiber which has excellent transmission characteristics and can be mass-produced and reduced in cost, and more specifically, a quartz glass tube and an optical fiber core for a single mode. The present invention relates to a large quartz glass preform in which a glass rod is welded and integrated.

【0002】[0002]

【従来の技術】近年、光ファイバ特にシングルモ−ド用
光ファイバの実用化に伴い大量の光ファイバが利用され
ている。主たる製造方法としては、VAD法(気相軸付
法)、OVD法(外付法)、MCVD法(内付法)があ
り、これら3種の製造法で作られる製品だけで、世界の
マーケットのほとんどが占められている。然しながら、
光ファイバが長距離幹線から一般加入者系へと利用範囲
が拡大される段階に至り、今後更に大量の光ファイバが
必要となることが予測されているが、従来から知られて
いる上記3方法だけでは、生産性、コスト面からいずれ
も限界に達したと考えられている。
2. Description of the Related Art In recent years, with the practical use of optical fibers, particularly single mode optical fibers, a large amount of optical fibers have been used. The main production methods include the VAD method (gas-phase shaft attaching method), the OVD method (external method), and the MCVD method (internal method). Most of them are occupied. However,
It is expected that the range of use of optical fibers will be expanded from long-distance trunk lines to general subscriber systems, and it is expected that a larger amount of optical fibers will be required in the future. Alone is considered to have reached the limit both in terms of productivity and cost.

【0003】石英ガラス系光ファイバに関する研究は既
に20年を経ており、伝送特性と実用上の信頼性につい
ては既に究極まで検討されているので、この特性を維持
したまま量産性、低コスト化が可能な、新たな製造方法
の開発は困難である。
Research on silica glass-based optical fibers has already been performed for 20 years, and transmission characteristics and practical reliability have already been studied to the maximum. Therefore, mass production and cost reduction can be performed while maintaining these characteristics. It is difficult to develop new possible manufacturing methods.

【0004】量産性、低コスト化を達成するための1つ
に、プリフォームを大型化し、これを300m/min
以上の高速度で線引し、装置あたりの生産性を高めるこ
とで量産化と低コスト化が得られ、同時に評価コストや
乱尺の防止による低コスト化も期待できると考えられて
いる。然るに、上記3方法は小さな実験室規模から出発
し、特性を重視して検討されていたため、光ファイバ特
性としては優れているものの、量産性、低コスト化には
問題があり、1本のプリフォームで製造可能なファイバ
長さはMCVD法では15km〜30km、VAD法、
OVD法では100km〜200kmが限界となってい
る。
One of the ways to achieve mass productivity and cost reduction is to increase the size of the preform and reduce it to 300 m / min.
It is considered that mass production and cost reduction can be obtained by drawing at a high speed as described above and increasing productivity per apparatus, and at the same time, cost reduction by preventing evaluation cost and random size can be expected. However, since the above three methods were started from a small laboratory scale and were examined with emphasis on characteristics, they were excellent in optical fiber characteristics, but had problems in mass productivity and cost reduction, and had a problem in one process. The fiber length that can be manufactured by reforming is 15 to 30 km in the MCVD method, VAD method,
In the OVD method, the limit is 100 km to 200 km.

【0005】確かに、上記3製造方法は光ファイバの伝
送部を製造するのに適した方法ではあるが、クラッド部
も同時に製作することは量産性、低コスト化において決
して適した方法とはいえない。例えばグレ−デッドイン
デックスファイバあるいはシングルモ−ドファイバに於
て光ファイバ断面積の80%以上を占めるクラッド部を
高能率で低コスト化が可能な他の方法により製造し、そ
れを前記3製造方法と組合せるならば、優れた製造法に
なると考えられ、例えばVAD法で作られたコアガラス
ロッド上にOVD法でクラッド部を合成付着し、それを
光ファイバ用コアガラスロッドとして使用することが既
に実行されている。しかしながら、この従来の方法では
細く短いコアガラスロッドを用いるため、クラッドの合
成付着効率が低く、又各コアガラスロッド毎に合成する
ため量産性や低コスト化に限界があった。
Certainly, the above three manufacturing methods are suitable for manufacturing a transmission section of an optical fiber, but simultaneously manufacturing a clad section is a method which is never suitable in terms of mass productivity and cost reduction. Absent. For example, in a graded-index fiber or a single-mode fiber, a clad occupying 80% or more of the cross-sectional area of an optical fiber is manufactured by another method capable of reducing the cost with high efficiency, and combining it with the above three manufacturing methods. It is considered to be an excellent manufacturing method if it is used. For example, it is already practiced to attach a clad portion on a core glass rod made by the VAD method by the OVD method and use it as a core glass rod for an optical fiber. Have been. However, in this conventional method, a thin and short core glass rod is used, so that the synthetic adhesion efficiency of the clad is low, and since each core glass rod is synthesized, there is a limit in mass productivity and cost reduction.

【0006】本発明者等は、上記従来法をさらに検討し
た結果、コアガラスロッドとクラッド部とを分離し、コ
アガラス部は従来から知られている上記高性能コアガラ
ス製造方法で作成し、クラッド部は独立に効率のよい別
の方法で作成し、これを合体させれば前記諸問題が解決
できると考え、ロッドインチューブ法が最適であるとの
結論に達した。
As a result of further study of the above-mentioned conventional method, the present inventors separated the core glass rod and the clad portion, and made the core glass portion by the conventionally known high-performance core glass manufacturing method. The clad portion was independently formed by another efficient method, and it was thought that the above-mentioned problems could be solved by combining the clad portions, and it was concluded that the rod-in-tube method was optimal.

【0007】しかしながら、従来のロッドインチューブ
法には問題があった。第一に石英ガラス管の寸法に問題
があった。従来、用いられていた石英管の寸法は、小口
径(外径15〜30mmφ,厚さ1〜6mm)であり、
寸法精度が外径で約10%、厚さで20〜30%の変動
があった。ロッドインチューブ法でこうした管にコアガ
ラスロッドを挿入した場合、長さ、太さ、熟練度にもよ
るがガラス管内壁との接触防止の目的で数mmのクリア
ランスを必要とした。このように、径が細いこと、管の
寸法誤差が大きいこと、広いクリアランスを必要とした
ことが重なって、ロッドインチューブ法で一体化したプ
リフォームに偏芯が生じ、それが結果的に光ファイバの
大きな偏芯率となって現れ、特にシングルモードファイ
バの一括多芯接続工事での結合損失を想定した場合、ロ
ッドインチューブ法はメリットのない製造方法となって
いた。
However, the conventional rod-in-tube method has a problem. First, there was a problem with the dimensions of the quartz glass tube. Conventionally, the size of a quartz tube used is a small diameter (outer diameter 15 to 30 mmφ, thickness 1 to 6 mm),
The dimensional accuracy varied about 10% in outer diameter and 20 to 30% in thickness. When the core glass rod was inserted into such a tube by the rod-in-tube method, a clearance of several mm was required for the purpose of preventing contact with the inner wall of the glass tube, depending on the length, thickness and skill. In this way, the small diameter, large dimensional error of the tube, and the need for wide clearance overlap, and the eccentricity occurs in the preform integrated by the rod-in-tube method. The rod-in-tube method has been a manufacturing method that has no merit, as it appears as a large eccentricity of the fiber, and especially when a coupling loss is assumed in a single-mode fiber multi-core connection work.

【0008】一方、石英ガラス管にロッドインするコア
ガラスロッドは同一条件で作成しても特性がバラツキ、
またファイバ仕様、ユーザーの特徴、製造法によっても
特性が変わる。こうした条件に対応するには各種寸法の
高精度石英ガラス管が必要である。これら各種寸法の高
精度石英ガラス管を機械的研削等により各々作成するこ
とは寸法精度的には優れていたが多くの作業時間を要
し、量産化、低コスト化が困難であり、加熱延伸法で作
成する場合には量産性、低コスト化が可能であるが原管
の寸法精度が悪いと加熱延伸時に大きく増幅され目標寸
法の石英ガラス管を精度よく製造することが困難であっ
た。
On the other hand, even if the core glass rod that is rod-in into the quartz glass tube is made under the same conditions, the characteristics vary.
The characteristics also vary depending on fiber specifications, user characteristics, and manufacturing methods. To cope with such conditions, high-precision quartz glass tubes of various dimensions are required. Making each of these high-precision quartz glass tubes of various dimensions by mechanical grinding etc. was excellent in dimensional accuracy, but required a lot of work time, mass production and cost reduction were difficult, and When it is produced by the method, mass productivity and cost reduction can be achieved, but if the dimensional accuracy of the original tube is poor, it is greatly amplified at the time of heating and stretching, and it has been difficult to accurately produce a quartz glass tube having a target size.

【0009】上記問題点に加えて、前記ロッドインチュ
ーブ法は石英ガラス管内面とコアガラスロッド外面との
融着面に異物の混入や気泡の発生が現れる等の欠点を有
していた。これはロッドインチューブ法を実施する時の
雰囲気や洗浄方法にも左右されるが、石英ガラス管の内
面仕上げにも問題があった。
In addition to the above-mentioned problems, the rod-in-tube method has a drawback that foreign matters are mixed into the fused surface between the inner surface of the quartz glass tube and the outer surface of the core glass rod and bubbles are generated. Although this depends on the atmosphere and cleaning method when the rod-in-tube method is performed, there is also a problem in the inner surface finishing of the quartz glass tube.

