KR100315050B1 - manufacturing method of Qurtz glass preform for optical fiber - Google Patents

manufacturing method of Qurtz glass preform for optical fiber Download PDF

Info

Publication number
KR100315050B1
KR100315050B1 KR1019990043328A KR19990043328A KR100315050B1 KR 100315050 B1 KR100315050 B1 KR 100315050B1 KR 1019990043328 A KR1019990043328 A KR 1019990043328A KR 19990043328 A KR19990043328 A KR 19990043328A KR 100315050 B1 KR100315050 B1 KR 100315050B1
Authority
KR
South Korea
Prior art keywords
quartz glass
base material
optical fiber
glass tube
outer diameter
Prior art date
Application number
KR1019990043328A
Other languages
Korean (ko)
Other versions
KR20000028911A (en
Inventor
시마다아쯔시
카토토시유키
스즈키마사노리
와타베유타카
Original Assignee
마쯔자끼히로시
신에쯔 세끼에이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마쯔자끼히로시, 신에쯔 세끼에이 가부시키가이샤 filed Critical 마쯔자끼히로시
Publication of KR20000028911A publication Critical patent/KR20000028911A/en
Application granted granted Critical
Publication of KR100315050B1 publication Critical patent/KR100315050B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

본 발명은, 로드인튜브법에 의한 광파이버용 석영유리모재의 제조시에, 모재용의 코어유리로드와 석영유리관과의 틈새를 적게할 수 있는데에 더하여, 저코스트화를 할 수 있고, 또한 용착계면에 기포의 존재가 없는, 대형이고 고품질의 광파이버용 석영유리모재의 제조방법을 제공하는 것을 목적으로 하며, 그 제조방법으로서는, 광파이버모재용 석영유리관속에 광파이버모재용 코어유리로드를 삽입하여,가열일체화하는 광파이버용 석영유리모재의 제조방법에 있어서, 상기 광파이버모재용 석영유리관이, 그 길이방향의 평균외경차가 1.0㎜이하, 평균내경차가 0.5㎜이하, 외경진원도(眞圓度)가 0.5㎜이하, 내경진원도가 0.5㎜이하이고, 또한 평균외경의 원중심편차가 1㎜이하, 평균외경의 원중심에 대한 평균내경의 원중심편차가 1㎜이하인 것을 특징으로 한 것이다.In the present invention, the gap between the core glass rod for the base material and the quartz glass tube for the base material can be reduced during the production of the quartz glass base material for the optical fiber by the rod-in-tube method. It is an object of the present invention to provide a method for producing a large-scale and high-quality quartz glass base material for optical fibers having no bubbles at the interface. The method of manufacturing includes inserting a core glass rod for an optical fiber base material into a quartz glass tube for an optical fiber base material and heating it. In the method for producing a quartz glass base material for an optical fiber, the quartz glass tube for an optical fiber base material has an average outer diameter difference of 1.0 mm or less in the longitudinal direction, an average inner diameter difference of 0.5 mm or less, and an outer diameter roundness of 0.5 mm. Hereinafter, the roundness of the inner diameter is 0.5 mm or less, and the center deviation of the mean outer diameter is 1 mm or less, and the center deviation of the mean inner diameter with respect to the center of the mean outer diameter is 1 mm or less. One will.

Description

광파이버용 석영유리모재의 제조방법{manufacturing method of Qurtz glass preform for optical fiber}Manufacturing method of Qurtz glass preform for optical fiber

본 발명은, 광파이버용 석영유리모재의 제조방법, 더욱 상세하게는 대형의 광파이버용 모재석영유리관과 대형의 광파이버모재용 코어유리로드를 가열하여 용착일체화하는 대형의 광파이버용 석영유리모재의 제조방법에 관한 것이다.The present invention relates to a method for producing a quartz glass base material for an optical fiber, and more particularly, to a method for manufacturing a large size quartz glass base material for heating and integrating a large sized base fiber quartz glass tube for an optical fiber and a large core fiber rod for an optical fiber base material. It is about.

최근, 광파이버, 특히 싱글모드용 광파이버의 실용화에 따라 대량의 광파이버가 이용되게 되었으나, 광파이버가 장거리간선으로부터 일반가입자계로 그 이용범위를 확대함에 따라서 더욱더 대량의 광파이버가 필요하게 될 것이 예측된다. 이러한 이용범위의 확대에는 광파이버의 양산화, 저코스트화가 불가결하며, 그 때문에 대형, 장척(長尺)의 광파이버용 모재를 작성하여, 그것을 와이어드로잉하는 것이 가장 간편한 방법이다. 그러나 종래 실용화되어온 축부착법(VAD법)이나 외부부착법(DVD법)에 의한 광파이버모재의 제조방법에서는, 코어부도 클래드부도 전부 VAD법이나 OVD법에 의해 작성되기 때문에, 더한층 대형화, 장척화를 도모할려고하면, 원료나 연소가스, 설비 등의 관계로부터 제조코스트의 증대를 초래한다는 결점이 있었다. 또, 대형, 장척의 광파이버용 모재를 작성하기 위해서는, 광파이버모재의 전구체에 해당되는 수트체(실리카미립자가 퇴적한 다공질체로서, 투영유리화되기전의 실리카체라는 것이며, 이하 다공질수트체라고한다)를 대형으로 하는 것이 전제가 되기 때문에, 이 다공질수트체 그자체를 크게 형성할려고하면, 균열등이 발생하거나, 다공질수트체의 낙하등의 트러블이 발생하거나 함으로써 현저히 생산성을 저하시킬 염려가 있다. 이들 결점을 해소시킬 광파이버의 제조방법으로서, 단면적의 80%이상을 점하는 클래드부용의 관을 고성능이고 저코스트화가 가능한 방법으로 작성하고, 이 클래드부용의 관과 VAD법이나 OVD법등으로 작성한 코어유리로드를 가열하여 용착일체화하는, 소위 로드인튜브법에 의한 광파이버용 모재의 제조방법이 일본국 특개평 7-109136호 공보등에 의해 제안되어 있다.In recent years, the use of optical fibers, especially single-mode optical fibers, has led to the use of a large number of optical fibers. However, as optical fibers expand their use range from long-distance trunks to general subscriber systems, more and more optical fibers are expected to be required. Mass production and low cost of optical fiber are indispensable for the expansion of such an application range. Therefore, it is the easiest way to prepare a base material for a large and long optical fiber and wiredraw it. However, in the manufacturing method of the optical fiber base material by the shaft attachment method (VAD method) or the external attachment method (DVD method), which have been put to practical use in the past, since both the core part and the clad part are made by the VAD method or the OVD method, it is intended to further increase the size and length. There is a drawback that the production cost is increased due to the relationship between raw materials, combustion gas, and equipment. In addition, in order to create a large and long base material for an optical fiber, a soot body (a porous body in which silica fine particles have been deposited, which is a silica body before projection and vitrification, is called a porous soot body) is used as a precursor of the optical fiber base material. Since the premise of making it large is to make this porous suit itself large, there is a possibility that a crack or the like may occur, or a problem such as falling of the porous suit body may occur, thereby significantly lowering productivity. As a manufacturing method of an optical fiber to solve these defects, a tube for clad parts having 80% or more of the cross-sectional area is made by a high-performance and low-cost method, and the core glass made by the clad parts and the VAD method or the OVD method, etc. Japanese Unexamined Patent Application Publication No. 7-109136 and the like have proposed a method for producing an optical fiber base material by a rod-in-tube method in which a rod is heated to be integrally welded.

