JP4114903B2 - Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same - Google Patents

Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same Download PDF

Info

Publication number
JP4114903B2
JP4114903B2 JP26614299A JP26614299A JP4114903B2 JP 4114903 B2 JP4114903 B2 JP 4114903B2 JP 26614299 A JP26614299 A JP 26614299A JP 26614299 A JP26614299 A JP 26614299A JP 4114903 B2 JP4114903 B2 JP 4114903B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
optical fiber
fiber preform
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26614299A
Other languages
Japanese (ja)
Other versions
JP2000185928A (en
Inventor
正則 鈴木
俊幸 加藤
敦之 嶋田
豊 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP26614299A priority Critical patent/JP4114903B2/en
Publication of JP2000185928A publication Critical patent/JP2000185928A/en
Application granted granted Critical
Publication of JP4114903B2 publication Critical patent/JP4114903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、テーパー付き溝を有する石英ガラス管及びそれを用いた光ファイバ用母材の製造方法、さらに詳しくは光ファイバ母材用石英ガラス管に光ファイバ母材用コアガラスロッドを挿入し、加熱して溶着一体化する光ファイバ用母材の製造において使用する母材用石英ガラス管またはそれに接続する補助石英ガラス管の保持側の端部近傍にテーパー付き溝が設けられている石英ガラス管及び該石英ガラス管を使用する光ファイバ母材の製造方法に関するものである。
【0002】
【従来の技術】
近年、光ファイバ特にシングルモ−ド用光ファイバの実用化に伴い大量の光ファイバが利用されるようになってきたが、光ファイバが長距離幹線から一般加入者系へとその利用範囲を拡大するに従い更に大量の光ファイバが必要となることが予測される。かかる利用範囲の拡大には光ファイバの量産化、低コスト化が不可欠であるが、それには大型、長尺の光ファイバ用母材を作成し、それを線引きするのが最も簡便な方法である。かかる大型化、長尺化した光ファイバ用母材が特開平7−109136号公報等で提案されている。前記公報記載の大型の光ファイバ用母材は、光ファイバ母材用石英ガラス管に光ファイバ母材用コアガラスロッドを挿入し、加熱して溶着一体化するいわゆるロッドインチューブ法で製造されている。
【0003】
【発明が解決しようとする課題】
上記ロッドインチューブ法にあっては、光ファイバ母材用石英ガラス管と加熱熱源等の各円中心を正確に合わせ、光ファイバ用母材の楕円やコアの楕円、更には母材とコアとの円中心のズレを防ぐとともに、光ファイバ母材用石英ガラス管と引き出し側の光ファイバ用母材の円中心を合わせ光ファイバ母材の曲がりをなくすことが必要である。さらに、光ファイバを低コストで製造するため高価な光ファイバ母材用石英ガラス管をできるだけ無駄なく使用することも要請される。前記円中心合わせには大型で重量のある石英ガラス管を正確に保持することが重要であるが、従来のロッドインチューブ法で使用する保持治具は、例えば特開平7−196332号公報、特開平8−277138号公報等にみられるように光ファイバ母材用石英ガラス管またはそれに接続する補助石英ガラス管を挟んで固定するチャックが一般的で、大型化し、重量の増した光ファイバ母材用石英ガラス管を保持するにはチャック自体を大型化する上に、チャックと石英ガラス管との間の摩擦力を増大しなければならない。この摩擦力の増大には、例えば接触部の材質を摩擦抵抗の大きな材質に変更する、接触面積を拡大する、チャックでの押付け圧力を増大する等が考えられるが、材質の変更は耐熱性を考慮するとさほど摩擦抵抗を大きくすることができず、また、接触面積の拡大にも限界があり、さらに押付け圧力の増大は部分的な圧縮応力の増大となり石英ガラス管を破壊することがある等、いずれも十分な摩擦力の増大が望めなかった。そのためチャックを必要以上に大型化しその製作費用が高いものになっていた。その一方、前記のとおり低コスト化には光ファイバ母材用石英ガラス管をできるだけ有効に使用することが肝要である。しかしながら、従来のロッドインチューブ法では、石英ガラス管とコアガラスロッドとをその間隙を減圧状態にしながら加熱し溶着一体化するので、該石英ガラス管と減圧装置との接続部の気密性維持のためOリングが使用されていた。このOリングはゴム等で作成されているところから耐熱性が低く、石英ガラス管の溶着部分とOリングとの接続部分との距離が短くなるとOリングの耐熱限界を超えてしまうため、光ファイバ母材用石英ガラス管の有効利用長が短くなる、或は補助石英ガラス管を使用して該母材用石英ガラス管の有効利用長を確保しようとする場合においては、該補助石英ガラス管の長さを大幅に長くする必要があった。
【0004】
こうした現状に鑑みて、本発明者等は鋭意研究を続けた結果、外周側に向って径が大きくなるテーパー付き溝を石英ガラス管の保持側の端部近傍に設け、その溝に保持具を篏合するに当り、溝のテーパー部と保持治具のテーパー部とを面接触で合わせることで、大型の石英ガラス管であっても正確に、かつ安定に保持できることを見出した。さらに、前記テーパー付き溝を設けた石英ガラス管の保持側の端面を鏡面処理し、その端面と減圧装置端部とを耐熱性シール材を介して接続することで、高温においても気密性が維持され、母材用石英ガラス管の有効利用長を長くすることができる、或は補助石英ガラス管を使用する場合においては該補助石英ガラス管を短いものにすることができることをも見出して、本発明を完成したものである。すなわち、
【0005】
本発明は、光ファイバ用母材の製造方法において、正確に、かつ安定に保持できる光ファイバ母材用石英ガラス管またはそれに接続する補助石英ガラス管を提供することを目的とする。
【0006】
また、本発明は、光ファイバ母材用石英ガラス管の有効利用長を長くでき、或は補助石英ガラス管を短くでき、低コスト化に好適な光ファイバ用母材の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明は、テーパー付き溝を有する、光ファイバ母材用石英ガラス管または該光ファイバ母材用石英ガラス管に接続する補助石英ガラス管であって、それらの保持側の端部近傍にテーパー付き溝が設けられていることを特徴とする石英ガラス管及びそれを用いる光ファイバ用母材の製造方法に係る。