【0010】[0010]

【発明が解決しようとする課題】本発明者等はこうした
現状の問題点を鋭意検討した結果、現状で実績のある上
記3方法を改良し大型化するため、大口径で肉厚の石英
ガラス管を形成し、それと光ファイバ用コアガラスロッ
ドとをロッドインチュ−ブ法で融着一体化し大型プリフ
ォ−ムとすると、シングルモ−ド光ファイバでの偏芯率
等の品質がよく、量産性、低コスト化が同時に満足され
ることを見出した。そして、上記ロッドインンチューブ
法に関する諸問題は、大型の石英ガラスインゴットまた
は管状体を用いることにより高精度の大型産業機械が利
用でき、例えばドリリングマシン(商品名、ウエダ技研
製)等のコアドリル穴明盤や外周研削機、超精密加工技
術(超精密加工研究会編、工業調査会、第421頁、1
984年)に記載する精密ホ−ニング装置等で機械的に
内、外面を研削、開孔、研磨し、正確な寸法精度に仕上
げ、弗酸エッチングして表面汚染の除去、ならびに切削
面の粗さ、加工歪みの緩和を行えば、実質的に高精度な
大型石英ガラス管を得ることができ、これと光ファイバ
用コアガラスロッドとを組み合わせて融着一体化するこ
とで解決でき、得られた大型プリフォーム1本で300
0km以上の高品位の光ファイバが連続的に容易に製造
できることを発見した。特に石英ガラス中の異物や、不
純物を除去し、脱水し、屈折率をコントロ−ル可能な合
成石英ガラスを原材料とした場合に最高の特性が得られ
る。こうした知見に基づいて本発明は完成したものであ
る。
The inventors of the present invention have conducted intensive studies on these problems, and as a result, in order to improve and increase the size of the above three methods which are currently used, a quartz glass tube having a large diameter and a large thickness is required. Is formed and fused with a core glass rod for an optical fiber by a rod intube method to form a large preform. The quality such as the eccentricity of a single mode optical fiber is good, It has been found that cost reduction is simultaneously satisfied. The problems with the rod-in-tube method are that a large-sized quartz glass ingot or a tubular body can be used to use a high-precision large-scale industrial machine. For example, a core drill hole of a drilling machine (trade name, manufactured by Ueda Giken) or the like can be used. Super-precision machining technology (edited by Ultra-Precision Processing Research Group, Industrial Research Committee, page 421, 1
984), the inner and outer surfaces are mechanically ground, drilled and polished with a precision honing device, etc., finished to precise dimensional accuracy, etched with hydrofluoric acid to remove surface contamination, and roughened cut surfaces. By reducing the processing strain, it is possible to obtain a substantially high-precision large quartz glass tube, which can be solved by combining this with a core glass rod for an optical fiber and fusing and integrating it. 300 in one large preform
It has been discovered that high-quality optical fibers of 0 km or more can be easily manufactured continuously. In particular, the best characteristics can be obtained when synthetic quartz glass capable of controlling the refractive index by removing foreign substances and impurities in quartz glass and dehydrating the material is used as a raw material. The present invention has been completed based on these findings.

【0011】本発明は、量産性に優れ、低コストで光フ
ァイバを製造できる大型石英ガラスプリフォ−ムを提供
することをその目的とする。
An object of the present invention is to provide a large-sized quartz glass preform which is excellent in mass productivity and can manufacture an optical fiber at low cost.

【0012】また、本発明は、高品位の光ファイバを製
造できる高精度の大型石英ガラスプリフォ−ムを提供す
ることをその目的とする。
Another object of the present invention is to provide a high-precision large-size quartz glass preform capable of producing a high-quality optical fiber.

【0013】[0013]

【課題を解決するための手段】上記目的を達成する本発
明は、外径50〜300mm、外径と内径の比が1.1
〜7、肉厚が10mm以上で肉厚誤差が2%以下、内表
面粗さが20μm以下の高純度天然石英ガラス管又は合
成石英ガラス管と、光ファイバ用コアガラスロッドとが
溶着一体化し、かつ前記高純度天然石英ガラス管又は合
成石英ガラス管の屈折率が設計値に対して0.02%以
内に調整されているとともに、高純度天然石英ガラス管
又は合成石英ガラス管と光ファイバ用コアガラスロッド
のクラッド層との境界での屈折率段差が±0.01以下
でることを特徴とする大型石英ガラスプリフォームに係
る。
The present invention for achieving the above object has an outer diameter of 50 to 300 mm and a ratio of the outer diameter to the inner diameter of 1.1.
7, a high purity natural quartz glass tube or a synthetic quartz glass tube having a thickness of 10 mm or more, a thickness error of 2% or less, and an inner surface roughness of 20 μm or less, and a core glass rod for an optical fiber are integrally welded; The refractive index of the high-purity natural quartz glass tube or the synthetic quartz glass tube is adjusted within 0.02% with respect to a design value, and the high-purity natural quartz glass tube or the synthetic quartz glass tube and the core for the optical fiber are used. The present invention relates to a large quartz glass preform, wherein the refractive index step at the boundary between the glass rod and the cladding layer is ± 0.01 or less.

【0014】ここで、本明細書で使用する用語について
定義する。 1) 「石英ガラス管」とは、管状石英ガラスの総称で
あり、本発明ではロッドインチュ−ブ用に作成された天
然石英ガラス管または合成石英ガラス管も含む。
Here, the terms used in the present specification will be defined. 1) "Quartz glass tube" is a general term for tubular quartz glass, and in the present invention, includes a natural quartz glass tube or a synthetic quartz glass tube made for a rod tube.

【0015】2) 「石英ガラス母材」とは、高純度の
天然石英ガラスまたは合成石英ガラスで構成された長尺
の円柱状インゴットまたは円管状の大型石英ガラスであ
って必要により外周粗研削されてあるが目的寸法に加工
される前の石英ガラスをいう。特に合成石英ガラスでは
光ファイバの品質設計に合わせてOH基コントロールお
よび屈折率(n)コントロール等がなされているものを
含む。
2) The "quartz glass base material" is a long cylindrical ingot or a large cylindrical quartz glass made of a high-purity natural quartz glass or a synthetic quartz glass, which is roughly ground as required. This refers to quartz glass before being processed to the target dimensions. In particular, synthetic quartz glass includes those having OH group control and refractive index (n) control in accordance with the quality design of the optical fiber.

【0016】3) 「石英ガラス原管」とは、円柱状石
英ガラス母材をコアドリル穴明け盤等で機械的に研削し
て開孔するか、または加熱下で炭素ドリルを圧入する加
工法(以下「炭素ドリル圧入法」という)により開孔し
た管、あるいは管状の大型石英ガラス母材を作成し、各
々管の外表面または内外表面を機械的に粗研削しほぼ目
標寸法に研削された大型石英ガラス管をいう。
3) The term “quartz glass raw tube” refers to a processing method in which a cylindrical quartz glass preform is mechanically ground and opened with a core drilling machine or the like, or a carbon drill is press-fitted under heating. (Hereinafter referred to as the “carbon drill press-fitting method”) to make a tube or a large quartz glass base material in the form of a tube, and to roughly mechanically roughen the outer surface or inner and outer surface of the tube, and to grind it to almost the target dimensions. It refers to a quartz glass tube.

【0017】4) 「石英ガラス素管」とは、石英ガラ
ス原管の内・外径寸法を正確に定め、肉厚誤差を2%以
下とし、内外面を研磨仕上し弗酸エッチング処理した後
の内表面粗さが20μm以下である大型石英ガラス管を
いう。
4) "Quartz glass raw tube" means that the inner and outer diameters of the raw quartz glass tube are accurately determined, the thickness error is set to 2% or less, and the inner and outer surfaces are polished and etched with hydrofluoric acid. Refers to a large quartz glass tube having an inner surface roughness of 20 μm or less.

【0018】5) 「肉厚誤差」とは、所定長さの大型
石英ガラス管を長手方向に対し例えば5点以上または5
0〜100mm間隔毎に回転させ、その位置での管の厚
さ(t)の最大値(tmax.)、最小値(tmin.)とした
ときの次式の値、すなわち [(tmax.ーtmin.)/{(tmax.+tmin.)/2}]
×100(%) で計算し、全長の中での最大値を%で表わした値をい
う。
5) The "thickness error" means that a large quartz glass tube having a predetermined length is, for example, five points or more in the longitudinal direction.
The tube is rotated at intervals of 0 to 100 mm, and the value of the following expression when the maximum value (t max. ) And the minimum value (t min. ) Of the tube thickness (t) at that position are defined as: [(t max . -T min. ) / {(T max. + T min. ) / 2}]
× 100 (%) means the value of the maximum value in the total length expressed in%.

【0019】6) 「光ファイバ用コアガラスロッド」
とは、光の伝送部であって、コア部と光学的クラッド部
からなり高品位を目的としたシングルモ−ド、マルチモ
−ド等の公衆通信用ではコア部とともに合成したクラッ
ドが十分添着してあり、更にその上にOVD法による合
成クラッドまたは/および石英ガラス管がジャケットさ
れたものを含みそれだけを線引しただけでは規格に適し
たファイバとならないようなガラス棒をいう。
6) "Core glass rod for optical fiber"
Is a transmission part of light, which is composed of a core part and an optical cladding part, and is used for public communication such as single mode and multi-mode for high quality. In addition, it refers to a glass rod in which a synthetic clad by the OVD method and / or a quartz glass tube is jacketed thereon, and a fiber that meets the standard cannot be obtained just by drawing it alone.

【0020】上記大型の高純度天然石英ガラス管又は合
成石英ガラス管は、一般の光ファイバ用クラッド管に要
求される品質特性が満足される石英ガラスからなり、外
径が50〜300mm程度の大型石英ガラス管である。
大口径化、肉厚化により石英ガラス管の寸法誤差を小さ
くでき、それを用いてロッドインチューブ法で作成した
大型プリフォ−ムを線引きして得た光ファイバは偏芯率
を小さくできると共に量産化、低コスト化に有効であ
る。外径が大きく、外径/内径が大きい程管の厚さが厚
いので絶対値も大きく、加工精度が高められるが、外径
や外径/内径が小さいと誤差が大きくなり、コアに近い
MCVD用反応管や多重ジャケット用の小口径、薄肉管
では高精度が要求される。
The large-sized high-purity natural quartz glass tube or synthetic quartz glass tube is made of quartz glass satisfying quality characteristics required for a general optical fiber clad tube, and has a large outer diameter of about 50 to 300 mm. It is a quartz glass tube.
The large diameter and thickening can reduce the dimensional error of the quartz glass tube, and the optical fiber obtained by drawing a large preform made by the rod-in-tube method using it can reduce the eccentricity and mass-produce it. It is effective for cost reduction. The larger the outer diameter, the larger the outer diameter / inner diameter, the thicker the pipe, the greater the absolute value, and the processing accuracy can be increased. However, if the outer diameter or the outer diameter / inner diameter is small, the error increases, and the MCVD closer to the core High precision is required for small-diameter, thin-walled tubes for reaction tubes and multiple jackets.