상기 공보등에 기재한 제조방법에 있어서는, 석영유리관의 내경을 기계구멍뚫기가공에 의해 개공한 후 호닝머신에 의한 초정밀연삭가공을 하는 한편, 외주면은 원통연삭가공에 의해 형성함으로써, 얻게된 석영유리관은 긴직경과 짧은직경을 가진 타원형상이 되거나, 혹은 내외주면에 극히 작은 요철(凹凸)이나 미소한 균열을 다수 가진 상태로 되고, 클래드용 또는 오버클래드용의 석영유리관으로서 코어유리로드와 용착일체화할때, 용착온도를 단경부에 맞추면 긴직경쪽의 코어유리로드와의 용착이 무디게되고, 미용착이나 기포가 발생하고, 반대로 장경부에 맞추면 코어유리로드와 내주부는 충분히 용착하나, 외주쪽에 열이 지나치게 걸려서 치수정밀도가 악화한다고 하는 결점이 있었다. 그 때문에, 와이어드로잉시에 광파이버가 파선해 버리거나, 와이어드로잉후의 광파이버의 접속에 지장을 초래하는 등의 문제가 있었다.In the production method described in the above publication, the inner diameter of the quartz glass tube is opened by mechanical hole drilling, followed by ultra-precision grinding by a honing machine, while the outer circumferential surface is formed by cylindrical grinding. When it becomes elliptical shape with long diameter and short diameter, or it has a lot of very small irregularities or minute cracks on the inner and outer circumferential surfaces, and it is a quartz glass tube for cladding or over cladding, and it is integrated with the core glass rod. If the welding temperature is adjusted to the short diameter part, the welding with the core glass rod on the long diameter side becomes dull, and the cosmetic glass or bubbles are generated. On the contrary, when the long diameter part is matched, the core glass rod and the inner circumference part are sufficiently welded, There was a drawback that the dimensional accuracy deteriorated due to excessive hanging. Therefore, there existed a problem of an optical fiber broken at the time of wire drawing, or the trouble of the connection of the optical fiber after wire drawing.

그러나, 상기 공보등에 기재한 제조방법은 대형화, 장척화가 용이하고, 양산화, 저코스트화에 썩알맞는 제조방법이기 때문에, 그 제조방법의 개선을 도모하도록 본 발명자들은 예의 연구한 결과, 광파이버모재용 석영유리관의 길이방향의 내경외경의 변동이나 진원도의 변동이 일정치이하의 고정밀도로 함으로써 상기 결점이 해소될 수 있는 것을 발견해서, 본 발명은 완성한 것이다. 즉,However, since the manufacturing method described in the above publication is easy to enlarge and lengthen, and is a manufacturing method suitable for mass production and low cost, the present inventors have diligently studied to improve the manufacturing method. The present invention has been completed by discovering that the above defects can be eliminated by the variation in the inner diameter and the roundness of the glass tube in a high precision of a constant value or less. In other words,

본 발명은, 광파이버모재용의 석영유리관과 코어유리로드와의 용착계면에 기포가 없고, 또한 원중심의 편차가 없는 고정밀도의 광파이버용 모재의 제조방법을 제공하는 것을 목적으로 한다.An object of this invention is to provide the manufacturing method of the high precision optical fiber base material which has no bubble in the welding interface of the quartz glass tube for an optical fiber base material, and a core glass rod, and there is no deviation of a center of gravity.

또, 본 발명은, 양산화, 저코스트화에 썩알맞는 대형의 광파이버용 모재의 제조방법을 제공하는 것을 목적으로 한다.Moreover, an object of this invention is to provide the manufacturing method of the large sized optical fiber base material suitable for mass production and low cost.

상기 목적을 달성하는 본 발명은, 광파이버모재용 석영유리관속에 광파이버모재용 코어유리로드를 삽입하고, 용착일체화하는 광파이버용 석영유리모재의 제조방법에 있어서, 상기 광파이버모재용 석영유리관이, 그 길이방향의 평균외경차가 1.0㎜이하, 평균내경차가 0.5㎜이하, 외경진원도가 0.5㎜이하, 내경진원도가 0.5㎜이하이고, 또한 평균외경의 원중심편차가 1㎜이하, 평균외경의 원중심에 대한 평균내경의 원중심편차가 1㎜이하인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법에 관한다.In the present invention achieving the above object, in the method of manufacturing a quartz glass base material for an optical fiber in which a core glass rod for an optical fiber base material is inserted into a quartz glass tube for an optical fiber base material and welded integrally, the quartz glass tube for an optical fiber base material is in a longitudinal direction thereof. The average outer diameter difference is 1.0 mm or less, the average inner diameter difference is 0.5 mm or less, the outer diameter roundness is 0.5 mm or less, and the inner diameter roundness is 0.5 mm or less. It relates to a method for producing a quartz glass base material for an optical fiber, wherein the center-of-center deviation of the average inner diameter is 1 mm or less.

