KR0133027B1 - Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber - Google Patents

Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber

Info

Publication number
KR0133027B1
KR0133027B1 KR1019930024509A KR930024509A KR0133027B1 KR 0133027 B1 KR0133027 B1 KR 0133027B1 KR 1019930024509 A KR1019930024509 A KR 1019930024509A KR 930024509 A KR930024509 A KR 930024509A KR 0133027 B1 KR0133027 B1 KR 0133027B1
Authority
KR
South Korea
Prior art keywords
quartz glass
tube
glass tube
base material
preform
Prior art date
Application number
KR1019930024509A
Other languages
Korean (ko)
Other versions
KR940011972A (en
Inventor
요코카와 교시
아오야마 마사아키
빌스마이어 게르하트
Original Assignee
스께하라 다로우
신에쯔 세끼에이 가부시끼 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스께하라 다로우, 신에쯔 세끼에이 가부시끼 가이샤 filed Critical 스께하라 다로우
Publication of KR940011972A publication Critical patent/KR940011972A/en
Application granted granted Critical
Publication of KR0133027B1 publication Critical patent/KR0133027B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/12Non-chemical treatment of fibres or filaments during winding up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/22Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B19/226Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground of the ends of optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/041Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with cylinder saws, e.g. trepanning; saw cylinders, e.g. having their cutting rim equipped with abrasive particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S65/00Glass manufacturing
    • Y10S65/08Quartz
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Abstract

본 발명은 천연 또는 합성 석영 글라스 모재를 기계적으로 가공하여 얻는 외경 50∼300㎜φ, 외경/내경비 = 1. 1∼7, 두께 100㎜ 이상, 두께오차 2% 이사인 석영글라스관; 상기 대형 석영 글라스관을 광섬유용 코어글라스 로드에 로드인 튜브법으로 일체화하여 얻어지는 대형 석영 글라스 프리폼 및 상기 기계적 가공을 대형기계로서 고정도로 행하고, 또한 필요하다면 무접촉형 가열가공법으로 가열처리, 가열연신 또는 가열가압연신처리하여 관경을 제어하는 석영글라스관과, 광섬유용 코어 글라스 로드를 로드인 튜브법으로 일체화하는 대형석영 글라스 프리폼의 제조방법을 제공한다.The present invention provides a quartz glass tube having an outer diameter of 50 to 300 mmφ, an outer diameter / inner diameter ratio of 1. 1 to 7, a thickness of 100 mm or more, and a thickness error of 2%, obtained by mechanically processing a natural or synthetic quartz glass base material; The large quartz glass preform obtained by integrating the large quartz glass tube by the rod-in-tube method on the core glass rod for the optical fiber and the mechanical processing are carried out with high precision as a large machine, and if necessary, heat treatment and heat stretching by a non-contact type heat processing method. Another aspect of the present invention provides a method for manufacturing a quartz glass tube for controlling a diameter by heating and stretching, and a large quartz glass preform integrating a core glass rod for an optical fiber by a rod-in tube method.

Description

광섬유 제조용 석영글라스 프리폼에 사용되는 대형 석영 글라스관, 대형 석영 글라스 프리폼 및 그 제조방법과 석영 글라스계 광섬유Large quartz glass tube, large quartz glass preform and its manufacturing method used in quartz glass preform for optical fiber manufacturing and quartz glass optical fiber

제1도는 본 발명의 대형 석영 글라스관의 횡단면도,1 is a cross-sectional view of a large quartz glass tube of the present invention,

제2도는 대형 석영 글라스관을 사용하여 제조된 본 발명의 싱글모드용 대형 석영 글라스 프리폼의 횡단면도,2 is a cross-sectional view of a large size quartz glass preform for single mode of the present invention manufactured using a large size quartz glass tube,

제3도는 제2도의 싱글모드 광섬유용 프리폼으로부터 제작된 광섬유의 횡단면 개략도,3 is a schematic cross-sectional view of an optical fiber manufactured from the preform for single mode optical fiber of FIG.

제4도는 싱글모드 광섬유의 굴절율분포 및 광강도 분포의 개념도,4 is a conceptual diagram of refractive index distribution and light intensity distribution of a single mode optical fiber,

제5도는 본 발명의 대형 석영 글라스관의 제조방법 1태양이 코어 드릴 천공기에 의한 대형 석영 글라관의 제조방법을 나타낸 부분 종단면도,5 is a partial longitudinal cross-sectional view showing a method for manufacturing a large quartz glass tube according to the first embodiment of the present invention, wherein the large quartz glass tube is manufactured by a core drill perforator;

제6도는 본 발명의 대형 석영 글라스관의 제조방법 1태양인 열간탄소드릴 압입법에 의한 대형 석영 글라스관의 제조방법을 나타낸 개략도,6 is a schematic view showing a method for producing a large quartz glass tube by a hot carbon drill press-fit method, which is a method for manufacturing a large quartz glass tube of the present invention;

제7도는 본 발명의 대형 석영 글라스관의 제조방법 1태양인 대형 석영 글라스 소관을 무접촉형 가열법으로서 가열처리함에 의하여 대형 석영 글라스 열처리관을 제조하는 방법을 도시한 개략도 이다.7 is a schematic diagram showing a method of manufacturing a large quartz glass heat treatment tube by heat treatment of a large quartz glass element tube, which is a method of manufacturing the large quartz glass tube of the present invention, as a contactless heating method.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1:코어글라스로드(a core glass rod) 2:클래드층(a cladding layer)1: core glass rod 2: a cladding layer

3:석영글라스관(quartz glass tube) 4:코어(core)3: quartz glass tube 4: core

5:광학클래드(an optical cladding layer)5: an optical cladding layer

7:석영글라스모재(quartz glass mother material)7: quartz glass mother material

8:코어 드릴(a core drill) 9:숫돌(a grinding stone)8: core drill 9: a grinding stone

11:탄소드릴(a carbon drill) 13:가열히터(heater)11: carbon drill 13: heating heater

15:가열원(a heating source) 16:연실롤(a drawing roll)15: a heating source 16: a drawing roll

17: 더미관(a dummy tube) 19:센서(sensor)17: a dummy tube 19: sensor

본 발명은, 대구경이고 두께가 두꺼운 대형 석영 글라스관, 편심율이 작고, 전송특성이 우수하며, 또한, 양산성, 저렴화가 가능한 광섬유용 글라스 프리폼, 특히 석영 글라스관과 싱글모드(single mode)용 광섬유 코어 글라스로드(core glass rod)를 로드인튜브(rod-in-tube)법으로 일체화시킨 광섬유 제조용 석영글라스 프리폼에 사용되는 대형 석영글라스관 및 그러한 것의 제조방법, 또한 상기 프리폼으로 부터 얻을 수 있는 광섬유에 관한 것이다.The present invention is a large diameter, thick, thick quartz glass tube, small eccentricity, excellent transmission characteristics, and also can be mass-produced, inexpensive glass preform for optical fibers, in particular for quartz glass tube and single mode Large quartz glass tubes used in quartz glass preforms for the manufacture of optical fibers incorporating an optical fiber core glass rod by a rod-in-tube method, and methods for manufacturing the same, and also obtainable from the preforms. It relates to an optical fiber.

최근, 석영글라스계 광섬유 특히 싱글모드용 광섬의 실용화에 따른 대량의 광섬유가 이용되어 지고 있다.Recently, a large amount of optical fibers have been used in accordance with the practical use of quartz glass optical fibers, especially single mode optical islands.

주요한 제조방법으로는 J.PA. No. 50-101416등에 기재된 vad범(기상축부법), U.S.P. NO. 3932162등에 기재된 OVD법(외부법), U.S.P.No. 4217027등에 기재된 MCVD법(내부법)이 있고, 이러한 3종류의 제조방법으로 만들어진 제품으로 세계시장의 거의가 차지되고 있다.The main manufacturing method is J.PA. No. Vad bum (weather failure method) described in 50-101416 etc., U.S.P. NO. OVD method (external method) described in 3932162 et al., U.S.P.No. There is an MCVD method (internal method) described in 4217027, etc., and almost all of the world market is occupied by products made by these three types of manufacturing methods.

그렇지만, 광섬유가 장거리 간선에서 일반가입자용에도 이용범위가 확대되는 단계에 있어서, 그간에 대량의 광섬유가 필요하다는 것을 예측할 수 있지만, 종래까지 알려저 있는 상기 3방법으로는 생산성, 단가면에서 조차도 한계에 도달한다고 생각할수 있다.However, it can be predicted that a large amount of optical fiber is required in the stage where the optical fiber is used for general subscribers in long distance trunks, but the above-mentioned three methods known in the art are limited even in terms of productivity and unit cost. You can think of it as reaching.

석영글라스계 광섬유에 관련한 연구는 이미 20년이 지났기에, 전송특성과 실용상의 신뢰성에 관하여는 이미 궁극적으로 검토되어 있기 때문에 , 이 특성을 유지하여 양산성, 저렴화가 가능한, 새로운 제조방법의 개발은 곤란하다.Since the research on the quartz glass fiber has been over 20 years, the transmission characteristics and the practical reliability have already been reviewed. Therefore, the development of a new manufacturing method that can maintain this characteristic and can be mass-produced and inexpensive is not possible. It is difficult.

양산성, 저렴화를 달성하기 위해서는 프리폼을 대형화하고, 장치에 대한 생산성을 높이면, 양산화와 저렴화가 가능하고, 동시에 평가단가나 불량이 방지된 저렴화도 기대할 수 있다고 생각된다.In order to achieve mass production and cost reduction, it is considered that if the preform is enlarged and the productivity of the device is increased, mass production and cost reduction can be achieved, and at the same time, the cost can be expected to be lowered in evaluation cost and defects.

그러나, 상기 세가지 방법은 소형 실험실 규모에서 출발하여, 특성을 중시하여 검토되어졌으므로, 광섬유 특성에 있어서는 우수하지만, 양산성, 저렴화에는 문제가 있고, 1본(本)의 프리폼에 제조가능한 섬유 길이는 MCVD법으로로는 15㎞∼30㎞, VAD법, OVD법에는 100㎞∼200㎞가 한계였다.However, the above three methods have been examined with a focus on characteristics, starting from a small laboratory scale, and thus excellent in optical fiber characteristics, but have problems in mass production and inexpensiveness, and the fiber length that can be produced in one preform is In the MCVD method, 15 km to 30 km, the VAD method and the OVD method were limited to 100 km to 200 km.

확실히, 상기 세가지 제조방법은 광섬유의 전승부를 제조하기에 적합한 방법이지만, 클래드부(CLAD)로 동시에 제작하는 것은 양산성, 저렴화에 있어서는 결코 적절한 방법은 아니다.Certainly, the above three manufacturing methods are suitable for manufacturing the transmission part of the optical fiber, but simultaneously manufacturing the clad part CLAD is not a proper method in terms of mass productivity and cost reduction.

예컨데, 그레이드 인덱스파이버(A GRADED INDEX FIBER)또는 싱글 모드 파이버(A SINGLE MODE FIBER)에 있어서, 광섬유 단면적의 80% 이상을 차지하는 클래드부를 고능률로 저렴화가 가능한 다른 방법을 이용하여 제조하고, 그것을 상기 3가지 제조방법과 조합한다면, 우수한 제조법이 이루어진다고 생각한다.For example, in graded index fiber or single-mode fiber, a cladding portion, which occupies 80% or more of the optical fiber cross-sectional area, is manufactured by using another method that is highly efficient and inexpensive. In combination with the three manufacturing methods, it is believed that an excellent manufacturing method is achieved.

예를들면, VAD법으로 만들 코어 글라스 로드위에 OVD법으로 클래드부를 합성부착하고, 그것을 광섬유용 코어 글라스로드로써 사용하는 것이 이미 실행되어 있다.For example, it is already performed to synthesize | attach a clad part by OVD method on the core glass rod made of VAD method, and to use it as a core glass rod for optical fibers.

그렇지만, 이 종래의 방법에는 가늘고 짧은 코어 글라스 로드를 이용하였으므로, 클래드의 합성부착요율이 낮고, 또 각 코어 글라스 로드마다에 합성하였기 때문에 양산성과 저렴화에 한계가 있다. 본 발명자등은, 상기 종래 방법을 새로이 검토한 결과, 코어 글라스 로드와 클래드부를 분리하고, 코어 글라스부는 종래까지 알려져 있는 상기 고성능 코어 글라스 제조방법으로 만들고, 클래드부는 따로 효율이 좋은 별도의 방법으로 만들어, 이것을 합친다면 상기 제반문제가 해결될 수 있다고 생각하여, 로드 인 튜브법이 최적이라는 결론에 이르렀다.However, in this conventional method, since a thin and short core glass rod is used, the cladding composition rate of the clad is low, and since it is synthesized for each core glass rod, there is a limit in mass productivity and cost reduction. The inventors of the present invention have newly examined the conventional method, and as a result, the core glass rod and the cladding part are separated, and the core glass part is made of the above-mentioned high performance core glass manufacturing method known in the prior art, and the cladding part is made by a separate method having high efficiency separately. By combining them, the above problems can be solved and the rod in tube method is optimal.

그러나, 종래의 로드인 튜브법에는 문제가 있었다. 첫째로 석영 글라스관의 치수에 문제가 있었다. 종래, 사용되었졌던 석영 글라스관의 치수는, 소구경(외경 15∼30㎜, 두께 1∼6㎜)이고, 치수정도가 외경에서 약 10%, 두께에서 20∼30%의 변동이 있었다. 로드 인 튜브법으로 이런 관에 코어 글라스 로드를 삽입한 경우, 길이, 크기, 숙련도에 따라 글라스관 내벽과의 접촉방지 목적으로 수 ㎜의 간극(clearance)을 필요로 하였다.However, there is a problem with the conventional tube method which is a rod. First, there was a problem with the dimensions of the quartz glass tube. Conventionally, the size of the quartz glass tube used was small diameter (outer diameter 15-30 mm, thickness 1-6 mm), and the dimensional accuracy was about 10% in outer diameter, and 20 to 30% in thickness. When the core glass rod was inserted into the tube by the rod in tube method, a clearance of several millimeters was required for the purpose of preventing contact with the inner wall of the glass tube depending on the length, size, and skill.

이런 이유로, 경이 가늘어지고, 관의 치수오차가 커지고, 넓은 간극을 필요로 하는 것등이 겹쳐져서, 로드인 튜브법으로 일체화시킨 프리폼에 편심이 생기고, 그것이 결과적으로 광섬유의 큰 편심율로 나타나며, 특히 싱글 모드 섬유의 일괄 다심 접속 공사에서의 결합손실을 상정(想定)하는 경우, 로드인 튜브법은 메리트(merit)가 없는 제조방법이었다.For this reason, the diameter becomes thinner, the dimensional error of the tube increases, and the need for a wider gap overlaps, resulting in an eccentricity in the preform integrated by the rod-in tube method, which results in a large eccentricity of the optical fiber, In particular, in the case of assuming a coupling loss in a batch multicore connection construction of single mode fibers, the rod-in tube method was a manufacturing method without merits.

한편, 석용글라스관에 로드인한 코어 글라스로드는 동일 조건에서 만들어도 특성이 편차, 또는 섬유 사양, 사용자의 특징, 제조법에 따라 특성이 변한다. 이러한 조건에대응하여서 각종 치수의 고정도 석영 글라스관이 필요하다. 이런 각종 치수의 고정도 석영 글라스관을 기계적 연삭등에 의해 각각 만드는 것은 치수정도면에서는 우수하지만, 많은 작업시간을 요구하여, 양산화, 저렴화가 곤란하고, 가열연신법으로 만드는 경우에는 양산성, 저렴화 가능하지만 원관의 치수정도가 나쁘고 가열연신시에 크게 증폭되어 목표치수의 석영 글라스관을 정도(精度)가 있도록 제조하는 것이 곤란하였다.On the other hand, even if the core glass rod loaded into the stone glass tube is made under the same conditions, the characteristic varies depending on the variation, the fiber specification, the user's characteristics, and the manufacturing method. In response to these conditions, high-precision quartz glass tubes of various dimensions are required. It is excellent in terms of dimensional accuracy to make each of these high-precision quartz glass tubes by mechanical grinding, etc., but it requires a lot of working time, making it difficult to mass-produce and reduce the cost. However, it was difficult to manufacture a quartz glass tube with a target dimension that was poor in dimensional accuracy and greatly amplified at the time of heating and stretching.

상기 문제점에 더하여, 상기 로드인튜브법은 석영 글라스관 내면과 코어 글라스 로드 외면과의 융착면에 이물(異物)의 혼입과 기포의 발생이 나타나는 등의 결점을 갖는다. 이것은 로드인튜브법을 실시하는 때의 분위기와 세정방법에도 좌우되지만, 석영 글라스관의 내면 다듬질에도 문제가 있었다.In addition to the above problems, the rod in tube method has drawbacks such as mixing of foreign matter and generation of bubbles on the fusion surface between the inner surface of the quartz glass tube and the outer surface of the core glass rod. This depends on the atmosphere and the cleaning method at the time of the rod in tube method, but there is also a problem in the internal finish of the quartz glass tube.