【0021】本発明で使用する大型石英ガラス管の横断
面図を図1に、また本発明の大型石英ガラスプリフォ−
ムの横断面図を図2に示す。図1において、Doは大型
石英ガラス管の外径、Diは大型石英ガラス管の内径で
あり、また図2において1はコアガラスロッド、2はク
ラッド層、3は被覆大型石英ガラス管である。前記大型
石英ガラスプリフォ−ムを線引きして得た光ファイバ、
例えばシングルモ−ドファイバの横断面概略図を図3に
示す。図3において、4はコア、5は光学的クラッド、
6はオーバ−クラッドを示し、“a”はコア径
(dcore)、“b”は光学的クラッド径(dcladi)、
“c”は光ファイバの外径(dclado)125μmを示
す。図4はシングルモ−ドファイバの屈折率分布および
パワ−分布の概念図を示す。図4で光学的クラッド部は
コア径(dcore)の外側にあり光のパワ−分布が広がっ
ている部分である。そのため光学的クラッド径(d
cladi)はコアの合成と同時にクラッドも合成されその
厚さはコアの屈折率分布の形状、屈折率差(Δn)、フ
ァイバの使用法等の条件に応じて変わり、通常は実績に
安全係数をかけた大きい値が採用される。本発明でいう
光ファイバ用石英ガラスコアロッドとは少なくとも図4
の光学的クラッド部を含んだ石英ガラス棒をいう。
FIG. 1 is a cross-sectional view of a large quartz glass tube used in the present invention, and a large quartz glass preform of the present invention.
A cross-sectional view of the system is shown in FIG. In Figure 1, D o is the outer diameter of the large quartz glass tube, D i is the inner diameter of the large-sized quartz glass tube, also 1 in 2 core glass rod, 2 a cladding layer, 3 is coated large quartz glass tube is there. An optical fiber obtained by drawing the large quartz glass preform,
For example, a schematic cross-sectional view of a single-mode fiber is shown in FIG. In FIG. 3, 4 is a core, 5 is an optical cladding,
6 indicates over-cladding, "a" is a core diameter (d core ), "b" is an optical cladding diameter (d cladi ),
“C” indicates the outer diameter (d clado ) of the optical fiber of 125 μm. FIG. 4 shows a conceptual diagram of a refractive index distribution and a power distribution of a single mode fiber. In FIG. 4, the optical cladding is located outside the core diameter (d core ), and the power distribution of light is widened. Therefore, the optical cladding diameter (d
clad ) is synthesized with the core simultaneously with the synthesis of the core. The thickness of the clad varies depending on the conditions such as the shape of the refractive index distribution of the core, the refractive index difference (Δn), and the usage of the fiber. The multiplied large value is adopted. The quartz glass core rod for an optical fiber referred to in the present invention is at least FIG.
Is a quartz glass rod including the optical cladding.

【0022】ところで、本発明における光ファイバは、
大型プリフォ−ムを線引きすることにより形成されるか
ら、図3の光ファイバの外径(dclado)と光学的クラ
ッド径(dcladi)との比dclado/dcladiは図2の大
型石英ガラスプリフォ−ムの外径(Do)と内径(Di
の比Do/Diにほぼ比例することになる。それ故、光フ
ァイバの設計に当っては前記Do/Diを指標として設計
する必要がある。例えばシングルモ−ドファイバ(1.
3μm波長用)のコア径を9μm、GI型マルチモ−ド
ファイバのコア径を50μm、光ファイバの外径を12
5μmとすると、Do/Diは次の表1に示す値となる。
Incidentally, the optical fiber of the present invention comprises:
Since the large diameter preform is formed by drawing, the ratio d clado / d cladi of the outer diameter (d clado ) to the optical cladding diameter (d cladi ) of the optical fiber shown in FIG. Outer diameter (D o ) and inner diameter (D i ) of preform
Is approximately proportional to the ratio D o / D i . Thus, hitting the optical fiber designs should be designed the D o / D i as an index. For example, a single mode fiber (1.
(3 μm wavelength) core diameter is 9 μm, GI multimode fiber core diameter is 50 μm, and optical fiber outer diameter is 12 μm.
When 5μm, D o / D i is a value shown in the following Table 1.

【0023】[0023]

【表1】 注)括弧内はマルチモ−ドの例[Table 1] Note) The example in the parenthesis is multi-mode.

【0024】上記表1によれば例えば代表例として括弧
で示すマルチモ−ドファイバの場合ではDo/Diが2.
5以下、通常、同時合成による合成クラッド層が5%〜
30%、例えば20%のクラッド層があると60μmと
なり、Do/Di=2.08となる。シングルモ−ドファ
イバの場合ではDo/Diが約7以下であれば実用的な光
ファイバが得られる。すなわち1.3μm帯用(マッチ
ドクラッドタイプ、デプレストタイプ)、1.55μm
帯用、ディスパ−ジョンシフトタイプ等のメインパワ−
分布は、いずれも約20μm以下と推定され、安全率を
とるとdcladi/dcore≒3以上、すなわちDo/Di
4.63以下が実用的範囲となる。また、2重、3重に
ジャケットした場合はさらにDo/Diは低い値となる。
したがって、Do/Diを1.1〜7の範囲で選択するこ
とが実用的な光ファイバを製造する条件となる。もっと
も、Do/Diはプリフォ−ムの径の比であるのでロッド
インチュ−ブ用の石英ガラス管の場合には石英ガラス管
とコアガラスロッドとの間に若干すき間を設ける必要が
あるのはいうまでもない。
According to Table 1, for example, in the case of a multimode fiber shown in parentheses as a representative example, D o / D i is 2.
5 or less, usually 5% ~
If there is a cladding layer of 30%, for example, 20%, the thickness becomes 60 μm, and D o / D i = 2.08. In the case of a single mode fiber, a practical optical fiber can be obtained if D o / D i is about 7 or less. That is, for 1.3 μm band (matched clad type, depressed type), 1.55 μm
Main power for obi, dispersion shift type, etc.
Each distribution is estimated to be about 20 μm or less, and taking a safety factor, d cladi / d core ≒ 3 or more, ie, D o / D i
4.63 or less is a practical range. When the jacket is double-layered or triple-layered, D o / D i is further reduced.
Therefore, the condition that it is to produce a practical optical fiber selected in the range of 1.1 to 7 and D o / D i. However, since D o / D i is the ratio of the diameter of the preform, in the case of a quartz glass tube for a rod tube, it is necessary to provide a slight gap between the quartz glass tube and the core glass rod. Needless to say.

【0025】本発明の大型石英ガラス管を作成するに
は、天然石英の場合について知られた種々の方法が利用
できる。ルツボ溶融引抜き法やモールド成形法も利用で
きるが、ルツボ溶融法では大口径化が困難であり、モ−
ルド成形法では容器に用いる耐熱材が石英ガラスと長時
間直接接触し、耐熱材中の不純物を石英ガラス母材の
内、外表面に移行拡散させる。そのために光ファイバの
伝送損失を増加させるので、コア部に接近させてジャケ
ットする場合は汚染部の大幅な除去が必須となる。前記
大型石英ガラス管の製造方法としては、円柱状石英ガラ
ス母材を作り、その中心を、図5に示すコアドリル穴明
け盤のような機械研削により開孔するか、または円柱状
石英ガラス母材を熱間炭素ドリル圧入法で短時間接触に
より開孔する等の2工程を経る方法、あるいは耐熱芯材
上に多孔質シリカスート材を堆積し、脱水、溶融ガラス
化するOVD法、または直接VAD法で孔の明いたスー
トを作り、脱水、溶融ガラス化する1工程の方法等が利
用できる。前記図5において、7は円柱状石英ガラス母
材、8はコアドリル、9は砥石を示す。
Various methods known for the case of natural quartz can be used to make the large quartz glass tube of the present invention. A crucible melting drawing method and a molding method can also be used, but it is difficult to increase the diameter by the crucible melting method.
In the molding method, the heat-resistant material used for the container comes into direct contact with the quartz glass for a long time, and the impurities in the heat-resistant material are transferred and diffused into the inside and outside surfaces of the quartz glass base material. For this reason, the transmission loss of the optical fiber is increased. Therefore, when the jacket is brought close to the core, the contaminated portion must be largely removed. As a method for manufacturing the large quartz glass tube, a cylindrical quartz glass preform is prepared, and the center thereof is opened by mechanical grinding such as a core drilling machine shown in FIG. Or hot-hole drilling by hot carbon drill press-fitting method for short-time contact, or through a two-step process, or by depositing a porous silica soot material on a heat-resistant core material, dehydrating, and melt-vitrifying OVD method or direct VAD method A one-step method of producing soot with pores, dehydration, and melt vitrification can be used. In FIG. 5, 7 is a columnar quartz glass base material, 8 is a core drill, and 9 is a grindstone.