상기와 같이 본 발명의 제조방법은, 광파이버모재용 석영유리관속에 광파이버모재용 코어유리로드를 삽입하여, 용착일체화하는, 소위 로드인튜브법에 의해 광파이버용 석영유리모재를 제조하는 방법이나, 사용하는 모재용 석영유리관은 그 길이방향의 평균외경차가 1.0㎜이하, 평균내경차가 0.5㎜이하, 외경진원도가 0.5㎜이하, 내경진원도가 0.5㎜이하이고, 또한 평균외경의 원중심편차가 1㎜이하, 평균외경의 원중심에 대한 평균내경의 원중심편차가 1㎜이하이다. 상기 수치범위외의 석영유리관이면 코어유리로드와 석영유리관의 내외주가 균등하게 가열되는 일이 없고, 또한 코어유리로드의 삽입시에 석영유리관과 접촉해서 그 내주면을 손상하고, 그것이 원중심의 편차나 기포의 존재 등의 원인이 된다는 불편이 발생한다. 또, 코어유리로드와 석영유리관과의 틈새도 작게 할 수 없고 고정밀도의 광파이버용 석영유리모재의 제조를 곤란하게 하고 있다.As mentioned above, the manufacturing method of this invention uses the method of manufacturing the optical fiber quartz glass base material by what is called rod-in-tube method which inserts the core glass rod for optical fiber base material into the quartz glass tube for optical fiber base material, and welds together. The base glass quartz glass tube has an average outer diameter difference of 1.0 mm or less in its longitudinal direction, an average inner diameter difference of 0.5 mm or less, an outer diameter roundness of 0.5 mm or less, an inner diameter roundness of 0.5 mm or less, and an average outer diameter deviation of 1 mm or less. , The center deviation of the mean inner diameter is less than or equal to 1 mm from the center of the mean outer diameter If the quartz glass tube is outside the numerical range, the inner and outer circumferences of the core glass rod and the quartz glass tube are not evenly heated, and the inner circumferential surface of the core glass rod is in contact with the quartz glass tube when the core glass rod is inserted to damage the inner circumferential surface. This causes inconvenience such as the presence of a. In addition, the gap between the core glass rod and the quartz glass tube cannot be reduced, which makes it difficult to manufacture a quartz glass base material for optical fibers with high accuracy.

상기 평균외경차는, 소정의 길이의 석영유리관에 대하여, 50∼100㎜간격마다, 4점이상 360점이하에서 레이저식외경측정기에 의해 관의 외경을 측정하여, 그 원주상에서의 외경을 구하고, 그들을 평균화해서 구한 값이고, 평균내경차는, 상기와 마찬가지로 50∼100㎜간격마다, 4점이상 360점이하에서 레이저식두께측정기에 의해 관의 두께를 측정하여, 상기 외경과의 계산에 의해 그 원주상에서의 내경을 구하고, 그들을 평균화해서 구한 값이다. 또, 진원도는, 소정의 길이의 석영유리관에 대하여, 50∼100㎜간격마다, 4점이상 360점이하에서 레이저식외경측정기 및 두께측정기에 의해 관의 외경 및 두께를 측정하여, 그들을 사용해서 내경을 계산하고, 그 원주상에서의 외경 및 내경의 최대치, 최소치, 평균치를 구하고, 그들의 [최대외경(내경)-평균외경(내경] 또는 [평균외경(내경)-최소외경(내경)]의 최대치를 그 둘레(周)의 진원도로서 구한 값이다. 또, 원중심의 편차는, 석영유리관의 단부면의 평균외경 및 평균내경의 면중심을 기준으로 하여, 이 외경면 및 내경면의 원중심으로부터 관의 긴쪽방향으로 수직으로 펴게한 축에 대한 편차이다.The average outer diameter difference is a quartz glass tube of a predetermined length, and the outer diameter of the circumference is determined by measuring the outer diameter of the tube by a laser type external diameter measuring instrument at 360 points of 4 points or more at intervals of 50 to 100 mm, and averaging them. The average inner diameter difference is a pipe thickness measured by a laser thickness meter at 360 points of 4 points or more at intervals of 50 to 100 mm in the same manner as described above, and calculated on the circumference by the calculation with the outer diameter. It is the value obtained by calculating the inner diameter and averaging them. Further, the roundness is measured by measuring the outer diameter and the thickness of the tube by a laser type diameter gauge and a thickness gauge at 360 points of 4 points or more at intervals of 50 to 100 mm for a quartz glass tube of a predetermined length. Calculate the maximum, minimum, and average values of the outer and inner diameters on the circumference thereof, and determine the maximum value of their [maximum outer diameter (inner diameter)-average outer diameter (inner diameter) or [average outer diameter (inner diameter)-minimum outer diameter (inner diameter)]. The deviation of the center of gravity is based on the mean center diameter of the end face of the quartz glass tube and the plane center of the mean inner diameter. The deviation from the axis of the straightening in the longitudinal direction.