【0008】
上記母材用石英ガラス管は、高純度の四塩化珪素、有機珪素化合物等のシロキサン化合物を酸水素火炎中で火炎加水分解して生成したシリカガラス微粒子を堆積して多孔質スート体(以下シリカガラス微粒子からなる多孔質スート体を「多孔質スート体」という)を形成し、それを脱水処理したのち、透明ガラス化したのち、得られた石英ガラスインゴットを機械的研削等で管に成型すること等により製造される。また、この母材用石英ガラス管に接続する補助石英ガラス管はいわゆるダミー管と呼ばれるものであって、前記母材用石英ガラス管より不純物や気泡等を多く含有し、低廉な石英ガラス管である。ダミー管という名称は引出側に接続される石英ガラス管にも付されるが、それと区別するため本発明においては保持側のダミー管を「補助石英ガラス管」という。
【0009】
本発明の補助石英ガラス管または母材用石英ガラス管の保持側の端部近傍には、テーパー付き溝が設けられており、正確に、かつ安定にロッドインチューブ装置の送り機構に保持される。前記テーパーは、溝の径が次第に拡大されていくように角度を付けて形成されている。好ましくは石英ガラス管の加工や保持治具の作成などから、図1に示すように保持側の端部側に向って径が拡大するように溝が設けられているのがよい。溝の径が次第に拡大していくようにテーパーが形成されていることによって、溝のテーパー部と保持治具のテーパー部とを、より広い面積で面接触させることができ、石英ガラス管を正確に固定し確実に保持することができる。前記テーパー角度は30〜60°の範囲がよく、テーパー角度が前記範囲を逸脱すると、保持治具との面接触が十分でなくなり重量保持に支障をきたしたり、正確に円中心を合わせることが困難となる。この固定により、石英ガラス管と加熱源との円中心合せや光ファイバ母材用石英ガラス管と引き出し側の光ファイバ用母材との円中心合せが正確になり、光ファイバ用母材の楕円やコアの楕円、更にはコアの母材とコアとの円中心のズレが防げ、また光ファイバ母材の曲がりをなくすことができる。本発明でいう石英ガラス管の保持側の端部近傍とは石英ガラス管の端面の近くであって、石英ガラス管を保持したとき石英ガラス管の重量に充分に耐える範囲をいう。
【0010】
上記テーパー付き溝の下部には補助溝を設けることができる。この補助溝に補助保持具を掛けることで、テーパー付き溝での破壊が起きても石英ガラス管は落下することがなく事故等を防止できる。こうしたテーパー付き溝や補助溝は、円筒研削機等を用いて研削することで形成される。また、石英ガラス管の保持側端面を鏡面処理すると、シール性が向上するので好ましい。前記石英ガラス管の端面と減圧装置端部との間に耐熱性シール材を介在させて減圧装置と接続することで、高温下でも気密性が維持され、光ファイバ母材用石英ガラス管の有効利用長を長くすることができる、或は補助石英ガラス管を短いものにすることができる。前記耐熱性シール材としては、例えばカーボンシート、カーボン繊維、金属、二酸化珪素等のセラミックス、セラミックスファイバー、石英等の高珪酸質グラスファイバー、またはそれらに他の材料を組み合わせた複合材など、ある程度の強度に加えて適度の弾性を有することによりシール材として好適な性質を備えるものならばとくに限定されず、工業的に通常使用されているものが用いられる。前記鏡面処理は研磨加工によってもよく、耐熱性シール材の材質または減圧度に応じて低い精度の鏡面処理であっても十分実用に耐える気密性を確保することができる。というのも、本発明によれば石英ガラス管及び減圧装置端部と耐熱性シール材との接触面積を広く採ることができるため、Oリングのような狭い接触面積の場合よりも気密性に優れているからである。
【0011】
一方、光ファイバ用コアガラスロッドとしては、光の伝送部であって、光学的コア部となる石英ガラスロッドまたはその周囲に光学的クラッド部が形成された石英ガラスロッドが挙げられる。すなわち、本発明にあっては「コアガラスロッド」とは、コアロッドとクラッド付きコアロッドとを総称する。クラッド部を有さないコアロッドは、公知のVAD法やOVD法等により作成することができ、また、クラッド付きコアロッドを作成する手段としては、VAD法やOVD法等によりコア部とクラッド部を一度に作成する方法や、コアロッドに石英ガラス管をジャケットする方法、コアロッドの周囲にOVD法等によりクラッド部を形成する方法、さらにこれらの方法の組み合わせ等が挙げられる。
【0012】
上記テーパ付き溝を設けた石英ガラス管及び光ファイバ母材用コアガラスロッドを用いる光ファイバ用母材の製造方法の1態様を以下に示す。すなわち、図1に示すように石英ガラス管1にテーパ付きの溝8を設け、そこに保持治具3を篏合し、溝のテーパー部と保持治具のテーパー部とを面接触させる。その一方、石英ガラス管1の保持部端面を鏡面処理し、気密性保持のため耐熱性シート6を介して石英ガラス管1と減圧装置端部4のフランジ部7とを締め付けボルト9で固定する。次いで減圧装置端部4に設けた減圧手段への接続部5から吸引して石英ガラス管内を減圧状態にし、加熱炉で石英ガラス管及び母材用コアガラスロッドとを加熱して溶着一体化する。本発明の光ファイバ母材製造方法にあってはこのように耐熱性シートを介して気密性が維持されるので、母材用石英ガラス管が耐熱性シートの加熱限界近くまで利用でき、有効利用長を長くすることができ、或は補助石英ガラス管を短いものにすることができ、さらには、光ファイバの製造コストを低くできる。本発明の光ファイバ用母材の製造方法で使用する保持治具としては図4に示すテーパ付き溝を挟んで固定する治具や図5に示す2分割でき、各分割片をテーパー付き溝に合わせたのち、締結する治具等が挙げられる。
【0013】
【発明の実施の形態】
次に本発明の実施例について述べるがこれによって本発明はなんら限定されるものではない。
【0014】
【実施例】
実施例1
高純度の四塩化珪素を酸水素火炎中で火炎加水分解してシリカガラス微粒子を生成し、それを基体の周囲に堆積させ、透明ガラス化したのち、機械的研削を行って外径160mm、内径50mmの光ファイバ母材用石英ガラス管を作成した。この母材用石英ガラスの上端部付近に円筒研削機でテーパー付き溝を研削し、その上の端面を#1000のダイヤモンドペーパーを用いたベルトサンダーで研磨し、鏡面化した。得られた光ファイバ母材用石英ガラス管に外径46mmの光ファイバ母材用コアガラスロッドを挿入し、縦型ロッドインチューブ装置の送り機構に固定した保持治具で保持した。図1は前記母材用石英ガラス管の保持状態を示す概略縦断面図である。図1において、1は母材用石英ガラス管、2は母材用コアガラスロッド、3は保持治具、4は減圧装置端部、5は減圧手段への接続部、6はカーボンシート、7は減圧装置端部のフランジ部、8はテーパー付き溝、9は締め付けボルトである。前記保持に当たっては、母材用石英ガラス管のテーパー付き溝8に図4に示す保持治具をその切欠き側から嵌め込み、締め付けボルト9で締め固定した。その際、母材用石英ガラスの端面の鏡面処理面と減圧装置端部のフランジ部7との間には気密性保持のため3mm厚のカーボンシート6を載置した。固定された前記母材用石英ガラス管と母材用コアガラスロッドとを加熱して延伸しつつ溶着一体化した。得られた光ファイバ用母材はその外径が75mmであり、曲がり精度が0.2mm/m、楕円率が0.5%であった。前記楕円率は、光ファイバ用母材を円周方向に回転させながら、断面を連続的に測定し、外径の最大値と最小値を求め、(最大値−最小値)/設計値×100の計算式で求めた値である。因に、光ファイバ用母材の規格では曲がり精度は1mm/m以下、楕円率は2%以下である。