본 발명자등은 이러한 현상의 문제점을 예의 검토한 결과, 현재에 실적이 좋은 상기 세가지 방법을 개량하여 대형화 함으로서, 대구경이고 두께가 두꺼운 고정도 석영 글라스관과, 대형 광섬유 코어 글라스 로드를 로드인튜브법으로 일체화한 대형 프리폼으로 하면, 싱글모드 광섬유에서의 편심율등의 품질이 좋아지고, 양산성, 저렴화가 동시에 만족되어지는 것을 발견했다. 그리고, 상기 로드인 튜브법에 관련한 제반문제는, 대형의 석영 글라스 잉곳(glass ingot)또는 관상체를 이용한다면 고정의 대형산업기계가 이용 가능하며, 예컨데 드릴링머신(상품명, ueda Technical institute 제품)등의 코어드릴 천공기, 외주연삭기, 초정밀 가공기술(초청밀 가공연구회편, 공업조사회, 제421page, 1984년)에 기재된 정밀 호닝(horing)장치등에 기계적으로 내, 외면을 연삭, 개공(開孔), 연마하고, 정확한 치수 정도로 마무리하고, 불산에칭(an etching)하여 표면오염의 제거, 및 절삭면의 조도, 가공비틀림의 완화를 한다면, 실질적으로 고정도인 대형석영 글라스소관을 얻는 것이 가능하다. 또한, 이러한 고정도 기계가공을 조합하여 가열하면서 탄소드릴을 압입하는 가공업(이하 「탄소 드릴압입법」이라 한다)으로 개공한 석영 글라스 소관도 정도가 높고, 「고순도 실리카의 응용기술」 제106page에 기재되어 있는 무접촉형 가열처리법으로 열처리 한 석영 글라스 열처리관도 치수정도가 양호하다. 상기 제조기계로 만들어진 대형 석영 글라스관과 광섬유용 코어 글라스 로드를 조합하여 로드인튜브법으로 일체화함이 가능하므로써 많은 문제점이 해결가능하고, 대형 프리폼을 만드는 것이 가능하며, 1본의 프리폼으로 3000㎞ 이상의 고품위 광섬유가 연속적으로 용이하게 제조하는 것이 가능함을 발견했다. 특히 석영 프리폼중의 이물과 불순물을 제거하고, 탈수하며, 굴절율을 조절 가능한 합성석영 글라스를 원재료로 하는 경우에 최고의 특성이 얻어진다. 이러한 발견을 기초로 하여 본 발명은 완성되어졌다.The present inventors have diligently studied the problems of these phenomena, and as a result have improved and enlarged the above three methods which are currently performing well, a large diameter, thick high precision quartz glass tube and a large optical fiber core glass rod are used as a rod in tube method. When the large-scale preform integrated with the device is found, the quality of the eccentricity and the like in the single mode optical fiber is improved, and the mass production and the cost reduction are satisfied at the same time. In addition, the general problems related to the rod-in tube method, if a large quartz glass ingot or tubular body is used, a fixed large industrial machine can be used, for example, a drilling machine (trade name, ueda Technical institute) Internal and external surfaces are mechanically ground and drilled into the precision honing device described in Core Drill Drilling Machines, Outer Grinding Machines, and Ultra-Precision Machining Techniques (Ultra-Precision Machining Research, Industrial Society, page 421, 1984). It is possible to obtain a substantially high-precision large quartz glass tube by grinding, polishing, finishing to an exact dimension, and etching an annealing to remove surface contamination, and to reduce roughness and processing distortion of the cutting surface. Also, quartz glass pipes opened in the processing industry (hereinafter referred to as "carbon drill press method") that press and heat the high-precision machining in combination are heated, and the application technique of high purity silica is described on page 106. The quartz glass heat-treated tube heat-treated by the contactless heat treatment described above also has good dimensional accuracy. By combining the large quartz glass tube made of the above manufacturing machine and the core glass rod for the optical fiber, it is possible to integrate the rod in tube method so that many problems can be solved and it is possible to make a large preform, and 3000km as one preform. It has been found that the above-described high quality optical fiber can be easily manufactured continuously. In particular, the best characteristics can be obtained when the raw material is a synthetic quartz glass whose foreign material and impurities in the quartz preform are removed, dehydrated, and whose refractive index is adjustable. Based on this finding, the present invention has been completed.

본 발명은, 고정도의 대구경, 두께가 두꺼운 석영 글라스를 제공하는 것을 그 목적으로 한다.An object of this invention is to provide the high precision large diameter and thick quartz glass.

본 발명은, 양산성이 좋고, 저렴한 광섬유를 제조가능한 대형 석영 글라스 프리폼을 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a large-size quartz glass preform in which mass production is good and in which an inexpensive optical fiber can be manufactured.

본 발명은, 고품위의 광섬유를 제조가능케 하는 고정의 대형 석영 글라스 프리폼을 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a fixed large-size quartz glass preform that enables production of high quality optical fibers.

본 발명은, 대형석영 글라스 프리폼으로 얻어진 고품위의 광섬유를 제공하는 것을 그 목적으로 한다.An object of the present invention is to provide a high quality optical fiber obtained from a large quartz glass preform.

본 발명은, 광섬유 제조용 석영글라스 프리폼에 사용되는 고정도의 대구경, 두께가 두꺼운 석영 글라스관을 제공하는 것을 그 목적으로 한다.An object of this invention is to provide the high precision large diameter and thick quartz glass tube used for the quartz glass preform for optical fiber manufacture.

본 발명은, 상기 고정도의 대형 석영 글라스관을 사용한 대형 석영 글라스 프리폼을 제조하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a large quartz glass preform using the high precision large quartz glass tube.

상기 목적을 달성한 본 발명의 대형 프리폼은, 편심율이 작아 로드와 튜브와 경계면에 기포의 발생이 적고, 게다가 양산화, 저렴화가 한층 만족되어 선인(線引)하는 것에 의해 고품위의 광섬유가 제조가능하도록 함에 있다.The large-scale preform of the present invention, which achieves the above object, has a small eccentricity, generates little bubbles at the rod, tube, and interface, and further satisfies mass production and reduction in cost, thereby making it possible to manufacture high-quality optical fibers. It is to be done.

상기 목적을 당성하기 위한 본 발명은, 외경 50∼30㎜, 두께 10㎜이상, 외경과 내경의 비가 1.1∼7, 두께 오차가 2% 이하인 대형 서영 글라스관과, 광섬유용 코어 글라스 로드를 로드인튜브법으로 일체화 시킨 대형 글라스 프리폼 및 그것을 선인(線引)하여 된 광섬유에 대하여, 상기 대형 석영 글라스 프리폼은, 석영 글라스 모재의 외표면 또는 내표면을 기계적으로 고정도 연삭 가공하고, 계속하여 내표면 조도를 20㎛ 이하로 다듬질하는 제조공정을 거쳐 대형 석영 글라스관과 광섬유용 코어 글라스 로드와를 로드인튜브법으로 일체 화함으로써 제조된다.The present invention for achieving the above object is a rod-in a large Seoyoung glass tube having an outer diameter of 50 to 30 mm, a thickness of 10 mm or more, a ratio of the outer diameter to the inner diameter of 1.1 to 7, and a thickness error of 2% or less, and a core glass rod for an optical fiber. The large-size quartz glass preform is a high-precision grinding process of the outer surface or the inner surface of the quartz glass base material, and then the inner surface of the large glass preform integrated with the tube method and the optical fiber obtained by preselecting it. It is manufactured by integrating a large quartz glass tube and a core glass rod for optical fibers by a rod in tube method through a manufacturing process of finishing roughness to 20 μm or less.

여기에, 본 발명에서 사용하는 용어에 대하여 정의한다.Here, the terms used in the present invention are defined.

1) 「대형 석영 글라스관」이란, 관상 석영 글라스의 총칭이고, 본 발명에는 로드인튜브용으로 만든 천연석영 글라스관 또는 합성석영 글라스관도 포함한다.1) "Large quartz glass tube" is a generic term for tubular quartz glass, and the present invention also includes natural quartz glass tubes or synthetic quartz glass tubes made for rod-in tubes.

2) 「석영 글라스 모재」란, 고순도의 천연석영글라스 또는 합성석영 글라스로 구성된 긴 원주상 잉곡(inggot)또는 원주상의 대형 석영 글라스이고, 필요에 따라 조(租) 연삭되지만, 목표치수로 가공되기전의 석영 글라스를 말한다.2) `` Quartz glass base material '' is a long columnar ingot or columnar large quartz glass made of high-purity natural quartz glass or synthetic quartz glass, and roughly ground as necessary, but processed to a target dimension. It means quartz glass before becoming.

특히 합성석영 글라스에는 광섬유의 품질설계에 부합하도록 OH기 제어 및 굴절율(n) 제어(굴절율차 △n 0.02% 이내)등이 되어 질 수 있는 것을 포함한다.In particular, synthetic quartz glass includes OH group control and refractive index (n) control (refractive index difference Δn within 0.02%) to meet the quality design of the optical fiber.

3) 「석영글라스원관」이란, 원주상 석영 글라스 모재를 코더드릴 천공기 등에서 기계적으로 연삭하고 개공하거나, 또는 탄소드릴 압입법에 의해 개공한 관, 혹은 관상의 대형 석영 글라스 모재를 만들고, 각관의 외표면 또는 내표면을 기계적으로 정밀 연삭하여 대략 목표수치로 연삭한 대형 석영 글라스관을 말한다.3) `` Quartz glass tube '' means a cylindrical quartz glass base material mechanically ground and drilled by a coder drill perforator, or a tube or tubular large quartz glass base material made by a carbon drill indentation method, It refers to a large quartz glass tube whose surface or inner surface is mechanically ground and ground to roughly the target value.

4) 「석영 글라스 소관」이란, 석영 글라스 원관의 내,외경치수를 정확하게 정하고, 두께오차를 2% 이하로 하고, 내외면을 연마다듬질하여 불산에칭 처리(HF-etching treatment)한 후 내표면 조도가 20㎛ 이하인 석영 글라스관을 말한다.4) `` Quartz glass tube '' means the inner and outer diameter of quartz glass tube accurately, thickness error is 2% or less, internal and external surfaces are polished and polished, and the surface roughness after HF-etching treatment. Refers to a quartz glass tube having a thickness of 20 μm or less.

5) 「석영 글라스 열처리관」이란, 석영 글라스 소관을 계속하여 무접촉형 가열가공법에서 가열처리, 가열연신처리 도는 가열가압 연산처리한 관이고, 관의 내외표면이 열처리된 대형석영 글라스관 및 /혹은 연신 가공에 의해 석영 글라스 소관과 치수가 다른 대형 석영 글라스관을 말한다.5) `` Quartz glass heat-treated tube '' is a tube which is subjected to heat treatment, heat-stretching, or heating and pressure-computing processing in a non-contact type heat processing method after continuous quartz glass element pipe, and a large quartz glass tube in which the inner and outer surfaces of the tube are heat treated. Or it refers to the large-size quartz glass tube different from a quartz glass element pipe by extending | stretching process.

6) 「두께오차」란, 임의 길이의 대형 석영 글라스관을 길이방향에 따라 (예컨데 5점 이상 또는 50∼100mm간격마다 회전시킨다) 두께를 측정하고 그 위치에서의 관의 두께(t) 최대치(tmax), 최소지(tmin)로 한 때의 값, 즉 [(tamx-tmin)/(tamx+tmin)/2}]x100(%)를 계산하여, 전장의 것중에서 최대치를 %로 표시한 식을 말한다.6) "Thickness error" means measuring the thickness of a large-size quartz glass tube of arbitrary length along its length direction (for example, by rotating it at least 5 points or at intervals of 50 to 100 mm) and measuring the maximum thickness (t) of the tube at that position ( tmax), the value at the minimum tmin, i.e., [(tamx-tmin) / (tamx + tmin) / 2}] x100 (%) Say

7) 「무접촉형 가열 가공법」이란, 석영 글라스 소관에 더미(dummy)관을 융착하고, 그 더미관부를 처리기에 파지(把持)시키고 가열 영역에 접촉시키지 않고 통과시켜, 상기 석영 글라스 소관을 가열처리, 가열 연신 처리 혹은 가열가압 연신 처리 가공법을 말한다.7) "Non-contact heating processing method" means that a dummy tube is fused to a quartz glass tube, and the dummy tube is held in a processor and passed through without being in contact with a heating region, thereby heating the quartz glass tube. Refers to treatment, heat stretching treatment or heat pressure stretching treatment.

8) 「광섬유 코어 글라스 로드」란 광전송부이고, 코어부와 광학적 클래드부로 이루어지며, 고품위를 목적으로 한 싱글모드, 멀티모드 등의 공중 통신용으로서는 코어부와 함께 합성된 클래드부가 충분히 첨작되며, 또한, 그 위에 OVD법에 의한 합성 클래드 또는 /및 석영 글라스관이 피복된 것을 포함하여 그것만을 선인(線引)한 것으로서는 규격에 적합한 섬유로 되지 않는 글라스봉을 말한다.8) The "optical fiber core glass rod" is an optical transmission part, which is composed of a core part and an optical clad part, and the clad part synthesized with the core part is sufficiently added for public communication such as single mode and multi mode for high quality purposes. It refers to a glass rod that does not become a fiber conforming to the standard, including only that coated with synthetic cladding and / or quartz glass tube by OVD method.

상기 대형 석영 글라스관은, 일반 광섬유용 클래드관에 요구되는 품질특성이 만족되는 석영 글라스로 이루어지고 외경이 50-300㎜ 정도인 대형관이다. 대구경화, 두께가 두껍게 된 석영 글라스관의 치수 오차를 작게하고, 그것을 이용하여 로드인 튜브법으로 만든 대형 프리폼을 선인하여 얻은 광섬유는 편심율을 작게하는 것이 가능하여 양산화, 저렴화에 유효하다. 외경이 크고, 외경/내경이 커진 경관의 두께가 두껍게 때문에, 절대치도 커지며, 가공정도가 크기 때문에, 외경과 외경/내경이 작아도 오차가 커지며, 코어에 가까이 MCVD용 반응관과 다중 피복용의 소구경, 두께가 얇은 관에서는 고정도가 요구된다.The large quartz glass tube is a large tube made of quartz glass that satisfies the quality characteristics required for the clad tube for general optical fibers and has an outer diameter of about 50 to 300 mm. The optical fiber obtained by reducing the dimensional error of the large diameter and thickened quartz glass tube, and using the pre-made large preform made by the rod-in tube method, can reduce the eccentricity, which is effective for mass production and cost reduction. Because the outer diameter is large and the outer diameter / inner diameter is too thick, the absolute value is also large, and the processing accuracy is large, so that the error becomes large even when the outer diameter and the outer diameter / small diameter are small, and the reaction tube for MCVD and the multi-coating are close to the core. High accuracy is required for caliber and thin pipes.

본 발명의 대형석영 글라스관의 횡단면도를 제1도에, 또한 본 발명의 대형석영 글라스 프리폼의 횡단면도를 제2도에 도시한다.The cross sectional view of the large quartz glass tube of this invention is shown in FIG. 1, and the cross sectional view of the large quartz glass preform of this invention is shown in FIG.

제1도에 있어서, Do는 외경, Di는 내경이고, 또한 제2도에 있어서 1은 코어 글라스 로드, 2는 클래드층, 3은 피복대형 석영 글라스관이다.In FIG. 1, Do is an outer diameter, Di is an inner diameter, and in FIG. 2, 1 is a core glass rod, 2 is a cladding layer, and 3 is a coated large quartz glass tube.

전술한 대형 석영 글라스 프리폼을 선인하여 얻은 광섬유, 예컨데 싱글모드 섬유의 단면개략도를 제3도에 도시한다. 제3도에 있어서, 4는 코어, 5는 광학적 클래드, 6은 오버(OVER)클래드를 나타내고, a는 코어직경 (d core), b는 광학적 클래드 직경(d cladi), c는 광섬유의 외경(d clado) 125㎛를 나타낸다.FIG. 3 shows a cross-sectional schematic diagram of an optical fiber, such as a single mode fiber, obtained by prescribing the above-mentioned large-size quartz glass preform. In FIG. 3, 4 is the core, 5 is the optical clad, 6 is the over clad, a is the core diameter (d core), b is the optical clad diameter (d cladi), c is the outer diameter of the optical fiber ( d clado) 125 μm.

제4도는 싱글 모드 섬유의 굴절율 분포 및 파워(Power)분포의 개략도를 도시한다.4 shows a schematic of the refractive index distribution and Power distribution of a single mode fiber.

제4도에서는 광학적 클래드부가 코어경( d core)의 외측에 있는 광 파워 분포가 넓게 형성된 부분이다. 따라서 광학적 클래드경(d cladi)은 코어의 합성과 동시에 클래드도 합성되며, 그 두께는 코어의 굴절을 분포의 형상, 굴절율차(△n), 섬유의 사용법등의 조건에 따라 변화하고, 통상은 실제적으로 안전계수를 곱하여 크게된 값이 채용된다. 본 발명에서 광섬유용 석영 글라스 코어로드는 적어도 제4도의 광학적 클래드부를 포함한 석영 글라스로드을 말한다.In FIG. 4, the optical cladding portion is a portion in which the optical power distribution outside the d core is formed wide. Therefore, the optical cladding (d cladi) is composed of the cladding at the same time as the synthesis of the core, the thickness of the core varies depending on the conditions such as the shape of the distribution, refractive index difference (△ n), fiber usage, etc. In practice, the value multiplied by the safety factor is adopted. In the present invention, the quartz glass core rod for an optical fiber refers to a quartz glass rod including at least an optical clad portion of FIG. 4.