상기 고정밀도의 광파이버용 석영유리관은, 다이아몬드지립(砥粒)을 구비한 원통연삭장치이고, 원기둥형상 또는 원통형상의 석영유리잉곳의 외주면을 먼저 연삭하고, 이어서 연마장치에 의해 연마해서 외경으로 하고, 이 외경의 원중심을 구하여, 그 원중심에 맞추어서 다이어몬드지립을 구비한 코어드릴구멍뚫기장치에 의해 개공하고, 산화세륨지립을 구비한 연마장치에 의해 연마함으로써 제조된다. 바람직하기는, 연마해서 얻은 석영유리관을 또 가열용융하여 내외표면의 최대조도 Rmax가 1㎛이하의 경면으로 하는 것이 좋다. 이와 같이 외주면이 고정밀도로 형성되어 있는 바이므로 레이저측정기에 의해 외경을 측정할때 외표면에 작은 요철이 있더라도 정확한 치수의 측정을 할 수 있고 정밀도가 높은 내주면을 연삭할 수 있다. 상기 석영유리관의 내주면의 형성에는 가열하에서 탄소드릴을 압입하는 방법을 사용할 수도 있다. 이 방법은 특히 대형석영유리관의 내주면의 연삭에 썩알맞고, 이 연삭에 의해 내주면이 경면이되어 연마가공을 생략할 수 있다.The high-precision quartz glass tube for optical fibers is a cylindrical grinding device provided with diamond abrasive grains. The outer circumferential surface of a cylindrical or cylindrical quartz glass ingot is first ground, and then polished by a polishing apparatus to an outer diameter. The center of gravity of this outer diameter is obtained, and it is manufactured by opening with a core drill perforation device equipped with diamond abrasive grains according to the center of gravity, and polishing by a polishing apparatus equipped with cerium oxide abrasive grains. Preferably, the polished quartz glass tube is further heated and melted so as to have a mirror surface having a maximum roughness Rmax of 1 or less on the inner and outer surfaces. Since the outer circumferential surface is formed with high precision as described above, even when there are small irregularities on the outer surface when measuring the outer diameter by the laser measuring instrument, the outer circumferential surface can be accurately measured and the inner circumferential surface with high precision can be ground. In forming the inner peripheral surface of the quartz glass tube, a method of press-fitting a carbon drill under heating may be used. This method is particularly suitable for the grinding of the inner circumferential surface of a large quartz glass tube, and by this grinding, the inner circumferential surface becomes a mirror surface, and polishing can be omitted.

본 발명에서 사용하는 석영유리관을 형성하기 위한 원기둥형상 또는 원통형상 석영유리잉곳의 제조방법으로서는, 4염화규소, 유기규소화합물 등의 실록산화합물을 산수소화염속에서 화염가수분해해서 생성한 실리카미립자를 퇴적하고, 탈수하여, 투영유리화하는 방법, 또는 천연적으로 산출하는 수정을 분쇄하여 화학처리에 의해 순화(純化)를 행한 수정분말을 산수소화염에 의한 베르누이(Bernoullis)법등을 들 수 있다.As a method for producing a cylindrical or cylindrical quartz glass ingot for forming a quartz glass tube used in the present invention, silica fine particles produced by flame hydrolysis of siloxane compounds such as silicon tetrachloride and organosilicon compounds in a hydrogen oxyhydrogen salt are deposited. And a Bernoullis method using an oxyhydrogen flame, for example, a method of dehydration, projection vitrification, or crystals naturally produced to be pulverized and purified by chemical treatment.

한편, 광파이버용 코어유리로드로서는, 광의 전송부로서, 석영유리로드 또는 그 주위에 광학적클래드부가 형성된 석영유리로드를 들 수 있다. 즉, 본 발명에 있어서는 「코어유리로드」란, 코어로드와 클래드부착코어로드를 총칭한다. 클래드부를 가지지 않은 코어로드는, 공지의 VAD법이나 OVD법 등에 의해 형성할 수 있고, 또, 클래드부착코어로드를 작성하는 수단으로서는, 코어로드에 석영유리관을 재킷하는 방법이나, 코어로드의 주위에 OVD법등에 의해 클래드부를 형성하는 방법을 들 수 있다.On the other hand, as a core glass rod for optical fibers, a quartz glass rod or the quartz glass rod in which the optical clad part was formed in the circumference | surroundings of light is mentioned. That is, in the present invention, "core glass rod" refers to the core rod and the clad core rod. The core rod which does not have a clad part can be formed by a well-known VAD method, an OVD method, etc. Moreover, as a means of producing a cladding core rod, it is a method of jacketing a quartz glass tube to a core rod, and around a core rod. The method of forming a clad part by OVD method etc. is mentioned.

상기 광파이버모재용 코어유리로드 및 광파이버모재용 석영유리관을 사용한 광파이버용 유리모재의 제조에 있어서는, 모재용 코어유리로드를 모재용 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하고, 이 코어유리로드와 석영유리관의 각원중심을 맞추어서 고정하고, 바람직하기는 양단부를 더미석영재료에 연결한데다가, 전체를 회전시키면서 접속가공에 의한 굽힘, 뒤틀림을 교정하고, 하단부로부터 세로형전기로의 윗쪽으로부터 넣고, 온도 1900∼2800℃로 순차벨트형상으로 가열하여 용착일체화하는 방법이 채용된다. 특히 대형의 광파이버용 모재의 제조에 있어서는, 연신(延伸)하면서 용착일체화를 행하는 것이 좋다. 또한, 순차 벨트형상으로 가열한다는 것은, 소위 존멜트라고도 호칭되는 것이며, 가열영역이 점점 이동하는 가열을 말한다.In the production of an optical fiber glass base material using the optical fiber base material core glass rod and the optical fiber base material quartz glass tube, the core glass rod for base material is carefully inserted in the quartz glass tube for base material so as not to come into contact with the inner circumferential surface of the core fiber rod. The centers of the glass rod and the quartz glass tube are fixed to each other, and preferably, both ends are connected to the dummy quartz material, and the bends and distortions caused by the connecting process are corrected while rotating the whole, and the bottom is inserted from the top of the vertical electric furnace. The method of integrally welding by heating to a belt shape at the temperature of 1900-2800 degreeC sequentially is employ | adopted. In particular, in the production of a large-scale optical fiber base material, it is preferable to perform welding integrally while stretching. Incidentally, heating in the form of a belt is also referred to as so-called john melt, and refers to heating in which the heating zone gradually moves.

다음에 본 발명의 실시예에 대해서 설명하나 이에 의해서 본 발명은 하등 한정되는 것은 아니다.Next, although an Example of this invention is described, this invention is not limited at all.