【0015】
上記母材用石英ガラス管とコアガラスロッドとの溶着一体化時のカーボンシートの温度をモニターしたところ、端面のカーボンシートから80cmを残して溶着一体化した時、使用したカーボンシートの耐熱性限界温度である650℃まで上昇し、前記母材用石英ガラス管は保持側端面から80cmのみを残して有効利用ができた。
【0016】
比較例1
実施例1において、管状体のフランジ部と光ファイバ母材用石英ガラス管の端面とをシリコンゴム製のOリングで密封した以外、実施例1と同様にして光ファイバ用母材を製造した。前記Oリングの温度をモニターしたところ、Oリングの安全温度250℃に達するのは、前記母材用石英ガラス管の端部から190cmを残して溶着一体化した時であり、その有効利用長は前記母材用石英ガラス管の保持側端面から190cmを残したところまでであった。
【0017】
比較例2
実施例1において、図3にみるようにテーパーなしの溝を設けた光ファイバ用石英ガラス管を用いた以外、実施例1と同様にして光ファイバ用母材を製造した。得られた光ファイバ用母材の曲がり精度は0.8mm/m、楕円率は2.2%であった。
【0018】
実施例2
実施例1において図4の保持治具に替えて図5に示す保持治具を用い、また光ファイバ用石英ガラス管に補助石英ガラス管を溶接し、補助石英ガラス管の保持側の端部近傍にテーパー付き溝を、またその下部に補助溝を設けた。前記テーパー付き溝に保持治具を、また補助溝に補助保持具を固定した。この保持状態の概略断面図を図2に示す。図2において、1は母材用石英ガラス管、2は母材用コアガラスロッド、3は保持治具、4は減圧装置端部、5は減圧手段への接続部、6は板状セラミックを鉄製の板材で挟み込んだ複合材、7は減圧装置端部のフランジ部、8はテーパー付き溝、9は締め付けボルト、10は補助石英ガラス管、11は補助溝、12は補助保持具である。前記石英ガラス管と母材用コアガラスロッドとを実施例1と同様に加熱して溶着一体化し光ファイバ用母材を製造した。得られた光ファイバ用母材の曲がり精度は0.18mm/m、楕円率は0.5%であった。
【0019】
【発明の効果】
本発明の石英ガラス管は、その端部にテーパー付き溝が設けられており、そのテーパー部と保持治具のテーパー部とを面接触で篏合することで加熱源等との円中心合わせが正確に、かつ安定に行うことができる。さらに、前記石英ガラス管はその端面が鏡面処理されており、そこに耐熱性シートを載置することで管内の気密性が高温においても保持でき、光ファイバ母材用石英ガラス管の有効利用長を長くすることができ、また補助石英ガラス管を使用する場合において該石英ガラス管を短いものにすることができ、光ファイバの製造コストを低くできる。
【図面の簡単な説明】
【図1】本発明のテーパー付き溝を設けた光ファイバ母材用石英ガラス管を保持治具で固定したときの概略縦断面図である。
【図2】図5の保持治具で石英ガラス管を固定した時の概略縦断面図である。
【図3】テーパーなし溝を有する光ファイバ母材用石英ガラス管を保持治具で固定した時の概略縦断面図である。
【図4】実施例1の保持治具の平面図である。
【図5】実施例2の保持治具の平面図である。
【符号の説明】
1 石英ガラス管
2 光ファイバ母材用コアガラスロッド
3 保持治具
4 減圧装置端部
5 減圧手段への接続部
6 耐熱性シート
7 減圧装置端部のフランジ部
8 テーパー付き溝
9 締め付けボルト
10 補助石英ガラス管
11 補助溝
12 補助保持具
[0001]
[Industrial application fields]
The present invention relates to a quartz glass tube having a tapered groove and a method for producing an optical fiber preform using the quartz glass tube, more specifically, inserting a core glass rod for an optical fiber preform into the quartz glass tube for an optical fiber preform, A quartz glass tube provided with a tapered groove in the vicinity of the end portion on the holding side of a quartz glass tube for a base material used in manufacturing an optical fiber base material that is integrated by heating and welding or an auxiliary quartz glass tube connected thereto And a method of manufacturing an optical fiber preform using the quartz glass tube.
[0002]
[Prior art]
In recent years, with the practical application of optical fibers, particularly single-mode optical fibers, a large amount of optical fibers have come to be used. However, optical fibers expand the range of use from long-distance trunk lines to general subscriber systems. Therefore, it is expected that a larger amount of optical fiber will be required. In order to expand the range of use, mass production and cost reduction of optical fibers are indispensable. For this purpose, the simplest method is to create a large and long optical fiber preform and draw it. . Such a large and long optical fiber preform has been proposed in JP-A-7-109136. The large optical fiber preform described in the above publication is manufactured by a so-called rod-in-tube method in which a core glass rod for an optical fiber preform is inserted into a quartz glass tube for an optical fiber preform, and is welded and integrated. Yes.