【0026】ところで、ロッドインチュ−ブ用石英ガラ
ス管は厚さの寸法精度が悪いと加熱延伸加工時にその誤
差が一層増幅され相対的に誤差が大きくなる。また、多
重被覆により誤差が更に助長されたりするので、寸法精
度は正確である必要がある。石英ガラス母材を加工し精
度の高い石英ガラス原管を得るには機械的研削加工が適
している。石英ガラスの大型化により機械的研削加工、
特に従来から知られている産業用大型機械による精密研
削加工が可能となった。しかし高い精度が得られる反
面、加工面に研削時の加工傷、マイクロクラック、ヒビ
割れ、加工歪み等が発生し、それがロッドインチューブ
法による一体化時に内部境界面に気泡を発生させること
になる。従来こうした問題を解決するため、時間をかけ
て研削面を高精密機械研磨を行うか、内面ファイヤーポ
リシュするか、あるいは特殊ガラス層を内表面に形成す
るかして内面粗さを例えば0.01μm程度としていた
が(例えば特開昭52−92530号公報参照)、これ
らの処理法は煩雑で大型(大口径、肉厚、長尺)石英ガ
ラス管を大量生産する場合にはほとんど実施不可能であ
った。しかしながら、高純度石英ガラス原管の内面仕上
げを精密ホーニング装置を用いることで解決できること
が分かった。この加工法では、石英ガラス原管が外径5
0mm以上であれば長さが3000mm程度の原管を、
全長が真直で全ての位置で真円の管に加工できる。砥石
または砥粒のグレ−ドを変えて研削研磨し、クラック、
ヒビ割れ、応力歪み等を削除し、これを一度弗酸水溶液
で処理し応力集中を緩和し、超音波洗浄で表面汚染の除
去を行い内面粗さを20μm以下とし、さらに要すれば
このものを加熱加工処理をすると、機械研削部の鋭い凹
凸部やヒビ割れの部分が緩やかな面となり、かつ加工歪
みも開放され、気泡の発生を抑制することができる。本
発明者等の実験によれば、研削による内表面粗さが20
μmを超えると、加熱延伸処理しても前記加工ダメ−ジ
が緩和または開放されずロッドインチューブ法による一
体化時に内部境界面に気泡となって発生することがわか
っている。
Incidentally, if the dimensional accuracy of the thickness of the quartz glass tube for a rod tube is poor, the error is further amplified during the heat drawing process, and the error becomes relatively large. In addition, since the error is further promoted by the multiple coating, the dimensional accuracy needs to be accurate. Mechanical grinding is suitable for processing a quartz glass base material and obtaining a highly accurate quartz glass tube. Mechanical grinding by increasing the size of quartz glass,
In particular, precision grinding by a conventionally known large-sized industrial machine has become possible. However, while high accuracy can be obtained, processing scratches, micro cracks, cracks, processing distortion, etc. occur during processing on the processing surface, which generates bubbles on the internal boundary surface when integrated by the rod-in-tube method. Become. Conventionally, in order to solve such a problem, the internal surface roughness is reduced to, for example, 0.01 μm by performing high precision mechanical polishing of the ground surface over time, performing internal fire polishing, or forming a special glass layer on the internal surface. (See, for example, Japanese Patent Application Laid-Open No. 52-92530). However, these processing methods are cumbersome, and cannot be practically performed when mass-producing large (large-diameter, thick-wall, long) quartz glass tubes. there were. However, it was found that the inner surface finish of the high purity quartz glass raw tube could be solved by using a precision honing device. In this processing method, the original quartz glass tube has an outer diameter of 5 mm.
If it is 0 mm or more, a raw tube with a length of about 3000 mm
The entire length is straight and can be processed into a perfectly round pipe at all positions. Grinding and polishing by changing the grade of whetstone or abrasive grain, crack,
Remove cracks, stress strain, etc., treat them once with hydrofluoric acid aqueous solution to reduce stress concentration, remove surface contamination by ultrasonic cleaning to reduce inner surface roughness to 20 μm or less, and if necessary, remove this When the heat processing is performed, sharp irregularities and cracks in the mechanically grounded portion become gentle surfaces, and processing distortion is released, so that generation of bubbles can be suppressed. According to the experiments by the present inventors, the inner surface roughness due to the grinding was 20%.
If it exceeds μm, it is known that the processing damage is not relaxed or released even by the heating and stretching treatment, and bubbles are generated at the internal boundary surface during integration by the rod-in-tube method.

【0027】円柱状石英ガラス母材をコアドリル穴明け
盤等で機械的に研削して開孔するか、あるいはOVD法
等で作られた管状の大型石英ガラス母材の内外表面を機
械的に粗研削した石英ガラス原管の場合、内周仕上げ加
工は、超精密ホーニング加工法がよい。その結果、コア
ガラスロッドとのクリアランスを狭くすることができ
る。この超精密ホーニング加工と外周研削を組み合せ、
研削原管の厚さ誤差を2%以下とする。この範囲内の誤
差では、加熱加圧延伸時における誤差の増幅がほとんど
起こらず、ファイバの偏芯率に悪影響を与えることがな
い。
A cylindrical quartz glass preform is mechanically ground by a core drilling machine or the like to form a hole, or the inner and outer surfaces of a tubular large quartz glass preform made by the OVD method or the like are mechanically roughened. In the case of a ground quartz glass tube, an ultra-precision honing method is preferred for the inner peripheral finish processing. As a result, the clearance with the core glass rod can be reduced. Combining this super-precision honing and outer circumference grinding,
The thickness error of the grinding tube should be 2% or less. If the error is within this range, amplification of the error during the heating and pressurizing stretching hardly occurs, and the eccentricity of the fiber is not adversely affected.

【0028】外周面の研削は、研削面が直接高温部に接
近して加熱されるので研削条件は内周面研削ほど厳しく
なくてもよいが、光ファイバとなってからの破断強度に
影響が出るので弗酸エッチングにより鋭い応力集中部分
を除去あるいは緩和した上で表面粗さを少なくとも20
0μm以下好ましくは100μm以下にする必要があ
る。それ故、外周研削には、半導体インゴットや種々の
セラミックス研削加工で実績のある、例えば標準の外周
研削機または円筒研削盤が利用される。
The grinding of the outer peripheral surface is not so severe as the grinding of the inner peripheral surface because the ground surface is directly heated to the high-temperature portion and heated, but the breaking strength after the optical fiber is formed is affected. As a result, sharp stress concentration portions are removed or alleviated by hydrofluoric acid etching, and the surface roughness is reduced to at least 20.
It is necessary to be 0 μm or less, preferably 100 μm or less. Therefore, for the outer peripheral grinding, for example, a standard outer peripheral grinder or a cylindrical grinder, which has been used in semiconductor ingots and various ceramics grinding processes, is used.

【0029】上記穴明加工終了後は機械加工面の仕上研
磨を行い肉厚誤差が2%以下であることを確認する。こ
れを弗酸エッチング処理し内表面粗さが20μm以下と
した石英ガラス素管とする。石英ガラス素管は光ファイ
バ用コアガラスロッドとロッドインチューブ法により一
体化するが、コアガラスロッドは同一条件で作成しても
特性がバラツキ、またファイバ仕様、ユーザーの特徴、
製造法によっても特性が変わる。そこで前記石英ガラス
素管をこのコアガラスロッドに合わせるためには加熱延
伸処理をして各種寸法の石英ガラス管を作成するのがよ
い。
After the completion of the drilling, the machined surface is polished to confirm that the thickness error is 2% or less. This is subjected to hydrofluoric acid etching treatment to obtain a quartz glass tube having an inner surface roughness of 20 μm or less. The quartz glass tube is integrated with the core glass rod for optical fiber by the rod-in-tube method, but even if the core glass rod is made under the same conditions, the characteristics will vary, and fiber specifications, user characteristics,
The characteristics change depending on the manufacturing method. Therefore, in order to fit the quartz glass tube to the core glass rod, it is preferable to produce quartz glass tubes of various dimensions by performing a heat stretching process.

【0030】上記加熱処理石英ガラス管は高温で熱処理
されているため、機械的研削に基づく研削面の粗さ、加
工歪み等の各種加工ダメ−ジは緩和または解放される。
特に熱延伸の変形度が大きいほど表面の傷、ヒビ割れ、
ピット等が大きく変形拡大され、溝は浅くなり、鋭角部
分が消失してしまい、従来、ロッドインチューブ用石英
ガラス管に必要とされた高精度機械研磨処理、内面ファ
イヤーポリシュ処理、あるいは特殊ガラス層を内面に形
成する処理等、大量生産に不向きな工程処理を省略する
ことができる。したがって、大型石英ガラス素管を高精
度で作り熱変形を利用して目的の大型石英ガラス管を得
ることが有利である。
Since the above-mentioned heat-treated quartz glass tube is heat-treated at a high temperature, various processing damages such as roughness of a ground surface and processing distortion due to mechanical grinding are alleviated or released.
In particular, the greater the degree of deformation in hot stretching, the more the surface scratches, cracks,
The pits are greatly deformed and enlarged, the grooves become shallow, and the sharp corners disappear, and the high-precision mechanical polishing, internal fire polishing, or special glass layers conventionally required for quartz glass tubes for rod-in tubes Process that is not suitable for mass production, such as a process for forming the inner surface, can be omitted. Therefore, it is advantageous to produce a large quartz glass tube with high precision and to obtain a target large quartz glass tube by utilizing thermal deformation.

【0031】本発明の天然石英ガラスの製造方法として
は、天然に産出する水晶塊の中から良質部分を選別しさ
らに各水晶塊の外殻部を除去して中心部を取り出し、こ
れを破砕して粒径を揃え、異物の除去後化学的処理によ
り不純物を除去する。これを原料としてルツボ溶融引抜
法やモ−ルド成形法等古くから知られ現在も一般用に利
用されている方法で製造される。しかし酸水素によるベ
ルヌイ法で大型円柱状石英ガラス母材を作成する方法は
不純物が最も少ないので光ファイバ用石英ガラス材料の
製法として推奨できる。
In the method for producing natural quartz glass of the present invention, a high-quality portion is selected from crystallites produced naturally, the outer shell of each crystallite is removed, the center is taken out, and this is crushed. After removing the foreign substances, impurities are removed by a chemical treatment. Using this as a raw material, it is manufactured by a method that has been known for a long time, such as a crucible melting drawing method and a mold forming method, and is still generally used. However, a method of preparing a large cylindrical quartz glass preform by the Bernoulli method using oxyhydrogen can be recommended as a method for producing a quartz glass material for optical fibers because it has the least amount of impurities.