(실시예 1)(Example 1)

VAD법을 사용하여, 4염화규소를 기화하고, 산수소화염속에서 화염가수분해하여, 회전하는 석영유리막대에 실리카유리미립자를 퇴적시켜서 다공질수트체를 작성했다. 이 다공질수트체를 전기로에 넣고, 코어유리로드의 굴절율등의 조건을 고려하고, He, Cl2혼합가스에 의해 1100℃로 가열탈수하고, 계속 He분위기속에서 1600℃로 투명유리화해서 원기둥형상 석영유리잉곳을 얻었다. 상기 원기둥형상석영유리잉곳의 양단부를 절단하고, 그 외주를 다이아몬드지립을 구비한 원통연삭장치에 의해 소정의 치수로 정확히 연삭하고, 이어서 산화세륨연마장치에 의해 연마하여 레이저외경측정기로 치수측정을 행하여, 외경의 원중심을 구했다. 상기 원중심에 맞추어서 다이아몬드지립을 구비한 코어드릴구멍뚫기장치에 의해 개공하여, 산화세륨지립을 구비한 정밀호닝가공장치에 의해 연마한 후, 플루오르화수소산에 의해 에칭하고, 순수로 수세하여, 건조를 행하여 석영유리관을 작성했다. 얻게된 석영유리관의 치수측정을 50㎜간격으로 레이저외경측정기 및 두께측정기에 의해 행한바, 길이가 1000㎜, 외경이 60㎜이고, 길이방향에 대한 평균외경차가 0.4㎜, 진원도가 최대로 0.08㎜, 내경이 20㎜이고, 길이방향에 대한 평균내경차가 0.02㎜, 진원도가 최대로 0.05㎜, 평균외경의 원중심으로부터의 편차가 최대로 0.1㎜, 평균외경의 원중심에 대한 평균내경의 원중심의 편차가 최대로 0.1㎜이었다.Using the VAD method, silicon tetrachloride was evaporated, flame hydrolyzed in an oxyhydrogen flame, and silica glass fine particles were deposited on a rotating quartz glass rod to prepare a porous suit body. Into the porous soot body into an electric furnace, considering the conditions such as the refractive index of the core glass rod, and He, Cl 2 to vitrification thermal dehydration to 1100 ℃ by the mixed gas, and still transparent in the He atmosphere at 1600 ℃ cylindrical quartz A glass ingot was obtained. Both ends of the cylindrical quartz glass ingot are cut, the outer periphery of which is precisely ground to a predetermined size by a cylindrical grinding device equipped with diamond abrasive grains, and then polished by a cerium oxide polishing device, and subjected to dimensional measurement by a laser outside diameter measuring device. , Saved the center of outer diameter. The hole is drilled by a core drill perforator equipped with diamond abrasive grains in accordance with the original center, polished by a precision honing machine equipped with cerium oxide abrasive grains, etched with hydrofluoric acid, washed with pure water, and dried. Was performed to prepare a quartz glass tube. The dimensions of the obtained quartz glass tube were measured by a laser outer diameter gauge and a thickness gauge at a distance of 50 mm. The length was 1000 mm, the outer diameter was 60 mm, the average difference in the radial direction was 0.4 mm, and the roundness was 0.08 mm. , The inner diameter is 20mm, the average inner diameter difference in the longitudinal direction is 0.02mm, the roundness is 0.05mm at the maximum, the deviation from the center of the mean outer diameter is 0.1mm at the maximum, and the circle of the average inner diameter with respect to the center of the outer diameter The deviation of the center was at most 0.1 mm.

한편, VAD법에 의해 코어, 클래드의 굴절율차(△n)가 0.343%의 클래드부착광파이버모재용 코어로드를 준비하고, 상기 광파이버모재용 석영유리관의 내경에 대해서 19㎜로 외경을 맞추어서, 2000℃의 세로형전기로에 의해 가열연신했다. 이 코어유리로드를 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하고, 코어 유리로드 및 석영유리관의 각원중심을 맞추어 고정하고, 양단부를 석영유리제의 더미관에 연결한데다가, 하단부로부터 2000℃의 세로형 전기로의 위쪽으로부터 넣고, 하단부를 용착시킨후, 진공펌프에 의해 석영유리관내를 감압하여 순차로 벨트형상으로 가열해서 용착일체화하여 광파이버용 모재를 제조했다. 얻게된 모재를 레이저외경측정기에 의해 50㎜간격으로 외주의 측정을 행한바, 설정외경에 대해서 ±0.2㎜이하이었다. 또, 상기 광파이버용 석영유리모재를 프리폼애널라이저에 의해 측정한바, 원중심의 편차는 보이지 않았다.On the other hand, by the VAD method, a core rod for the cladding optical fiber base material having a refractive index difference (Δn) of the core and the clad was 0.343%, and the outer diameter was adjusted to 19 mm with respect to the inner diameter of the quartz glass tube for the optical fiber base, and was 2000 ° C. It was heated and stretched by the vertical type electric furnace of. Carefully insert this core glass rod into the quartz glass tube so that it does not come into contact with the inner circumferential surface of the core glass rod, and fix the core glass rod and the center of each circle of the quartz glass tube, and fix both ends to a dummy tube made of quartz glass. The substrate was placed from the upper side of the vertical electric furnace at 0 ° C., and the lower end was welded. Then, the inside of the quartz glass tube was decompressed by a vacuum pump, sequentially heated to a belt shape, and integrally welded to prepare a base material for the optical fiber. The obtained base material was measured by a laser outer diameter gauge at an interval of 50 mm, and it was ± 0.2 mm or less with respect to the set outer diameter. In addition, when the quartz glass base material for the optical fiber was measured by a preform analyzer, no variation in the center of gravity was seen.

(실시예 2)(Example 2)

천연적으로 산출하는 수정을 분쇄하여 입자직경을 조정한 후, 화학처리에 의해 순화를 행한 수정분말을 사용해서, 산수소염에 의한 베르누이법에 의해 원기둥형상천연석영유리잉곳을 작성했다. 얻게된 원기둥형상석영유리잉곳에 대해서 실시예 1과 마찬가지로해서 광파이버모재용 석영유리관을 작성한 바, 그 길이는 2000㎜, 외경은 120㎜이고, 길이방향에 대한 평균외경차는 0.3㎜, 진원도는 최대로 0.15㎜, 내경은 60㎜이고, 길이방향에 대한 평균내경차는 0.02㎜, 진원도는 최대로 0.03㎜, 평균외경의 원중심으로부터의 편차는 최대로 0.1㎜, 평균외경의 원중심에 대한 평균내경의 원중심의 편차는 최대로 0.2㎜이었다.After crushing naturally produced crystals to adjust the particle size, a cylindrical natural quartz glass ingot was prepared by the Bernoulli method with an oxyhydrogen salt using a crystal powder purified by chemical treatment. About the obtained cylindrical quartz glass ingot, the quartz glass tube for an optical fiber base material was produced similarly to Example 1, The length is 2000 mm, the outer diameter is 120 mm, the average outer-diameter difference with respect to the longitudinal direction is 0.3 mm, and roundness is the maximum. 0.15mm, inner diameter is 60mm, average inner diameter difference in the longitudinal direction is 0.02mm, roundness is maximum 0.03mm, deviation from the center of the mean outer diameter is 0.1mm at the maximum, mean inner diameter to the center of the center The maximum deviation of the center of gravity was 0.2 mm.

상기 석영유리관속에, 실시예 1과 마찬가지 방법으로 작성하고, 석영유리관의 내경에 대해서 59㎜에 외경을 맞춘 코어유리로드를 관내주면에 접촉하지 않도록 삽입하고, 실시예 1과 마찬가지로해서 광파이버용 석영유리모재를 제조했다. 얻게된 모재를 레이저외경측정기에 의해 50㎜간격으로 그 외주를 측정한 바, 설정외경에 대해서 ±0.2㎜이하이었다. 또, 상기 광파이버용 석영유리모재를 프리폼애널라이저에 의해 측정한 바, 원중심의 편차는 보이지 않았다.A quartz glass for optical fibers was inserted into the quartz glass tube in the same manner as in Example 1, and a core glass rod whose outer diameter was adjusted to 59 mm with respect to the inner diameter of the quartz glass tube was inserted so as not to contact the inner circumferential surface thereof. The base material was manufactured. The outer circumference of the obtained base material was measured at 50 mm intervals by a laser outer diameter measuring instrument, and the result was less than ± 0.2 mm with respect to the set outer diameter. Moreover, when the said quartz glass base material for optical fibers was measured with the preform analyzer, the dispersion | variation of the center of gravity was not seen.

(실시예 3)(Example 3)

OVD법에 의해, 다공질수트체를 작성하여, 전기로에 넣고, 코어유리로드의 굴절률 등의 조건을 고려하여, N2, Cl2혼합가스속의 노내에서 1100℃로 가열탈수하고, 계속 진공분위기속에서 1600℃로 가열해서 원통형상의 석영유리잉곳을 작성했다. 얻게된 원통형상석영유리잉곳으로부터 실시예 1과 마찬가지로해서 석영유리관을 제조했다. 얻게된 석영유리관의 길이는 3500㎜, 외경은 200㎜이고, 석영유리관의 길이방향에 대한 평균외경차는 0.8㎜, 진원도는 최대로 0.09㎜, 내경은 40㎜이고, 석영유리관의 길이방향에 대한 평균내경차는 0.12㎜, 진원도는 최대로 0.1㎜, 평균외경의 원중심으로부터의 편차는 최대로 0.6㎜, 평균외경의 원중심에 대한 평균내경의 원중심의 편차는 최대로 0.7㎜이였다.The porous soot body was prepared by the OVD method, placed in an electric furnace, and dehydrated at 1100 ° C. in a furnace of N 2 , Cl 2 mixed gas in consideration of the conditions such as the refractive index of the core glass rod, and then kept in a vacuum atmosphere. It heated to 1600 degreeC and made the cylindrical quartz glass ingot. A quartz glass tube was manufactured in the same manner as in Example 1 from the obtained cylindrical quartz glass ingot. The obtained quartz glass tube had a length of 3500 mm, an outer diameter of 200 mm, an average outer diameter difference of 0.8 mm in the longitudinal direction of the quartz glass tube, a maximum roundness of 0.09 mm, an inner diameter of 40 mm, and an average of the quartz glass tube in the longitudinal direction. The inner diameter difference was 0.12 mm, the roundness was 0.1 mm at the maximum, the deviation from the center of the mean outer diameter was 0.6 mm at the maximum, and the deviation of the center of the mean inner diameter with respect to the center of the mean outer diameter was 0.7 mm at the maximum.

실시예 1과 마찬가지 방법으로, 석영유리관의 내경에 대해서 39㎜에 외경을 맞추어 2000℃의 세로형전기로에 의해 연신을 행해서 코어유리로드를 작성했다. 이 코어유리로드를 사용해서 실시예 1과 마찬가지로해서 석영유리관속에 관내주면에 접촉하지 않도록 삽입하고, 코어유리로드 및 석영유리관의 각원중심을 맞추어 고정하고, 양단부를 석영유리제의 더미관에 연결한데다가, 하단부로부터 2000℃의 세로형전기로의 위쪽으로부터 넣고, 하단부를 용착시킨 후, 진공펌프에 의해 석영유리관내를 감압하여, 연신하면서 순차로 벨트형상으로 가열해서 용착일체화하여 광파이버용 석영유리모재를 제조했다. 얻게된 모재를 레이저외경측정기에 의해 50㎜간격으로 외주에 대해서 측정한 바, 설정외경에 대해서 ±0.2㎜이하이었다. 또, 상기 광파이버용 석영유리모재를 프리폼애널라이저에 의해 측정한 바, 원중심의 편차는 보이지 않았다.By the method similar to Example 1, it extended | stretched with the vertical type electric furnace of 2000 degreeC with the outer diameter to 39 mm with respect to the inner diameter of the quartz glass tube, and created the core glass rod. The core glass rod was inserted in the same manner as in Example 1 so as not to contact the inner circumferential surface of the tube, and the core glass rod and the quartz glass tube were fitted in the center of each circle, and both ends were connected to the dummy tube made of quartz glass. The quartz glass base material for the optical fiber was produced by placing the lower end part from the upper part from the lower end part to the upper part of the vertical electric furnace and welding the lower part part, and then decompressing the inside of the quartz glass tube by a vacuum pump, and heating it in a belt shape sequentially while stretching. did. The obtained base material was measured with respect to the outer periphery at 50 mm intervals by a laser outer diameter measuring instrument, and it was less than +/- 0.2 mm with respect to the set outer diameter. Moreover, when the said quartz glass base material for optical fibers was measured with the preform analyzer, the dispersion | variation of the center of gravity was not seen.

(실시예 4)(Example 4)

실시예 3의 제조와 마찬가지인 OVD법에 의해 원기둥형상 석영유리잉곳을 작성한 후, 그 양단부를 절단하고, 그 외주를 다이아몬드지립을 구비한 원통연삭장치에 의해 소정의 치수로 정확히 연삭하고, 이어서 산화세륨연마장치에 의해 연마하여 레이저외경측정기로 치수측정을 행하여, 외경의 원중심을 구하고, 이 원중심에 맞추어서 다이아몬드지립을 구비한 코어드릴구멍뚫기장치에 의해 개공하여, 산화세륨지립을 구비한 정밀호닝가공장치에 의해 연마한 후, 2000℃로 가열된 세로형 전기로에 석영유리관을 넣고, 그 안밖으로 불활성가스를 흘리면서 표면의 용융경면화처리를 행하였다. 이어서 플루오르화수소산 에칭, 순수에 의한 수세, 건조하여, 내주면의 표면조도 Rmaqx가 0.3㎛, 외주면의 표면조도 Rmax가 0.35㎛의 석영유리관을 얻었다. 상기 석영유리관에 대해서 레이저외경측정기 및 두께측정기에 의해 50㎜간격으로 치수측정을 행한바, 길이는 3500㎜, 외경은 200㎜이고, 석영유리관의 길이방향에 대한 평균외경차는 0.5㎜, 진원도는 최대로 0.05㎜, 내경은 40㎜이고, 석영유리관의 길이방향에 대한 평균내경차는 0.1㎜, 진원도는 최대로 0.07㎜, 평균외경의 원중심의 편차는 최대로 0.3㎜, 평균외경의 원중심에 대한 평균내경의 원중심의 편차는 최대로 0.4㎜이었다. 또한, 최대조도 Rmax는,일본공업규격(JIS)B0601의 정의에 의거하여 접촉식간이조도계(도쿄세이미쓰(주), Surfcom 300B)에 의해 측정한 값이다.After producing a cylindrical quartz glass ingot by the OVD method similar to that of the manufacture of Example 3, the both ends thereof were cut, and the outer periphery thereof was accurately ground to a predetermined dimension by a cylindrical grinding device equipped with diamond abrasive grains, followed by cerium oxide. Grinding with a polishing device and dimensional measurement with a laser outside diameter measuring machine to determine the center of the outer diameter, and the hole is drilled by a core drill drilling device equipped with diamond grains in accordance with the center of gravity, and fine honing with cerium oxide grains After polishing by a processing apparatus, a quartz glass tube was placed in a vertical electric furnace heated to 2000 ° C., and the surface was subjected to melt mirroring treatment while flowing inert gas therein. Subsequently, hydrofluoric acid etching, washing with pure water, and drying were used to obtain a quartz glass tube having a surface roughness Rmaqx of 0.3 m on the inner circumferential surface and a 0.35 µm surface roughness Rmax on the outer circumferential surface. Dimensions of the quartz glass tube were measured at intervals of 50 mm by a laser outer diameter gauge and a thickness gauge. The length was 3500 mm, the outer diameter was 200 mm, and the average outer diameter difference in the longitudinal direction of the quartz glass tube was 0.5 mm, and the roundness was maximum. 0.05mm, inner diameter is 40mm, the average inner diameter difference in the longitudinal direction of the quartz glass tube is 0.1mm, the roundness is 0.07mm at the maximum, and the deviation of the center of the outer diameter is 0.3mm at the maximum, The maximum deviation of the center of gravity of the mean inner diameter was 0.4 mm. In addition, the maximum roughness Rmax is the value measured with the contact simplified illuminometer (Tokyo Seimitsu Co., Ltd., Surfcom 300B) based on the definition of Japanese Industrial Standard (JIS) B0601.

상기 석영유리관속에, 실시예 1과 마찬가지 방법으로 작성하고, 석영유리관의 내경에 대해서 39㎜에 외경을 맞춘 코어유리로드를 관내주면에 접촉하지 않도록 삽입하고, 실시예 3과 마찬가지로 연신하면서 순차로 벨트형상으로 가열해서 용착일체화하여 광파이버용 석영유리모재를 제조했다. 얻게된 모재를 레이저외경측정기에 의해 50㎜간격으로 외주를 측정한 바, 설정외경에 대해서 ±0.2㎜이하이었다. 또, 상기 광파이버용 석영유리모재를 프리폼애널라이저에 의해 측정한 바, 원중심의 편차는 보이지 않았다.In the quartz glass tube, a core glass rod having an outer diameter of 39 mm with respect to the inner diameter of the quartz glass tube was inserted so as not to contact the inner circumferential surface of the quartz glass tube, and the belt was sequentially stretched as in Example 3. A quartz glass base material for an optical fiber was prepared by heating to a shape and integrating welding. The obtained base material was measured at 50 mm intervals by a laser outer diameter measuring instrument, and found to be ± 0.2 mm or less with respect to the set outer diameter. Moreover, when the said quartz glass base material for optical fibers was measured with the preform analyzer, the dispersion | variation of the center of gravity was not seen.