[0003]
[Problems to be solved by the invention]
In the rod-in-tube method, the quartz glass tube for the optical fiber preform and the center of each circle such as the heating heat source are accurately aligned, the optical fiber preform ellipse, the core ellipse, and further the preform and core It is necessary to prevent the optical fiber preform from being bent by aligning the center of the optical fiber preform quartz glass tube and the optical fiber preform on the drawing side. Furthermore, in order to manufacture an optical fiber at a low cost, it is also required to use an expensive optical fiber preform quartz glass tube as efficiently as possible. Although it is important to accurately hold a large and heavy quartz glass tube for centering the circle, a holding jig used in the conventional rod-in-tube method is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-196332. As seen in Kaihei 8-277138, etc., a quartz glass tube for an optical fiber preform or a chuck that sandwiches an auxiliary quartz glass tube connected thereto is generally used, and the optical fiber preform is increased in size and weight. In order to hold the quartz glass tube for use, the size of the chuck itself must be increased and the frictional force between the chuck and the quartz glass tube must be increased. For example, the frictional force can be increased by changing the material of the contact part to a material having a high frictional resistance, increasing the contact area, or increasing the pressing pressure at the chuck. Considering that the frictional resistance cannot be increased so much, and there is a limit to the expansion of the contact area, and further, the increase in pressing pressure may increase the partial compressive stress and break the quartz glass tube, etc. In either case, a sufficient increase in frictional force could not be expected. Therefore, the size of the chuck was increased more than necessary, and the manufacturing cost was high. On the other hand, as described above, it is important to use a quartz glass tube for an optical fiber preform as effectively as possible for cost reduction. However, in the conventional rod-in-tube method, the quartz glass tube and the core glass rod are heated and integrated while the gap between the quartz glass tube and the core glass rod is reduced, so that the airtightness of the connecting portion between the quartz glass tube and the pressure reducing device is maintained. Therefore, an O-ring was used. Since this O-ring is made of rubber or the like, its heat resistance is low, and if the distance between the welded portion of the quartz glass tube and the connecting portion of the O-ring is shortened, the heat resistance limit of the O-ring will be exceeded. In the case where the effective use length of the quartz glass tube for the base material is shortened or the effective use length of the quartz glass tube for the base material is to be secured by using the auxiliary quartz glass tube, the auxiliary quartz glass tube The length had to be significantly increased.