【0032】本発明で使用する石英ガラス管の製造に使
用する合成石英ガラスインゴットまたは管状体の製造方
法としては、従来から知られている「高純度シリカの応
用技術」第100〜104頁(株式会社シ−エムシ−、
1991年3月10日発行)等に記載の各種の製造方法
が考えられるが、高温気相ベルヌイ法は、ガス状珪素化
合物、例えばSiCl4と酸水素炎による直接ガラスイ
ンゴットを得る方法であり、合成石英ガラス中にOH基
が800ppm以上も多く含まれるので(低OH用)光
ファイバ用素材としては不適当であり、専ら半導体用フ
ォトマスク基盤や露光装置の光学部材に使用されてい
る。また、この方法を改良したプラズマ法は、OH基が
低いものの大電力を要しコストが高くなるため、光ファ
イバ用高純度コアガラス等の特殊品の製造に利用される
に過ぎない。これに対し、前記直接ガラス化法よりも火
炎温度を下げ、回転する基材(ターゲット)上に原料ガ
スをふき付け、多孔質スート材を形成してから脱水処理
等を行った上、ガラス化する方法は、上記欠点がなく本
発明の母材の製造方法として適当である。VAD法は、
中実円柱状石英ガラス母材の製造が主であり、OVD法
は管状の石英ガラス母材が直接作られる。
As a method for producing a synthetic quartz glass ingot or a tubular body used for producing the quartz glass tube used in the present invention, a conventionally known “Applied Technology of High Purity Silica”, pp. 100-104 (stock) Company CMC,
Various production methods described in, for example, March 10, 1991) can be considered. The high-temperature vapor-phase Bernoulli method is a method for obtaining a glass ingot directly by a gaseous silicon compound, for example, SiCl 4 and an oxyhydrogen flame, Synthetic quartz glass contains more than 800 ppm of OH groups and is therefore unsuitable as a material for optical fibers (for low OH) and is mainly used for photomask substrates for semiconductors and optical members of exposure equipment. In addition, the improved plasma method, which has a low OH group but requires a large amount of power and requires a high cost, is only used for producing special products such as high-purity core glass for optical fibers. On the other hand, the flame temperature was lowered as compared with the direct vitrification method, the raw material gas was wiped on a rotating base material (target), and a porous soot material was formed. This method is suitable as the method for producing the base material of the present invention without the above-mentioned disadvantages. The VAD method is
The main production is a solid cylindrical quartz glass preform, and the OVD method directly produces a tubular quartz glass preform.

【0033】大型石英ガラス管の屈折率は設計値に従っ
て決められるが、石英ガラス管およびそれに挿入される
光ファイバ用コアガラスロッドの屈折率はそれらの製造
条件、目的および仕様により異なり、例えば(1)高純
度合成石英ガラスは含有OH基(低屈折率化)、塩素量
(高屈折率化)により屈折率が若干変化する。光ファイ
バ用コアガラスでは一般的に高純度塩素で脱水処理が行
われているが、その程度は各社で異なり、また使用目的
によっても異なり一定ではない。(2)MCVD用に利
用されている天然石英ガラスではOH基が200ppm
以下であり、塩素はほとんど含まないので屈折率は低
い。(3)デプレスト型光ファイバではコアの周囲は
0.05〜0.2%程度の屈折率の段差をつけている等
で、大型石英ガラス管に要求される屈折率が異なるの
で、標準屈折率で大型石英ガラス管の屈折率を決めるよ
り、各社の要請により目標規格値の±0.02%に設定
すべきことをメリットとしている。そこで本発明では前
記目標規格値を設計値という。
The refractive index of the large quartz glass tube is determined according to the design value. The refractive index of the quartz glass tube and the core glass rod for an optical fiber inserted therein differs depending on the manufacturing conditions, purpose and specifications. ) The refractive index of high-purity synthetic quartz glass slightly changes depending on the contained OH group (low refractive index) and the amount of chlorine (high refractive index). In general, dehydration treatment is performed with high-purity chlorine in an optical fiber core glass, but the degree of the dehydration varies depending on each company and varies depending on the purpose of use. (2) 200 ppm of OH groups in natural quartz glass used for MCVD
The refractive index is low because almost no chlorine is contained. (3) In the depressed type optical fiber, the refractive index required for a large quartz glass tube is different because a step around the core has a refractive index of about 0.05 to 0.2%. The advantage is that the refractive index of the large quartz glass tube should be set to ± 0.02% of the target standard value at the request of each company, rather than determining the refractive index of the large quartz glass tube. Therefore, in the present invention, the target standard value is referred to as a design value.

【0034】上記設計値を若干修正する場合にはOH基
や塩素量でコントロ−ルすることも可能であるが、各々
の条件を独立に決めるためにはGe、P、Ti、Alお
よびF、B等のド−プも積極的に行わないと目的は達成
できない。上記ス−ト法による合成石英ガラスの製造に
おいてはこの修正を容易に行うことができる。
To slightly modify the above design values, it is possible to control the OH group or the amount of chlorine. However, in order to determine each condition independently, Ge, P, Ti, Al, F, The objective cannot be achieved unless the doping of B or the like is actively carried out. This correction can be easily made in the production of synthetic quartz glass by the soot method.

【0035】また、天然石英で石英ガラスクラッド管を
形成した場合には、コアガラスロッドのクラッド部のO
H基や屈折率が異なるため、天然石英ガラス管と合成石
英ガラス管とで複合クラッド層を設けるのがよい。
When the quartz glass clad tube is made of natural quartz, the O.D.
Since the H group and the refractive index are different, it is preferable to provide a composite cladding layer between a natural quartz glass tube and a synthetic quartz glass tube.

【0036】本発明の大型石英ガラスプリフォームで7
5mm以下の大口径プリフォームは、75mm程度の石
英ガラス管を用いてプリフォ−ムを作るか、大型プリフ
ォームを再延伸するかまたはロッドインチューブ工程に
おいて石英ガラス管とコアガラスロッドの合体と延伸を
同一工程で同時に行い、直接目標外径のプリフォームを
得るのがよい。
With the large quartz glass preform of the present invention, 7
For large diameter preforms of 5 mm or less, make a preform using a quartz glass tube of about 75 mm, redraw a large preform, or combine and stretch a quartz glass tube and a core glass rod in a rod-in-tube process. In the same step at the same time to directly obtain a preform having a target outer diameter.

【0037】シングルモード用コアガラスロッドではモ
−ドフィ−ルド径、カットオフ波長、デイスパージョン
等の特性選定が重要である。近年一段と特性が高くなっ
てきたため、作成されたコアガラスロッドをそのまま利
用すると、特性は若干バラツクことが多い。したがっ
て、コアガラスロッドのクラッド厚さを石英ガラス管で
1回調節した上で特性チェックを行い、更に大型石英ガ
ラス管を再度ジャケットしたり、エッチング等を組み合
わせてで外径調節を行う。大型石英ガラスプリフォ−ム
では調整範囲が広いので更に高い精度が得られる特徴が
ある。
In a single mode core glass rod, it is important to select characteristics such as a mode field diameter, a cutoff wavelength, and a dispersion. In recent years, the characteristics have become much higher, so if the produced core glass rod is used as it is, the characteristics often vary slightly. Therefore, after the clad thickness of the core glass rod is adjusted once with a quartz glass tube, the characteristics are checked, and then the outer diameter is adjusted by re-jacking the large quartz glass tube or by combining etching and the like. The large quartz glass preform has a feature that a higher accuracy can be obtained because the adjustment range is wide.

【0038】[0038]

【実施例1】軸付法(VAD法)を用い、SiCl4
気化し、酸水素炎中で火炎加水分解し、回転する石英ガ
ラス棒に吹き付けて大型石英多孔質スート材を作成し
た。このスート材を電気炉に入れ、コアガラスロッドの
条件を考慮しHe,Cl2混合ガスにより加熱脱水し、
ゾーンメルト法により1550℃で透明ガラス化し、大
型の円柱状石英ガラス母材とした。この石英ガラス母材
は、まず両端を切断し、#80番砥石のコアドリル穴明
盤で両端から交互に中心部を開孔した後、外周面を#8
0番砥石の外周研削盤で粗研削して寸法を合わせ、外径
94mmφ,内径30mmφ、外径/内径比=3.1
3、厚さ約32mm、長さ730mm,重さ約10kg
の合成石英ガラス原管を得た。
Example 1 Using a shafting method (VAD method), SiCl 4 was vaporized, flame-hydrolyzed in an oxyhydrogen flame, and sprayed on a rotating quartz glass rod to produce a large-sized quartz porous soot material. This soot material was placed in an electric furnace, and dehydrated by heating with a mixed gas of He and Cl 2 in consideration of the conditions of the core glass rod.
A transparent glass was formed at 1550 ° C. by a zone melt method to obtain a large cylindrical quartz glass base material. This quartz glass base material was first cut at both ends, and the center portion was alternately opened from both ends with a core drilling machine of # 80 grindstone.
The dimensions are adjusted by rough grinding with an outer peripheral grinding machine of No. 0 whetstone, outer diameter 94 mmφ, inner diameter 30 mmφ, outer diameter / inner diameter ratio = 3.1
3. Thickness of about 32mm, length of 730mm, weight of about 10kg
Was obtained.

【0039】上記合成石英ガラス原管の内面は、全長を
超精密仕上加工用長尺自動ホーニングマシーンにて加工
し、全長をストレートで真円状の孔を有する合成石英ガ
ラス原管を得、次にNC外周研削盤にて内径中心と外径
中心が一致するように外周面を研削し、肉厚の誤差2%
以下となるまで内外研削および研磨を繰返し、内周は最
終的に#800仕上を行い、外周は#140で仕上げ
た。次いで表面汚染を除くと共に、表面加工歪みを緩和
する目的で濃度30%から5%までの弗酸で石英ガラス
原管の表面をチェックしながらエッチング仕上げし、純
水で超音波洗浄を行い、合成石英ガラス素管とした。こ
の合成石英ガラス素管は、外径(Do)91.5mm、
内径(Di)32.4mm、外径(Do)/内径(Di
比=2.82、肉厚29.55mm、肉厚誤差(tmax.
ーtmin.)0.48mm(1.62%)、長さ730m
m、重さ9.2kgであった。更に表面を触針式簡易粗
さ計で縦方向に8mm移動し調べたところ、内面粗さ
(Rmax.)4.8μm、外面粗さ(Rmax.)53μmで
あった。
The inner surface of the synthetic quartz glass tube was machined by a long automatic honing machine for ultra-precision finishing to obtain a synthetic quartz glass tube having a straight length and a perfect circular hole. The outer peripheral surface is ground using an NC outer peripheral grinder so that the center of the inner diameter and the center of the outer diameter match, and the thickness error is 2%.
Internal and external grinding and polishing were repeated until the following conditions were reached, and the inner periphery was finally finished with # 800, and the outer periphery was finished with # 140. Next, in order to remove surface contamination and to reduce surface processing distortion, the surface of the quartz glass raw tube is etched and finished with hydrofluoric acid having a concentration of 30% to 5%, and ultrasonically cleaned with pure water to synthesize. A quartz glass tube was used. This synthetic quartz glass tube has an outer diameter (D o ) of 91.5 mm,
Inner diameter (D i ) 32.4 mm, outer diameter (D o ) / inner diameter (D i )
Ratio = 2.82, wall thickness 29.55 mm, wall thickness error (t max.
-T min. ) 0.48 mm (1.62%), length 730 m
m, weight 9.2 kg. Further, the surface was moved 8 mm in the vertical direction by a stylus-type simple roughness meter, and the inner surface roughness (Rmax . ) Was 4.8 μm and the outer surface roughness (Rmax . ) 53 μm.

【0040】一方、VAD法によりコア、クラッド屈折
率差(Δn)0.343%、クラッド付のロッドで外径
54.5mm、長さ455mmの1.3μm用シングル
モードコアガラスロッドを準備した。外径制御付精密自
動延伸機で外径30.1mmに加熱延伸し、このコアガ
ラスロッドと前記石英ガラス素管とでカットオフ波長
(λc)1.25μmに設計し、該ロッドの外表面を若
干エッチングした後、長さ730mmで溶断した。上記
合成石英ガラス素管にこのコアガラスロッドを注意深く
挿入後、コアガラスロッドと合成石英ガラス素管の各々
センターを合わせて固定し、両端をダミー石英材料に接
いだ上、全体を回転させ接続加工による曲がり、ねじれ
を矯正した。これを縦型電気炉に上部から挿入し、21
80℃で先端部を溶融させた上、真空ポンプで減圧とし
た。温度(2000〜2800℃)および真空度(20
0〜1000mm水柱(Aq))を各々調節しながら移
動速度を変えて、界面の気泡条件を調べた。発泡の無い
条件で、全長を2mm/minでゆっくり移動し、プリ
フォームを作成した。安定条件下で得られたプリフォー
ム部分は、外径90.2mmφ、長さ595mm、重さ
8.3kgであり、ファイバ長さで約300kmに相当
した。プリフォームの一部を外径約50mmφに加熱延
伸し、プリフォームアナライザーで調べた結果、クラッ
ド層との境界では屈折率の段差が0.01%以下とほと
んどなく、偏芯率は0.153mm(0.34%)であ
った。
On the other hand, a 1.3 μm single mode core glass rod having a core and cladding refractive index difference (Δn) of 0.343%, an outer diameter of 54.5 mm and a length of 455 mm by a VAD method was prepared. It is heated and drawn to an outer diameter of 30.1 mm by a precision automatic drawing machine with outer diameter control, and the core glass rod and the quartz glass tube are designed to have a cutoff wavelength (λ c ) of 1.25 μm. Was slightly melted and then melted at a length of 730 mm. After carefully inserting the core glass rod into the synthetic quartz glass tube, fix the core glass rod and the synthetic quartz glass tube so that their centers are aligned with each other. Bending and twisting due to processing were corrected. This was inserted into the vertical electric furnace from the top, and
After melting the tip at 80 ° C., the pressure was reduced by a vacuum pump. Temperature (2000-2800 ° C.) and degree of vacuum (20
The moving speed was changed while adjusting the water column (Aq) from 0 to 1000 mm, and the bubble condition at the interface was examined. Under the condition without foaming, the entire length was slowly moved at 2 mm / min to prepare a preform. The preform portion obtained under the stable condition had an outer diameter of 90.2 mmφ, a length of 595 mm, and a weight of 8.3 kg, which corresponded to a fiber length of about 300 km. A part of the preform was heated and stretched to an outer diameter of about 50 mmφ, and as a result of examination with a preform analyzer, the difference in refractive index at the boundary with the cladding layer was almost 0.01% or less, and the eccentricity was 0.153 mm. (0.34%).

【0041】更に線引機により、外径125μmのファ
イバを約5km作成し、各1km毎の素線でのファイバ
特性を調べたところ、平均値として偏芯率0.22μ
m,カットオフ波長(λc)1.285μm、1.3μ
mでの伝送損失0.355dB/km、1.38μmで
のOH基損失0.86dB/kmであり、シングルモー
ド用光ファイバとして優れた特性のものであった。
Further, about 5 km of a fiber having an outer diameter of 125 μm was prepared by a drawing machine, and the fiber characteristics of the element wire for each 1 km were examined. As a result, the eccentricity was 0.22 μm as an average value.
m, cut-off wavelength (λ c ) 1.285 μm, 1.3 μm
The transmission loss at 0.3 m was 0.355 dB / km, and the OH group loss at 1.38 μm was 0.86 dB / km, which was excellent for a single mode optical fiber.

【0042】[0042]

【実施例2】外付法(OVD法)により、大型の多孔質
スート母材を作成し、脱水、およ屈折率調節処理してガ
ラス化し、円管状の合成石英ガラス母材を作成した。両
端を平行に切断し#80砥石をもった外周研削盤で外周
を粗研削し、ほぼ目標外径とした後これをホ−ニングマ
シンに設置し#80砥石を用いて内面研磨を行った。次
いで#140、#400、#800と砥石を変えて内面
研磨した。次にこれを超音波厚さ計にかけ長さ50mm
毎に回転して1周8点の厚さを測定し順次移動し、全長
の厚さ変動を調べ、コンピュタ−により肉厚誤差を図形
化した。更にこれをもとにNC外周研削機で外周を研磨
修正し厚さ精度を確認した後弗酸エッチングした。この
大型合成石英ガラス素管は外径164mm、内径58.
9mm、外径/内径比=2.78、肉厚52.55m
m、肉厚誤差440μm(0.84%)、長さ1870
mm、重さ約75kg、内表面粗さ(Rmax.)3.5μ
m、外表面粗さ(Rmax.)77μmの大型石英ガラス素
管であった。
Example 2 A large porous soot base material was prepared by an external method (OVD method), dehydrated, and subjected to refractive index adjustment to vitrify to form a cylindrical synthetic quartz glass base material. Both ends were cut in parallel, and the outer circumference was roughly ground with an outer peripheral grinder having a # 80 grindstone. After the outer diameter was almost set to a target outer diameter, this was set in a honing machine and the inner surface was polished using a # 80 grindstone. Next, the inner surface was polished by changing the grindstone to # 140, # 400, and # 800. Next, apply this to an ultrasonic thickness gauge and measure the length to 50 mm.
Each rotation, the thickness was measured at eight points on one circumference, and the thickness was moved sequentially, the thickness variation over the entire length was examined, and the thickness error was plotted by a computer. Further, based on this, the outer periphery was polished and corrected by an NC outer peripheral grinder, and the thickness accuracy was confirmed. This large synthetic quartz glass tube has an outer diameter of 164 mm and an inner diameter of 58 mm.
9mm, outer / inner diameter ratio = 2.78, wall thickness 52.55m
m, thickness error 440 μm (0.84%), length 1870
mm, weight about 75kg, inner surface roughness (Rmax . ) 3.5μ
m, and a large quartz glass tube having an outer surface roughness (Rmax . ) of 77 μm.

【0043】一方、この合成石英ガラス素管を想定し
て、VAD法で大型のシングルモード用石英コアガラス
ロッドを作成し、特性がほぼ等しい3本を選定した。カ
ットオフ波長(λc)の計算から、この合成石英ガラス
素管に必要なコア径を計算して、コアガラスロッドのク
ラッド部の一部を各々エッチングで調節した。次にこの
コアガラスロッド3本を溶着し、ほぼ同じ外径(55m
m)に延伸し、エッチング後、全表面をファイヤーポリ
ッシュした。
On the other hand, assuming this synthetic quartz glass tube, a large single mode quartz core glass rod for a single mode was prepared by the VAD method, and three rods having substantially the same characteristics were selected. From the calculation of the cutoff wavelength (λ c ), the core diameter required for the synthetic quartz glass tube was calculated, and a part of the clad portion of the core glass rod was adjusted by etching. Next, these three core glass rods were welded, and the outer diameters were substantially the same (55 m).
m), and after etching, the entire surface was fire polished.

【0044】上記コアガラスロッドを前記大型合成石英
ガラス素管に入れて下端部を固定し、これを縦型電気炉
に入れ、2000〜2800℃内の温度で加熱し下端部
より溶解軟化させ、温度と真空度(200〜1000m
mAq)を調節しながら移動し、ロッドインチューブを
行った。温度が適切でなかったり、スピードが早いと内
部界面で発泡し気泡が残るので、始めは外径約50mm
に延伸しながら界面が十分ぬれて溶着するのを確認し、
75mm、100mm、125mm、150mmと太く
し、5種類の太さのプリフォームを作成した。得られた
プリフォームは、最大径で外径152mmであり、5種
類のプリフォームの合計重量は約71kgであり、光フ
ァイバ素線に換算して2600kmに相当する量であっ
た。
The core glass rod was placed in the large synthetic quartz glass tube, and the lower end was fixed. This was placed in a vertical electric furnace, heated at a temperature of 2000 to 2800 ° C., and melted and softened from the lower end. Temperature and vacuum (200-1000m
The rod was moved while adjusting the mAq) to perform a rod-in tube. If the temperature is not appropriate or the speed is high, foaming will occur at the internal interface and air bubbles will remain, so the outer diameter will be about 50 mm at first.
Confirm that the interface is sufficiently wet and welded while stretching
Thicknesses were increased to 75 mm, 100 mm, 125 mm, and 150 mm, and preforms having five different thicknesses were prepared. The obtained preform had a maximum diameter of 152 mm in outer diameter, and the total weight of the five types of preforms was about 71 kg, which was equivalent to 2600 km in terms of optical fiber.