본 발명의 제조방법에 의해 얻게된 광파이버용 석영유리모재는 치수정밀도가 높은 석영유리관을 사용함으로써, 로드인튜브법에 의한 광파이버용 석영유리모재의 제조시에, 상기 모재에 있어서 코어유리로드와 석영유리관과의 틈새를 작게할 수 있고, 상기 모재용의 석영유리관과 코어유리로드와의 용착계면에 기포의 존재가 없는, 고정밀도이고 고품질의 광파이버용 석영유리모재이다. 상기 광파이버용 석영유리모재를 사용함으로써 고품질의 광파이버가 양산성이 높으고, 또한 저코스트로 제조할 수 있다.The quartz glass base material for the optical fiber obtained by the manufacturing method of the present invention uses a quartz glass tube with high dimensional accuracy, so that the core glass rod and the quartz in the base material at the time of manufacturing the quartz glass base material for the optical fiber by the rod in tube method. It is a high-precision and high-quality quartz glass base material for optical fibers, which can reduce the gap with the glass tube and has no bubble in the adhesion interface between the quartz glass tube for the base material and the core glass rod. By using the quartz glass base material for the optical fiber, a high quality optical fiber can be produced with high productivity and low cost.

Claims (4)

광파이버모재용 석영유리관속에 광파이버모재용 코어유리로드를 삽입하고, 용착일체화하는 광파이버용 석영유리모재의 제조방법에 있어서, 상기 광파이버모재용 석영유리관이, 그 길이방향의 평균외경차가 1.0㎜이하, 평균내경차가 0.5㎜이하, 외경진원도가 0.5㎜이하, 내경진원도가 0.5㎜이하이고, 또한 평균외경의 원중심편차가 1㎜이하, 평균외경의 원중심에 대한 평균내경의 원중심편차가 1㎜이하인것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.In the manufacturing method of the quartz glass base material for optical fibers in which the core glass rod for an optical fiber base material is inserted in the quartz glass tube for an optical fiber base material, and the welding is integrated, the said quartz glass tube for an optical fiber base material has an average outer diameter difference of 1.0 mm or less in the longitudinal direction, and averages The inner diameter difference is 0.5 mm or less, the outer diameter roundness is 0.5 mm or less, and the inner diameter roundness is 0.5 mm or less, and the center deviation of the mean outer diameter is 1 mm or less, and the mean center diameter deviation of the mean inner diameter is 1 mm Method for producing a quartz glass base material for an optical fiber, characterized in that the following. 제 1항에 있어서, 광파이버모재용 석영유리관이 고순도합성석영유리관 또는 천연석영유리관인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.The method of manufacturing a quartz glass base material for an optical fiber according to claim 1, wherein the quartz glass tube for an optical fiber base material is a high purity synthetic quartz glass tube or a natural quartz glass tube. 제 1항 또는 제 2항에 있어서, 광파이버모재용 석영유리관이, 또 가열용융되어 경면화된 안밖표면을 가진 석영유리관인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.The method for producing a quartz glass base material for an optical fiber according to claim 1 or 2, wherein the quartz glass tube for an optical fiber base material is a quartz glass tube having an inner surface which is heated and melted and mirrored. 제 3항에 있어서, 석영유리관의 안밖표면의 최대조도 Rmax가 1㎛이하인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.The method of manufacturing a quartz glass base material for an optical fiber according to claim 3, wherein the maximum roughness Rmax of the inner and outer surfaces of the quartz glass tube is 1 µm or less.
KR1019990043328A 1998-10-08 1999-10-07 manufacturing method of Qurtz glass preform for optical fiber KR100315050B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28707498 1998-10-08
JP1998-287074 1998-10-08
JP1999-9180 1999-01-18
JP11009180A JP2000178039A (en) 1998-10-08 1999-01-18 Production of quartz glass preform for optical fiber

Publications (2)

Publication Number Publication Date
KR20000028911A KR20000028911A (en) 2000-05-25
KR100315050B1 true KR100315050B1 (en) 2001-11-24

Family

ID=26343863

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990043328A KR100315050B1 (en) 1998-10-08 1999-10-07 manufacturing method of Qurtz glass preform for optical fiber

Country Status (2)

Country Link
JP (1) JP2000178039A (en)
KR (1) KR100315050B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395203C (en) * 2005-08-17 2008-06-18 长飞光纤光缆有限公司 Method for preparing preformod of optical fiber with low water peak in large size
JP5262070B2 (en) * 2007-11-05 2013-08-14 大同特殊鋼株式会社 Method for measuring roundness of inspection object
JP7054254B2 (en) * 2020-08-07 2022-04-13 湖北工業株式会社 Manufacturing method of preform for optical fiber

Also Published As

Publication number Publication date
JP2000178039A (en) 2000-06-27
KR20000028911A (en) 2000-05-25

Similar Documents

Publication Publication Date Title
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
KR100351721B1 (en) welding method
JP3903987B2 (en) Polarization-maintaining optical fiber manufacturing method
JP2980501B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
KR20020032286A (en) A method of manufacturing a preform ingot for optical fiber
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
EP1000908B1 (en) Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JP3529149B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
JP2000203860A (en) Large-sized quartz glass reform
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
KR100345357B1 (en) Quartz glass tube having taper attached-groove and Method for manufacturing preform for opitical fiber using the same
EP1229004B1 (en) Method of producing a quartz glass preform for optical fibers by drawing a tube
KR100345356B1 (en) manufacturing method of quartz glass preform for optical fiber
JP2001010837A (en) Production of optical fiber preform and aligning jig
JP4565221B2 (en) Optical fiber preform
EP4112570B1 (en) Optical fiber glass preform and method for manufacturing optical fiber glass preform
JP4114903B2 (en) Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same
JP2003327441A (en) Method and apparatus for producing glass pipe for optical fiber

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121023

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131022

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141021

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20181018

Year of fee payment: 18