[0004]
In view of the current situation, the present inventors have conducted intensive research, and as a result, provided a tapered groove whose diameter increases toward the outer peripheral side in the vicinity of the end of the holding side of the quartz glass tube, and a holder is provided in the groove. Upon mating, it was found that even a large quartz glass tube can be held accurately and stably by aligning the tapered portion of the groove and the tapered portion of the holding jig by surface contact. Furthermore, the end face on the holding side of the quartz glass tube provided with the tapered groove is mirror-finished, and the end face and the end of the decompression device are connected via a heat-resistant sealing material, so that airtightness is maintained even at high temperatures. It is also found that the effective use length of the quartz glass tube for the base material can be increased, or that the auxiliary quartz glass tube can be shortened when the auxiliary quartz glass tube is used. The invention has been completed. That is,
[0005]
An object of the present invention is to provide a quartz glass tube for an optical fiber preform that can be accurately and stably held in an optical fiber preform manufacturing method, or an auxiliary quartz glass tube connected thereto.
[0006]
The present invention also provides a method of manufacturing an optical fiber preform that can increase the effective use length of an optical fiber preform quartz glass tube or shorten an auxiliary quartz glass tube, and is suitable for cost reduction. With the goal.
[0007]
[Means for Solving the Problems]
The present invention that achieves the above object is a quartz glass tube for an optical fiber preform having a tapered groove, or an auxiliary quartz glass tube connected to the quartz glass tube for an optical fiber preform, the end of the holding side thereof The present invention relates to a quartz glass tube characterized in that a tapered groove is provided in the vicinity of the portion, and a method for manufacturing an optical fiber preform using the quartz glass tube.
[0008]
The above-mentioned quartz glass tube for base material is a porous soot body (hereinafter referred to as silica) by depositing silica glass fine particles generated by flame hydrolysis of siloxane compounds such as high-purity silicon tetrachloride and organic silicon compounds in an oxyhydrogen flame. A porous soot body made of fine glass particles is formed as a "porous soot body", dehydrated and converted into a transparent glass, and the resulting quartz glass ingot is molded into a tube by mechanical grinding or the like. It is manufactured by. The auxiliary quartz glass tube connected to the quartz glass tube for a base material is a so-called dummy tube, which contains more impurities and bubbles than the quartz glass tube for the base material, and is an inexpensive quartz glass tube. is there. Although the name of the dummy tube is also given to the quartz glass tube connected to the drawer side, the dummy tube on the holding side is referred to as “auxiliary quartz glass tube” in the present invention in order to distinguish it.
[0009]
A tapered groove is provided in the vicinity of the holding side end of the auxiliary quartz glass tube or the quartz glass tube for the base material of the present invention, and is accurately and stably held by the feed mechanism of the rod-in tube device. . The taper is formed at an angle so that the diameter of the groove gradually increases. Preferably, from the processing of the quartz glass tube or the creation of a holding jig, a groove is provided so that the diameter increases toward the end of the holding side as shown in FIG. Since the taper is formed so that the diameter of the groove gradually increases, the taper part of the groove and the taper part of the holding jig can be brought into surface contact with a wider area, and the quartz glass tube can be accurately It can be fixed and securely held. The taper angle is preferably in the range of 30 to 60 °, and if the taper angle deviates from the above range, the surface contact with the holding jig becomes insufficient and the weight retention is hindered or it is difficult to accurately align the center of the circle. It becomes. This fixing makes it possible to accurately align the center of the circle between the quartz glass tube and the heating source and the center of the circle between the silica glass tube for the optical fiber preform and the optical fiber preform on the drawing side. Further, it is possible to prevent the center of the circle between the core base material and the core from being displaced, and the bending of the optical fiber base material can be eliminated. In the present invention, the vicinity of the end portion on the holding side of the quartz glass tube refers to a range near the end surface of the quartz glass tube and sufficiently withstanding the weight of the quartz glass tube when the quartz glass tube is held.