【0045】前記プリフォームの特性を詳細に調べる目
的で、50mmのプリフォームを選び、プリフォームア
ナライザーでコアの特性を調べたところ、コアクラッド
界面に0.008%程度の接ぎ目は見られるものの屈折
率の段差が無く、コア、クラッドの中心ずれは0.28
%と測定された。
For the purpose of examining the characteristics of the preform in detail, a preform having a length of 50 mm was selected, and the characteristics of the core were examined with a preform analyzer. There is no refractive index step, and the center shift between the core and clad is 0.28
%.

【0046】前記50mmプリフォームを光ファイバ線
引装置で線引し、外径125μm±0.5μmとし、こ
の素線の伝送特性を調べた結果、偏芯率0.11μm、
カットオフ波長(λc)1.270μm、1.3μmで
の伝送損失0.361dB/km、1.38μmでのO
H基損失は0.65dB/kmであった。
The above 50 mm preform was drawn by an optical fiber drawing device to have an outer diameter of 125 μm ± 0.5 μm. The transmission characteristics of this wire were examined.
Cutoff wavelength (λ c ) 1.270 μm, transmission loss at 1.3 μm 0.361 dB / km, O at 1.38 μm
The H group loss was 0.65 dB / km.

【0047】[0047]

【実施例3】軸付法(VAD法)で大型多孔質スート母
材を作成し、実施例1に準じて加熱脱水、透明ガラス化
し、これを粗研削し、外径96mm、長さ約820mm
の石英ガラスインゴットを得た。
Example 3 A large porous soot base material was prepared by a shafting method (VAD method), heated and dehydrated and turned into a transparent glass according to Example 1, and this was roughly ground to obtain an outer diameter of 96 mm and a length of about 820 mm.
Was obtained.

【0048】このインゴットを熱間炭素ドリル圧入法を
用いて中心に孔を明け、さらに寸法精度を高めるため、
外周を研削し弗酸処理を行い洗浄した。この時点での合
成石英ガラス原管は、外径101mm、内径40mm、
外径/内径比=2.525,長さ775mm,重さ約1
1.5kgであった。この原管の内面は加熱溶融による
孔明けであるため機械的な衝撃、切削破壊、クラック、
ヒビ割れ、加工歪み等が認められなかった。
A hole was formed in the center of this ingot by using a hot carbon drill press-fitting method.
The outer periphery was ground and subjected to hydrofluoric acid treatment for cleaning. At this time, the synthetic quartz glass raw tube had an outer diameter of 101 mm, an inner diameter of 40 mm,
Outer diameter / inner diameter ratio = 2.525, length 775 mm, weight about 1
It was 1.5 kg. Because the inner surface of this original tube is perforated by heating and melting, mechanical shock, cutting failure, cracks,
No cracks, processing distortions, etc. were observed.

【0049】そこで、前記合成石英ガラス原管の内表面
の粗さを調べる目的で、長さ150mm毎にホーニング
盤での研磨粗さを変えて研磨し、エッチングし表2に示
すサンプルとした。この合成石英ガラス素管に約38m
mのコアガラスロッドを挿入して、実施例1と同じ方法
でプリフォ−ム化した。界面状態は表2に示すとおりで
ある。
Therefore, for the purpose of examining the roughness of the inner surface of the synthetic quartz glass raw tube, polishing was performed by changing the polishing roughness on a honing machine every 150 mm in length, and the sample was etched as shown in Table 2. Approximately 38m in this synthetic quartz glass tube
The core glass rod having a length of m was inserted and preformed in the same manner as in Example 1. The interface state is as shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【実施例4】実施例2と同様に外付法(OVD法)によ
り大型管状ス−ト母材を4本作成し、脱水、ガラス化
後、内外表面を粗研磨した。内径を超精密ホ−ニング加
工を行った後、人為的に内径と外径の中心線を外して偏
芯させ、外周を研磨し弗酸処理後洗浄仕上を行った。こ
の合成石英ガラス素管は外径(Do)100mmφ、内
径(Di)32mm、Do/Di=3.125にそろえ
た。それを縦型電気炉に入れ、2200℃に加熱し加圧
延伸を行った。前記延伸条件は延伸後の石英ガラス管の
外径を(do)、内径を(di)としたとき表3に示す条
件である。
Example 4 In the same manner as in Example 2, four large tubular soot base materials were prepared by an external method (OVD method), and after dehydration and vitrification, the inner and outer surfaces were roughly polished. After ultra-precision honing of the inner diameter, the center line of the inner diameter and the outer diameter was artificially decentered, eccentric, the outer periphery was polished, and hydrofluoric acid treatment was performed, followed by cleaning. This synthetic quartz glass tube had an outer diameter (D o ) of 100 mmφ, an inner diameter (D i ) of 32 mm, and D o / D i = 3.125. It was placed in a vertical electric furnace, heated to 2200 ° C. and stretched under pressure. The stretching conditions are as shown in Table 3 when the outer diameter of the quartz glass tube after stretching is (d o ) and the inner diameter is (d i ).

【0052】[0052]

【表3】 [Table 3]

【0053】前記延伸に供した合成石英ガラス素管の誤
差および加圧延伸に基づく誤差を表4に示す。
Table 4 shows errors of the synthetic quartz glass tube subjected to the stretching and errors based on the pressure stretching.

【0054】[0054]

【表4】 [Table 4]

【0055】上記表4のとおり、誤差の大きい石英素管
は加圧比、延伸比が大きくなると延伸後の誤差が大きく
なる。特に加圧比は直接石英ガラス管の肉厚誤差を大き
く変え、3.9%以上の素管はスタ−ト時に十分加熱さ
れ非対称に変形した後、急速に膨張し、炉内で破裂し
た。
As shown in Table 4 above, in the quartz tube having a large error, the error after stretching increases as the pressure ratio and the stretching ratio increase. In particular, the pressure ratio directly changed the thickness error of the quartz glass tube greatly, and the tube of 3.9% or more was sufficiently heated at the start and deformed asymmetrically, then expanded rapidly and burst in the furnace.

【0056】[0056]

【実施例5】天然に算出する水晶塊の中から特別良質部
分を選別し洗浄した。さらに各塊状水晶の外殻部を除去
して中心部を取り出し、これを破砕して粒径をそろえ
た。化学処理により表面不純物を除去した後、酸水素炎
によるベルヌイ法で大型の円柱状天然石英ガラス母材を
作成した。この石英ガラス母材は実施例3に従い熱間炭
素ドリル圧入法で中心を孔開けし外周を機械加工で仕上
加工し、弗酸洗浄後、水洗乾燥した。前記石英ガラス素
管は外径175mm、内径60mm、外径/内径比=
2.916、長さ3m、重さ150kgであり、全長を
50mm間隔で厚さを調べ、平均の肉厚誤差は0.3m
mであり、目標範囲であることを確認した。また、石英
ガラス素管端部での表面粗さを触針式簡易粗さ計で調べ
たところ、内表面粗さ(Rmax.)0.8μm、外表面粗
さ(Rmax.)95μmであった。
Example 5 A special high-quality portion was selected and washed from a crystal mass calculated naturally. Further, the outer shell of each bulk crystal was removed, the center was taken out, and this was crushed to make the particle diameter uniform. After removing surface impurities by chemical treatment, a large cylindrical natural quartz glass base material was prepared by the Bernoulli method using an oxyhydrogen flame. This quartz glass base material was subjected to hot carbon drill press-fitting in accordance with Example 3 to form a hole at the center thereof, and the outer periphery thereof was machined to finish, washed with hydrofluoric acid, washed with water and dried. The quartz glass tube has an outer diameter of 175 mm, an inner diameter of 60 mm, and an outer diameter / inner diameter ratio =
2.916, length 3m, weight 150kg, total thickness is checked at 50mm intervals, average thickness error is 0.3m
m, which was within the target range. Further, when the surface roughness at the end of the quartz glass tube was examined with a stylus type simple roughness meter, the inner surface roughness ( Rmax. ) Was 0.8 μm and the outer surface roughness (Rmax . ) Was 95 μm . there were.

【0057】一方、VAD法で作成した一部クラッド付
き1.3μm用シングルモ−ド光ファイバコアロッドを
準備し、前記石英ガラス素管に挿入し、縦型電気炉内に
設置した。炉内温度2250℃まで昇温して先端部を熔
封した後、上部から真空引きを行った。ロッドインチュ
−ブ法の条件は、真空度200〜1000mmAq、ス
タ−トの引出し外径を50mmにセットし、コアロッド
と石英ガラス素管の界面融着状態を見ながら温度と移動
速度と真空度を変え最大外径160mmのプリフォ−ム
を得た。
On the other hand, a 1.3 μm single-mode optical fiber core rod with a partially clad, prepared by the VAD method, was prepared, inserted into the quartz glass tube, and set in a vertical electric furnace. After elevating the temperature to 2250 ° C. in the furnace to seal the tip, vacuum was drawn from above. The conditions of the rod-in-tube method are as follows: the degree of vacuum is set to 200 to 1000 mmAq, the outer diameter of the start is set to 50 mm, and the temperature, the moving speed and the degree of vacuum are determined while observing the fusion state of the interface between the core rod and the quartz glass tube. Was changed to obtain a preform having a maximum outer diameter of 160 mm.

【0058】50mmで引き出したプリフォ−ムをプリ
フォ−ムアナライザ−で調べた結果、偏芯率は0.52
%、コアガラスロッドのクラッドと石英ガラス素管との
境界層には−0.005%程度の負の段差が若干見ら
れ、石英ガラス素管の方が若干下がっていた。
When the preform pulled out at 50 mm was examined by a preform analyzer, the eccentricity was 0.52.
%, A negative step of about -0.005% was found in the boundary layer between the clad of the core glass rod and the quartz glass tube, and the quartz glass tube was slightly lowered.

【0059】上記プリフォ−ムは線引機で125μmの
ファイバとし光ファイバ特性を調べたが、偏芯率は0.
41μm、1.3μm波長の伝送損失は0.346dB
/kmであり、シングルモ−ド用石英ガラスファイバと
してすぐれた特性を示した。
The preform was made into a 125 μm fiber by a drawing machine, and the optical fiber characteristics were examined.
Transmission loss at 41 μm and 1.3 μm wavelength is 0.346 dB
/ Km, which is an excellent characteristic for a single mode quartz glass fiber.

【0060】[0060]

【実施例6】実施例1に従って合成石英ガラス素管を作
成した。この素管は外径(Do)93.5mm、内径
(Di)31.6mm、Do/Di=2.96、平均厚さ
(tAV.)30.95mm、肉厚誤差(tmax.
min.)0.42mm(1.36%)、内表面粗さ(R
max.)8.5μm、外表面粗さ(R max.)68μmであ
った。
Embodiment 6 A synthetic quartz glass tube was manufactured in accordance with Embodiment 1.
Done. This tube has an outer diameter (Do) 93.5 mm, inner diameter
(Di) 31.6 mm, Do/ Di= 2.96, average thickness
(TAV.) 30.95 mm, thickness error (tmax.
tmin.) 0.42 mm (1.36%), inner surface roughness (R
max.) 8.5 μm, outer surface roughness (R max.) 68 μm
Was.

【0061】次にこの合成石英ガラス素管を縦型電気炉
に入れ2200℃に加熱し、底面を封じた後、管内をア
ルゴンガスで加圧しながら、石英ガラス管を引き出し表
5に示す5種類の合成石英ガラス管を作成した。加熱処
理後の内表面粗さ(Rmax.)は表5に示すとおり、全て
の管で低くなっていた。
Next, the synthetic quartz glass tube was placed in a vertical electric furnace, heated to 2200 ° C., the bottom was sealed, and then the quartz glass tube was pulled out while the inside of the tube was pressurized with argon gas. Was prepared. As shown in Table 5, the inner surface roughness ( Rmax. ) After the heat treatment was low in all the tubes.

【0062】[0062]

【表5】 [Table 5]

【0063】No.3(62mm)の管を用いて光ファ
イバ用コアロッドを挿入し、ロッドインチュ−ブ法にて
光ファイバプリフォ−ムを作成した。然し界面には気泡
の発生は見られなかった。
No. A core rod for an optical fiber was inserted using a 3 (62 mm) tube, and an optical fiber preform was prepared by a rod intubing method. However, no air bubbles were generated at the interface.

【0064】[0064]

【発明の効果】本発明の大型プリフォームは、高精度、
肉厚で、かつ内面粗さの小さい大型の被覆石英ガラスと
コアガラスロッドとが溶着一体化し、境界に気泡の発生
がない上に、境界での屈折率段差が小さプリフォームで
あり、それを線引きすることで偏心率が小さい高品位の
光ファイバが量産性よく製造できる。
The large-sized preform of the present invention has high precision,
A large-sized coated quartz glass with a small inner surface roughness and a core glass rod are welded and integrated to form a preform with no bubbles at the boundary and a small refractive index step at the boundary. By drawing, a high-quality optical fiber having a small eccentricity can be manufactured with good mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大型石英ガラス管の横断面図である。FIG. 1 is a cross-sectional view of a large quartz glass tube.

【図2】大型石英ガラスプリフォ−ムの横断面図であ
る。
FIG. 2 is a cross-sectional view of a large quartz glass preform.

【図3】大型石英ガラスプリフォ−ムから作られたシン
グルモ−ドファイバの横断面概略図である。
FIG. 3 is a schematic cross-sectional view of a single-mode fiber made from a large quartz glass preform.

【図4】シングルモ−ドファイバの屈折率分布および光
のパワ−分布の概念図である。
FIG. 4 is a conceptual diagram of a refractive index distribution and a light power distribution of a single mode fiber.

【図5】コアドリル穴明け盤による大型石英ガラス管の
製造方法の部分的縦断面図である。
FIG. 5 is a partial longitudinal sectional view of a method for manufacturing a large quartz glass tube using a core drilling machine.

【符号の説明】[Explanation of symbols]

1 コアガラスロッド 2 クラッド層 3 被覆大型石英ガラス管 4 コア 5 光学クラッド 6 オ−バ−クラッド 7 円柱状石英ガラス母材 8 コアドリル 9 砥石 Do 大型石英ガラス管の外径 Di 大型石英ガラス管の内径 a コア径 b 光学的クラッド径 c 光ファイバの外径1 core glass rod second cladding layer 3 covering a large quartz glass tube 4 core 5 optical cladding 6 O - Ba - cladding 7 outer diameter D i large quartz glass tube of cylindrical quartz glass mother material 8 a core drill 9 grindstone D o large quartz glass tube Inner diameter a core diameter b optical cladding diameter c outer diameter of optical fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横川 清 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内 (72)発明者 青山 雅明 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内 (72)発明者 鈴木 正則 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内 (72)発明者 加藤 俊幸 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内 (72)発明者 渡部 豊 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内 (72)発明者 ゲアハルト・フィルスマイヤー ドイツ連邦共和国・8750 アシヤフェンブ ルグ・ブサードウエグ 42 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Yokokawa 88 Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Shin-Etsu Quartz Co., Ltd. Inside the Koriyama Plant (72) Inventor Masanori Suzuki 88 Kawakubo, Kanaya, Tamura-cho, Koriyama City, Fukushima Prefecture Inside the Koriyama Plant (72) Inventor Toshiyuki Kato 88, Kawakubo, Kanaya, Tamura-cho, Koriyama, Fukushima Prefecture Inside the Koriyama Plant (72) Inventor Yutaka Watanabe 88, Kawakubo, Kanaya, Tamura-cho, Koriyama City, Fukushima Prefecture Inside the Koriyama Plant, Shin-Etsu Quartz Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外径50〜300mm、外径と内径の比
が1.1〜7、肉厚が10mm以上で肉厚誤差が2%以
下、内表面粗さが20μm以下の高純度天然石英ガラス
管又は合成石英ガラス管と、光ファイバ用コアガラスロ
ッドとが溶着一体化し、かつ前記高純度天然石英ガラス
管又は合成石英ガラス管の屈折率が設計値に対して0.
02%以内に調整されているとともに、該高純度天然石
英ガラス管又は合成石英ガラス管と光ファイバ用コアガ
ラスロッドのクラッド層との境界での屈折率段差が±
0.01以下であることを特徴とする大型石英ガラスプ
リフォーム。
1. High-purity natural quartz having an outer diameter of 50 to 300 mm, an outer diameter to inner diameter ratio of 1.1 to 7, a wall thickness of 10 mm or more, a wall thickness error of 2% or less, and an inner surface roughness of 20 μm or less. The glass tube or the synthetic quartz glass tube and the optical glass core glass rod are welded and integrated, and the refractive index of the high-purity natural quartz glass tube or the synthetic quartz glass tube is 0.
And the refractive index step at the boundary between the high-purity natural quartz glass tube or the synthetic quartz glass tube and the cladding layer of the core glass rod for an optical fiber is ± 2%.
A large quartz glass preform characterized by being 0.01 or less.
JP2000051053A 1992-11-19 2000-02-28 Large-sized quartz glass reform Pending JP2000203860A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33220392 1992-11-19
JP22666993 1993-08-20
JP4-332203 1993-08-20
JP5-226669 1993-08-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5312710A Division JP3061714B2 (en) 1992-11-19 1993-11-18 Large quartz glass tube, optical fiber preform, and method for producing them

Publications (1)

Publication Number Publication Date
JP2000203860A true JP2000203860A (en) 2000-07-25

Family

ID=26527294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051053A Pending JP2000203860A (en) 1992-11-19 2000-02-28 Large-sized quartz glass reform

Country Status (1)

Country Link
JP (1) JP2000203860A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071709A1 (en) * 2003-02-12 2004-08-26 Heraeus Tenevo Gmbh Polishing method for inner surface of tubular brittle material and tubular brittle material obtained by polishing method
JP2006520738A (en) * 2003-03-21 2006-09-14 ヘレウス・テネボ・アクチェンゲゼルシャフト Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
CN113213748A (en) * 2021-04-28 2021-08-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber
JP2021124587A (en) * 2020-02-04 2021-08-30 古河電気工業株式会社 Optical fiber, and method for manufacturing optical fiber and optical fiber preform

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071709A1 (en) * 2003-02-12 2004-08-26 Heraeus Tenevo Gmbh Polishing method for inner surface of tubular brittle material and tubular brittle material obtained by polishing method
JP2006517471A (en) * 2003-02-12 2006-07-27 信越石英株式会社 Method for polishing inner surface of tubular brittle material and tubular brittle material obtained by the polishing method
DE112004000237B4 (en) * 2003-02-12 2009-06-10 Heraeus Quarzglas Gmbh & Co. Kg Method for polishing the inner surface of tubular, brittle material
JP2006520738A (en) * 2003-03-21 2006-09-14 ヘレウス・テネボ・アクチェンゲゼルシャフト Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
JP2021124587A (en) * 2020-02-04 2021-08-30 古河電気工業株式会社 Optical fiber, and method for manufacturing optical fiber and optical fiber preform
JP7508233B2 (en) 2020-02-04 2024-07-01 古河電気工業株式会社 Optical fiber and method for producing optical fiber and optical fiber preform
CN113213748A (en) * 2021-04-28 2021-08-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber
CN113213748B (en) * 2021-04-28 2022-05-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber

Similar Documents

Publication Publication Date Title
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
US5482525A (en) Method of producing elliptic core type polarization-maintaining optical fiber
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
JP2980501B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
JP4200103B2 (en) Method of manufacturing an optical fiber
US10118854B2 (en) Tubular semifinished product for producing an optical fiber
EP1000908B1 (en) Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
JP3529149B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
JP2000203860A (en) Large-sized quartz glass reform
JP2002012433A (en) Quarts glass cylinder, quarts glass tube and method of producing the same
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
JP3721865B2 (en) Optical fiber preform manufacturing method and alignment jig
CN113716861A (en) Method for preparing bending insensitive optical fiber by external gas phase deposition method
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
JPH1171125A (en) Production of preform for optical fiber
JPS6086047A (en) Manufacture of glass preform for optical fiber
JP4565221B2 (en) Optical fiber preform
JP2000233937A (en) Production of optical fiber
JPH0930824A (en) Polarization maintaining optical fiber and its production
JPH01270533A (en) Production of optical fiber
JPS6054935A (en) Manufacture of preform rod for optical fiber
JP2003137581A (en) Method of manufacturing glass preform of optical fiber and glass rod for core of optical fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823