상술한 본 발명에 있어서 광섬유는, 대형 프리폼을 선인함으로서 형성되어짐으로서, 제3도의 광섬유의 외경(d clado)과 광학적클래드 경(d cladi)와의 비 d clado/d cladi는 제2도의 대형 석영 글라스 프리픔을 형성하는 제1도의 대형석영 글라스관의 외경(Do)와 내경(Di)의 비 Do/Di에 대체로 비례하는 것이다.In the present invention described above, the optical fiber is formed by selecting a large preform, so that the ratio d clado / d cladi between the outer diameter (d clado) of the optical fiber of FIG. 3 and the optical clad diameter (d cladi) is the large quartz glass of FIG. It is generally proportional to the ratio Do / Di of the outer diameter Do and the inner diameter Di of the large quartz glass tube of FIG.

그러므로, 광섬유의 설계에 있어서는 상술한 Do/Di을 지표로 설계할 필요가 있다. 예컨데 싱글모드 섬유(1.3μm 파장용)의 파워경을 9μm, GI형 멀티모드 섬유의 파워경을 50μm, 광섬유의 외경을 125μm로 하였을 때, Do/Di는 다음의 표1에 표시한 값을 갖는다.Therefore, in designing an optical fiber, it is necessary to design Do / Di mentioned above as an index. For example, when the power diameter of a single mode fiber (for 1.3 μm wavelength) is 9 μm, the power diameter of a GI multimode fiber is 50 μm, and the outer diameter of the optical fiber is 125 μm, Do / Di has the values shown in Table 1 below. .

상기 표1에 따르면 예컨데 대표적인 예로서 괄호로 표시한 멀티모드 섬유의 경우에는 Do/Di가 2.5이하, 통상, 동시 합성에 의하여 합성 클래드층이 5%∼30%, 예컨데 20%의 클래드층이 있고 60㎛ 이며 Do/Di = 2.08이다.According to Table 1, for example, in the case of the multi-mode fibers shown in parentheses, Do / Di is 2.5 or less, and usually 5 to 30% of the synthetic cladding layer, for example, 20% of the cladding layer by co-synthesis. 60 µm and Do / Di = 2.08.

싱글모드 섬유의 경우에는 Do/Di가 약 7이하에 있으면 실용적인 광섬유가 얻어진다. 즉 1.3㎛ 대용(조합 클래드방식, matched cladded type)(디플리스트 방식, Deplest types) 1.55㎛ 대용, 디스퍼션(dispersion)전위방식등의 메인파워(main power) 분포는 어느 것이나 약 20㎛ 이하로 추정되고, 안전율을 채용하여도 d cladi/d core ≒ 3 이상, 곧 Do/Di ≒ 4.63 이하가 실용적 범위로 된다. 또한 2중, 3중으로 피복(jacket)하는 경우는 역시 Do/Di 도 적은 값으로 된다. 그러나, Do/Di를 1.1∼7의 범위에서 선택하는 것이 실용적인 광섬유를 제조하는 조건이다. 그렇지만, Do/Di는 프리폼경의 비(比)이기 때문에 로드인튜브용 석영 글라스관의 경우에는 석영 글라스관과 코어 글라스로드의 사이에 약간의 간격을 만들 필요가 있다고 하는 것은 말한 필요도 없다.In the case of single-mode fiber, a practical optical fiber is obtained when Do / Di is about 7 or less. That is, the main power distribution, such as 1.55 μm substitute (dispersion type) and 1.3 potential substitute (combined cladded type) (matched cladded type) (deplest type), is estimated to be about 20 μm or less. Even if a safety factor is adopted, the practical range is d cladi / d core # 3 or more, that is, Do / Di # 4.63 or less. In the case of double or triple jacketing, Do / Di is also less. However, selecting Do / Di in the range of 1.1 to 7 is a condition for producing a practical optical fiber. However, since Do / Di is a ratio of the preform diameter, it is needless to say that in the case of the quartz glass tube for rod-in tube, it is necessary to make a slight gap between the quartz glass tube and the core glass rod.

대형 석영 글라스관을 만드는데는, 천연 석영의 경우에 대하여 알려진 종류의 방법이 이용된다. 포트(pot) 용융인발법과 몰드(mold)성형법도 이용 가능하지만, 포트 용융인발법에는 대구경화가 곤란하고, 몰드성형법에서는 용기에 사용하는 내열재가 석영 글라스와 장시간 직접 접촉 용융하여 내열재중의 불순물을 석영 글라스 모재의 내,외표면으로 이행확산시킨다.In order to make a large quartz glass tube, a kind of method known to the case of natural quartz is used. Pot melt drawing method and mold molding method are also available, but large diameter hardening is difficult in the pot melt drawing method, and in the mold molding method, the heat-resistant material used for the container is directly contacted and melted with quartz glass for a long time to remove impurities in the heat-resistant material. Transfer and spread to the inner and outer surfaces of the quartz glass base material.

그런 까닭으로 광섬유의 전송손실을 증가시키기 때문에, 코어부에 접근시켜서 피복한 경우는 오염부의 대폭적인 제거가 필요하다.Therefore, since the transmission loss of the optical fiber is increased, it is necessary to greatly remove the contaminated portion when the core portion is approached and coated.

본 발명에 의한 대형석영 글라스관의 제조방법에 있어서는, 원주상 석영 글라스 모재를 만들고, 그 중심을, 제5도에 표시한 코어 드릴 천공기에 의한 기계연삭에 의해서 개공하거나, 또는 원주상 석영 글라스 모재를 열간탄소드릴 압입법으로 단시간 접촉용융함으로써 개공하는등의 2공정을 거치는 방법, 혹은 내열심재상에 다공질 실리카 수트재(silica soot material)를 퇴적하여, 탈수, 용융글라스화하는 OVD법(U.S.P. No. 2, 272, 342), 또는 직접 VAD법으로 구멍을 뚫어 수트를 만들어, 탈수, 용융글라스화하는 1공정의 방법등이 이용가능하다. 제5도에 있어서, 7은 원주상 석영 글라스 모재, 8은 코어드릴, 9는 숫돌을 나타낸다. 제6도는 열간탄소드릴 압입법의 개략도를 나타내고, 상기 제5도에 있어서, 10은 원주상 석영 글라스모재, 11은 탄소드릴, 12는 석영 글라스원과, 13은 가열히타(Heater)를 나타낸다.In the method for producing a large quartz glass tube according to the present invention, a columnar quartz glass base material is made, and the center thereof is opened by mechanical grinding using a core drill perforator shown in FIG. 5 or a columnar quartz glass base material. Is a two-stage process, such as opening through short-term contact melting by hot carbon drill indentation method, or OVD method (USP No. No. 2) in which a porous silica soot material is deposited on a heat-resistant core material and dehydrated and melted. 2, 272, 342, or the one-step method of making a soot by direct VAD method, dewatering and fusion glass, etc. are available. In FIG. 5, 7 represents a columnar quartz glass base material, 8 represents a core drill, and 9 represents a grindstone. FIG. 6 shows a schematic diagram of the hot carbon drill press-fit method. In FIG. 5, 10 is a columnar quartz glass base material, 11 is a carbon drill, 12 is a quartz glass source, and 13 is a heater.

로드인튜브용 석영 글라스관은 치수정도가 나쁘면 가열연신 가공시에 그 오차가 한층 증폭되어 상대적으로 오차가 커진다.If the size of the quartz glass tube for rod in tube is poor, the error is further amplified during the heat drawing process, and the error becomes relatively large.

또한, 다중피복에 의하여 오차가 더 커지기 때문에, 치수정도는 정확하게 할 필요가 있다. 석영 글라스 모재를 가공하고 정도가 높은 석영 글라스 원관을 얻는데는 기계적 연삭가공이 적합하다. 석영 글라스의 대형화에 따라 기계적 연식가공, 특히 종래까지 알려져 있는 산업용 대형 기계에 의한 정밀연삭 가공이 가능하게 되었다.In addition, since the error becomes larger due to multiple coatings, the dimensional accuracy needs to be accurate. Mechanical grinding is suitable for processing quartz glass base materials and obtaining high precision quartz glass tubes. With the increase in size of quartz glass, mechanical softening, in particular, precision grinding by industrial large-scale machines known up to now becomes possible.

그러나, 높은 정도가 얻어지는 반면, 가공면에 연삭시의 가공홈, 미세한 균열, 그리즐(grizzles), 가공비틀림등이 발생하고 그것이 로드인튜브법으로 일체화시에 내부경계면에 기포를 발생시키는 것이다. 종래 이러한 문제를 해결하기 위하여, 시간을 갖고 연삭면을 고정밀 기계연삭을 한다거나, 내면열간 폴리싱(fire polishing)을 하거나, 혹은 특수 글라스층을 내표면에 형성함으로서 내표면에 형성함으로서 내면조도를 예컨데 0.01㎛ 정도로 하고 있지만(J.A.P. 52-92530호 공보참조), 이러한 처리법은 번거러워서 대형(대구경, 두꺼운 두께, 긴 길이) 석영 글라스관을 대량 생산하는 경우에는 거의 실시 불가능하였다. 그렇지만, 고순도 석영 글라스 원관의 내면 다듬질을 정밀 호닝(Honing) 장치를 이용함으로서 해결가능하는 것이 판명되었다.However, while a high degree is obtained, processing grooves, fine cracks, grizzles, processing distortions, etc. at the time of grinding are generated on the processing surface, and when they are integrated by the rod-in-tube method, bubbles are generated at the inner boundary surface. In order to solve such problems in the related art, internal roughness may be formed by time-consuming high-precision mechanical grinding, internal surface polishing or fire polishing, or by forming a special glass layer on the inner surface to form the inner surface. Although it is about micrometer (refer to JAP 52-92530), this process was cumbersome and it was hardly implement | achieved when mass-producing large size (large diameter, thick thickness, long length) quartz glass tube. However, it has been found that the internal finish of high purity quartz glass tubes can be solved by using a precision honing device.

이 가공법에는, 석영글라스 원관이 외경 50㎜φ 이상에 있으면 길이가 3000㎜정도의 원관을 전장이 곧기 때문에 전체의 위치에서 진원의 관이 가공 가능하다.In this processing method, if the quartz glass tube is 50 mm φ or more in outer diameter, the full length of the round tube of about 3000 mm is straight, so that the round tube can be processed at the entire position.

숫돌 또는 숫돌입자의 등급(grade)을 변경하여 연삭연마하고, 균열, 그리즐(grizzles), 응력비틀림등을 제거하며, 이것을 일회 불산수용액으로 처리하여 응력집중을 완화하고, 초음파 세정으로 표면오염의 제거를 하여 내면조도를 20㎛ 이하로 하고, 계속해서 필요하다면 이 물질을 가열 가공처리를 하면, 기계연삭부의 날카로운 凹凸부와 갈라짐부분의 완만한 면으로 되고, 동시에 가공비틀림도 풀어주며, 기포의 발생을 억제하는 것이 가능하다.Grind and grind by changing the grade of grindstone or grindstone, remove cracks, grizzles, torsion, etc., and treat it with a single hydrofluoric acid solution to relieve stress concentration and ultrasonic cleaning If removed, the inner roughness is 20 µm or less, and if necessary, the material is heat-processed to obtain sharp edges of the mechanical grinding part and a smooth surface of the cracked part, and at the same time, to solve the processing distortion, It is possible to suppress the occurrence.

본 발명자등의 실험에 따르면, 연삭에 의하여 내표면 조도가 20㎛를 초과하면, 가열연신처리하여도 상기 가공흠이 완화 또는 풀리지 않고 로드인튜브법에 의하여 일체화시에 내부경계면에 기포로 되어 발생하는 것이 알려지게 되었다.According to the experiments of the present inventors, when the inner surface roughness exceeds 20 µm by grinding, even when heated and stretched, the processing defects are not alleviated or released, and bubbles are generated at the inner boundary surface when being integrated by the rod in tube method. It became known.

원주상 석영 글라스 모재를 코어 드릴 천공기등으로서 기계적으로 연삭하여 개공한다거나, 혹은 OVD법등으로 만든 관상의 대형석영 글라스 모재의 내표면을 기계적으로 정밀 연삭한 석영 글라스 원관의 경우, 내주다듬질가공은, 초정밀 호닝 가공법이 좋다. 그 결과, 코어 글라스 로드와의 간극을 좁게 하는 것이 가능하다. 이 초정밀 호닝 가공과 외주연삭을 조합, 연삭원관의 두께 오차를 2% 이하로 한다. 이 범위내의 오차에는, 가열가압연신시에 따른 오차의 증폭이 거의 일어나지 않으며, 섬유의 편심율에 악영향을 주는 일도 없다.In the case of a quartz glass tube in which a cylindrical quartz glass base material is mechanically ground by a core drill perforator, or mechanically precisely ground the inner surface of a tubular large quartz glass base material made by OVD, etc. Honing is good. As a result, it is possible to narrow the gap with the core glass rod. This ultra-precision honing and outer grinding are combined to make the thickness error of the grinding tube less than or equal to 2%. In the error within this range, the amplification of the error at the time of hot press stretching hardly occurs, and the eccentricity of the fiber is not adversely affected.

열간 탄소 드릴 압입법은 원주상 석영 글라스 모재를 가열하고, 중심에 탄소 드릴을 압입하지만, 이러한 방법의 열적개구법을 채용하면, 석영글라스관의 내면 연삭, 연마하지 않아도 내면조도가 20㎛ 이하, 실제 수 ㎛ 이하의 대형 석영 글라스관을 용이하게 형성가능한 이점이 있다. 또한, 대상 석영 글라스 모재의 외경이 50㎜φ이상이면, 개구부의 진원도, 진직도등의 정도를 현저하게 향상시킴이 가능하다. 따라서, 외경 50㎜φ 이상의 원주상 석영 글라스 모재에 있어서는, 상기 열간탄소 드릴 압입법으로 개공하는 것으로 외경이 300㎜φ 혹은 그이상, 길이가 3000㎜ 정도의 대구경관을 전장이 일직선으로 전체의 위치에서 진원의 관을 제조함이 가능하다.The hot carbon drill indentation method heats a columnar quartz glass base material and indents a carbon drill in the center. However, when the thermal opening method of this method is adopted, the inner roughness of the quartz glass tube is 20 µm or less without grinding or polishing. In fact, there is an advantage that can easily form a large quartz glass tube of several micrometers or less. Moreover, when the outer diameter of the target quartz glass base material is 50 mmφ or more, the degree of roundness, straightness, etc. of an opening part can be improved remarkably. Therefore, in the columnar quartz glass base material with an outer diameter of 50 mmφ or more, the whole diameter is aligned in a straight line in a large diameter tube having an outer diameter of 300 mmφ or more and a length of about 3000 mm by opening by the hot carbon drill press-fitting method. It is possible to produce a round tube from.

외주면의 연삭은, 연삭면이 직접 고온부에 접근하여 가열되기 때문에 연삭조견은 내주면 연삭보다 심하지 않아도 좋지만, 광섬유이기 때문에 파단강도에 영향이 끼쳐짐으로서 불산에칭으로 미세한 응력집중부분을 제거 혹은 완화한 다음에 표면조도를 적어도 200㎛ 이하 바람직하게는 100㎛이하로 할 필요가 있다. 그런 이유로, 외주연삭에는, 반도체 잉곳(Ingot)과 여러가지 세라믹 연삭가공등의 실적이 있는, 예컨데 표준 외주연삭기 또는 원통연삭기가 이용된다.The grinding of the outer circumferential surface does not have to be more severe than the grinding of the inner circumferential surface because the grinding surface is directly heated to the high temperature part, but since it is an optical fiber, the breaking strength is affected. The surface roughness must be at least 200 µm or less, preferably 100 µm or less. For this reason, for example, a standard outer circumferential grinding machine or cylindrical grinding machine, which has a track record of semiconductor ingots and various ceramic grinding processes, is used for outer circumferential grinding.

상기 구명을 뚫는 가공을 종료한 후에는 기계가공면의 다듬질 연마를 하여 두께 오차가 2% 이하에 있음을 확인한다. 이것을 불산에칭 처리하여 내표면조도가 20㎛이하인 석영 글라스 소관으로 한다. 석영 글라스 소관은 광섬유용 코어 글라스로드와 로드인 튜브법에 의해 일체화 하지만, 코어 글사스 로드는 동일조건에서 만들어도 특성이 편차, 또는 섬유사양, 소비자의 특징, 제조법에 의하여도 특성이 변한다. 따라서, 상기 석영 글라스 소관이 이 코어 글라스로드에 조합시키기 위해서는 가열연신처리를 하여 각종 치수의 석영 글라스관을 만드는 것이 좋다. 이 가열연신 처리에는 불순물을 석영 글라스관에 부착시키지 않은 무접촉형 가열가공법이 이용가능하다.After finishing the above-mentioned life-saving processing, it is confirmed that the thickness error is less than 2% by finishing polishing of the machined surface. The hydrofluoric acid etching treatment is performed to obtain a quartz glass tube having a surface roughness of 20 µm or less. The quartz glass tube is integrated with the core glass rod for optical fiber and the tube-in-rod method. However, even if the core glass rod is made under the same conditions, the characteristic varies depending on variations, fiber specifications, consumer characteristics, and manufacturing methods. Therefore, in order for the quartz glass element to be combined with the core glass rod, it is preferable to heat-treat the quartz glass tube of various dimensions. For this heat drawing treatment, a contactless heating method in which impurities are not adhered to the quartz glass tube can be used.