[0010]
An auxiliary groove can be provided below the tapered groove. By suspending the auxiliary holder in the auxiliary groove, the quartz glass tube does not fall even if breakage occurs in the tapered groove, and an accident or the like can be prevented. Such tapered grooves and auxiliary grooves are formed by grinding using a cylindrical grinder or the like. Further, it is preferable to perform a mirror finish on the holding side end face of the quartz glass tube because the sealing performance is improved. By connecting a heat-resistant sealing material between the end face of the quartz glass tube and the end of the decompression device and connecting to the decompression device, hermeticity is maintained even at high temperatures, and the silica glass tube for optical fiber preform is effective. The use length can be increased, or the auxiliary quartz glass tube can be shortened. Examples of the heat-resistant sealing material include carbon sheets, carbon fibers, metals, ceramics such as silicon dioxide, ceramic fibers, high siliceous glass fibers such as quartz, or composite materials combining these with other materials. It is not particularly limited as long as it has suitable properties as a sealing material by having appropriate elasticity in addition to strength, and those that are usually used industrially are used. The mirror surface treatment may be performed by polishing, and even in the case of a mirror surface treatment with low accuracy depending on the material of the heat-resistant sealing material or the degree of reduced pressure, airtightness that can be used practically can be ensured. This is because, according to the present invention, since the contact area between the quartz glass tube and the end of the decompression device and the heat-resistant sealing material can be widened, the airtightness is superior to the case of a narrow contact area such as an O-ring. Because.
[0011]
On the other hand, examples of the core glass rod for optical fiber include a quartz glass rod which is a light transmission portion and serves as an optical core portion, or a quartz glass rod having an optical cladding portion formed around it. That is, in the present invention, the “core glass rod” is a generic term for a core rod and a clad core rod. A core rod without a clad portion can be produced by a known VAD method, OVD method, or the like. As a means for producing a clad core rod, the core portion and the clad portion are once separated by a VAD method, an OVD method, or the like. And a method of jacketing a quartz glass tube around the core rod, a method of forming a clad portion around the core rod by the OVD method, and a combination of these methods.
[0012]
1 embodiment of the production method for an optical fiber preform using a quartz glass tube and the optical fiber preform for the core glass rod provided with the tapered over grooved below. That is, the groove 8 of the tapered over a quartz glass tube 1 as shown in FIG. 1 is provided, and篏合the holding jig 3 therein, and a tapered portion of the holding jig tapered portion of the groove to surface contact. On the other hand, the end surface of the holding portion of the quartz glass tube 1 is mirror-finished, and the quartz glass tube 1 and the flange portion 7 of the decompression device end portion 4 are fixed with the fastening bolts 9 through the heat-resistant sheet 6 in order to maintain airtightness. . Next, the quartz glass tube is sucked from the connecting portion 5 to the decompression means provided at the decompression device end 4 to reduce the pressure in the quartz glass tube, and the quartz glass tube and the core glass rod for base material are heated and integrated in a heating furnace. . Since the method of manufacturing the optical fiber preform of the present invention airtightness is maintained through such heat resistance sheet, available preform quartz glass tube to near the heating limit of the heat-resistant sheet, effective The use length can be increased, or the auxiliary quartz glass tube can be shortened, and the manufacturing cost of the optical fiber can be reduced. The holding jig to be used in the manufacturing method for the optical fiber preform of the present invention can bisected shown in jig and 5 for fixing across the tapered over grooved shown in FIG. 4, the tapered grooves each divided piece The jig | tool etc. which are fastened after having been matched are mentioned.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described, but the present invention is not limited thereto.
[0014]
【Example】
Example 1
High-purity silicon tetrachloride is flame-hydrolyzed in an oxyhydrogen flame to produce silica glass fine particles, which are deposited around the substrate, converted into a transparent glass, and then subjected to mechanical grinding to obtain an outer diameter of 160 mm. A 50 mm quartz glass tube for optical fiber preform was prepared. A tapered groove was ground in the vicinity of the upper end of the quartz glass tube for base material with a cylindrical grinder, and the upper end surface thereof was polished with a belt sander using # 1000 diamond paper to make a mirror surface. A core glass rod for an optical fiber preform having an outer diameter of 46 mm was inserted into the obtained quartz glass tube for an optical fiber preform, and held by a holding jig fixed to a feed mechanism of a vertical rod-in-tube apparatus. FIG. 1 is a schematic longitudinal sectional view showing a holding state of the quartz glass tube for base material. In FIG. 1, 1 is a quartz glass tube for a base material, 2 is a core glass rod for a base material, 3 is a holding jig, 4 is an end of a decompression device, 5 is a connection part to decompression means, 6 is a carbon sheet, 7 Is a flange portion at the end of the pressure reducing device, 8 is a tapered groove, and 9 is a fastening bolt. In the holding, the holding jig shown in FIG. 4 was fitted into the tapered groove 8 of the quartz glass tube for base material from the notch side, and fixed with the fastening bolt 9. At that time, a carbon sheet 6 having a thickness of 3 mm was placed between the mirror-finished surface of the end surface of the quartz glass tube for base material and the flange portion 7 at the end of the decompression device in order to maintain airtightness. The fixed quartz glass tube for base material and the core glass rod for base material were heated and stretched to be integrated while being stretched. The obtained optical fiber preform had an outer diameter of 75 mm, a bending accuracy of 0.2 mm / m, and an ellipticity of 0.5%. The ellipticity is obtained by continuously measuring the cross section while rotating the optical fiber preform in the circumferential direction to obtain the maximum value and the minimum value of the outer diameter (maximum value−minimum value) / design value × 100. This is the value obtained by the following formula. Incidentally, in the standard of the optical fiber preform, the bending accuracy is 1 mm / m or less and the ellipticity is 2% or less.
