JPH0930824A - Polarization maintaining optical fiber and its production - Google Patents

Polarization maintaining optical fiber and its production

Info

Publication number
JPH0930824A
JPH0930824A JP7185950A JP18595095A JPH0930824A JP H0930824 A JPH0930824 A JP H0930824A JP 7185950 A JP7185950 A JP 7185950A JP 18595095 A JP18595095 A JP 18595095A JP H0930824 A JPH0930824 A JP H0930824A
Authority
JP
Japan
Prior art keywords
stress
softening temperature
optical fiber
tubular
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7185950A
Other languages
Japanese (ja)
Inventor
Masahiro Takagi
政浩 高城
Takeshi Kyogoku
毅 京極
Yoichi Ishiguro
洋一 石黒
Koichi Uchiyama
幸一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7185950A priority Critical patent/JPH0930824A/en
Publication of JPH0930824A publication Critical patent/JPH0930824A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber retaining polarized waves hardly forming bubbles even if the integration and drawing of stressing members and a perforated preform are simultaneously carried out. SOLUTION: A perforated preform 111 having a columnar core 10 and a clad 20, surrounding the core and having the first thermal expansion coefficient and the first softening temperature in the surface layer part of through-holes 50 and 51 provided at a prescribed interval kept from the central axis and columnar stressing members 40 and 41 having the second thermal expansion coefficient and the second softening temperature in the surface layer thereof are initially prepared. Tubular members 30 and 31 having the same softening temperature as that of the stressing members 40 and 41 are then formed on the surfaces of the through-holes in the perforated preform 111. The stressing members 40 and 41 are subsequently inserted into hollow parts 52 and 53 of the tubular members 30 and 31 and the resultant composite comprising the perforated preform 111, tubular members 30 and 31 and stressing members 40 and 41 is then heated to carry out the drawing while integrating the resultant perforated preform 112 having the tubular members formed therein with the stressing members 40 and 41.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏波保持光ファイバを
製造する方法及び偏波保持光ファイバに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a polarization maintaining optical fiber and a polarization maintaining optical fiber.

【0002】[0002]

【従来の技術】偏波保持光ファイバの製造方法として
は、従来から特公平3−7613に開示されるような方
法が知られている。これは、通常の光ファイバ母材のコ
ア中心に対して対称の位置に少なくとも一組の貫通孔を
形成し、その貫通孔にクラッドとは熱膨張係数の異なる
応力付与部材を挿入してから、加熱処理によりクラッ
ドと応力付与部材を一体化した後、線引を行って、ある
いは加熱による一体化と同時に線引を行って応力型の
偏波保持光ファイバを製造する方法である。
2. Description of the Related Art As a method of manufacturing a polarization maintaining optical fiber, a method disclosed in Japanese Patent Publication No. 3-7613 has been known. This is to form at least one set of through-holes at symmetrical positions with respect to the core center of the ordinary optical fiber preform, and insert a stress-applying member having a different thermal expansion coefficient from the clad into the through-holes, In this method, a stress-type polarization-maintaining optical fiber is manufactured by integrally drawing the cladding and the stress-applying member by heat treatment, and then performing drawing, or drawing simultaneously with integration by heating.

【0003】このうち、加熱一体化と線引を同時に行う
方法によれば、加熱一体化と線引を別個に行う方法に比
べて製造工程を削減することができるので、生産性良く
偏波保持光ファイバを製造することができる。また、一
体化後に線引を行う方法では、加熱一体化の後に母材が
冷却されると熱膨張係数の差に起因して割れが生じる場
合があることから、一体化後に母材が冷却されないよう
配慮する必要があるのに対し、加熱一体化と線引を同時
に行う方法ではこのような配慮が不要である点でも有利
である。
Of these, the method of simultaneously performing heating integration and wire drawing can reduce the number of manufacturing steps as compared with the method of separately performing heating integration and wire drawing, so that polarization can be maintained with good productivity. Optical fibers can be manufactured. In addition, in the method of drawing after the integration, if the base material is cooled after heat integration, cracks may occur due to the difference in thermal expansion coefficient, so the base material is not cooled after integration. However, the method of simultaneously performing heating integration and wire drawing is advantageous in that such consideration is unnecessary.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、通常、
応力付与部材とクラッドでは、両者の物性値、特に軟化
温度が大きく異なっており、そのため、加熱一体化の際
に、両者の接合界面に気泡が残存することが多々あっ
た。これは、軟化温度に差があると、どちらか一方のみ
が軟化してしまい、他方の表面が加熱により十分に平滑
化される前に一体化してしまう結果、接合界面に気泡が
発生しやすくなるからである。
However, usually,
The stress-applying member and the clad have greatly different physical property values, particularly the softening temperature. Therefore, during heating and integration, air bubbles often remain at the bonding interface between the two. This is because if there is a difference in softening temperature, only one of them will soften and the other surface will be integrated before being sufficiently smoothed by heating, resulting in easy occurrence of bubbles at the bonding interface. Because.

【0005】特に、一体化と線引を同時に行う方法で
は、一体化の最適条件(最適の加熱温度や加熱時間な
ど)と線引の最適条件とが一致しないことから両者の最
大公約数的な条件で一体化を行うことになるので、どう
しても気泡が生じやすくなる。クラッドと応力付与部材
との界面に気泡が発生しながら線引が行われると、線引
途中で光ファイバが断裂しやすい。また、断裂せず光フ
ァイバが製造されたとしても、その光ファイバは内部に
気泡を含んでいるため、十分な伝送特性や強度を有して
いない。
Particularly, in the method of simultaneously performing the integration and the drawing, the optimum conditions for the integration (optimal heating temperature, heating time, etc.) and the optimum conditions for the drawing do not coincide with each other. Since the integration is carried out under the conditions, bubbles are apt to occur. If drawing is performed while bubbles are generated at the interface between the clad and the stress applying member, the optical fiber is likely to break during drawing. Even if the optical fiber is manufactured without breaking, the optical fiber does not have sufficient transmission characteristics and strength because it contains bubbles.

【0006】本発明は、上記の問題点に鑑みなされたも
ので、加熱一体化を線引と同時に行っても気泡が生じに
くく、偏波保持光ファイバを好適に製造することができ
る方法、及び気泡の発生を防止しながら製造することが
容易な構造の偏波保持光ファイバを提供することを目的
とする。
The present invention has been made in view of the above problems, and it is possible to suitably manufacture a polarization-maintaining optical fiber by preventing bubbles from being generated even if heating and unifying are performed simultaneously with drawing, and An object of the present invention is to provide a polarization-maintaining optical fiber having a structure that is easy to manufacture while preventing bubbles from being generated.

【0007】[0007]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明に係る偏波保持光ファイバの製造方法の
第1の態様は、(a)柱状のコア及びこのコアを包囲
する管状のクラッドであってその管壁に軸方向に沿った
貫通孔が中心軸と所定の間隔をあけて設けられその貫通
孔の表層部において第1の熱膨張係数及び第1の軟化温
度を有するものを備える孔開き母材と、第1の熱膨張
係数と異なる第2の熱膨張係数及び第1の軟化温度と異
なる第2の軟化温度をその表層部において有する柱状の
応力付与部材とを用意する第1の工程と、(b)孔開き
母材の貫通孔の表面上に第2の軟化温度を有する管状部
材を形成する第2の工程と、(c)応力付与部材をこの
管状部材の中空部に挿入する第3の工程と、(d)孔開
き母材、管状部材および応力付与部材からなる光ファイ
バ母材を加熱して、管状部材が形成された孔開き母材と
応力付与部材とを一体化しながら線引を行う第4の工程
とを備えている。
In order to solve the above-mentioned problems, the first aspect of the method of manufacturing a polarization maintaining optical fiber according to the present invention is (a) a columnar core and surrounding this core. A tubular clad having through holes along the axial direction provided in the tube wall at a predetermined distance from the central axis and having a first thermal expansion coefficient and a first softening temperature in the surface layer portion of the through holes. And a columnar stress applying member having a second thermal expansion coefficient different from the first thermal expansion coefficient and a second softening temperature different from the first softening temperature in its surface layer portion. A second step of (b) forming a tubular member having a second softening temperature on the surface of the through hole of the apertured base material, and (c) the stress applying member of the tubular member. The third step of inserting into the hollow part, and (d) the perforated base material, tubular member and Heating the optical fiber preform comprising a stress applying member, and a fourth step of performing drawing while integrating the base material and the stress applying member aperture where the tubular member is formed.

【0008】なお、孔開き母材と応力付与部材の一体化
とは、例えば、これらの部材がガラスである場合には、
ガラス同士を接合することをいう。
The integration of the perforated base material and the stress imparting member means, for example, when these members are made of glass,
It means joining glass pieces together.