제7도에 있어서, 14는 석영글라스소관, 15는 가열원, 16은 연신롤(roll), 17은 더미(dummy)관, 18은 석영글라스 열처리관, 19는 센서를 나타낸다. 그 무접촉형 가열가공법에서 대형 석영 글라스소관을 정확한 목표 치수로 가공하는데에는 연신과 동시에 관내를 가압할 필요가 있다. 석영 글라스 소관의 치수, 두께, 가열시의 글라스 점도, 연신비 등에 의하여 압력을 변화시켜야 하지만, 보다 정확한 치수를 얻기 위해서는, 석영 글라스 소관의 외경(Do)와 내경(Di)의 비(Do/Di)와, 가열 연신 처리후의 석영 글라스 열처리관의 외경(do)와 내경(di)의 비(do/di)가, ( do/di)/(do/di)=1.0∼1.5의 범위내에 있도록 하여 가공하는 것이 좋다.In Fig. 7, 14 denotes a quartz glass tube, 15 a heating source, 16 a draw roll, 17 a dummy tube, 18 a quartz glass heat treatment tube, and 19 a sensor. In the non-contact heating method, it is necessary to pressurize the tube at the same time as to stretch the large-size quartz glass tube to the exact target dimension. The pressure should be changed according to the size, thickness of the quartz glass tube, glass viscosity at heating, elongation ratio, etc., but in order to obtain a more accurate dimension, the ratio of the outer diameter (Do) and the inner diameter (Di) of the quartz glass tube is (Do / Di). And the ratio (do / di) of the outer diameter (do) and the inner diameter (di) of the quartz glass heat treatment tube after the heat-stretching treatment is processed so as to be in the range of (do / di) / (do / di) = 1.0 to 1.5. Good to do.

전기 비가 1.0 이하에서는 관의 형상 변형을 수반하고, 1.5를 초과하면 관의 두께 오차는 커지고, 온도조건에 따라 관이 파열된다. 따라서 상기, 처리범위외에서는 정확한 치수의 석영글라스관을 만드는 것이 불가능하다.If the electrical ratio is 1.0 or less, the shape of the tube is accompanied by deformation, and if it exceeds 1.5, the thickness error of the tube increases, and the tube ruptures according to the temperature conditions. Therefore, it is impossible to make a quartz glass tube with an accurate dimension outside the treatment range.

특히, 상기 비가 1.5에 근접시에는 두께 오차를 2% 이하에 있도록 하는 것이 절대 필요하다. 또한, 상기 가열가공처리의 온도는 외경 50-300㎜으로 될때에 따라서 1600℃∼3000℃, 바람직하게는 경제적인 이유로서 2000℃∼2800℃가 필요하다.In particular, it is absolutely necessary that the thickness error be less than or equal to 2% when the ratio is close to 1.5. Further, the temperature of the heat treatment treatment is 1600 to 3000 ° C, preferably 2000 to 2800 ° C for economic reasons, depending on the outer diameter of 50-300 mm.

상기 온도범위 이하에서는, 석영 글라스 소관을 열연화 가공하는 것이 곤란하고, 또는 전기 온도범위 이상에서는, 석영 글라스 소관이 열화를 수반하면서 변형하고 유연하여지며, 치수 정도를 정확하게 유지하는 것이 곤란하다.Below the above temperature range, it is difficult to heat-soften the quartz glass tube, or above the electric temperature range, the quartz glass tube becomes deformed and flexible with deterioration, and it is difficult to accurately maintain the dimensional accuracy.

Do/Di 또는 do/di는 싱글모드 광섬유의 오버 클래드부를 표시하며, 1회 피복(jacket)된 경우는 상기 비가 2∼7, 2회 이상 피복한 경우는 예컨데 1.1∼3의 정도의 것을 조합한다.Do / Di or do / di denotes an over cladding portion of a single-mode optical fiber, and in the case of one jacket, the ratio is 2 to 7, and when the coating is performed two or more times, for example, those of about 1.1 to 3 are combined. .

상기의 가열처리한 석영 글라스 열처리관은 1600∼3000℃의 고온에서 열처리 되기 때문에 기계적 연삭에 의거한 연삭면의 조도, 가공비틀림등의 각종 가공흠은 완화 또는 해방된다. 특히 열연신의 변형도 큼에 따라 표면의 흠, 균열, 피트(pit)등이 크게 변형 확대되어, 구멍은 얕아지고, 예리한 각부분이 없어지며 종래 로드인 튜브용 석영 글라스관에 필요한 고정도 기계연마처리, 내면 열간 폴리싱 처리, 혹은 특수 글라스층을 내면에 형성하는 처리등, 대량 생산에 적합하지 않은 공정처리를 생략함이 가능하다. 따라서, 대형 석영 글라스 소관을 고정도로 만들고 열변형을 이용하여 목적하는 대형 석영 글라스관을 얻는 것이 유리하다.Since the above-mentioned heat-treated quartz glass heat-treated tube is heat-treated at a high temperature of 1600 to 3000 ° C., various processing defects such as roughness of the grinding surface and processing torsion based on mechanical grinding are alleviated or released. In particular, as the degree of thermal stretching is large, the surface flaws, cracks, pits, etc. are greatly deformed and enlarged, so that holes are shallow, sharp corners are eliminated, and high precision mechanical polishing required for quartz glass tubes for tubes that are conventional rods is performed. It is possible to omit a process treatment that is not suitable for mass production, such as treatment, hot polishing of the inner surface, or treatment of forming a special glass layer on the inner surface. Therefore, it is advantageous to make a large quartz glass tube with high accuracy and to obtain a desired large quartz glass tube using heat deformation.

본 발명에 의한 천연 석영 글라스의 제조방법에 있어서는, 자연산 수정유리 중에서 양질의 부분을 선별하여 각 수정유리의 외곽부를 제거하고 중심부를 취출(取出)하며, 이것을 분쇄하여 입경을 가르고, 이물질을 제거한 후 화학적 처리하여 불순물을 제거한다. 이것을 원료로하여 포트(pot) 용융 인발법과 모울드(mold)형성법등 예전부터 알려져 현재에도 일반적으로 이용되어 지는 방법으로 제조한다. 그러나 산수소(Oxyhydrogen)에 의한 베르누이(Verneuil)법으로 대형 원주상 석영 글라스 모재를 제조하는 방법은 불순물이 가장 적어서 광섬유용 석영 글라스 재료의 제법으로 추천된다.In the method of manufacturing natural quartz glass according to the present invention, the high-quality part is selected from natural quartz glass, the outer part of each quartz glass is removed, the center part is taken out, and it is crushed to cut the particle diameter and remove foreign substances. Chemical treatment removes impurities. The raw material is manufactured by a method known from the past, such as a pot melt drawing method and a mold forming method. However, the method of producing a large columnar quartz glass base material by the Verneuil method by Oxyhydrogen is the least impurity and is recommended as a manufacturing method of the quartz glass material for optical fibers.

본 발명에 사용되는 합성석영 글라스 잉곳 또는 관상체의 제조방법에 있어서는, 종래까지 알려져 있던 전술한 「고순도 실리카의 응용기술」 제100∼104page등에 기재된 각종 제조방법을 생각할 수 있는데, 고온기상 베르누이법은, 기상(氣相) 규소화합물, 예컨데 SiCl과 산수소염(oxyhydrogen frame)에 의해 직접 글라스 잉곳을 얻는 방법이고, 합성석영 글라스중에 OH기가 800ppm 이상도 많이 함유하고 있어 (저 OH용) 광섬유용 소재로 사용하기에는 부적당하며, 오로지 반도체용 포토 마스크(photo mask)기판과 노광장치의 광학부재에 사용된다.In the method for producing a synthetic quartz glass ingot or tubular body used in the present invention, various production methods described in the above-mentioned "Application Techniques for High Purity Silica" Nos. 100 to 104, which have been known so far, can be considered. It is a method to obtain glass ingot directly by gaseous silicon compound such as SiCl and oxyhydrogen frame, and contains 800 ppm or more of OH groups in synthetic quartz glass (for low OH). It is inappropriate for the following, and is used only for photomask substrates for semiconductors and optical members of exposure apparatus.

또한, 이 방법을 개량한 플라즈마(Plasma)법은, OH기가 낮고 대전력을 요구하여 단가가 높아지기 때문에, 광섬유용 고순도 코어 글라스등의 특수품 제조에 이용되는데 불과하다.In addition, the plasma method improved from this method is used only for the manufacture of special products such as high-purity core glass for optical fibers, because the OH group is low and the unit price is increased due to the high power demand.

그것에 대하여, 상기 직접 글라스화법으로도 화염온도를 낮추면서, 회전하는 기재(타겟, target)위에 원료 가스를 불어서 부착시키고, 다공질 수트재를 형성함으로써 탈수처리를 한 후에, 글라스화하는 방법은 상기 결점이 없어서 본 발명의 모재의 제조방법에 있어서 적당하다.On the other hand, the direct glassing method also lowers the flame temperature, attaches the raw material gas to the rotating substrate (target) by blowing it, and forms a porous soot material, followed by dehydration treatment. It is suitable in the manufacturing method of the base material of this invention since there is no.

VAD법은, 중실원주상 석영 글라스 모재의 제조가 주요하고, OVD법은 관상의 석영 글라스 모재가 직접 만들어진다.The VAD method mainly produces a solid columnar quartz glass base material, and the OVD method produces a tubular quartz glass base material directly.

상기 수트(soot)법에 따른는 제조방법을 채용한 합성 석영 글라스 관에는, 사용하는 코어 글라스 로드의 클래드부에 합쳐져서 OH기의 굴절율을 정확하게 합치는 것이 가능하다.In the synthetic quartz glass tube adopting the manufacturing method according to the soot method, it is possible to be combined with the cladding portion of the core glass rod to be used to accurately match the refractive index of the OH group.

본 발명의 대형 석영 글라스 프리폼에서 75㎜ψ 이하의 대구경 프리폼은, 75㎜ψ정도의 석영 글라스관을 이용하여 프리폼을 만들거나, 대형 프리폼을 재연신하거나 또는 로드인 튜브공정에 있어서 석영 글라스관과 코어 글라스 튜브의 합체와 연신을 동일 공정에서 동시에 하여, 직접 목표 외경의 프리폼을 얻은 것이 가능하다.In the large quartz glass preform of the present invention, the large-diameter preform of 75 mmψ or less may be formed using a quartz glass tube of about 75mmψ to make a preform, to re-extend the large preform, or to a rod-in-tube process. It is possible to obtain the preform of the target outer diameter directly by simultaneously merging and stretching the core glass tube in the same process.

싱글 모드용 코어 글라스 로드에는 모드 필드(mode field)경, 컷오프 파장, 디스퍼션(dispersion)등의 특성 선정이 중요하다. 최근 한층 특성이 좋아져서, 만들어진 코어 글라스 로드를 그대로 이용하더라도, 특성은 약간 스캐터(scatter)되는 경우가 많다.Selection of characteristics such as mode field diameter, cutoff wavelength, and dispersion is important for the core glass rod for single mode. In recent years, even when the core glass rods are used as they are, the characteristics are often scattered slightly.

따라서, 코어 글라스 로드의 클래드 두께를 석영 글라스관에서 1회 조절한 후 특성 체크(check)를 하고, 또한 대형 석영 글라스관을 두번째 피복(jacket)하여, 에칭(etching)등을 조합시켜서 외경조절을 한다. 대형 석영 글라스 프리폼에는 조정범위가 확대되어 다시금 높은 정도가 얻어지는 특징이 있다.Therefore, after adjusting the cladding thickness of the core glass rod once in the quartz glass tube, the characteristic check is carried out, and the large-size quartz glass tube is jacketed a second time, and the outer diameter is controlled by combining etching. do. Large quartz glass preforms are characterized in that the adjustment range is extended to obtain a high degree again.

실시예 1Example 1

축부법(VAD법)을 사용하여, SiCl를 기화하고, 산수소염중에 화염가수분해하며, 회전하는 석영 글라스봉에 내뿜어서 대형 석영 다공질 글라스재를 만들었다. 이 글라스재를 전기로에 넣고, 코어 글라스 로드의 조건을 고려하여 He, Cl혼합가스에 의하여 가열탈수하고, 조운 멜트(Zone melt)법에 따라 1550℃에서 투명 글라스화하며, 대형의 원주상 석영 글라스모재로 한다. 이 석영 글라스 모재는, 우선 양단을 절단하고, #80번 숫돌의 코어드릴 천공기에서 양단부터 교대로 중심부를 개공한 후, 외주면을 #80번 숫돌의 외주연삭반에서 거친 연삭하여 치수를 맞추고, 외경 94㎜ψ, 내경 30㎜ψ, 외경/내경의 비 =3.13, 두께 약 32㎜, 길이 730㎜, 무게 약 10㎏의 합성석영 글라스관을 얻는다.Using the axial method (VAD method), SiCl was vaporized, hydrolyzed in oxyhydrogen salt, and sprayed on a rotating quartz glass rod to form a large quartz porous glass material. The glass material is placed in an electric furnace, and heated and dehydrated by a mixture of He and Cl in consideration of the conditions of the core glass rod, and transparently formed at 1550 ° C. according to a zone melt method. It is made of base material. The quartz glass base material is first cut at both ends, and then alternately opens the center from both ends in a core drill drill of # 80 grindstone, and then roughly ground at the outer peripheral grinder of # 80 grindstone to adjust dimensions. A synthetic quartz glass tube having a diameter of 94 mm, an inner diameter of 30 mm, an outer diameter / inner diameter = 3.13, a thickness of about 32 mm, a length of 730 mm, and a weight of about 10 kg was obtained.

상기 합성 석영 글라스 원관의 내면은, 전장을 초정밀 마무리 가공용 긴 자동 호닝 머신에서 가공하며, 전장을 관통하여 진원상의 구멍을 가지는 합성 석영 글라스 원관을 얻고, 다음에 NC 외주 연삭반에서 내경 중심과 외경 중심이 일치하도록 외주면을 연삭하고, 두께 오차 2% 이하로 될때까지 내외연삭 및 연마를 반복하며, 내주는 최종적으로 #800다듬질을 행하고, 외주는 #140으로 다듬질했다. 계속하여 표면오염을 제거함과 동시에, 표면 가공비틀림을 완화하는 목적으로 농도 30%에서 50% 까지의 불산으로서 석영 글라스 원관의 표면을 체크하면서 에칭하여 다듬질하고, 순수한 물에서 초음파 세정을 하여, 합성석영 글라스 소관도 얻어졌다.The inner surface of the synthetic quartz glass tube is processed in a long automatic honing machine for ultra-precision finishing, to obtain a synthetic quartz glass tube having a round hole through the entire length, and then the inner diameter center and outer diameter center in the NC outer grinding mill. The outer circumferential surface was ground so as to coincide with this, the inner and outer grinding and polishing were repeated until the thickness error was 2% or less, the inner end was finally finished with # 800, and the outer circumference was trimmed with # 140. To remove the surface contamination and to reduce surface distortion, the surface of the quartz glass tube is etched and polished with hydrofluoric acid with a concentration of 30% to 50%, and ultrasonically cleaned in pure water. A glass tube was also obtained.

이 합성석영 글라스 소관은, 외경(Do) 91. 5㎜ , 내경(Di) 32.4㎜ , 외경(Do)/내경(Di)비 = 2.82, 두께 29.55㎜, 두께오차(tmax-tmin) 0.48㎜(1.62%), 길이 730㎜, 무게 9.2㎏ 이었다.This synthetic quartz glass tube has an outer diameter (Do) of 91.5 mm, an inner diameter (Di) of 32.4 mm, an outer diameter (Do) / inner diameter (Di) ratio of 2.82, a thickness of 29.55 mm, a thickness error (tmax-tmin) of 0.48 mm ( 1.62%), length 730 mm, and weight 9.2 kg.

게다가 표면을 촉짐식 간이 조도계로 종방향으로 8㎜ 이동하여 조사하여, 내면조도(Rmax) 4.8㎛, 외면조도(Rmax)53을 얻었다.Furthermore, the surface was moved 8 mm in the longitudinal direction with a tacky simple illuminometer to obtain an inner roughness (Rmax) of 4.8 µm and an outer roughness (Rmax) 53.

한편, VAD법에 따라서 코어, 클래드 굴절율차(△n) = 0.343%, 클래드부의 로드에서 외경 54.5㎜ψ, 길이 455㎜ 의 1.3㎛ 용 싱글모드 글라스 로드를 준비하였다. 외경제어부 정밀 자동연신기로서 외경 30.1㎜ψ로 가열연신하고, 컷오프 파장(λc) 1.25 로 설계하여, 그 로듸의 외표면을 약간 에칭한 후, 길이 730㎜ψ로 용단(fuse cut)한다. 상기 합성 석영 글라스소관에 코어 글라스 로드를 주의하여 깊이 삽입후, 코어 글라스 로드와 합성석영글라스 소관의 각 센터(center)를 일치시켜 고정시키고 양단을 더미(dummy)석영재료에 연결시킨후, 전체를 회전시켜 접속가공에 따른 구부러짐, 비틀림을 교정하였다.On the other hand, a 1.3 mu m single-mode glass rod having an outer diameter of 54.5 mm ψ and a length of 455 mm was prepared from the core, the clad refractive index difference (Δn) = 0.343%, and the rod of the clad portion in accordance with the VAD method. An external fisherman precision automatic stretching machine was heated and stretched to an outer diameter of 30.1 mm, designed to have a cutoff wavelength lambda c of 1.25, slightly etched the outer surface of the roller, and blow cut to a length of 730 mm. After carefully inserting the core glass rod into the synthetic quartz glass tube carefully, the centers of the core glass rod and the synthetic quartz glass tube are matched to each other and fixed, and both ends thereof are connected to a dummy quartz material. By rotating, the bending and torsion of the splicing process were corrected.

이것을 종형 전기로에 상부로부터 삽입하고, 2180℃에서 선단부를 용접한후, 진공펌프로 감압시켰다.This was inserted into the vertical electric furnace from the top, and the tip was welded at 2180 ° C., and the pressure was reduced with a vacuum pump.

온도(2000∼2800℃) 및 진공도(200∼1000㎜ 수주(Aq)를 조절하면서 이동속도를 변화시키고, 경계면의 기포조건을 조절하였다. 발포가 없는 조건에서, 전장을 2㎜/min로 서서히 이동하여, 프리폼을 만들었다.The moving speed was changed while adjusting the temperature (2000-2800 ° C.) and the vacuum degree (200-1000 mm water column Aq), and the bubble conditions at the interface were adjusted. In the absence of foaming, the full length was gradually moved to 2 mm / min. To make a preform.

안정조건하에서 얻어진 프리폼 부분은, 외경 90.2㎜ψ, 길이 595㎜, 무게 8.3㎏ 이었고, 섬유길이로는 약 300㎞에 상당하였다. 프리폼의 일부를 외경 약 50㎜ψ로 가열 연신하고, 프리폼 분석기로 조사한 결과, 로드와 클래드층과의 경계에서는 굴절율의 단차가 0.01% 이하로서 거의 없었고, 편심율은 0.153㎜(0.43%)이었다.The preform part obtained under stable conditions was 90.2 mm in diameter, 595 mm in length, and 8.3 kg in weight, and was about 300 km in fiber length. A portion of the preform was stretched to an outer diameter of about 50 mm φ and irradiated with a preform analyzer. As a result, at the boundary between the rod and the clad layer, the step difference in refractive index was almost 0.01% or less, and the eccentricity was 0.153 mm (0.43%).

게다가, 선인기에 의해서 외경 125㎛의 섬유를 약 5㎞ 만들어, 매 1㎞마다 섬유특성을 조사하면, 평균치로서 편심을 0.22㎛, 컷 오프 파장 (λc ) 1.285㎛, 1.3㎛ 에서의 전송손실(0.355db/㎞,1.38㎛,에서의 OH기 손실 0.86db/㎞이었고, 싱글 모드용 광섬유에 대하여 우수한 특성을 가짐을 알 수 있었다.In addition, when a fiber having an outer diameter of 125 µm is made about 5 km by fiber picker and the fiber characteristics are examined every 1 km, the transmission loss at the eccentricity is 0.22 µm, the cut-off wavelength (λc) 1.285 µm, and 1.3 µm. The OH group loss at 0.355db / km and 1.38㎛ was 0.86db / km, and it can be seen that it has excellent characteristics with respect to the single mode optical fiber.

실시예 2Example 2

실시예 1과 마찬가지로, 외경(Do) 93.5㎜ψ, 내경(Di) 31.6㎜ψ, Do/Di = 2.96, 두께 30.95㎜, 두께오차(tmax-tmin) 0.42㎜(1.36%), 길이 700㎜, 무게 9.3㎏의 합성 석영 글라스 소관을 만들었다. 이 합성석영 글라스 소관의 표면을 융침식 간이 조도계로 종방향으로 8㎜ 이동하여 조사한 결과, 내표면조도(Rmax) 8.5㎛, 외표면조도(Rmax)68㎛ 이었다.As in Example 1, the outer diameter (Do) 93.5 mm ψ, inner diameter (Di) 31.6 mm ψ, Do / Di = 2.96, thickness 30.95 mm, thickness error (tmax-tmin) 0.42 mm (1.36%), length 700 mm, A synthetic quartz glass tube with a weight of 9.3 kg was made. The surface of this synthetic quartz glass tube was moved 8 mm in the longitudinal direction with a melt immersion roughness meter, and as a result, it was 8.5 micrometers of inner surface roughness (Rmax), and 68 micrometers of outer surface roughness (Rmax).

상기 합성 석영 글라스 소관을, 종형전기로에서 넣어서 2200℃를 가열하고, 관의 내외에 불활성가스를 넣고 하단부를 용착하며 제6도에 표시한 무접융형 가열법으로 가압연신하여 표2에 표시한 5종류의 합성 석영 글라스 열처리 관을 만들었다.The synthetic quartz glass tube is heated in a vertical electric furnace to heat 2200 ° C., inert gas is introduced into the inside and outside of the tube, and the bottom part is welded and press-drawn by the non-fusion heating method shown in FIG. Made of synthetic quartz glass heat-treated tube.

한편, VAD법에서 굴절율차(△n) = 0.335%의 싱글 모드용 코어 글라스 로드를 준비하였다. 열연신가공하고, 표2에 표시한 합성 석영 글라스 열처리관을 클래드층으로서 각각 계산하며, 코어 글라스 로드의 외주를 에칭한 후, 표2에 표시한 코어 글라스 로드를 얻었다.On the other hand, the core glass rod for single mode of refractive index difference ((DELTA) n) = 0.335% was prepared by the VAD method. After hot stretching, the synthetic quartz glass heat-treated tubes shown in Table 2 were respectively calculated as clad layers, and the outer circumference of the core glass rod was etched to obtain the core glass rods shown in Table 2.

각 합성 석영 글라스 열처리관에 상기 각 코어 글라스 로드를 삽입하고, 전기로내에서 가열 일체화하여 프리폼 분석기로서 측정하면, 클래드층간에 굴절율의 단차는 인지할 수 없었다.When the respective core glass rods were inserted into the respective synthetic quartz glass heat treatment tubes, and the heating was integrated in an electric furnace and measured with a preform analyzer, the step of refractive index between the clad layers could not be recognized.

표2의 No. 3(62㎜)의 프리폼을 이용하고, 125㎛의 광섬유 소선을 작성하여, 소선의 섬유특성을 조사한 경우, 컷오프파장(λc) 1.245㎛, 1.3㎛의 전송손실 0.334dB/㎞, 편심율 0.32㎛인 고품질 광섬유이었다.No. of Table 2 When a 125 µm optical fiber element wire was prepared using 3 (62 mm) preform and the fiber characteristics of the element wire were examined, the cut-off wavelength (λc) was 1.245 µm, 1.3 µm transmission loss 0.334 dB / km, and eccentricity 0.32 µm. It was a high quality fiber optic.

실시예 3Example 3

축부법(VAD법)으로 대형 다공질 수트(soot) 모재를 만들고, 실시예 1에 준하여 가열탈수, 투명 글라스화하며, 그거슬 거친 연삭하고, 외경 96㎜ψ, 길이 약 820㎜의 원주상 석영 글라스 모재를 얻었다.A large porous soot base material is made by the axial method (VAD method), and according to Example 1, it is heated and dehydrated and made into transparent glass, rough grinding, outer diameter 96 mm ψ, circumferential quartz glass of about 820 mm length A base material was obtained.

이러한 석영 글라스 모재를 열간 탄소 드릴 압입법을 이용하여 중심에 구멍이 뚫고, 거기에다 치수정도를 높이기 위하여 외주를 연삭하고 불산처리를 하여 세정하였다. 이 시점에서의 합성 석영 글라스 원관은, 외경 101㎜ψ 내경40㎜ψ, 외경/내경비 = 2.525. 길이 775㎜, 무게 약 11.5㎏이었다. 이 원관의 내면은 가열 용융에 의하여 구멍을 형성하기 때문에 기계적인 충격, 절삭파괴, 균열, 기계가공 응력, 가공비틀림 등이 인지되지 않았다.The quartz glass base material was punched in the center by using a hot carbon drill indentation method, and the outer periphery was ground and hydrofluoric-treated to increase the dimensional accuracy. The synthetic quartz glass tube at this point had an outer diameter of 101 mm, an inner diameter of 40 mm, and an outer diameter / inner diameter ratio of 2.525. It was 775 mm in length and weighed about 11.5 kg. Since the inner surface of this tube formed a hole by heat melting, mechanical shock, cutting breakage, cracking, machining stress, and processing distortion were not recognized.

그리고, 상기 합성 석영 글라스 소관의 내표면 조도를 조사하는 목적으로, 길이 150㎜마다 호닝 머신에서의 연마 조도를 바꾸어 연마하고, 에칭하여 표3에 기재된 샘플을 얻었다. 이 합성 석영 글라스 소관에 약 38㎜ψ의 코어 글라스 로드를 삽입하고, 실시예 1과 동일한 방법으로 프리폼화하였다.Then, for the purpose of investigating the inner surface roughness of the synthetic quartz glass tube, the polishing roughness of the honing machine was changed and polished every 150 mm in length, and the samples shown in Table 3 were obtained by etching. A core glass rod of about 38 mm φ was inserted into the synthetic quartz glass tube, and preformed in the same manner as in Example 1.

경계면 상태는 표3에 표시한 바와 같다.The interface state is shown in Table 3.

실시예 4Example 4

외부법(OVD법)에 의하여, 대형의 다공질 수트 모재를 만들고, 탈수, 및 굴절율 조절 처리하여 글라스화하고, 원관상의 합성 석영 글라스 모재를 만들어었다. 양단을 평행하게 절단하고 #80 숫돌로써 외주연삭기에서 외주를 거친 연삭하며, 대체로 목표 외경에 이른 후 이것을 호닝 머신에 설치하여 #80 숫돌을 사용하여 내면 연마를 하였다. 계속하여 #140, #400, #800으로 숫돌을 바꾸어 내면 연마하였다. 그리고 나서 이것을 초음파 두께 측정기에서 길이 50㎜마다 회전하여 1회전당 8점의 두께를 측정하고 순차 이동하며, 전장의 두께 변동을 조사하고, 컴퓨터에 의하여 두께 오차를 도형화하였다. 또한, 이것을 토대로 NC 외주 연삭기에서 외주를 연마수정하고 두께 정도를 확인한 후 불산 에칭시켰다. 이 대형 합성 석영 글라스 소관은 외경 164㎜ψ, 내경 58.9㎜ψ, 외경/내경 비 = 2.78, 두께 52.55㎜, 두께오차 440㎛(0.84%), 길이 1870㎜, 무게 약 75㎏, 내표면조도(Rmax.) 3.5㎛, 외표면조도(Rmax.) 77㎛의 대형 석영 글라스 소관이었다.By the external method (OVD method), a large porous soot base material was made, glass was formed by dehydration and refractive index adjustment treatment, and a synthetic quartz glass base material of a cylindrical shape was made. Both ends were cut in parallel and roughly circumferentially ground in an external grinding machine with a # 80 whetstone. After reaching the target outer diameter, it was installed in a honing machine and internally polished using a # 80 whetstone. Subsequently, the grinding wheel was changed to # 140, # 400, and # 800 for polishing. It was then rotated by an ultrasonic thickness gauge every 50 mm in length to measure the thickness of 8 points per revolution, and moved sequentially. The thickness variation of the electric field was investigated, and the thickness error was plotted by a computer. Based on this, the outer circumference was polished and corrected in an NC outer grinder, and the hydrofluoric acid etch was performed after confirming the thickness. This large synthetic quartz glass tube has an outer diameter of 164 mm, an inner diameter of 58.9 mm, an outer diameter / inner diameter ratio of 2.78, a thickness of 52.55 mm, a thickness error of 440 μm (0.84%), a length of 1870 mm, a weight of approximately 75 kg, and surface roughness ( Rmax.) 3.5 µm and an external surface roughness (Rmax.) 77 µm.

한편, 이 합성 석영 글라스 소관을 상정(想定)하고, VAD법에서 대형의 싱글 로드용 석영 코어 글라스 로드를 만들어, 특성이 대체로 같은 3본(本)을 설정하였다. 컷 오프 파장(λc)의 계산에 의해서 이 합성 석영 글라스 소관에 필요한 코어경을 계산하고, 코어 글라스 로드의 클래드부의 일부를 각각 에칭하여 조절하였다. 그리고 나서 이 코어 글라스 로드 3本을 용착하고, 대체로 같은 외경(55㎜ψ)으로 연신하여, 에칭후, 전표면을 열간 폴리쉬(fire-polish)하였다.On the other hand, this synthetic quartz glass tube was assumed, and the large sized single-core quartz core glass rod was created by the VAD method, and three sets with substantially the same characteristics were set. The core diameter required for this synthetic quartz glass tube was calculated by calculation of the cut-off wavelength lambda c, and a part of the clad portion of the core glass rod was etched and adjusted. Then, this core glass rod 3 was welded, stretched to about the same outer diameter (55 mm), and after etching, the whole surface was hot-polished (fire-polish).

상기 코어 글라스 로드를 상기 대형 합성 석영 글라스 소관에 넣어 하단부를 고정하고, 이것을 종형 전기로에 넣고, 2000∼2800℃내의 온도에서 가열하여 하단부부터 용해연화시키며, 온도와 진동도(200∼1000㎜ Aq)를 조절하면서 이동시키고, 로드인 튜브를 하였다. 온도가 적절하지 않고 속도가 빠르면, 내부경계면에서 발포된 기포가 남아 있기 때문에 처음에는 외경 약 50㎜ψ로 연신하면서 경계면이 충분히 젖어서 용착되는 것을 확인하고, 75㎜ψ, 100㎜ψ, 125㎜ψ, 150㎜ψ로 크게하여, 5종류의 크기로 프리폼을 만들었다.The core glass rod is placed in the large synthetic quartz glass tube to fix the lower end, and the core glass rod is placed in a vertical electric furnace, heated at a temperature of 2000 to 2800 ° C. to melt and soften from the lower end, and a temperature and vibration degree (200 to 1000 mm Aq). Moved while adjusting, and the rod-in tube. If the temperature is not appropriate and the speed is high, since the foam bubbles remain at the inner boundary surface, it is first drawn to the outer diameter of about 50 mm ψ and the boundary surface is sufficiently wetted and welded, and 75 mm ψ, 100 mm ψ, 125 mm ψ is confirmed. The preform was made into five kinds of sizes, and enlarged to 150 mmψ.

얻어진 프리폼은, 최대경이 외경 152㎜ψ이고, 5종류의 프리폼의 합계 중량은 약 71㎏이며, 광섬유 소선으로 환산하면 2600㎞에 상당하는 양(量)이었다.The obtained preform had an outer diameter of 152 mm, the total weight of the five preforms of about 71 kg, and was equivalent to 2600 km in terms of optical fiber strands.

상기 프리폼의 특성을 상세하게 조사하는 목적으로, 50㎜ψ의 프리폼을 선택하고 프리폼 분석기에서 코어의 특성을 조사한 경우, 코어 클래드 경계면에 0.008%, 정도의 이음매(seam)는 볼수 있고 굴절율(refractive index)의 단차가 없으며, 코어, 클래드의 중심 어긋남은 0.28% 로 측정되었다.In order to investigate the properties of the preform in detail, when a preform of 50 mm ψ is selected and the properties of the core are examined by the preform analyzer, a seam of about 0.008%, and a refractive index of the core clad interface can be seen and a refractive index ), And the center shift of the core and clad was 0.28%.

상기 50㎜ψ 프리폼을 광섬유 선인장치로서 선인하여, 외경 125㎛±0.5㎛ 하여, 이 소선의 전송특성을 조서한 결과, 핀심율 0.11㎛, 컷 오프 파장(λc) 1.270㎛, 1.3㎛ 에서의 전송손실 0.361dB/㎞, 1.38㎛ 에서의 OH기 손실은 0.65dB/㎞ 이었다.The 50 mm ψ preform was selected as an optical fiber cactus, and the outer diameter was 125 µm ± 0.5 µm, and the transmission characteristics of the element wire were obtained. As a result, the transmission at the pin core ratio of 0.11 µm, the cut-off wavelength (λc) of 1.270 µm, and 1.3 µm was obtained. Loss of OH group at 0.361 dB / km and 1.38 µm was 0.65 dB / km.

실시예 5Example 5

실시예 4와 마찬가지로 외부법(OVD법)에 의해서, 대형의 다공질 수트재를 만들고, 탈수, 및 굴절율 조절처리하여 글라스화하고, 원관상의 합성석영 글라스 모재를 만들어, 이 합성 석영 글라스 모재의 내외표면을 기계적으로 거친 연삭하며, 합성석영 글라스 원관을 4본 만들었다. 내경을 초정밀 호닝 머신에서 마무리한 후, 인위적으로 내경과 외경의 중심선을 벗어나게 편심시켜, 외주면을 연삭하고, 불산처리후 세정 마무리를 하였다. 이 합성 석영 글라스 소관은, 외경 100㎜ψ, 내경 32㎜ψ, Do/Do = 3.125이었고, 측정한 오차는 표 4에 기재된 바와 같았다.In the same manner as in Example 4, an external method (OVD method) was used to make a large porous suit material, dehydrate and adjust the refractive index of the glass to make glass, and to form a synthetic quartz glass base material in a tubular shape. The surface was mechanically rough ground and four synthetic quartz glass tubes were made. After the inner diameter was finished in an ultra-precision honing machine, the outer circumferential surface was ground by artificially deviating from the centerline of the inner diameter and the outer diameter, and washed after hydrofluoric acid treatment. This synthetic quartz glass tube had an outer diameter of 100 mm, an inner diameter of 32 mm, and Do / Do = 3.125, and the measured errors were as described in Table 4.