[0015]
When the temperature of the carbon sheet at the time of integration of the quartz glass tube for the base material and the core glass rod was monitored, the heat resistance limit of the used carbon sheet was obtained when the integration of the carbon sheet at the end face was performed by leaving 80 cm. The temperature rose to 650 ° C., and the quartz glass tube for base material could be effectively used leaving only 80 cm from the holding side end face.
[0016]
Comparative Example 1
In Example 1, an optical fiber preform was manufactured in the same manner as in Example 1, except that the flange portion of the tubular body and the end face of the quartz glass tube for optical fiber preform were sealed with an O-ring made of silicon rubber. When the temperature of the O-ring is monitored, the safe temperature of the O-ring reaches 250 ° C. when it is welded and integrated, leaving 190 cm from the end of the quartz glass tube for the base material. Up to a point where 190 cm was left from the holding side end face of the quartz glass tube for base material.
[0017]
Comparative Example 2
In Example 1, an optical fiber preform was manufactured in the same manner as in Example 1 except that a quartz glass tube for optical fiber provided with a groove without a taper was used as shown in FIG. The bending accuracy of the obtained optical fiber preform was 0.8 mm / m, and the ellipticity was 2.2%.
[0018]
Example 2
In the first embodiment, the holding jig shown in FIG. 5 is used instead of the holding jig shown in FIG. 4, and the auxiliary quartz glass tube is welded to the quartz glass tube for optical fiber, and the vicinity of the holding side end of the auxiliary quartz glass tube is used. Were provided with a tapered groove and an auxiliary groove at the bottom. A holding jig was fixed to the tapered groove, and an auxiliary holding tool was fixed to the auxiliary groove. A schematic cross-sectional view of this holding state is shown in FIG. In FIG. 2, 1 is a quartz glass tube for a base material, 2 is a core glass rod for a base material, 3 is a holding jig, 4 is an end of a decompression device, 5 is a connection portion to decompression means, and 6 is a plate ceramic. A composite material sandwiched between iron plate materials, 7 is a flange portion at the end of the decompression device, 8 is a tapered groove, 9 is a fastening bolt, 10 is an auxiliary quartz glass tube, 11 is an auxiliary groove, and 12 is an auxiliary holder. The quartz glass tube and the core glass rod for base material were heated and integrated in the same manner as in Example 1 to manufacture an optical fiber base material. The bending accuracy of the obtained optical fiber preform was 0.18 mm / m, and the ellipticity was 0.5%.
[0019]
【The invention's effect】
The quartz glass tube of the present invention is provided with a tapered groove at its end, and the center of the circle with the heating source or the like can be aligned by mating the tapered portion and the tapered portion of the holding jig. Accurate and stable. Furthermore, the end surface of the quartz glass tube is mirror-finished, and by placing a heat-resistant sheet there, the hermeticity inside the tube can be maintained even at high temperatures, and the effective use length of the quartz glass tube for optical fiber preforms In addition, when an auxiliary quartz glass tube is used, the quartz glass tube can be shortened, and the manufacturing cost of the optical fiber can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view when a quartz glass tube for an optical fiber preform provided with a tapered groove of the present invention is fixed by a holding jig.
FIG. 2 is a schematic longitudinal sectional view when a quartz glass tube is fixed with the holding jig of FIG.
FIG. 3 is a schematic longitudinal sectional view when a quartz glass tube for an optical fiber preform having a non-tapered groove is fixed with a holding jig.
4 is a plan view of a holding jig according to Embodiment 1. FIG.