【0009】また、本発明に係る偏波保持光ファイバの
製造方法の第2の態様は、(a)柱状のコア及びこの
コアを包囲する管状のクラッドであってその管壁に軸方
向に沿った貫通孔が中心軸と所定の間隔をあけて設けら
れその貫通孔の表層部において第1の熱膨張係数及び第
1の軟化温度を有するものを備える孔開き母材と、第
1の熱膨張係数と異なる第2の熱膨張係数及び第1の軟
化温度と異なる第2の軟化温度をその表層部において有
する柱状の応力付与部材とを用意する第1の工程と、
(b)応力付与部材の表面上にこの応力付与部材の表面
を包囲する管状部材であって第1の軟化温度と略同一の
軟化温度を有するものを形成する第2の工程と、(c)
応力付与部材及び管状部材からなる柱状体を孔開き母材
の貫通孔に挿入する第3の工程と、(d)孔開き母材、
管状部材および応力付与部材からなる複合体を加熱し
て、柱状体と孔開き母材とを一体化しながら線引を行う
第4の工程とを備えている。
A second aspect of the method for manufacturing a polarization-maintaining optical fiber according to the present invention is (a) a columnar core and a tubular clad surrounding the core, the axial wall extending along the axial direction. A through hole having a first thermal expansion coefficient and a first softening temperature at a surface layer portion of the through hole, the through hole having a predetermined distance from the central axis; A first step of preparing a columnar stress-applying member having a second thermal expansion coefficient different from the coefficient and a second softening temperature different from the first softening temperature in its surface layer portion;
(B) a second step of forming on the surface of the stress-applying member a tubular member that surrounds the surface of the stress-applying member and has a softening temperature substantially the same as the first softening temperature; and (c)
A third step of inserting a columnar body composed of a stress applying member and a tubular member into the through hole of the perforated base material, and (d) the perforated base material,
A fourth step of heating the composite body including the tubular member and the stress applying member to draw the wire while integrating the columnar body and the perforated base material.

【0010】なお、柱状体と孔開き母材の一体化とは、
例えば、これらの部材がガラスである場合には、ガラス
同士を接合することをいう。
The integration of the columnar body and the perforated base material means
For example, when these members are glass, it means joining the glasses.

【0011】上記第1及び第2の態様に係る製造方法
は、上記の第2工程においてクラッドの屈折率以下の屈
折率を有する管状部材を形成するものであると良い。
In the manufacturing methods according to the first and second aspects, it is preferable that the tubular member having a refractive index lower than that of the clad is formed in the second step.

【0012】次に、本発明の偏波保持光ファイバは、
(a)柱状のコアと、(b)このコアを包囲する管状の
クラッドであって、その管壁に軸方向に沿った貫通孔が
中心軸と所定の間隔をあけて設けられ、その貫通孔の表
層部において第1の熱膨張係数及び第1の軟化温度を有
するものと、(c)貫通孔に挿入され、第1の熱膨張係
数と異なる第2の熱膨張係数及び第1の軟化温度と異な
る第2の軟化温度をその表層部において有する柱状の応
力付与部材と、(d)貫通孔の表面上に形成され、応力
付与部材を包囲する管状部材であって、第1及び第2の
軟化温度のいずれかと略同一の軟化温度を有する管状部
材とを備えている。
Next, the polarization maintaining optical fiber of the present invention is
(A) a columnar core, and (b) a tubular clad that surrounds the core, in which through holes are provided in the tube wall along the axial direction with a predetermined distance from the central axis. Having a first coefficient of thermal expansion and a first softening temperature in the surface layer part of, and (c) a second coefficient of thermal expansion and a first softening temperature which are different from the first coefficient of thermal expansion inserted into the through hole. A columnar stress-applying member having a second softening temperature different from that in the surface layer portion, and (d) a tubular member that is formed on the surface of the through hole and surrounds the stress-applying member. And a tubular member having a softening temperature substantially equal to any of the softening temperatures.

【0013】上記の偏波保持光ファイバは、応力付与部
材及び管状部材の屈折率が、クラッドの屈折率以下であ
ると良い。
In the above polarization-maintaining optical fiber, the stress-applying member and the tubular member preferably have a refractive index equal to or lower than that of the cladding.

【0014】[0014]

【作用】本発明に係る偏波保持光ファイバの製造方法の
第1の態様では、孔開き母材の貫通孔の表面上に応力付
与部材の表層部と同一の軟化温度を有する管状部材を形
成してから応力付与部材を挿入し、管状部材が形成され
た孔開き母材と応力付与部材とを線引と同時に一体化す
る。管状部材を貫通孔の表面上に形成する際には線引条
件を考慮する必要がないので、できるだけ気泡が生じに
くいような条件下で管状部材を形成することができ、こ
の点から気泡が発生しにくくなっている。また、管状部
材を十分に薄い層とすることによっても、管状部材とク
ラッドとの界面における気泡の発生を抑制することがで
きる。さらに、線引時に直接一体化されるのは管状部材
と応力付与部材の表層部であり、これらは互いに同一の
軟化温度を有しているので、一体化条件を考慮せずに線
引の最適条件下で一体化を行った場合でも気泡の発生は
十分に抑制される。このように、本発明の第1の態様に
よれば、一体化の条件を考慮しないでも、気泡の発生を
抑制して一体化を行い、これと同時に線引を行うことが
可能である。
In the first aspect of the method of manufacturing a polarization maintaining optical fiber according to the present invention, a tubular member having the same softening temperature as the surface layer of the stress applying member is formed on the surface of the through hole of the perforated base material. Then, the stress applying member is inserted, and the perforated base material on which the tubular member is formed and the stress applying member are integrated simultaneously with the drawing. Since it is not necessary to consider the drawing conditions when forming the tubular member on the surface of the through hole, it is possible to form the tubular member under conditions where bubbles are unlikely to occur, and bubbles are generated from this point. It is difficult to do. Further, by forming the tubular member as a sufficiently thin layer, it is possible to suppress the generation of bubbles at the interface between the tubular member and the clad. Furthermore, it is the surface layers of the tubular member and the stress-applying member that are directly integrated during drawing, and since these have the same softening temperature, the optimum drawing process does not take into account the integration conditions. Generation of bubbles is sufficiently suppressed even when the integration is performed under the conditions. As described above, according to the first aspect of the present invention, it is possible to suppress the generation of bubbles and perform the integration without taking the integration condition into consideration, and at the same time, perform the drawing.

【0015】次に、本発明に係る偏波保持光ファイバの
製造方法の第2の態様では、応力付与部材の表面上に貫
通孔の表層部におけるクラッドの軟化温度と同一の軟化
温度を有する管状部材を形成してから応力付与部材およ
び管状部材からなる柱状体を孔開き母材の貫通孔に挿入
し、この柱状体と孔開き母材とを線引と同時に一体化す
る。管状部材を応力付与部材の表面上に形成する際には
線引条件を考慮する必要がないので、できるだけ気泡が
生じにくいような条件下で管状部材を形成することがで
き、この点から気泡が発生しにくくなっている。また、
管状部材を十分に薄い層とすることによって、管状部材
と応力付与部材との界面における気泡の発生を抑制する
ことができる。さらに、線引時に直接一体化されるのは
管状部材と貫通孔の表層部であり、これらは互いに同一
の軟化温度を有しているので、一体化条件を考慮せずに
線引の最適条件下で一体化を行った場合でも気泡の発生
は十分に抑制される。このように、本発明の第2の態様
によっても、一体化の条件を考慮せずに気泡の発生を抑
制して一体化を行い、これと同時に線引を行うことが可
能である。
Next, in the second aspect of the method for manufacturing a polarization-maintaining optical fiber according to the present invention, a tube having the same softening temperature as the cladding softening temperature on the surface of the through hole on the surface of the stress applying member. After forming the member, a columnar body including the stress applying member and the tubular member is inserted into the through hole of the perforated base material, and the columnar body and the perforated base material are integrated simultaneously with drawing. Since it is not necessary to consider the drawing conditions when forming the tubular member on the surface of the stress applying member, it is possible to form the tubular member under conditions where bubbles are unlikely to occur as much as possible. It is less likely to occur. Also,
By forming the tubular member as a sufficiently thin layer, it is possible to suppress the generation of bubbles at the interface between the tubular member and the stress applying member. Furthermore, it is the tubular member and the surface layer of the through-hole that are directly integrated during drawing, and since these have the same softening temperature, the optimum conditions for drawing are taken into consideration without considering the integration conditions. The generation of bubbles is sufficiently suppressed even when the integration is performed below. As described above, according to the second aspect of the present invention as well, it is possible to suppress the generation of bubbles and perform the integration without considering the integration conditions, and at the same time, perform the drawing.

【0016】また、本発明において形成する管状部材の
屈折率がクラッドの屈折率以下であると、本発明により
得られる偏波保持光ファイバにおいて光を伝搬させた場
合にもコアから管状部材への光パワーの移動は生じにく
くなる。
Further, when the refractive index of the tubular member formed in the present invention is equal to or lower than the refractive index of the clad, even when light is propagated in the polarization-maintaining optical fiber obtained by the present invention, the core member changes to the tubular member. Light power transfer is less likely to occur.

【0017】次に、本発明の偏波保持光ファイバは、貫
通孔と応力付与部材との間に貫通孔の表層部又は応力付
与部材の表層部の軟化温度のいずれかと略同一の軟化温
度を有する管状部材が存在しているので、その製造時に
おいて線引と同時に応力付与部材と孔開き母材の一体化
を行う場合にも気泡が発生しにくい構造を有している。
具体的には、管状部材が応力付与部材の表層部の軟化温
度を有する場合には管状部材を貫通孔の表面上に設けて
から一体化と線引を行うことによって、また、管状部材
が貫通孔の表層部の軟化温度を有する場合には管状部材
を応力付与部材の表面上に形成してから一体化と線引を
行うことによって、気泡の発生を防止することができ
る。
Next, in the polarization-maintaining optical fiber of the present invention, the softening temperature between the through hole and the stress applying member is approximately the same as the softening temperature of either the surface layer of the through hole or the surface layer of the stress applying member. Since the tubular member has the present structure, it has a structure in which bubbles are less likely to be generated even when the stress applying member and the perforated base material are integrated at the same time as drawing in manufacturing the tubular member.
Specifically, when the tubular member has the softening temperature of the surface layer of the stress-applying member, the tubular member is provided on the surface of the through-hole and then integrated and drawn. When the surface layer of the hole has a softening temperature, bubbles can be prevented by forming a tubular member on the surface of the stress applying member and then performing integration and drawing.

【0018】また、本発明の偏波保持光ファイバにおい
て応力付与部材や管状部材の屈折率がクラッドの屈折率
以下であると、光ファイバ内で光を伝搬させた場合に
も、コアから応力付与部材又は管状部材への光パワーの
移動は生じにくい。
In the polarization-maintaining optical fiber of the present invention, if the stress-applying member or tubular member has a refractive index equal to or lower than that of the cladding, stress is applied from the core even when light is propagated in the optical fiber. Transfer of optical power to the member or tubular member is unlikely to occur.

【0019】[0019]

【実施例】以下、添付図面を参照しながら本発明の実施
例を詳細に説明する。なお、図面の説明において同一の
要素には同一の符号を付し、重複する説明を省略する。
また、図面の寸法比率は説明のものと必ずしも一致して
いない。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
Also, the dimensional ratios in the drawings do not always match those described.

【0020】実施例1 図1〜図5は、本実施例の偏波保持光ファイバの製造方
法を示す工程図である。これらの図を参照しながら、製
造方法を説明する。
Example 1 FIGS. 1 to 5 are process drawings showing a method of manufacturing a polarization maintaining optical fiber of this example. The manufacturing method will be described with reference to these drawings.

【0021】まず、コア10及びクラッド20から構成
されるガラス円柱110を用意する(図1)。コア10
は円柱状のガラスロッドであり、クラッド20はコア1
0の側面を密着して覆う円管状のガラスチューブであ
る。コア10とクラッド20の中心軸は一致している。
ガラス円柱110の外径は25mmであり、コア10の
外径は1.35mmである。コア10及びクラッド20
は、ともに石英(SiO2 )系ガラスから構成されてい
る。クラッド20はほぼ純粋な石英ガラスから構成され
ているが、コア10を構成する石英ガラスには屈折率上
昇材である酸化ゲルマニウム(GeO2 )が添加されて
おり、これによりコアの屈折率はクラッドよりも高くな
っている。
First, a glass cylinder 110 composed of the core 10 and the clad 20 is prepared (FIG. 1). Core 10
Is a cylindrical glass rod, and the clad 20 is the core 1
It is a circular glass tube that tightly covers the side surface of No. 0. The central axes of the core 10 and the clad 20 coincide with each other.
The glass cylinder 110 has an outer diameter of 25 mm, and the core 10 has an outer diameter of 1.35 mm. Core 10 and clad 20
Are both made of quartz (SiO 2 ) glass. The clad 20 is composed of substantially pure silica glass, but the silica glass forming the core 10 contains germanium oxide (GeO 2 ) as a refractive index increasing material, so that the core's refractive index is increased. Is higher than.

【0022】このガラス円柱110は、通常の光ファイ
バ母材と同様の方法、すなわち公知のVAD(気相軸付
け)法、OVD(外付け)法、MCVD(内付け)法、
ロッドインチューブ法などを用いて製造することができ
る。本実施例では、MCVD法を用いてこれを製造す
る。
The glass cylinder 110 is formed by the same method as that for a normal optical fiber preform, that is, a known VAD (vapor phase axis attachment) method, OVD (external attachment) method, MCVD (internal attachment) method,
It can be manufactured using a rod-in-tube method or the like. In this embodiment, this is manufactured using the MCVD method.

【0023】次いで、超音波開孔機(図示せず)を用い
てガラス円柱110のクラッド20にガラス円柱110
の軸方向に沿って延びる直径9mmの貫通孔50及び5
1を形成する(図2)。貫通孔50及び51は、コア1
0の中心軸に対して対称な位置にコア10と平行に形成
する。貫通孔50、51の中心軸とコア10の中心軸と
の距離は、それぞれ6.3mmである。以下では、貫通
孔50及び51が設けられたガラス円柱110を、孔開
き母材111と呼ぶことにする。
Then, the glass column 110 is attached to the cladding 20 of the glass column 110 using an ultrasonic perforator (not shown).
Through holes 50 and 5 having a diameter of 9 mm extending along the axial direction of
1 (FIG. 2). The through holes 50 and 51 are the core 1
It is formed parallel to the core 10 at a position symmetrical with respect to the central axis of 0. The distance between the central axis of the through holes 50 and 51 and the central axis of the core 10 is 6.3 mm, respectively. Hereinafter, the glass cylinder 110 provided with the through holes 50 and 51 will be referred to as a perforated base material 111.

【0024】次に、孔開き母材111の貫通孔50、5
1の表面上に厚さ0.5mmのホウ素添加石英ガラス
(SiO2 +B2 3 )層30、31を形成する(図
3)。このガラス層は円管状であるので、以下では、こ
のガラス層を管状部材30、31と呼ぶ。
Next, the through holes 50, 5 of the perforated base material 111.
A 0.5-mm thick boron-doped quartz glass (SiO 2 + B 2 O 3 ) layer 30 or 31 is formed on the surface of 1 (FIG. 3). Since the glass layer has a circular tubular shape, the glass layer is hereinafter referred to as tubular members 30 and 31.

【0025】この管状部材30及び31は、BCl
3 (三塩化ホウ素)を毎分200ml、SiCl4 (四
塩化珪素)を毎分400ml、O2 (酸素)を毎分1l
の流量で貫通孔50及び51の内部に導入しながら、孔
開き母材111の外面に酸水素炎バーナの火炎をあてて
貫通孔50及び51の内部を加熱することで形成するこ
とができる。酸水素炎バーナの火炎は、バーナ内に燃料
ガスとしてH2 (水素)を毎分70l、O2 (酸素)を
毎分30lずつ導入して形成したものである。管状部材
30及び31を形成した後には、管状部材30及び31
の内部に貫通孔52及び53が残る。なお、図3では、
管状部材30及び31が形成された後の孔開き母材を符
号112で示してある。
The tubular members 30 and 31 are made of BCl.
3 (boron trichloride) 200 ml / min, SiCl 4 (silicon tetrachloride) 400 ml / min, O 2 (oxygen) 1 l / min
It can be formed by applying a flame of an oxyhydrogen flame burner to the outer surface of the perforated base material 111 while heating the inside of the through holes 50 and 51 while introducing it into the through holes 50 and 51 at a flow rate of. The flame of the oxyhydrogen flame burner is formed by introducing 70 liters of H 2 (hydrogen) per minute and 30 liters of O 2 (oxygen) per minute as fuel gas into the burner. After forming the tubular members 30 and 31, the tubular members 30 and 31
Through holes 52 and 53 remain inside. In FIG. 3,
The perforated preform after the tubular members 30 and 31 have been formed is shown at 112.

【0026】次に、予め用意しておいた応力付与部材4
0、41をそれぞれ孔開き母材112の貫通孔52、5
3に挿入し、固定する(図4及び図5)。この応力付与
部材40及び41は、公知のVAD法により作製するこ
とができる。具体的には、バーナ内に燃料ガスとしてH
2 を毎分5l、O2 を毎分12lずつ導入して酸水素炎
を形成し、この酸水素炎中にSiCl4 を毎分400m
l、BCl3 を毎分300mlずつ導入してガラス微粒
子(SiO2 +B2 3 )を生成する。次いで、棒状の
出発材を回転させながらバーナからのガラス微粒子を吹
きつけると、出発材の表面上にガラス微粒子がほぼ均一
の厚さに堆積する。出発材を引き上げながらガラス微粒
子を吹きつけることで、軸方向にガラス微粒子を成長さ
せることができる。これにより、出発材の表面全体にガ
ラス微粒子が均一に堆積し、柱状のガラス微粒子体が得
られる。次に、このガラス微粒子体を焼結炉に入れ、焼
結炉内のヘリウム雰囲気中にBF3 を導入しながら約1
200℃の温度で60分間加熱し、次いで、約1400
℃の温度で60分間加熱した後、徐冷する。これによ
り、ガラス微粒子が透明ガラス化するので、柱状のガラ
ス体(SiO2 −B23 )が得られる。このガラス体
を外径が約7.8mmになるように加熱延伸すると、応
力付与部材40及び41が得られる。二つの応力付与部
材の組成は、ほぼ同一である。なお、応力付与部材4
0、41は、自らが挿入されるべき貫通孔52、53よ
りもそれぞれ短くしておく。
Next, the stress applying member 4 prepared in advance
Nos. 0 and 41 are formed through holes 52, 5 of the base material 112, respectively.
3 and fix it (FIGS. 4 and 5). The stress applying members 40 and 41 can be manufactured by a known VAD method. Specifically, H is used as fuel gas in the burner.
2 liters per minute and O 2 12 liters per minute were introduced to form an oxyhydrogen flame, and SiCl 4 was introduced into the oxyhydrogen flame at 400 m / min.
and 300 ml / min of BCl 3 are introduced to produce glass particles (SiO 2 + B 2 O 3 ). Next, when the rod-shaped starting material is rotated and the glass particles are blown from the burner, the glass particles are deposited on the surface of the starting material in a substantially uniform thickness. By blowing the glass particles while pulling up the starting material, the glass particles can be grown in the axial direction. As a result, glass particles are uniformly deposited on the entire surface of the starting material, and columnar glass particle bodies are obtained. Next, the glass fine particles are put into a sintering furnace, and while introducing BF 3 into the helium atmosphere in the sintering furnace, about 1
Heat at a temperature of 200 ° C. for 60 minutes, then about 1400
After heating at a temperature of 60 ° C. for 60 minutes, it is gradually cooled. As a result, the glass particles become transparent glass, so that a columnar glass body (SiO 2 —B 2 O 3 ) is obtained. When this glass body is heated and drawn to have an outer diameter of about 7.8 mm, the stress applying members 40 and 41 are obtained. The compositions of the two stress applying members are almost the same. The stress applying member 4
The lengths 0 and 41 are shorter than the through holes 52 and 53 into which they are to be inserted.

【0027】応力付与部材40及び41に添加されたB
2 3 はSiO2 ガラスの熱膨張係数を高める作用を有
しているため、応力付与部材40及び41はクラッド2
0よりも大きな熱膨張係数を有している。周知の通り、
応力付与部材が埋設された光ファイバ母材を線引した後
の光ファイバが冷却する過程において応力付与部材は強
く収縮するので、これによりコアに大きな応力が付与さ
れる。この結果、線引により得られる光ファイバは、偏
波保持光ファイバとなる。
B added to the stress applying members 40 and 41
Since 2 O 3 has a function of increasing the thermal expansion coefficient of SiO 2 glass, the stress-applying members 40 and 41 are used as the cladding 2
It has a coefficient of thermal expansion greater than zero. As you know,
Since the stress-applying member strongly contracts in the process of cooling the optical fiber after drawing the optical fiber preform with the stress-applying member embedded therein, a large stress is applied to the core. As a result, the optical fiber obtained by drawing becomes a polarization maintaining optical fiber.

【0028】上記のようにして得られた応力付与部材4
0、41は、孔開き母材112の貫通孔52、53にそ
れぞれ挿入され孔の内部に固定される。以下では、図4
及び図5を参照しながらこの固定方法について説明す
る。なお、この固定方法は、特開平4−97920号公
報にも開示されている。
The stress applying member 4 obtained as described above.
0 and 41 are respectively inserted into the through holes 52 and 53 of the perforated base material 112 and fixed inside the holes. Below, FIG.
This fixing method will be described with reference to FIGS. This fixing method is also disclosed in Japanese Patent Application Laid-Open No. 4-97920.

【0029】この固定方法を実行するために、まず、外
径約7.8mmの石英ガラス棒60a、60b、61a
及び61b、並びに石英ガラス管70を用意する。ガラ
ス管70は、図4に示されるように、内径の小さなガラ
スリング70bの両端にこれよりも内径の大きいガラス
管70a、70cが取り付けられたものである。
In order to carry out this fixing method, first, quartz glass rods 60a, 60b, 61a having an outer diameter of about 7.8 mm are used.
, 61b and the quartz glass tube 70 are prepared. As shown in FIG. 4, the glass tube 70 is formed by attaching glass tubes 70a and 70c having a larger inner diameter to both ends of a glass ring 70b having a smaller inner diameter.

【0030】応力付与部材40及び41を固定するため
には、まず、ガラス管70を光ファイバ用母材112の
一端面に溶着する。次いで、孔開き母材112の他端側
から貫通孔52にガラス棒60a、応力付与部材40、
ガラス棒60bをこの順で挿入する。貫通孔53につい
ても同様に、ガラス棒61a、応力付与部材41、ガラ
ス棒61bの順に挿入する。ガラス棒60a及び61a
の先端は、それぞれ孔開き母材112の端面から突出
し、その端面がガラスリング70bの底面に押し付けら
れる。これにより、ガラス棒60a及び61aが固定さ
れる。ガラス棒60b及び61bとクラッド20とは孔
開き母材112の端部を加熱延伸加工することで一体化
され。これによって、孔開き母材112の一端部が封止
される(図6)。このようにして、応力付与部材40、
41は貫通孔52、53の内部にそれぞれ固定される。
In order to fix the stress applying members 40 and 41, first, the glass tube 70 is welded to one end surface of the optical fiber preform 112. Next, the glass rod 60a, the stress applying member 40, the stress applying member 40,
The glass rod 60b is inserted in this order. Similarly, for the through hole 53, the glass rod 61a, the stress applying member 41, and the glass rod 61b are inserted in this order. Glass rods 60a and 61a
Of the perforations respectively protrude from the end surface of the perforated base material 112, and the end surface is pressed against the bottom surface of the glass ring 70b. Thereby, the glass rods 60a and 61a are fixed. The glass rods 60b and 61b and the clad 20 are integrated by heating and drawing the end portion of the perforated base material 112. As a result, one end of the perforated base material 112 is sealed (FIG. 6). In this way, the stress applying member 40,
41 is fixed inside the through holes 52 and 53, respectively.

【0031】ガラス管70には真空コネクタ(図示せ
ず)を接続できるようになっているので、これを利用し
て貫通孔52及び53の内部を減圧する。この後、ガラ
ス管70の先端を加熱処理によりコラプス(中実化)し
て封止する。これにより、光ファイバ母材が完成する。
この光ファイバ母材のうち実際に光ファイバの作製に利
用できるのは応力付与部材40及び41を含む部分であ
る。なお、応力付与部材40及び41の固定方法が上記
の方法に限られないことは言うまでもない。
Since a vacuum connector (not shown) can be connected to the glass tube 70, the inside of the through holes 52 and 53 is depressurized by utilizing this. After this, the tip of the glass tube 70 is collapsed (solidified) by heat treatment and sealed. Thereby, the optical fiber preform is completed.
Of the optical fiber preform, what can be actually used for manufacturing the optical fiber is a portion including the stress applying members 40 and 41. Needless to say, the method of fixing the stress applying members 40 and 41 is not limited to the above method.

【0032】次に、上述のようにして作製した光ファイ
バ母材を通常の線引装置を用いて線引し、偏波保持光フ
ァイバを製造する。具体的には、まず、光ファイバ母材
を加熱炉にて約2000度に加熱し、応力付与部材40
及び41と孔開き母材112とを一体化しながら線速毎
分100mにて外径が125μmになるように線引す
る。線引された光ファイバには、2度にわたってUV樹
脂のコーティングが施される。被覆後の光ファイバの外
径は約250μmになる。このようにして、長さ10k
mの偏波保持光ファイバが得られる。
Next, the optical fiber preform produced as described above is drawn by using an ordinary drawing apparatus to manufacture a polarization maintaining optical fiber. Specifically, first, the optical fiber preform is heated to about 2000 degrees in a heating furnace, and the stress applying member 40 is heated.
And 41 and the perforated base material 112 are integrated with each other so that the outer diameter is 125 μm at a linear velocity of 100 m / min. The drawn optical fiber is coated with UV resin twice. The outer diameter of the coated optical fiber is about 250 μm. In this way, the length is 10k
m polarization-maintaining optical fiber is obtained.

【0033】図6は、本実施例で作製した光ファイバ母
材について径方向の屈折率分布と軟化温度分布を示す図
である。この図では、光ファイバ母材の右半分の分布し
か示されていないが、左半分の分布も右半分と同様であ
る。この図に示されるように、管状部材30、31は応
力付与部材40、41とほぼ同一の軟化温度を有してい
る。なお、管状部材の軟化温度を応力付与部材と同一に
するには、上述した管状部材30及び31の形成工程に
おいてSiO2 の軟化温度低下材であるB2 3 の添加
量を適当に調節すれば良い。
FIG. 6 is a diagram showing the refractive index distribution and the softening temperature distribution in the radial direction of the optical fiber preform produced in this example. In this figure, only the distribution of the right half of the optical fiber preform is shown, but the distribution of the left half is similar to that of the right half. As shown in this figure, the tubular members 30, 31 have substantially the same softening temperature as the stress applying members 40, 41. In order to make the softening temperature of the tubular member the same as that of the stress applying member, it is necessary to appropriately adjust the addition amount of B 2 O 3 which is a softening temperature lowering agent of SiO 2 in the forming process of the tubular members 30 and 31 described above. Good.

【0034】このように、本実施例では、貫通孔50及
び51の表面上に応力付与部材40、41と同一の軟化
温度を有するガラス層(管状部材30、31)を形成し
てから応力付与部材40、41を挿入し、線引と同時に
応力付与部材40、41と孔開き母材112を一体化す
る。管状部材30、31は十分に薄い層であるため、従
来のように貫通孔に応力付与部材を挿入して両者を加熱
一体化する場合に比べて、管状部材30、31とクラッ
ド20との界面に気泡が発生しにくくなっている。ま
た、本実施例の方法では、管状部材30、31を貫通孔
50、51の表面上に形成する際に線引条件を考慮する
必要がないので、できるだけ気泡が生じにくいような条
件下で管状部材30、31を形成することができ、この
点からも気泡が発生しにくい。さらに、本実施例におい
て線引時に直接一体化されるのは管状部材30と応力付
与部材40、並びに管状部材31と応力付与部材41で
あり、これらは互いに同一の軟化温度を有しているの
で、線引の最適条件下で一体化を行った場合でも気泡の
発生は十分に抑制される。このように、本実施例の光フ
ァイバ製造方法によれば、一体化の条件を考慮しないで
も気泡の発生を抑制しながら一体化を行い、これと同時
に線引を行うことが可能である。このため、良好な伝送
特性及び偏波特性を示す偏波保持光ファイバを容易に製
造することができる。
As described above, in this embodiment, the glass layer (tubular members 30, 31) having the same softening temperature as the stress applying members 40, 41 is formed on the surface of the through holes 50, 51, and then the stress is applied. The members 40 and 41 are inserted, and the stress applying members 40 and 41 and the perforated base material 112 are integrated simultaneously with drawing. Since the tubular members 30 and 31 are sufficiently thin layers, the interface between the tubular members 30 and 31 and the clad 20 is different from that in the conventional case where a stress applying member is inserted into a through hole to heat and integrate both members. Bubbles are less likely to occur. Further, in the method of the present embodiment, it is not necessary to consider the drawing conditions when forming the tubular members 30 and 31 on the surfaces of the through holes 50 and 51. The members 30 and 31 can be formed, and from this point as well, bubbles are unlikely to be generated. Further, in the present embodiment, it is the tubular member 30 and the stress applying member 40, and the tubular member 31 and the stress applying member 41 that are directly integrated at the time of drawing, and they have the same softening temperature. The generation of bubbles can be sufficiently suppressed even when integrated under the optimum drawing conditions. As described above, according to the optical fiber manufacturing method of the present embodiment, it is possible to perform the integration while suppressing the generation of bubbles and to perform the drawing at the same time without considering the integration conditions. Therefore, it is possible to easily manufacture a polarization-maintaining optical fiber that exhibits good transmission characteristics and polarization characteristics.

【0035】ところで、光ファイバ内では光は屈折率の
高い部分を伝搬することから、一般的にコア近傍にクラ
ッドより屈折率の高い部分が存在するとコアからその部
分への光パワーの移動が起こり、結果的に伝送損失が増
加する。この点に鑑み、本実施例では、管状部材30及
び31、並びに応力付与部材40及び41の屈折率をク
ラッドよりも低く設定している(図6)。光ファイバは
母材と同様の屈折率分布を有することから、このように
屈折率を設定することで光ファイバ内の光パワーの移動
を防ぐことができ、伝送損失の少ない偏波保持光ファイ
バを製造することができる。
By the way, since light propagates in a portion having a high refractive index in an optical fiber, generally, when a portion having a refractive index higher than that of a clad exists in the vicinity of the core, the optical power moves from the core to that portion. As a result, the transmission loss increases. In view of this point, in the present embodiment, the tubular members 30 and 31, and the stress applying members 40 and 41 are set to have a lower refractive index than the clad (FIG. 6). Since the optical fiber has a refractive index distribution similar to that of the base material, by setting the refractive index in this way, it is possible to prevent movement of the optical power in the optical fiber, and to use a polarization-maintaining optical fiber with low transmission loss. It can be manufactured.

【0036】なお、以上の効果を確認すべく、本実施例
で製造した偏波保持光ファイバについて偏波特性の一つ
であるクロストーク特性を波長1.3μmにて測定した
ところ、−24dBと非常に良好な結果を得た。
In order to confirm the above effect, the crosstalk characteristic which is one of the polarization characteristics of the polarization-maintaining optical fiber manufactured in this example was measured at a wavelength of 1.3 μm. And got very good results.

【0037】また、本発明者らは、本実施例との比較の
ため、管状部材30及び31を形成せずに応力付与部材
を埋設した光ファイバ母材を線引して10kmの偏波保
持光ファイバを製造した。光ファイバ母材の製造方法
は、管状部材30及び31を形成しない点を除いて本実
施例と同様である。この偏波保持光ファイバについてク
ロストーク特性を測定したところ、−8dBと本実施例
よりも劣っていた。この偏波保持光ファイバを詳細に調
べた結果、光ファイバ全長で3箇所にわたりガラス内に
気泡が発見された。この気泡は、応力付与部材とクラッ
ドとの界面に発生していた。
For comparison with the present embodiment, the present inventors have drawn the optical fiber preform embedded with the stress applying member without forming the tubular members 30 and 31 to maintain the polarization of 10 km. An optical fiber was manufactured. The manufacturing method of the optical fiber preform is the same as that of this embodiment except that the tubular members 30 and 31 are not formed. When the crosstalk characteristic of this polarization maintaining optical fiber was measured, it was -8 dB, which was inferior to that of this example. As a result of detailed examination of this polarization-maintaining optical fiber, bubbles were found in the glass at three locations along the entire length of the optical fiber. These bubbles were generated at the interface between the stress applying member and the clad.

【0038】なお、本実施例では、孔開き母材111の
貫通孔50、51の表面上に透明ガラスからなる管状部
材30、31を形成してから、応力付与部材40、41
を管状部材30、31に挿入し、その後、一体化と線引
を行ったが、偏波保持光ファイバを製造する上では、次
のような方法も考えられる。すなわち、貫通孔50、5
1の表面上に管状のガラス微粒子層を堆積形成し、これ
を透明化しないままガラス微粒子層の中空部に応力付与
部材40、41を挿入し、この後、加熱処理により一体
化と線引を行っても良い。この方法では、上記のガラス
微粒子層は、線引時の加熱処理の際に透明化することに
なる。
In this embodiment, the tubular members 30, 31 made of transparent glass are formed on the surfaces of the through holes 50, 51 of the perforated base material 111, and then the stress applying members 40, 41 are formed.
Was inserted into the tubular members 30 and 31, and then integrated and drawn. However, the following method can be considered in manufacturing the polarization-maintaining optical fiber. That is, the through holes 50, 5
1. A tubular glass fine particle layer is deposited and formed on the surface of 1, and stress imparting members 40 and 41 are inserted into the hollow portion of the glass fine particle layer without making it transparent, and then integrated and drawn by heat treatment. You can go. In this method, the glass fine particle layer is made transparent during the heat treatment during drawing.

【0039】実施例2 図7は、本実施例の母材製造方法を示す図である。本実
施例では、まず、VAD法によってガラス円柱110
(図1と同様のもの)を作製し、超音波開孔機によりク
ラッド20に軸方向に沿って延びる貫通孔50及び51
を形成して、孔開き母材111(図2と同様のもの)を
作製する。貫通孔50及び51の直径は、8mmであ
る。以上の工程は実施例1とほぼ同様であるが、本実施
例ではコアの組成はSiO2 であり、クラッドの組成は
SiO2 −Fである。FはSiO2 の屈折率低下材であ
り、これがクラッドに添加されていることによりコアの
屈折率はクラッドよりも高くなっている。
Example 2 FIG. 7 is a diagram showing a base material manufacturing method of this example. In this embodiment, first, the glass cylinder 110 is formed by the VAD method.
(Similar to FIG. 1) is produced and through holes 50 and 51 extending in the clad 20 along the axial direction by an ultrasonic perforator.
To form a perforated base material 111 (similar to FIG. 2). The diameter of the through holes 50 and 51 is 8 mm. The above steps are almost the same as in Example 1, but in this Example, the core composition is SiO 2 and the clad composition is SiO 2 —F. F is a refractive index lowering material of SiO 2 , and by adding this to the clad, the refractive index of the core is higher than that of the clad.

【0040】次に、本実施例では、VAD法を用いて実
施例1と同一の応力付与部材40及び41(外径18m
m)を作製した後、この応力付与部材40、41の表面
上にそれぞれガラス管32、33を堆積形成する。この
堆積形成は、公知のOVD(外付け)法を用いて行うこ
とができる。具体的には、酸水素炎バーナ内にSiCl
4 (四塩化珪素)を毎分300ml、H2 (水素)を毎
分5l、O2 (酸素)を毎分12lずつ導入し、応力付
与部材40及び41を自らの軸を回転軸として回転させ
ながらバーナの火炎をあて、バーナを軸方向に沿って応
力付与部材40及び41に対し相対的に移動させてい
く。これにより、SiO2 のガラス微粒子が応力付与部
材40及び41の側面上にほぼ均一な厚さで堆積する。
次いで、ガラス微粒子が堆積した応力付与部材40及び
41を加熱炉に入れ、加熱炉内のヘリウム雰囲気中にB
3 及びSiF4 を導入しながら約1200℃の温度で
120分間加熱し、続いて、約1400℃の温度で60
分間加熱した後、徐冷する。この作業により、SiO2
のガラス微粒子にB及びFが添加されるとともに、ガラ
ス微粒子が透明なガラスになる。
Next, in this embodiment, the same stress imparting members 40 and 41 (outer diameter 18 m as in Embodiment 1) are formed by using the VAD method.
After producing m), glass tubes 32 and 33 are deposited and formed on the surfaces of the stress applying members 40 and 41, respectively. This deposition formation can be performed using a known OVD (external attachment) method. Specifically, SiCl in the oxyhydrogen flame burner
4 (Silicon tetrachloride) 300 ml / min, H 2 (hydrogen) 5 l / min, O 2 (oxygen) 12 l / min were introduced, and the stress applying members 40 and 41 were rotated about their own axes. While applying the flame of the burner, the burner is moved relative to the stress applying members 40 and 41 along the axial direction. As a result, glass particles of SiO 2 are deposited on the side surfaces of the stress applying members 40 and 41 with a substantially uniform thickness.
Next, the stress applying members 40 and 41 on which the glass particles are deposited are put into a heating furnace, and B is placed in a helium atmosphere in the heating furnace.
While introducing F 3 and SiF 4 , heat at a temperature of about 1200 ° C. for 120 minutes, then 60 at a temperature of about 1400 ° C.
After heating for a minute, cool slowly. By this work, SiO 2
B and F are added to the glass particles of (1) and the glass particles become transparent glass.

【0041】本実施例では、上記の方法により、応力付
与部材40、41の表面上に厚さ約2.5mmのガラス
層(SiO2 −B2 3 −F)32、33を形成する。
このガラス層も円管状であるので、以下では、このガラ
ス層を管状部材32、33と呼ぶ。
In this embodiment, glass layers (SiO 2 —B 2 O 3 —F) 32 and 33 having a thickness of about 2.5 mm are formed on the surfaces of the stress applying members 40 and 41 by the above method.
Since this glass layer also has a circular tubular shape, the glass layers will be referred to as tubular members 32 and 33 below.

【0042】なお、応力付与部材40、41の表面に管
状部材32、33を形成する方法としては、管状部材3
2及び33の材料を用いて予め作製したガラスパイプの
内面に、応力付与部材40、41となるべきガラス層を
MCVD法によって形成し、その後ガラスパイプをコラ
プス(中実化)する方法を採ることもできる。
As a method of forming the tubular members 32 and 33 on the surfaces of the stress applying members 40 and 41, the tubular member 3 is used.
Adopting a method of forming a glass layer to be the stress applying members 40 and 41 on the inner surface of a glass pipe previously manufactured using the materials 2 and 33 by the MCVD method, and then collapsing the glass pipe. You can also

【0043】この後、管状部材32と応力付与部材40
からなる柱状体80、並びに管状部材33と応力付与部
材41からなる柱状体81を、それぞれ外径が約7.7
mmになるように加熱延伸する。
After this, the tubular member 32 and the stress applying member 40
The columnar body 80 made of and the columnar body 81 made of the tubular member 33 and the stress applying member 41 have an outer diameter of about 7.7.
It is heated and stretched so that the thickness becomes mm.

【0044】こうして得られた柱状体80、81を、図
7のように孔開き母材111の貫通孔50、51にそれ
ぞれ挿入、固定した後、母材の両端を封止すると光ファ
イバ母材が完成する。図示はしないが、柱状体80、8
1の固定等は実施例1と同様の方法により行っている。
The columnar bodies 80 and 81 thus obtained are inserted into and fixed to the through holes 50 and 51 of the preform preform 111, respectively, as shown in FIG. Is completed. Although not shown, the columnar bodies 80, 8
1 is fixed by the same method as in the first embodiment.

【0045】次いで、上記のようにして作製した光ファ
イバ母材を実施例1と同様に線引すると、長さ10km
の偏波保持光ファイバが得られる。
Next, when the optical fiber preform produced as described above was drawn in the same manner as in Example 1, the length was 10 km.
A polarization maintaining optical fiber is obtained.

【0046】図8は、本実施例で作製した光ファイバ母
材について径方向の屈折率分布と軟化温度分布を示す図
である。この図に示されるように、管状部材32、33
はクラッド20とほぼ同一の軟化温度を有している。な
お、軟化温度の調節は、上述した管状部材32及び33
の形成工程においてSiO2 の軟化温度変化材であるB
2 3 及びFの添加量を調節することで行うことができ
る。ここで、B2 3はSiO2 の軟化温度を低下させ
る作用を有しており、FはSiO2 の軟化温度を低下さ
せる作用を有している。
FIG. 8 is a diagram showing the refractive index distribution and the softening temperature distribution in the radial direction of the optical fiber preform produced in this example. As shown in this figure, tubular members 32, 33
Has substantially the same softening temperature as the clad 20. The softening temperature is adjusted by the above-mentioned tubular members 32 and 33.
Which is a softening temperature change material of SiO 2 in the formation process of
It can be performed by adjusting the addition amounts of 2 O 3 and F. Here, B 2 O 3 has an effect of lowering the softening temperature of the SiO 2, F has the effect of lowering the softening temperature of the SiO 2.

【0047】このように、本実施例では、応力付与部材
40、41の側面上にクラッド20と同一の軟化温度を
有するガラス層(管状部材32、33)を形成し、得ら
れた柱状体80、81を孔開き母材111の貫通孔5
0、51に挿入し、線引と同時に柱状体80、81と孔
開き母材111を一体化する。管状部材32、33は十
分に薄い層であるため、従来のように貫通孔に応力付与
部材を挿入して両者を加熱一体化する場合に比べて、管
状部材32、33と応力付与部材40、41との界面に
気泡が発生しにくくなっている。また、本実施例の方法
では、管状部材32、33を形成する際に線引条件を考
慮する必要がないので、できるだけ気泡が生じにくいよ
うな条件下で管状部材32、33を形成することがで
き、この点からも気泡が発生しにくい。さらに、本実施
例において線引時に直接一体化されるのは管状部材3
2、33とクラッド20であり、これらは互いに同一の
軟化温度を有しているので、線引の最適条件下で一体化
を行った場合でも気泡の発生は十分に抑制される。この
ように、本実施例の光ファイバ製造方法によれば、一体
化の条件を考慮しないでも、気泡の発生を抑制して一体
化を行い、これと同時に線引を行うことが可能である。
このため、良好な伝送特性及び偏波特性を示す偏波保持
光ファイバを容易に製造することができる。
As described above, in this embodiment, the glass layers (tubular members 32 and 33) having the same softening temperature as that of the clad 20 are formed on the side surfaces of the stress applying members 40 and 41, and the obtained columnar body 80 is obtained. , 81 through holes 5 of the base material 111
Then, the columnar bodies 80 and 81 and the perforated base material 111 are integrated at the same time as drawing. Since the tubular members 32 and 33 are sufficiently thin layers, the tubular members 32 and 33 and the stress imparting member 40, as compared with the conventional case where a stress imparting member is inserted into a through hole to heat and integrate both members, Bubbles are less likely to be generated at the interface with 41. Further, in the method of the present embodiment, since it is not necessary to consider the drawing conditions when forming the tubular members 32 and 33, it is possible to form the tubular members 32 and 33 under conditions where bubbles are unlikely to occur. This is also possible, and bubbles are less likely to be generated from this point as well. Furthermore, in this embodiment, the tubular member 3 is directly integrated during drawing.
2, 33 and the clad 20, which have the same softening temperature, the generation of bubbles is sufficiently suppressed even when they are integrated under the optimal drawing conditions. As described above, according to the optical fiber manufacturing method of the present embodiment, it is possible to suppress the generation of bubbles and perform the integration without taking the integration condition into consideration, and at the same time, perform the drawing.
Therefore, it is possible to easily manufacture a polarization-maintaining optical fiber that exhibits good transmission characteristics and polarization characteristics.

【0048】また、本実施例でも、管状部材32及び3
3、並びに応力付与部材40及び41の屈折率をクラッ
ドよりも低く設定している(図8)。実施例1と同様、
このように屈折率を設定することで光ファイバ内におけ
るコア10から管状部材32、33または応力付与部材
40、41への光パワーの移動を防ぐことができ、伝送
損失の少ない偏波保持光ファイバを製造することができ
る。
Also in this embodiment, the tubular members 32 and 3 are
3 and the stress imparting members 40 and 41 are set to have a lower refractive index than that of the clad (FIG. 8). Similar to Example 1,
By setting the refractive index in this way, it is possible to prevent the optical power from moving from the core 10 to the tubular members 32, 33 or the stress applying members 40, 41 in the optical fiber, and the polarization-maintaining optical fiber with less transmission loss. Can be manufactured.

【0049】なお、本発明者らが本実施例で製造された
偏波保持光ファイバについて偏波特性の一つであるクロ
ストーク特性を波長1.3μmにて測定したところ、−
26dBと非常に良好な結果を得た。
The inventors of the present invention measured the crosstalk characteristic, which is one of the polarization characteristics of the polarization-maintaining optical fiber manufactured in this example, at a wavelength of 1.3 μm.
A very good result of 26 dB was obtained.

【0050】以上、本発明の実施例を詳細に説明した
が、本発明は上記実施例に限定されるものではなく、様
々な変形が可能である。例えば、コア及びクラッドから
なる母材や応力付与部材の製造については、VAD法、
OVD法、MCVD法等、一般に知られている製造方法
のいかなるものを用いても良い。貫通孔の表面或いは応
力付与部材の表面にガラス層を形成する場合も、同様で
ある。応力付与部材を挿入するための貫通孔の形成方法
も、公知技術から種々の方法を選択することができる。
同様に、貫通孔及び応力付与部材の断面形状も、偏波保
持光ファイバに関する公知技術から任意に選択すること
ができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments and various modifications can be made. For example, the VAD method is used for manufacturing the base material and the stress applying member including the core and the clad.
Any of the generally known manufacturing methods such as the OVD method and the MCVD method may be used. The same applies when the glass layer is formed on the surface of the through hole or the surface of the stress applying member. As the method of forming the through hole for inserting the stress applying member, various methods can be selected from known techniques.
Similarly, the cross-sectional shapes of the through hole and the stress applying member can be arbitrarily selected from known techniques regarding polarization-maintaining optical fibers.

【0051】また、貫通孔の表面或いは応力付与部材の
表面にガラス層を形成した後、ガラス層の表面に対して
研磨等の機械的平滑化または火炎放射等による加熱平滑
化を行い、或いはこれらの面を洗浄して、これらの面に
付着している不純物を除去しておくと、加熱一体化の際
の気泡発生をより効果的に防止することができる。
After forming the glass layer on the surface of the through hole or the surface of the stress-applying member, the surface of the glass layer is mechanically smoothed by polishing or heat-smoothed by flame radiation, or the like. By cleaning the surfaces of (1) and (2) to remove the impurities attached to these surfaces, it is possible to more effectively prevent the generation of bubbles during heat integration.

【0052】また、石英ガラスの軟化温度の調節に用い
る軟化温度変化材としては、以下のようなものがある。
Further, as the softening temperature changing material used for adjusting the softening temperature of the quartz glass, there are the following materials.

【0053】 第1グループ(軟化温度、屈折率とも低下させるもの)
…B、F 第2グループ(軟化温度を低下させ、屈折率を上昇させ
るもの)…Ge、P 第3グループ(軟化温度、屈折率とも上昇させるもの)
…Al、Ti、Zr これらの軟化温度変化材は、第1グループから一つ以
上を選択して添加する、第1グループから一つ以上を
選択し、かつ、第2グループから一つ以上を選択して添
加する、第1グループから一つ以上を選択し、かつ、
第3グループから一つ以上を選択して添加する、第1
グループから一つ以上、第2グループから一つ以上、第
3グループから一つ以上をそれぞれ選択して添加する、
のいずれかの方法により使用すると良い。
The first group (which lowers both the softening temperature and the refractive index)
... B, F Second group (for lowering softening temperature and increasing refractive index) ... Ge, P Third group (for increasing both softening temperature and refractive index)
... Al, Ti, Zr These softening temperature changing materials are selected by adding one or more from the first group, one or more from the first group, and one or more from the second group. Select one or more from the first group, and
Select one or more from the third group and add, first
Select one or more from the group, one or more from the second group, one or more from the third group, and add,
It is good to use by any of the methods.

【0054】[0054]

【発明の効果】以上、詳細に説明した通り、本発明に係
る偏波保持光ファイバの製造方法の第1の態様によれ
ば、気泡の発生を抑制して一体化を行いながら同時に線
引を行うことが可能であるから、良好な伝送特性及び偏
波特性を示す偏波保持光ファイバを容易に製造すること
ができる。
As described in detail above, according to the first aspect of the method of manufacturing a polarization maintaining optical fiber of the present invention, it is possible to suppress the generation of bubbles and perform the drawing while simultaneously performing the integration. Therefore, it is possible to easily manufacture a polarization-maintaining optical fiber having good transmission characteristics and polarization characteristics.

【0055】本発明の第2の態様の場合も同様で、気泡
の発生を抑制して一体化を行いながら同時に線引を行う
ことが可能であるから、良好な伝送特性及び偏波特性を
示す偏波保持光ファイバを容易に製造することができ
る。
In the case of the second aspect of the present invention as well, since it is possible to simultaneously perform drawing while suppressing the generation of bubbles and performing integration, excellent transmission characteristics and polarization characteristics can be obtained. The polarization maintaining optical fiber shown can be easily manufactured.

【0056】本発明の偏波保持光ファイバの製造方法の
うちクラッドの屈折率以下の屈折率を有する管状部材を
形成するものによれば、得られる偏波保持光ファイバに
おいてコアから管状部材への光パワーの移動は生じにく
いので、伝送損失の少ない偏波保持光ファイバを製造す
ることができる。
According to the method for manufacturing a polarization maintaining optical fiber of the present invention, which forms a tubular member having a refractive index equal to or lower than the refractive index of the clad, the obtained polarization maintaining optical fiber is formed from the core to the tubular member. Since the movement of the optical power does not easily occur, it is possible to manufacture a polarization maintaining optical fiber with less transmission loss.

【0057】次に、本発明の偏波保持光ファイバは、そ
の製造時において線引と同時に応力付与部材と孔開き母
材の一体化を行う場合にも気泡が発生しにくい構造を有
しているので、線引中に断裂することなく製造でき、良
好な伝送特性及び偏波特性を有している。
Next, the polarization-maintaining optical fiber of the present invention has a structure in which bubbles are less likely to be generated even when the stress applying member and the perforated base material are integrated at the same time as drawing in manufacturing. Therefore, it can be manufactured without breaking during drawing, and has excellent transmission characteristics and polarization characteristics.

【0058】本発明の偏波保持光ファイバのうち応力付
与部材や管状部材の屈折率がクラッドの屈折率以下であ
るものは、コアから応力付与部材又は管状部材への光パ
ワーの移動が生じにくいため、伝送損失が少ないという
利点を有している。
Among the polarization-maintaining optical fibers of the present invention, those in which the stress-applying member or the tubular member has a refractive index equal to or lower than the refractive index of the clad are less likely to cause the optical power to move from the core to the stress-applying member or the tubular member. Therefore, it has an advantage that the transmission loss is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の光ファイバ母材の製造方法を示す第
1の工程図である。
FIG. 1 is a first process diagram illustrating a method for manufacturing an optical fiber preform according to a first embodiment.

【図2】実施例1の光ファイバ母材の製造方法を示す第
2の工程図である。
FIG. 2 is a second process chart showing the method for manufacturing the optical fiber preform of Example 1.

【図3】実施例1の光ファイバ母材の製造方法を示す第
3の工程図である。
FIG. 3 is a third process chart showing the method for manufacturing the optical fiber preform of Example 1.

【図4】実施例1の光ファイバ母材の製造方法を示す第
4の工程図である。
FIG. 4 is a fourth process chart showing the method of manufacturing the optical fiber preform of Example 1.

【図5】実施例1の光ファイバ母材の製造方法を示す第
5の工程図である。
FIG. 5 is a fifth process chart showing the method for manufacturing the optical fiber preform of Example 1.

【図6】実施例1で作製した光ファイバ母材について径
方向に沿った屈折率分布及び軟化温度分布を示す図であ
る。
FIG. 6 is a diagram showing a refractive index distribution and a softening temperature distribution along a radial direction of the optical fiber preform manufactured in Example 1.

【図7】実施例2の母材製造方法を説明するための図で
ある。
FIG. 7 is a drawing for explaining the base material manufacturing method of the second embodiment.

【図8】実施例2で作製した光ファイバ母材について径
方向に沿った屈折率分布及び軟化温度分布を示す図であ
る。
FIG. 8 is a diagram showing a refractive index distribution and a softening temperature distribution along the radial direction of the optical fiber preform manufactured in Example 2;

【符号の説明】[Explanation of symbols]

10…コア、20…クラッド、30〜33…管状部材、
40及び41…応力付与部材、50〜53…貫通孔、1
10…ガラス円柱、111…孔開き母材、112…管状
部材30及び31が形成された後の孔開き母材。
10 ... Core, 20 ... Clad, 30-33 ... Tubular member,
40 and 41 ... Stress imparting member, 50 to 53 ... Through hole, 1
10 ... Glass cylinder, 111 ... Perforated base material, 112 ... Perforated base material after the tubular members 30 and 31 are formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 幸一 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Uchiyama 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 柱状のコア及びこのコアを包囲する管状
のクラッドであってその管壁に軸方向に沿った貫通孔が
中心軸と所定の間隔をあけて設けられその貫通孔の表層
部において第1の熱膨張係数及び第1の軟化温度を有す
るものを備える孔開き母材と、前記第1の熱膨張係数と
異なる第2の熱膨張係数及び前記第1の軟化温度と異な
る第2の軟化温度をその表層部において有する柱状の応
力付与部材とを用意する第1の工程と、 前記孔開き母材の貫通孔の表面上に前記第2の軟化温度
と略同一の軟化温度を有する管状部材を形成する第2の
工程と、 前記応力付与部材をこの管状部材の中空部に挿入する第
3の工程と、 前記孔開き母材、管状部材および応力付与部材からなる
複合体を加熱して、前記管状部材が形成された孔開き母
材と前記応力付与部材とを一体化しながら線引を行う第
4の工程と、 を備える偏波保持光ファイバの製造方法。
1. A columnar core and a tubular clad that surrounds the core, wherein a through hole along the axial direction is provided in the wall of the tube at a predetermined distance from the central axis, and at the surface layer portion of the through hole. A perforated matrix comprising a material having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and a second material different from the first temperature of softening. A first step of preparing a columnar stress-applying member having a softening temperature in its surface layer portion, and a tube having a softening temperature substantially the same as the second softening temperature on the surface of the through hole of the perforated base material A second step of forming a member, a third step of inserting the stress-applying member into the hollow portion of the tubular member, and heating the composite body including the perforated base material, the tubular member and the stress-applying member. The perforated base material on which the tubular member is formed, A fourth step of performing drawing while integrally forming the force imparting member, and a method for manufacturing a polarization maintaining optical fiber, comprising:
【請求項2】 柱状のコア及びこのコアを包囲する管状
のクラッドであってその管壁に軸方向に沿った貫通孔が
中心軸と所定の間隔をあけて設けられその貫通孔の表層
部において第1の熱膨張係数及び第1の軟化温度を有す
るものを備える孔開き母材と、前記第1の熱膨張係数と
異なる第2の熱膨張係数及び前記第1の軟化温度と異な
る第2の軟化温度をその表層部において有する柱状の応
力付与部材とを用意する第1の工程と、 前記応力付与部材の表面上にこの応力付与部材の表面を
包囲する管状部材であって前記第1の軟化温度と略同一
の軟化温度を有するものを形成する第2の工程と、 前記応力付与部材及び前記管状部材からなる柱状体を前
記孔開き母材の貫通孔に挿入する第3の工程と、 前記孔開き母材、管状部材および応力付与部材からなる
複合体を加熱して、前記柱状体と前記孔開き母材とを一
体化しながら線引を行う第4の工程と、 を備える偏波保持光ファイバの製造方法。
2. A columnar core and a tubular clad surrounding the core, wherein through holes are provided in the tube wall along the axial direction at a predetermined distance from the central axis, and at the surface layer portion of the through holes. A perforated matrix comprising a material having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and a second material different from the first temperature of softening. A first step of preparing a columnar stress applying member having a softening temperature in its surface layer portion; and a tubular member surrounding the surface of the stress applying member on the surface of the stress applying member, the first softening A second step of forming one having a softening temperature substantially the same as the temperature; a third step of inserting a columnar body composed of the stress applying member and the tubular member into a through hole of the perforated base material; Perforated base material, tubular member and stress applying part A fourth step of heating a composite body made of a material to draw the columnar body and the perforated preform while integrating them, and a method of manufacturing a polarization-maintaining optical fiber.
【請求項3】 前記第2の工程において前記クラッドの
屈折率以下の屈折率を有する管状部材を形成することを
特徴とする請求項1又は2記載の偏波保持光ファイバの
製造方法。
3. The method for manufacturing a polarization maintaining optical fiber according to claim 1, wherein in the second step, a tubular member having a refractive index lower than that of the cladding is formed.
【請求項4】 柱状のコアと、 このコアを包囲する管状のクラッドであって、その管壁
に軸方向に沿った貫通孔が中心軸と所定の間隔をあけて
設けられ、その貫通孔の表層部において第1の熱膨張係
数及び第1の軟化温度を有するものと、 前記貫通孔に挿入され、前記第1の熱膨張係数と異なる
第2の熱膨張係数及び前記第1の軟化温度と異なる第2
の軟化温度をその表層部において有する柱状の応力付与
部材と、 前記貫通孔の表面と前記応力付与部材の表面との間に設
けられ、前記応力付与部材を包囲する管状部材であっ
て、前記第1及び第2の軟化温度のいずれかと略同一の
軟化温度を有する管状部材と、 を備える偏波保持光ファイバ。
4. A columnar core and a tubular clad surrounding the core, wherein a through hole along the axial direction is provided in the tube wall at a predetermined distance from the central axis, and the through hole A surface layer having a first coefficient of thermal expansion and a first softening temperature, a second coefficient of thermal expansion different from the first coefficient of thermal expansion and the first softening temperature, which is inserted into the through hole, and Different second
A columnar stress-applying member having a softening temperature in its surface layer portion, a tubular member provided between the surface of the through hole and the surface of the stress-applying member, and surrounding the stress-applying member, A polarization-maintaining optical fiber, comprising: a tubular member having a softening temperature substantially equal to any one of the first and second softening temperatures.
【請求項5】 前記応力付与部材及び前記管状部材の屈
折率が、前記クラッドの屈折率以下であることを特徴と
する請求項4記載の偏波保持光ファイバ。
5. The polarization-maintaining optical fiber according to claim 4, wherein the stress-applying member and the tubular member have a refractive index equal to or lower than that of the cladding.
JP7185950A 1995-07-21 1995-07-21 Polarization maintaining optical fiber and its production Pending JPH0930824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7185950A JPH0930824A (en) 1995-07-21 1995-07-21 Polarization maintaining optical fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7185950A JPH0930824A (en) 1995-07-21 1995-07-21 Polarization maintaining optical fiber and its production

Publications (1)

Publication Number Publication Date
JPH0930824A true JPH0930824A (en) 1997-02-04

Family

ID=16179722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7185950A Pending JPH0930824A (en) 1995-07-21 1995-07-21 Polarization maintaining optical fiber and its production

Country Status (1)

Country Link
JP (1) JPH0930824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175779A (en) * 2015-03-18 2016-10-06 住友電気工業株式会社 Method for manufacturing optical fiber
JP2017526959A (en) * 2015-01-07 2017-09-14 烽火通信科技股▲分▼有限公司 A kind of small-diameter polarization maintaining optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017526959A (en) * 2015-01-07 2017-09-14 烽火通信科技股▲分▼有限公司 A kind of small-diameter polarization maintaining optical fiber
JP2016175779A (en) * 2015-03-18 2016-10-06 住友電気工業株式会社 Method for manufacturing optical fiber

Similar Documents

Publication Publication Date Title
KR900003449B1 (en) Dispersion-shift fiber and its production
CA1090134A (en) Fabrication of optical fibers with improved cross sectional circularity
US4529426A (en) Method of fabricating high birefringence fibers
US4415230A (en) Polarization retaining single-mode optical waveguide
US4360371A (en) Method of making polarization retaining single-mode optical waveguide
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
JPH0559051B2 (en)
JP2584619B2 (en) Manufacturing method of non-axisymmetric optical fiber preform
NO164139B (en) OPTICAL POLARIZATION CONSERVING FIBERS OF THE SINGLE-WAVE TYPE AND PROCEDURE FOR THE PREPARATION OF AN OPTICAL FIBER BASIS.
JPH044986B2 (en)
JP4870114B2 (en) Method for increasing D / d of core rod with low clad to core ratio D / d of optical fiber preform
JPS62123035A (en) Production of parent material for optical fiber
CN102910813A (en) Method for making an optical fiber preform
WO1999040037A1 (en) Method of manufacturing optical fiber base material
JPH037613B2 (en)
JPH01153551A (en) Production of optical fiber having definite polarization
JP3823341B2 (en) Optical fiber preform, optical fiber and manufacturing method thereof
JPH0930824A (en) Polarization maintaining optical fiber and its production
JPH0236535B2 (en)
JPS6086047A (en) Manufacture of glass preform for optical fiber
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JPH04231336A (en) Production of optical fiber preform
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JPS62167235A (en) Production of base material for optical fiber
JPH0327491B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404