상기 합성 석영 글라스 소관을 전기로에 넣고, 2200℃ 에서 가열가압연신(가압:수주 0㎜∼100㎜)하고, 가공후의 치수를 조사하였다.The synthetic quartz glass tube was placed in an electric furnace, heated and stretched at a pressure of 2200 ° C. (pressurization: 0 mm to 100 mm), and the dimensions after processing were examined.

그 결과를 표5에 표시한다.The results are shown in Table 5.

조건 A는, 소관의 내압과 외압을 거의 동일한 압력으로 하였다.Condition A made the internal pressure and external pressure of an element pipe nearly the same pressure.

상기 표 4에 따라서, 오차가 큰 석영 글라스 소관은 가압비, 연산비가 크게 되면, 연신후의 오차가 커진다.According to the said Table 4, the quartz glass tube with a large error will have a large error after stretching if the pressing ratio and calculation ratio become large.

특히 가압비는 직접 석영 글라스관의 두께오차를 크게 변화시켜, 3.9% 이사의 소관은 스타트(start) 시의 불안정 조건중에서 비 대상으로 변형한 후, 급속하게 팽창하여 로내에서 파열하였다.In particular, the pressurization ratio directly changed the thickness error of the quartz glass tube significantly, and the elemental tubes of 3.9% were deformed to non-objects under unstable conditions at start, and then rapidly expanded and ruptured in the furnace.

단, α : do/diWhere α: do / di

β : (Do/Di) / (do/di)β: (Do / Di) / (do / di)

상기 합성 석영 글라스 열처리관중에서, No. 13, B의 조건의 관(즉, 소관의 오차 1.8%로서 만들고, 가열 가압 연신후의 두게가 오차는 2% 이내의 관)을 이용하고, 광섬유 코어 글라스로드를 삽입하며, 로드인튜브법으로 프리폼을 작성하였다. 프리폼 분석기로 조사하면, 클래드부의 굴절율차는 0.01% 이하이며, 선인후의 편심율은 0.45㎛ 이며, 싱글모드용 섬유로서 전혀 문제가 없는 것이었다.In the synthetic quartz glass heat treatment tube, No. 13, the tube under the condition of B (that is, make the error of 1.8% of the elementary pipe, the tube after the heat-pressurized stretching is less than 2% error), insert the optical fiber core glass rod, preform by the rod in tube method Was written. When irradiated with a preform analyzer, the refractive index difference of the cladding part was 0.01% or less, the eccentricity after pretreatment was 0.45 µm, and there was no problem as a single mode fiber.

실시예 6Example 6

산수소염에 의한 베르누이법으로서 대형의 원주상 천연 석영 그라스 모재를 만들었다. 이 석영 글라스 모재는 실시예 3에 따르는 열간탄소드릴 압입법으로 중심을 개공하여 외주를 기계가공으로 다듬질 가공하고, 불산세정후, 수세건조하였다.The Bernoulli method by oxyhydrogen salts produced a large columnar natural quartz glass substrate. The quartz glass base material was subjected to a hot carbon drill press-fitting method according to Example 3, the outer periphery was trimmed by machining, washed with Foshan, and washed with water.

상기 석영 글라스 소관은 외경 170㎜ψ, 외경 60㎜ψ, 외경/내경비 = 2.916, 길이 3m, 무게150㎏이며, 전장을 50㎜간격으로 두께를 조사하면, 평균두께 오차는 0.3㎜ 이고, 목표범위에 있는 것을 확인하였다. 또한, 석영 글라스 소관 단부에서의 표면조도를 촉침식 간이 조도계로 측정하면, 내표면 조도(Rmax) 0.8㎛, 내표면조도(Rmax) 95㎛ 이었다.The quartz glass tube has an outer diameter of 170 mm, an outer diameter of 60 mm, an outer diameter / inner diameter ratio of 2.916, a length of 3 m, and a weight of 150 kg. When the thickness is irradiated at 50 mm intervals, the average thickness error is 0.3 mm. It confirmed that it was in a range. In addition, when the surface roughness at the quartz glass tube end was measured with a stylus simple roughness meter, the surface roughness (Rmax) was 0.8 µm and the surface roughness (Rmax) was 95 µm.

한편, VAD법으로 만든 일부 클래드 처리된 1.3㎛용 싱글 모드 광섬유 코어 로드를 준비하고, 상기 석영 글라스관에 삽입하여, 종형전기로내에 설치하였다.On the other hand, some clad-treated single mode optical fiber core rod made of VAD method was prepared, inserted into the quartz glass tube, and installed in a vertical electric furnace.

로내온도 2250℃까지 승온하고 선단부를 용봉(熔封)한 후, 상부까지 진공시켰다. 로드인 튜브법의 조건은, 진공도 200∼1000㎜Aq, 스타트 외경을 50㎜ψ로 세트(set)하고, 코오로드와 석영 글라스 소관의 경계면 융착상태를 보면서 온도와 이동속도와 진공도를 변화시켜 최대 외경 160㎜ψ의 프리폼을 얻었다.The temperature of the furnace was raised to 2250 ° C, the tip was melted, and then vacuumed to the upper portion. The conditions of the rod-in tube method were set by setting the vacuum degree 200 to 1000 mmAq and the start outer diameter to 50 mm ψ, changing the temperature, the moving speed, and the vacuum degree while viewing the interface fusion state between the core rod and the quartz glass tube. A preform having an outer diameter of 160 mm ψ was obtained.

50㎜ψ로 뽑아낸 프리폼을 프리폼 분석기로 측정한 결과, 편심율은 0.52%, 코어 글라스 로드의 클래드와 석영 글라스 소관의 경계층에는 -0.005% 정도의 마이너스 단차가 약간 보이고, 석영 글라스 소관의 측이 약간 낮았다.The preform extracted with 50 mm ψ was measured with a preform analyzer. As a result, the eccentricity was 0.52%, and a slight step difference of -0.005% was visible in the cladding of the core glass rod and the quartz glass tube. Slightly lower.

상기 프리폼은 선인기에서 125㎛의 섬유로 광섬유 특성을 측정하면, 편심율은 0.41㎛, 1.3㎛ 파장의 전송손실은 0.345dB/㎞이며, 싱글로드용 석영 글라스 섬유로서 사용될 수 있는 특성을 나타내었다.The preform measured the optical fiber characteristics with a fiber of 125 μm in predecessor, the eccentricity was 0.41 μm, the transmission loss of 0.3 μm wavelength was 0.345 dB / km, and showed the characteristics that could be used as a single rod quartz glass fiber. .

실시예 7Example 7

실시예 6과 동일하게 고순도 천연 석영 글라스로부터 만들 수 있는 원주상 석영 글라스 모재의 중심을 열간 탄소 드릴 압입법에 의하여 구멍을 만들었다. 계속하여, 내경 중심에 일치시켜서 외주를 연삭하고, 치수정도를 확인후 불산에칭, 수세(水洗, washed with water), 건조를 하였다, 다듬질한 석영 글라스 소관은 외경 150㎜ψ, 내경 62㎜ψ, 외경/내경비 = 2.42, 길이 2500㎜이고, 길이 방향으로 50㎜ 마다 측정한 두께초차는 0.35㎜ (0.79%)이며, 내표면조도(Rmax)은 1㎛이하, 외표면조도(Rmax)는 85㎛ 이었다. 또한 본 석영 글라스를 적외분광 광도계로서 2.7㎛의 흡수대를 측정하여 보니, 평균 166ppm의 OH기를 함유하였다.In the same manner as in Example 6, the center of the columnar quartz glass base material which can be made from high purity natural quartz glass was made by hot carbon drill indentation. Subsequently, the outer periphery was ground in accordance with the center of the inner diameter, and after confirming the dimensional accuracy, hydrofluoric acid etching, washed with water, and dried, the finished quartz glass tube was outer diameter 150 mm ψ, inner diameter 62 mm ψ, Outer diameter / inner diameter ratio = 2.42, length 2500mm, thickness super difference measured every 50mm in the longitudinal direction is 0.35mm (0.79%), inner surface roughness Rmax is 1 micrometer or less, outer surface roughness Rmax is 85 It was μm. In addition, the quartz glass was measured with an absorption spectrum of 2.7 占 퐉 as an infrared spectrophotometer and found to contain an average of 166 ppm of OH groups.

그리고, 상기 석영 글라스 소관을 종형 전기로에 투입하고, 2250℃까지 온도를 올려서 하단부를 용융밀봉하였다. 상단부로부터 공기에 의하여 가압 조정하면서 연신하여 외경, 내경, 두께를 조사하여 외경 50㎜ψ, 75㎜ψ, 100㎜ψ, 125㎜ψ의 석영 글라스 열처리관을 작성하였다. 각 석영글라스 열처리 관의 치수는 표5에 나타나 있다.Then, the quartz glass tube was placed in a vertical electric furnace, and the temperature was raised to 2250 ° C to melt seal the lower end. Stretching was carried out by pressurizing with air from the upper end, and the outer diameter, the inner diameter and the thickness were examined to prepare a quartz glass heat treatment tube having an outer diameter of 50 mm, 75 mm, 100 mm, or 125 mm. The dimensions of each quartz glass heat treated tube are shown in Table 5.

본 석영 글라스 열처리관의 중앙부터 외경 100㎜ψ의 관을 선택하여, VAD법으로 싱글모드용 광섬유 코어로드를 장착하고, 로드인튜브법으로 일체화 하였다.From the center of the quartz glass heat treatment tube, a tube having an outer diameter of 100 mm φ was selected, a single mode optical fiber core rod was mounted by the VAD method, and integrated into the rod in tube method.

튜브의 인출하는 조건과 동일하게, 최초 인출한 스타트 외경을 50㎜ψ, 점차 75㎜ψ, 96㎜ψ의 3종의 열처리관을 하였다. 각 치수의 프리폼을 각각 자르고 연마하여 석영 글라스관내와 코어로드외면과의 융착면을 관찰하여 조사하면, 거의 기포는 발견되지 않았다.In the same manner as withdrawal conditions of the tube, three kinds of heat-treated tubes of 50 mm, gradually 75 mm, and 96 mm, were used for the initial outer diameter of the drawn out. When preforms of each dimension were cut and polished, and the fusion surface between the inside of the quartz glass tube and the outer surface of the core rod was observed and examined, almost no bubbles were found.

50㎜ψ프리폼을 이용하여 선인하고, 섬유 특성을 조사한 결과, 편심율은 0.27㎛, 1.3㎛ 의 전송손실은 0.347dB/㎞ 이었다.When the fiber properties were checked using a 50 mm ψ preform, the transmission eccentricity was 0.27 µm and the transmission loss of 1.3 µm was 0.347 dB / km.

Claims (23)

대형 석영 글라스관에 있어서,In the large quartz glass tube, (a)외경 50∼300㎜:(a) Outer diameter 50-300 mm: (b)광섬유의 외경과 광학적 클래드경의 비에 대체적으로 비례하는 외경과 내경의 비가 1.1∼7:(b) the ratio between the outer diameter and the inner diameter which is generally proportional to the ratio of the outer diameter of the optical fiber to the optical cladding diameter is from 1.1 to 7: (c) 두께 10㎜ 이상;(c) a thickness of at least 10 mm; (d) 두께 오차 2% 이하: 및,(d) thickness error 2% or less: and, (e) 내표면 조도가 20㎛ 이하임을 특징으로 하는 광섬유제조용 석영글라스 프리폼에 사용되는 대형 석영 글라스관.(e) A large quartz glass tube used for a quartz glass preform for optical fiber manufacturing, characterized in that the inner surface roughness is 20 µm or less. 제1항에 있어서, 대형 석영 글라스관이 고순도 천연 석영 글라스 또는 합성석영 글라스로부터 만들어짐을 특징으로 하는 광섬유제조용 석영글라스 프리폼에 사용되는 대형 석영 글라스관.2. The large quartz glass tube according to claim 1, wherein the large quartz glass tube is made from high purity natural quartz glass or synthetic quartz glass. 대형 석영 글라스관의 제조방법에 있어서,In the method of manufacturing a large quartz glass tube, (a) 석영글라스 모재를 개구(perforate)하고:(a) Perforate the quartz glass base material: (b) 개구한 모재의 내외주면을 절삭, 연마, 다듬질하며;(b) cutting, grinding and finishing the inner and outer peripheral surfaces of the opened base material; (c) 표면을 불산처리하고; 그리고,(c) hydrofluoricating the surface; And, (d)상기 과정을 거친 모재를 세정처리하는 ; 단계들을 포함하고, 외경과 내경의 비가 광섬유의 외경과 광학적 클래드경의 비에 대체적으로 비례함을 특징으로 하는 광섬유제조용 석영글라스 프리폼에 사용되는 대형 석영 글라스관의 제조방법.(d) cleaning the base material subjected to the above process; A method of manufacturing a large quartz glass tube for use in a quartz glass preform for optical fiber manufacturing, comprising the steps, wherein the ratio of the outer diameter and the inner diameter is generally proportional to the ratio of the outer diameter and the optical cladding diameter of the optical fiber. 제3항에 있어서, 상기 대형 석영글라스관은The method of claim 3, wherein the large quartz glass tube (a)외경 50∼300㎜:(a) Outer diameter 50-300 mm: (b)외경과 내경의 비가 1.1∼7:(b) the ratio between the outer diameter and the inner diameter is from 1.1 to 7: (c)두께 10㎜ 이상;(c) thickness 10 mm or more; (d)두께 오차 2% 이하; 및,(d) thickness error 2% or less; And, (e)내표면 조도가 20㎛ 이하: 인 대형석영 글라스 소관임을 특징으로 하는 광섬유 제조용 석영 글라스 프리폼에 사용되는 대형석영 글라스관의 제조방법.(e) A method for producing a large quartz glass tube for use in a quartz glass preform for producing optical fibers, characterized in that the inner surface roughness is 20 µm or less. 제3항에 있어서,The method of claim 3, 상기 석영 글라스 모재가 원주상 석영 글라스 모재 또는 원관상 석영 글라스 모재임을 특징으로 하는 광섬유 제조용 석영 글라스 프리폼에 사용되는 대형 석영 글라스관의 제조방법.The quartz glass base material is a circumferential quartz glass base material or a cylindrical quartz glass base material, characterized in that the manufacturing method of a large quartz glass tube used in the quartz glass preform for optical fiber manufacturing. 제4항에 있어서,The method of claim 4, wherein (a)석영글라스 모재를 기계적 천공기로서 개구하고;(a) opening the quartz glass base material as a mechanical perforator; (b)외주연삭기와 정밀 호닝(honing)가공기를 이용하여 개구된 모재의 내외표면을 절삭, 연마 및 다듬질하며;(b) cutting, grinding and finishing the inner and outer surfaces of the opened base material using an outer grinding machine and a precision honing machine; (c)표면을 불산처리하며; 그리고,(c) hydrofluoricate the surface; And, (d)상기 과정을 거친 모재를 세정처리하는; 단게들을 포함함을 특징으로 하는 광섬유 제조용 석영 글라스 프리폼에 사용되는 대형 석영 글라스소관의 제조방법.(d) cleaning the base material having undergone the above process; A method for producing a large quartz glass tube used in a quartz glass preform for optical fiber manufacturing, comprising steps. 제4항에 있어서,The method of claim 4, wherein (a)원주상 석영 글라스 모재를 연간 탄소 드릴 압입법으로 개구하고;(a) opening the columnar quartz glass base material by annual carbon drill indentation; (b)개구된 모재의 표면을 불산처리하며; 그리고,(b) hydrofluoricating the surface of the opened base material; And, (c)상기 과정을 거친 모재를 세정처리하는; 단계들을 포함함을 특징으로 하는 광섬유 제조용 석영 글라스 프리폼에 사용되는 대형 석영를라스 소관의 제조방법.(c) cleaning the base material subjected to the above process; A method for producing a large quartz glass tube used in a quartz glass preform for manufacturing optical fibers, characterized in that it comprises the steps. 제4항에 있어서,The method of claim 4, wherein 제4항 내지 제7항중의 어느 한항에 있어서의 대형 석영 글라스 소관을 다시 무접촉형 가열가공법을 이용하여 석영 글라스 소관의 외경(Do)과 내경(Di)의 비(Do/Di)와, 가열 가공처리후의 석영 글라스 열처리관의 외경(do)와 내경(di)의 비(do/di)가, (Do/Di)/(do/di)=1.0∼1.5로 되도록 내압을 조절(control)하고 1600∼3000℃에서 가열처리, 가열연신 또는 가열가압 연신 처리를 하여 대형 석영 글라스 열처리관을 만드는 단계들을 포함함을 특징으로 하는 광섬유 제조용 석영 글라스 프리폼에 사용되는 대형 석영 글라스 소관의 제조방법.The large-size quartz glass tube according to any one of claims 4 to 7 is again subjected to a ratio (Do / Di) of the outer diameter (Do) and the inner diameter (Di) of the quartz glass tube by using a non-contact heating process and heating. The internal pressure is controlled so that the ratio (do / di) of the outer diameter (do) and the inner diameter (di) of the quartz glass heat-treated tube after processing is set to (Do / Di) / (do / di) = 1.0 to 1.5. A method for producing a large quartz glass element used in a quartz glass preform for optical fiber manufacturing, comprising the steps of making a large quartz glass heat-treated tube by heat treatment, heat stretching or hot pressing stretching at 1600 to 3000 ° C. 대형 석영 글라스 프리폼에 있어서,In the large quartz glass preform, (a)(1) 외경 50∼300㎜ψ;(2)외경과 내경의 비가 1.1∼7: (3)두께 10㎜이상; (4)두께오차 2% 이하; 및, (5) 내표면 조도가 20㎛ 이하인 대형 석영 글라스관; 과,(a) (1) outer diameter of 50 to 300 mm ψ; (2) ratio of outer diameter to inner diameter of 1.1 to 7: (3) thickness of 10 mm or more; (4) thickness error 2% or less; And (5) a large quartz glass tube having an inner surface roughness of 20 µm or less; and, (b)상기 대형 석영 글라스관에 일체로 결합된 광섬유용 코어 글라스 로드; 를 포함함을 특징으로 하는 대형석영 글라스 프리폼.(b) a core glass rod for an optical fiber integrally coupled to the large quartz glass tube; Large quartz glass preform, characterized in that it comprises a. 제9항에 있어서, 상기 대형 석영 글라스관이 굴절율을 설계값에 대하여 0.02% 이내로 맞춘 고순도 합성 석영 글라스관임을 특징으로 하는 대형 석영 글라스 프리폼.10. The large quartz glass preform of claim 9, wherein the large quartz glass tube is a high purity synthetic quartz glass tube having a refractive index within 0.02% of a design value. 제 9항에 있어서, 상기 대형 서영 글라스관은; (a) 석영 글라스 모재를 개구하고; (b)개구된 모재의 내외표면을 절삭, 연마 및 다듬질하며; (c) 표면을 불산처리하고; 그리고, (d) 상기 과정을 거친 모재를 세정처리하는; 단계들에 따라서 제조됨을 특징으로 하는 대형 석영 글라스 프리폼.The method of claim 9, wherein the large Seoyoung glass tube; (a) opening a quartz glass base material; (b) cutting, grinding and finishing the inner and outer surfaces of the opened base material; (c) hydrofluoricating the surface; And, (d) cleaning the base material subjected to the above process; Large quartz glass preform, characterized in that it is manufactured according to the steps. 제9항에 있어서, 상기 대형 석영 글라스관은, (a)원주상 석영 글라스모재를 기계적으로 개구하고; (b) 개구된 모재의 내, 외표면을 외주연삭기와 고정도 호닝머신으로 절삭, 연마 및 다듬질하고; (c) 표면을 불산처리하고; 그리고, (d) 상기 과정을 거친 모재를 세정처리하는 ; 단계들에 따라서 만들어지는 대형 석영 글라스 소관임을 특징으로 하는 대형 석영 글라스 프리폼.10. The method of claim 9, wherein the large quartz glass tube comprises: (a) mechanically opening a columnar quartz glass base material; (b) cutting, grinding and finishing the inner and outer surfaces of the opened base material with an outer grinding machine and a high precision honing machine; (c) hydrofluoricating the surface; And, (d) cleaning the base material through the above process; Large quartz glass preform, characterized in that the large quartz glass tube made according to the steps. 제9항에 있어서, 상기 대형 석영 플라스관은, (a)OVD법을 이용하여 관상 석영 글라스관을 만들고; (b) 외주연삭기 및 기계적 천공기, 및/또는 정밀호닝머신으로서 개구된 상기 관의 내외표면을 절삭, 연마 및 다듬질하고; (c) 표면을 불산처리하고; 그리고, (d) 상기 과정을 거친 모재를 세정처리하는 ; 단계들로서 만들어지는 대형 석영 글라스 소관을 특징으로 하는 대형 석영 글라스 프리폼.10. The method according to claim 9, wherein the large quartz flask is made of (a) a tubular quartz glass tube using the OVD method; (b) cutting, grinding and finishing the inner and outer surfaces of the tube, opened as an outer grinding machine and a mechanical drilling machine, and / or a precision honing machine; (c) hydrofluoricating the surface; And, (d) cleaning the base material through the above process; Large quartz glass preform, characterized by large quartz glass tubes made as steps. 제9항에 있어서, 상기 대형 석영 글라스관은, (a)원주상 석영 글라스 모재를 열간탄소 드릴 압입법으로 개구하고; (b)개구된 모재의 표면을 불산처리하며; 그리고, (c) 상기 과정은 거친 모재를 세정처리하는 ; 단계들로서 만들어지는 대형 석영 글라스 소관임을 특징으로 하는 대형 석영 글라스 프리폼.10. The method of claim 9, wherein the large quartz glass tube comprises: (a) opening the columnar quartz glass base material by hot carbon drill indentation; (b) hydrofluoricating the surface of the opened base material; And, (c) the process is to clean the rough base material; Large quartz glass preform, characterized in that the large quartz glass tube is made as steps. 제9항에 있어서, 대형석영 글라스관은 무접촉형 가열 가공법으로서 석영 그라스 소관의 외경(Do)와 내경(Di)의 비(Do/Di)와, 가열 가공처리후의 석영글라스 열처리관의 외경(do)와 내경(di)의 비(do/di)가, (Do/Di)/(do/di)=1.0∼1.5로 되도록 내압을 제어하여 1600∼3000℃에서 가열처리, 가열연신 또는 가열가압 연신처리를 하는 단계들에 따라서 제조된 대형석영 글라스 프리폼.10. The quartz glass tube according to claim 9, wherein the large-size quartz glass tube is a contactless heat processing method, wherein the ratio (Do / Di) of the outer diameter (Do) and the inner diameter (Di) of the quartz glass element tube and the outer diameter of the quartz glass heat treatment tube after the heat treatment treatment ( The internal pressure is controlled so that the ratio (do / di) of do) to the inner diameter (di) is (Do / Di) / (do / di) = 1.0 to 1.5, followed by heat treatment, heating stretching or heating pressurization at 1600 to 3000 ° C. Large quartz glass preforms produced according to the stretching steps. 대형 석영 글라스 프리폼은 제조하는 방법에 있어서, (a) (1) 외경 50∼300㎜, (2) 외경과 내경의 비가 1.1∼7, (3) 두께 10㎜이상. (4) 두께 오차 2% 이하, 및 (5) 내표면 조도가 20㎛ 이하인 대형 석영 글라스관을 준비하는 제조공정; 과, (b)상기 대형석영 글라스관과 광섬유용 코어 글라스로드를 일체화하는 제조공정; 을 포함함을 특징으로 하는 대형석영 글라스 프리폼의 제조방법.In the method of manufacturing a large-size quartz glass preform, (a) (1) outer diameter 50-300 mm, (2) ratio of outer diameter and inner diameter 1.1-7, (3) thickness 10 mm or more. (4) a manufacturing step of preparing a large quartz glass tube having a thickness error of 2% or less and (5) an inner surface roughness of 20 µm or less; And, (b) the manufacturing process of integrating the large quartz glass tube and the optical fiber core glass rod; Method for producing a large quartz glass preform, characterized in that it comprises a. 제16항에 있어서, 상기 대형 석영 글라스관은, (a) 석영 글라스 모재를 개구하고; (b) 개구된 모재의 내외주면을 절삭, 연마 및 다듬질하고; (c) 그 표면을 불산처리하고; 및, (d) 상기 과정을 거친 모재를 세정처리하는; 단계들로서 제조됨을 특징으로 하는 대형 석영 글라스 프리폼의 제조방법.The method of claim 16, wherein the large quartz glass tube comprises: (a) opening a quartz glass base material; (b) cutting, grinding and finishing the inner and outer peripheral surfaces of the opened base material; (c) hydrofluoric its surface; And, (d) cleaning the base material subjected to the above process; A method of making a large quartz glass preform, characterized in that it is produced as steps. 제16항에 있어서, 상기 대형 석영 글라스관은 (a) 원주상 석영 글라스 모재를 기계적 천공기로서 개구하고; (b) 개구된 모재에 대하여 외주연삭기 및 정밀호닝머신으로서 내외주면을 절삭, 연마, 다듬질하며; (c) 표면을 불사처리하고; 그리고, (d) 상기 과정을 거친 모재를 세정처리하는; 단계들에 의해서 제조된 대형 석영 글라스 소관임을 특징으로 하는 대형 석영 글라스 프리폼의 제조방법.The method of claim 16, wherein the large quartz glass tube comprises: (a) opening the columnar quartz glass base material as a mechanical perforator; (b) cutting, polishing and finishing the inner and outer circumferential surfaces of the opened base material as an outer grinding machine and a precision honing machine; (c) immortalize the surface; And, (d) cleaning the base material subjected to the above process; A method for producing a large quartz glass preform, characterized in that the large quartz glass tube produced by the steps. 제9항에 있어서, 상기 대형 석영 글라스관은, (a) OVD법에 의하여 관상 석영 글라스관을 만들고; (b) 외주연삭기 및 기계적 천공기, 및/ 또는 정밀 호닝 머신으로서 상기 관의 내외주면을 절삭, 연마, 다듬질하고; (c) 표면을 불산처리하고; 및 (d)상기 과정을 거친 모재를 세정처리하는; 단계들에 의하여 제조된 대형 석영 글라스 소관임을 특징으로 하는 대형 석영 글라스 프리폼.10. The method of claim 9, wherein the large quartz glass tube comprises: (a) a tubular quartz glass tube made by OVD; (b) cutting, grinding and finishing the inner and outer peripheral surfaces of the tube with an outer grinding machine and a mechanical drilling machine and / or a precision honing machine; (c) hydrofluoricating the surface; And (d) cleaning the base material through the above process; Large quartz glass preform, characterized in that the large quartz glass tube produced by the steps. 제16항에 있어서, 상기 대형 석영 글라스관은, (a) 원주상 석영 글라스 모재를 열간 탄소 드릴 압입법으로 개구하고; (b) 개구된 모재의 표면을 불산처리하고; 그리고, (c) 상기 과정을 거친 모재를 세정처리하는; 단계들에 의하여 제조된 대형석영 글라스 소관임을 특징으로 하는 대형 석영 글라스 프리폼의 제조방법.The large-size quartz glass tube according to claim 16, further comprising: (a) opening the columnar quartz glass base material by hot carbon drill indentation; (b) hydrofluoricating the surface of the opened base material; And, (c) to clean the base material subjected to the above process; Method for producing a large quartz glass preform, characterized in that the large quartz glass tube produced by the steps. 제16항에 있어서, 상기 대형석영 글라스관은, 대형 석영 글라스소관을 무접촉형 가열 가공법으로 석영 글라스소관의 외경(Do)와 내경(Di)의 비(Do/Di)와, 상기 석영글라스 소관으로부터 얻어진 석영 글라스 열처리 관의 외경(do)과 내경(di)의 비(do/di)가, (Do/Di)/(do/di)= 1.0∼1.5에 있도록 내압을 제어하고 1600∼3000℃에서 가열처리, 가열연신 또는 가열 가압연신처리를 하여 제조된 대형 석영 글라스 열처리관임을 특징으로 하는 대형 석영글라스 프리폼의 제조방법.17. The quartz glass tube according to claim 16, wherein the large quartz glass tube is formed of a large diameter quartz glass tube by a non-contact heating process, and a ratio (Do / Di) of the outer diameter (Do) and the inner diameter (Di) of the quartz glass tube, and the quartz glass tube. The internal pressure is controlled so that the ratio (do / di) of the outer diameter (do) and the inner diameter (di) of the quartz glass heat-treated tube obtained from is (Do / Di) / (do / di) = 1.0 to 1.5, and is 1600 to 3000 캜. Method for producing a large quartz glass preform, characterized in that the large quartz glass heat-treated tube manufactured by heat treatment, heat stretching or heat pressure stretching treatment in the. 제16항에 있어서, 상기 대형 석영 글라스관과 광섬유용 코어글라스로드를 로드인 튜브법으로 일체화하는 동일 공정에서 합체(intergration)와 연신(drawing)공정이 동시에 수행됨을 특징으로 하는 대형석영 글라스 프리폼의 제조방법.17. The large quartz glass preform of claim 16, wherein an integration and drawing process are simultaneously performed in the same process of integrating the large quartz glass tube and the core glass rod for the optical fiber by a rod-in tube method. Manufacturing method. 제9항의대형 석영 글라스 프리폼을 선인하여 제조된 광섬유.The optical fiber manufactured by pre-marking the large quartz glass preform of Claim 9.
KR1019930024509A 1992-11-19 1993-11-17 Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber KR0133027B1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP33220392 1992-11-19
JP5-226671 1993-08-20
JP22667093 1993-08-20
JP5-226670 1993-08-20
JP5-226669 1993-08-20
JP22667193 1993-08-20
JP4-332203 1993-08-20
JP22666993 1993-08-20

Publications (2)

Publication Number Publication Date
KR940011972A KR940011972A (en) 1994-06-22
KR0133027B1 true KR0133027B1 (en) 1998-04-14

Family

ID=27477231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930024509A KR0133027B1 (en) 1992-11-19 1993-11-17 Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber

Country Status (10)

Country Link
US (2) US5837334A (en)
EP (1) EP0598349B1 (en)
KR (1) KR0133027B1 (en)
CN (1) CN1042825C (en)
DE (1) DE69319999T2 (en)
DK (1) DK0598349T3 (en)
ES (1) ES2120467T3 (en)
FI (1) FI103038B (en)
RU (1) RU2096355C1 (en)
WO (1) WO1994011317A2 (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138476A (en) * 1995-06-26 2000-10-31 Sumitomo Electric Industries, Ltd. Method of producing an optical fiber coupling member
US5897679A (en) * 1997-08-27 1999-04-27 Lucent Technologies Inc. Dimensional control in the manufacture of optical fiber ferrule connectors by etching
CN1125788C (en) * 1998-02-03 2003-10-29 住友电气工业株式会社 Method of prepn. of base material for optical fiber
BR9910747A (en) * 1998-05-29 2001-02-13 Corning Inc Method of forming a glass preform
SG84541A1 (en) 1998-08-19 2001-11-20 Hoya Corp Glass substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
DE69929152T2 (en) * 1998-10-08 2006-08-24 Heraeus Tenevo Gmbh Method for producing a quartz glass preform for optical fibers and the quartz glass tube used therefor
JP3819614B2 (en) * 1998-10-16 2006-09-13 信越石英株式会社 Method for producing quartz glass preform for optical fiber
US6553789B1 (en) * 1998-10-28 2003-04-29 Schott Glass Quartz glass plates with high refractive index homogeneity
DE19852704A1 (en) * 1998-11-16 2000-05-18 Heraeus Quarzglas Method for producing a preform for an optical fiber and substrate tube suitable for carrying out the method
DE19856892C2 (en) * 1998-12-10 2001-03-15 Heraeus Quarzglas Process for the production of a tube made of glassy material, in particular quartz glass
DE19915509C1 (en) * 1999-04-07 2000-06-08 Heraeus Quarzglas Production of a cylindrical component made of quartz glass has a flue with guiding elements arranged behind each other along the pulling axis
DE19927788C2 (en) * 1999-06-18 2003-03-06 Forschungszentrum Juelich Gmbh Polarizer for the polarization of an inert gas
DE19952821B4 (en) * 1999-11-02 2004-05-06 Heraeus Tenevo Ag Process for producing a quartz glass preform for optical fibers
DE19958289C1 (en) * 1999-12-03 2001-06-13 Heraeus Quarzglas Process for the production of a quartz glass rod and use thereof for the production of a preform
KR100418426B1 (en) * 2000-05-01 2004-02-11 신에쯔 세끼에이 가부시키가이샤 Method for measuring concentration of micro amount of oh group comprising in quarte glass
US6553790B1 (en) * 2000-05-09 2003-04-29 Fitel Usa Corp. Process for fabricating optical fiber involving tuning of core diameter profile
DE10025176A1 (en) * 2000-05-24 2001-12-06 Heraeus Quarzglas Process for the production of an optical fiber and preform for an optical fiber
US20030167801A1 (en) * 2000-06-06 2003-09-11 Thomas Bogdahn Method for producing a full cylinder from quartz glass
US6739155B1 (en) * 2000-08-10 2004-05-25 General Electric Company Quartz making an elongated fused quartz article using a furnace with metal-lined walls
DE10044715C1 (en) * 2000-09-08 2001-12-06 Heraeus Quarzglas Production of a quartz glass tube comprises using a drilling body having a drill head having a contact surface with a convex curvature facing the quartz cylinder continuously rotating in a heating zone
DE10052072B4 (en) * 2000-10-19 2005-06-16 Heraeus Tenevo Ag Method for processing an elongated hollow cylindrical component made of quartz glass by means of laser radiation
US6598429B1 (en) 2000-11-17 2003-07-29 Beamtek, Inc. Method for fabricating gradient-index rods and rod arrays
US7797966B2 (en) * 2000-12-29 2010-09-21 Single Crystal Technologies, Inc. Hot substrate deposition of fused silica
US20020083740A1 (en) * 2000-12-29 2002-07-04 Pandelisev Kiril A. Process and apparatus for production of silica grain having desired properties and their fiber optic and semiconductor application
US20020083739A1 (en) * 2000-12-29 2002-07-04 Pandelisev Kiril A. Hot substrate deposition fiber optic preforms and preform components process and apparatus
JP2002234750A (en) * 2001-02-01 2002-08-23 Shinetsu Quartz Prod Co Ltd Method for producing quartz glass preform for optical fiber
JP4759816B2 (en) * 2001-02-21 2011-08-31 住友電気工業株式会社 Optical fiber manufacturing method
JP2002296438A (en) 2001-03-29 2002-10-09 Fujikura Ltd Polarization-maintaining optical fiber and method for manufacturing preform thereof
DE10117153C1 (en) * 2001-04-05 2002-06-13 Heraeus Quarzglas Production of quartz glass cylinders comprises temporarily holding open the lower end of the cylinder during the attracting phase, and producing a gas window in the region of the open lower end whilst a gas stream is fed into the inner bore
WO2002088808A1 (en) * 2001-04-30 2002-11-07 Infineon Technologies Ag Arrangement for multiplexing and/or demultiplexing the signals of at least two optical wavelength channels
US6687445B2 (en) * 2001-06-25 2004-02-03 Nufern Double-clad optical fiber for lasers and amplifiers
DE10155134C1 (en) * 2001-11-12 2002-12-19 Heraeus Tenevo Ag Single mode optical fiber preform production involves making core and first mantle layer with given diameter ratio, depositing silica soot by heating silicon compound in hydrogen-free zone containing oxygen and vitrification
US20040129030A1 (en) * 2002-01-17 2004-07-08 Haruyoshi Tanada Method and device for manufacturing glass tube
JP2003212581A (en) * 2002-01-21 2003-07-30 Sumitomo Electric Ind Ltd Method for producing polarization maintaining fiber
KR20040078640A (en) 2002-01-30 2004-09-10 스미토모 덴키 고교 가부시키가이샤 Method and apparatus for manufacturing glass tube
DE10214029C2 (en) * 2002-03-22 2003-09-18 Heraeus Tenevo Ag Method for producing an optical fiber and optical fiber produced by the method
WO2003080522A1 (en) * 2002-03-22 2003-10-02 Heraeus Tenevo Ag Method for producing an optical fiber and optical fiber
CN100363285C (en) * 2002-05-09 2008-01-23 古河电气工业株式会社 Method of manufacturing optical fiber
CN1615279A (en) * 2002-08-12 2005-05-11 住友电气工业株式会社 Method of producing higher-purity glass element, high-purity glass element, and production method and device for glass tube
US20040065119A1 (en) * 2002-10-02 2004-04-08 Fitel U.S.A. Corporation Apparatus and method for reducing end effect of an optical fiber preform
US20040144133A1 (en) * 2003-01-23 2004-07-29 Fletcher Joseph Patrick Methods for joining glass preforms in optical fiber manufacturing
US7021083B2 (en) * 2003-01-29 2006-04-04 Fitel Usa Corp. Manufacture of high purity glass tubes
JP2004243433A (en) * 2003-02-12 2004-09-02 Shinetsu Quartz Prod Co Ltd Inner surface polishing method of tubular brittle material and tubular brittle material obtained by the polishing method
CN100351192C (en) * 2003-03-21 2007-11-28 赫罗伊斯·坦尼沃有限责任公司 Synthetic silica glass tube for the production of a preform, method for producing the same in a vertical drawing process and use of said tube
WO2004083141A1 (en) * 2003-03-21 2004-09-30 Heraeus Tenevo Gmbh Synthetic silica glass tube for the production of a preform, method for producing the same in a vertical drawing process and use of said tube
JP4014045B2 (en) * 2003-04-16 2007-11-28 信越化学工業株式会社 Manufacturing method of glass rod
US7486862B2 (en) * 2003-05-19 2009-02-03 Sumitomo Electric Industries, Ltd. Optical fiber and manufacturing method thereof
DE10325538A1 (en) * 2003-06-04 2004-01-22 Heraeus Tenevo Ag Method for producing an optical component from quartz glass by elongating a coaxial arrangement and optical component produced according to the method
DE10325539A1 (en) * 2003-06-04 2004-01-08 Heraeus Tenevo Ag Quartz glass cylinder for the production of an optical component and method for its production
JP4206850B2 (en) * 2003-07-18 2009-01-14 信越化学工業株式会社 Manufacturing method of large synthetic quartz glass substrate for exposure
US20050097923A1 (en) * 2003-11-12 2005-05-12 General Electric Company System and support rod assembly for sintering fiber optic sleeve tubes
DE10357063B3 (en) 2003-12-04 2005-04-21 Heraeus Tenevo Ag Vertical drawing of glass, comprises continuously supplying a glass cylinder containing a vertical heating tube to a heating zone, softening, drawing and cutting
FR2863606B1 (en) * 2003-12-15 2007-06-01 Cit Alcatel METHOD OF MAKING AN OPTICAL FIBER OPTIC PREFORM, OPTICAL FIBER PREFORM AND OPTICAL FIBER THEREFOR
US7395679B2 (en) * 2004-03-19 2008-07-08 Konica Minolta Opto, Inc. Method of manufacturing glass substrate for information recording medium
CN102583997B (en) * 2004-11-29 2015-03-11 古河电气工业株式会社 Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
DE102004059804B4 (en) * 2004-12-10 2006-11-09 Heraeus Tenevo Gmbh A method for producing a quartz glass hollow cylinder as a raw material for an optical preform or for an optical fiber and use
DE102004060408B4 (en) * 2004-12-14 2007-08-16 Schott Ag Apparatus and method for producing a glass tube
DE102005028219B3 (en) * 2005-05-16 2006-10-12 Heraeus Tenevo Gmbh Quartz glass tube, is produced by elongating a hollow glass cylinder by continuously feeding it to a heating zone with a vertical heating tube
JP2007063094A (en) * 2005-09-01 2007-03-15 Sumitomo Electric Ind Ltd Inner surface treatment method for quartz tube, manufacturing method of optical fiber preform and manufacturing method of optical fiber
DE102007022272B4 (en) * 2007-05-09 2016-06-02 Heraeus Quarzglas Gmbh & Co. Kg A method of manufacturing a quartz glass tube by elongating a quartz glass hollow cylinder
DE102008016230A1 (en) 2008-03-27 2009-05-20 Heraeus Quarzglas Gmbh & Co. Kg Production of synthetic quartz glass cylinders comprises forming coating of silica granules on quartz glass cylinder and sintering it, granules having multimodal particle size distribution with maxima in specified ranges
CN101643310B (en) * 2009-09-03 2011-03-02 成士林 Continuous smelting one-step method for producing overlarge-caliber high-temperature deformation resistant quartz glass tube
US8192702B2 (en) * 2010-02-01 2012-06-05 Norell, Inc. Sample tubes for use in automated systems and methods of manufacture
CN101811819B (en) * 2010-04-16 2011-11-16 李秀山 Mold for manufacturing large-caliber glass tubes and method for manufacturing glass tubes by using mold
CN102199000B (en) * 2011-03-30 2012-08-08 连云港福东正佑照明电器有限公司 Double-wall quartz glass tube used for growth of gallium arsenide crystal and preparation method thereof
US8936401B2 (en) * 2011-08-30 2015-01-20 Claude Belleville Method for disposable guidewire optical connection
US9405078B2 (en) 2011-08-30 2016-08-02 Opsens Inc. Method for disposable guidewire optical connection
CN102515507B (en) * 2011-12-08 2014-07-09 华中科技大学 Metal core microstructure fiber and preparation method thereof
DE102012006410B4 (en) * 2012-03-30 2013-11-28 Heraeus Quarzglas Gmbh & Co. Kg Process for producing a quartz glass hollow cylinder
CN102981221B (en) * 2012-12-03 2015-02-18 连云港市盛昌照明电器有限公司 Method for manufacturing sleeve for optical fiber connector
DE102013107435B4 (en) * 2013-07-12 2015-01-29 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a quartz glass large tube
US10384972B2 (en) 2014-02-06 2019-08-20 Momentive Performance Materials Inc. Fused quartz tubing for pharmaceutical packaging and methods for making the same
JP6402466B2 (en) * 2014-03-31 2018-10-10 住友電気工業株式会社 Multi-core optical fiber manufacturing method
KR102233643B1 (en) 2014-06-17 2021-04-01 헤래우스 쿼츠 노쓰 아메리카 엘엘씨 Apparatus and method for measurement of transparent cylindrical articles
CN105891951A (en) * 2014-09-30 2016-08-24 中国兵器装备研究院 Modularized manufacturing method of multi-core beam combiner
US10464837B2 (en) 2015-06-02 2019-11-05 Heraeus Quartz North America Llc Method for inserting a core rod into an outer cladding tube with spacer
EP3112323B1 (en) * 2015-07-03 2021-09-01 Heraeus Quarzglas GmbH & Co. KG Method for producing a substrate pipe made of quartz glass
WO2017103125A1 (en) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silica during the production of silica glass
KR20180095619A (en) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Increase in silicon content during silica glass production
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
JP6881776B2 (en) 2015-12-18 2021-06-02 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of opaque quartz glass body
CN109153593A (en) 2015-12-18 2019-01-04 贺利氏石英玻璃有限两合公司 The preparation of synthetic quartz glass powder
US20190071342A1 (en) * 2015-12-18 2019-03-07 Heraeus Quarzglas Gmbh & Co. Kg Preparation and post-treatment of a quartz glass body
EP3390294B1 (en) 2015-12-18 2024-02-07 Heraeus Quarzglas GmbH & Co. KG Reduction of alkaline earth metal content of silica granule by treatment at high temperature of carbon doped silica granule
CN108698893A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 It is melted in crucible in refractory metal and prepares quartz glass body
CN108698894A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 Quartz glass body is prepared in multi-cavity type baking oven
WO2017103160A1 (en) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Production of silica glass articles from silica granluate
KR20180095614A (en) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Glass fibers and preforms made of quartz glass with low OH, Cl, and Al contents
KR102425328B1 (en) 2016-05-03 2022-07-25 헤래우스 쿼츠 노쓰 아메리카 엘엘씨 Elongation method and preform for producing an optical glass component
US10450214B2 (en) 2016-06-10 2019-10-22 Corning Incorporated High optical quality glass tubing and method of making
US11237323B2 (en) * 2017-02-28 2022-02-01 Corning Incorporated Methods and systems for controlling air flow through an annealing furnace during optical fiber production
JP7316996B2 (en) 2018-02-28 2023-07-28 古河電気工業株式会社 Multicore fiber, manufacturing method thereof, optical transmission system, and optical transmission method
JP6987021B2 (en) * 2018-05-28 2021-12-22 東京エレクトロン株式会社 Plasma processing equipment and plasma processing method
CN108793692B (en) * 2018-06-19 2021-04-23 江苏省晶瑞石英工业开发研究院有限公司 Self-shaping method for gas-refining quartz glass ingot
EP3636607B1 (en) * 2018-10-09 2021-01-13 Heraeus Quarzglas GmbH & Co. KG Method for manufacturing a capillary tube
CN110028235B (en) * 2019-03-01 2020-09-08 江苏永鼎股份有限公司 Optical fiber preform based on continuous melting quartz sleeve and manufacturing method thereof
RU2764064C1 (en) * 2020-10-02 2022-01-13 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Method for mechanical processing of large-sized complex ceramic products
EP4067315A1 (en) * 2021-03-29 2022-10-05 Heraeus Quarzglas GmbH & Co. KG Quartz glass tube and method of manufacturing the same
CN113213748B (en) * 2021-04-28 2022-05-06 中国科学院西安光学精密机械研究所 Preparation method of high-strength quartz optical fiber
CN114918741A (en) * 2022-03-17 2022-08-19 无锡海力自控工程有限公司 Monocrystalline silicon ultrathin-wall tube processing technology
CN114634306A (en) * 2022-03-17 2022-06-17 深圳市比洋互联科技有限公司 Preparation method of four-fiber tubule

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2106744A (en) * 1934-03-19 1938-02-01 Corning Glass Works Treated borosilicate glass
US2272342A (en) * 1934-08-27 1942-02-10 Corning Glass Works Method of making a transparent article of silica
US3455666A (en) * 1966-05-06 1969-07-15 American Optical Corp Method of making laser components
US3711262A (en) * 1970-05-11 1973-01-16 Corning Glass Works Method of producing optical waveguide fibers
US3659915A (en) * 1970-05-11 1972-05-02 Corning Glass Works Fused silica optical waveguide
US4217027A (en) * 1974-02-22 1980-08-12 Bell Telephone Laboratories, Incorporated Optical fiber fabrication and resulting product
US3932162A (en) * 1974-06-21 1976-01-13 Corning Glass Works Method of making glass optical waveguide
DE2536456C2 (en) * 1975-08-16 1981-02-05 Heraeus Quarzschmelze Gmbh, 6450 Hanau Semi-finished product for the production of optical fibers and process for the production of the semi-finished product
JPS59456B2 (en) * 1976-01-29 1984-01-06 日本電信電話株式会社 Manufacturing method of optical glass fiber
JPS52134623A (en) * 1976-05-06 1977-11-11 Nippon Telegraph & Telephone Process for preparing silica glass tube
JPS53144758A (en) * 1977-05-23 1978-12-16 Sumitomo Electric Ind Ltd Production of glass fibers for optical transmission
JPS5529020A (en) * 1978-08-17 1980-03-01 Yoshiki Maeda Sea water moving device using ebb and flow of tide
JPS5617932A (en) * 1979-07-18 1981-02-20 Toshiba Ceramics Co Ltd Transparent quartz glass pipe for optical fiber
JPS603014B2 (en) * 1979-07-20 1985-01-25 三菱マテリアル株式会社 Manufacturing method of quartz glass tube with high axial symmetry
JPS5637235A (en) * 1979-09-05 1981-04-10 Toshiba Ceramics Co Ltd Thick-walled transparent quartz glass tube of high accuracy
GB2109367B (en) * 1981-11-17 1985-02-13 Pirelli General Plc Manufacture of a preform for optical fibres by the rod in tube method
NL8201453A (en) * 1982-04-06 1983-11-01 Philips Nv METHOD FOR MANUFACTURING OPTICAL FIBERS
JPS58213652A (en) * 1982-06-04 1983-12-12 Nippon Telegr & Teleph Corp <Ntt> Method for treating surface of optical glass rod
US4596589A (en) * 1984-02-09 1986-06-24 Perry Gregory A Method for producing a single mode fiber preform
JPS61201633A (en) * 1985-03-04 1986-09-06 Sumitomo Electric Ind Ltd Production of multicore optical fiber
JPS62275035A (en) * 1985-05-07 1987-11-30 Sumitomo Electric Ind Ltd Production of base material for optical fiber
US4820322A (en) * 1986-04-28 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Method of and apparatus for overcladding a glass rod
NL8601830A (en) * 1986-07-14 1988-02-01 Philips Nv METHOD FOR MANUFACTURING OPTICAL FIBERS WITH A CORE AND GLASS COATING USING THE BAR IN TUBE TECHNOLOGY
US4882209A (en) * 1986-09-11 1989-11-21 Asahi Glass Company, Ltd. Glass capillary tube and method for its production
DE3731604A1 (en) * 1987-09-19 1989-03-30 Philips Patentverwaltung METHOD FOR PRODUCING A MONOMODE LIGHT FIBER
DE3921086A1 (en) * 1989-06-28 1991-01-03 Kabelmetal Electro Gmbh METHOD FOR THE PRODUCTION OF LIGHT-WAVE GUIDES WITH MELTING OF A TUBE PIPE ONTO A RAW PREFORM
JPH0380124A (en) * 1989-08-22 1991-04-04 Nippon Electric Glass Co Ltd Method for cleaning inside of glass pipe for optical fiber
JPH103924A (en) * 1996-04-19 1998-01-06 Daikin Ind Ltd Positive electrode active material, battery using the positive electrode active material, and manufacture of battery

Also Published As

Publication number Publication date
WO1994011317A2 (en) 1994-05-26
EP0598349A2 (en) 1994-05-25
US5837334A (en) 1998-11-17
WO1994011317A3 (en) 1994-07-07
ES2120467T3 (en) 1998-11-01
DE69319999T2 (en) 1999-03-18
DE69319999D1 (en) 1998-09-03
EP0598349A3 (en) 1994-07-06
FI935138A0 (en) 1993-11-19
KR940011972A (en) 1994-06-22
CN1042825C (en) 1999-04-07
DK0598349T3 (en) 1999-04-26
CN1089580A (en) 1994-07-20
EP0598349B1 (en) 1998-07-29
RU2096355C1 (en) 1997-11-20
FI103038B1 (en) 1999-04-15
FI103038B (en) 1999-04-15
FI935138A (en) 1994-05-20
US5785729A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
JP2980501B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
CN114007991B (en) Method for manufacturing hollow fiber and hollow fiber preform
CN113939483A (en) Method for manufacturing hollow-core optical fiber and hollow-core optical fiber preform
US20050232571A1 (en) Jacket tube made of synthetically produced quartz glass and optical fibres produced using said jacket tube
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
EP1487750B1 (en) Method for producing an optical fiber and optical fiber
US10118854B2 (en) Tubular semifinished product for producing an optical fiber
EP1000908B1 (en) Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
JP3529149B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
JP2022540320A (en) Method for manufacturing hollow core fiber and method for manufacturing preform for hollow core fiber
CN114026049A (en) Method for manufacturing hollow-core optical fiber and hollow-core optical fiber preform
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
RU2155359C2 (en) Process of manufacture of fibrous light guides preserving radiation polarization
JP2000203860A (en) Large-sized quartz glass reform
EP0994077A2 (en) Quartz glass tube having tapered groove and method for producing preform for optical fibers using the same
EP2481715B1 (en) Method of manufacturing an optical fiber preform

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121121

Year of fee payment: 16

EXPY Expiration of term