5 is a plan view of a holding jig according to Embodiment 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz glass tube 2 Core glass rod for optical fiber base materials 3 Holding jig 4 Pressure-reducing device end part 5 Connection part to pressure-reducing means 6 Heat-resistant sheet 7 Flange part of pressure-reducing device end part 8 Tapered groove 9 Tightening bolt 10 Auxiliary Quartz glass tube 11 Auxiliary groove 12 Auxiliary holder

Claims (6)

光ファイバ母材用石英ガラス管中に光ファイバ母材用コアガラスロッドを挿入し、加熱して溶着一体化する縦型ロッドインチューブ装置を用いる光ファイバ用母材の製造に使用する石英ガラス管において、前記石英ガラス管が光ファイバ母材用石英ガラス管または該光ファイバ母材用石英ガラス管に接続する補助石英ガラス管であって、その上部保持側の端部近傍の外表面に研削加工で形成したテーパー付溝が設けられていることを特徴とする石英ガラス管。A quartz glass tube used for manufacturing an optical fiber preform using a vertical rod-in-tube device in which a core glass rod for an optical fiber preform is inserted into a quartz glass tube for an optical fiber preform, and then heated and integrated. The quartz glass tube is a quartz glass tube for an optical fiber preform or an auxiliary quartz glass tube connected to the quartz glass tube for an optical fiber preform, and grinding is performed on the outer surface near the end portion on the upper holding side thereof A quartz glass tube, characterized by being provided with a tapered groove. テーパーが石英ガラス管の保持側の端部側に向かって溝の径が拡大するように形成されていることを特徴とする請求項1記載の石英ガラス管。2. The quartz glass tube according to claim 1, wherein the taper is formed so that a diameter of the groove increases toward an end portion side of the holding side of the quartz glass tube. テーパー角度が30〜60°の範囲であることを特徴とする請求項2記載の石英ガラス管。The quartz glass tube according to claim 2, wherein the taper angle is in the range of 30 to 60 °. 石英ガラス管の保持側の端面が鏡面処理されていることを特徴とする請求項1ないし3のいずれか1記載の石英ガラス管。The quartz glass tube according to any one of claims 1 to 3, wherein the end surface on the holding side of the quartz glass tube is mirror-finished. 光ファイバ母材用石英ガラス管中に光ファイバ母材用コアガラスロッドを挿入し、加熱して溶着一体化する縦型ロッドインチューブ装置を用いる光ファイバ用母材の製造方法において、前記石英ガラス管が光ファイバ母材用石英ガラス管または該光ファイバ母材用石英ガラス管に接続する補助石英ガラス管であって、その上部保持側の端部近傍外表面に研削加工で形成したテーパー付溝が設けられ、その溝のテーパー部に縦型ロッドインチューブ装置の保持具のテーパー部が面接触で篏合し固定されることを特徴とする光ファイバ用母材の製造方法。In the method of manufacturing an optical fiber preform using a vertical rod-in-tube apparatus in which a core glass rod for an optical fiber preform is inserted into a quartz glass tube for an optical fiber preform and heated and integrated, the quartz glass The tube is a quartz glass tube for an optical fiber preform or an auxiliary quartz glass tube connected to the quartz glass tube for an optical fiber preform, with a taper formed on the outer surface near the end on the upper holding side by grinding A method for producing a preform for an optical fiber, wherein a groove is provided, and the tapered portion of the holder of the vertical rod-in-tube device is mated and fixed to the tapered portion of the groove by surface contact. 石英ガラス管の保持側の端面が鏡面処理され、その端面と減圧装置端部とを耐熱性シートを介して接続することを特徴とする請求項5記載の光ファイバ用母材の製造方法。6. The method of manufacturing an optical fiber preform according to claim 5, wherein the holding end face of the quartz glass tube is mirror-finished, and the end face and the end of the decompression device are connected via a heat resistant sheet.
JP26614299A 1998-10-16 1999-09-20 Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same Expired - Fee Related JP4114903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26614299A JP4114903B2 (en) 1998-10-16 1999-09-20 Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-314112 1998-10-16
JP31411298 1998-10-16
JP26614299A JP4114903B2 (en) 1998-10-16 1999-09-20 Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2000185928A JP2000185928A (en) 2000-07-04
JP4114903B2 true JP4114903B2 (en) 2008-07-09

Family

ID=26547326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26614299A Expired - Fee Related JP4114903B2 (en) 1998-10-16 1999-09-20 Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP4114903B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004014345B4 (en) * 2004-03-22 2007-09-20 Heraeus Tenevo Gmbh Method for producing an optical component
JP5750900B2 (en) * 2011-01-18 2015-07-22 住友電気工業株式会社 Connection structure of quartz tube and metal tube

Also Published As

Publication number Publication date
JP2000185928A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP3775548B2 (en) Welding method
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
EP0578244B1 (en) Method for drawing glass preform for optical fiber
JP3406107B2 (en) Manufacturing method of quartz glass
CN100367052C (en) Polarized wave holding optical fiber, and method of producing the same
JP2919752B2 (en) Optical fiber forming method and apparatus
JP5114409B2 (en) Welding method for joining components made of high silica material and apparatus for carrying out the method
JP2980501B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
JP4114903B2 (en) Quartz glass tube with tapered groove and optical fiber preform manufacturing method using the same
JPH04270132A (en) Production of glass matrix for optical fiber
US20040099014A1 (en) Mandrel for producing quartz glass and optical fiber matrix using the mandrel, optical fiber, production method for quartz glass element
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
KR100345357B1 (en) Quartz glass tube having taper attached-groove and Method for manufacturing preform for opitical fiber using the same
EP1000908B1 (en) Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
KR20000012010A (en) Optical Fiber Base Material Ingot and Method For Producing the Same
JP3800930B2 (en) Quartz glass cylinder, quartz glass tube and manufacturing method thereof
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JP2000119034A (en) Production of quartz glass preform for optical fiber
JP3141546B2 (en) Drawing method and drawing apparatus for preform for optical fiber
EP1229004B1 (en) Method of producing a quartz glass preform for optical fibers by drawing a tube
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
JP3141545B2 (en) Drawing method of preform for optical fiber
KR970007945B1 (en) Method and apparatus for drawing glass preform for optical fiber
JP2006160561A (en) Method for manufacturing optical fiber preform and optical fiber preform
JP2000178040A (en) Optical fiber preform and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees