JPS6054935A - Manufacture of preform rod for optical fiber - Google Patents
Manufacture of preform rod for optical fiberInfo
- Publication number
- JPS6054935A JPS6054935A JP58162298A JP16229883A JPS6054935A JP S6054935 A JPS6054935 A JP S6054935A JP 58162298 A JP58162298 A JP 58162298A JP 16229883 A JP16229883 A JP 16229883A JP S6054935 A JPS6054935 A JP S6054935A
- Authority
- JP
- Japan
- Prior art keywords
- rod
- optical fiber
- burner
- clad
- preform rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 12
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- 239000004071 soot Substances 0.000 claims abstract description 7
- 238000007524 flame polishing Methods 0.000 claims abstract description 3
- 238000005253 cladding Methods 0.000 claims description 26
- 239000002019 doping agent Substances 0.000 claims description 12
- 239000010453 quartz Substances 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 abstract description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract 2
- 229910001882 dioxygen Inorganic materials 0.000 abstract 2
- 229910003910 SiCl4 Inorganic materials 0.000 abstract 1
- 238000005137 deposition process Methods 0.000 abstract 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- SDTHIDMOBRXVOQ-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]-6-methyl-1h-pyrimidine-2,4-dione Chemical compound CC=1NC(=O)NC(=O)C=1N(CCCl)CCCl SDTHIDMOBRXVOQ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/045—Silica-containing oxide glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/224—Mismatching coefficients of thermal expansion [CTE] of glass layers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、低屈折率ドーパントを含むクラ−2ド郁を有
する光フアイバ用プリフォームロッドの製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method of manufacturing a preform rod for an optical fiber having a chloride compound containing a low refractive index dopant.
(発明の技術的背景とその問題点)
従来、石英系ガラスロッドから成るコア部上に低屈折率
ドーパントとしてのB203(酸化ポロン)やF(フッ
素)を含むスートを吹き付ける外付は法や前記ロッドを
低屈折率ドーパントを含む石英管でジャケットするロッ
ドインチューブ方等により屈折率の小さいクラッド部を
有するプリフォームロッドを製造することが行われてい
る。(Technical background of the invention and its problems) Conventionally, external soot containing B203 (poron oxide) and F (fluorine) as low refractive index dopants is sprayed onto a core made of a silica-based glass rod, according to the law or the above-mentioned method. A preform rod having a cladding portion with a low refractive index is manufactured by a rod-in-tube method in which the rod is jacketed with a quartz tube containing a low refractive index dopant.
しかし、クラッド部にB2O3やFの如き低屈折率ドー
パントを添加すると、クラッド部の熱膨張率がコア部の
それより大きくなることから、作成中若しくは得られた
プリフォームロッドの表面に熱膨張率の差により引張応
力が働き、クラックが生じてしまうことがある。However, when a low refractive index dopant such as B2O3 or F is added to the cladding part, the thermal expansion coefficient of the cladding part becomes larger than that of the core part. The difference between the two causes tensile stress to work, which can cause cracks.
ところで、石英ファイバの内部応力は次式(+)〜(3
)により示すことができる。By the way, the internal stress of the quartz fiber is expressed by the following formula (+) ~ (3
).
Σrr=(ΔT−E / 1− cr ) (b” f
: α(r)・r d r−I/r’■、’cx(r)
−r d r) ”−−−−−(1)Σ 00 = (
Δ T−E / 1−cr)(1/b”J:a(r)、
r d r+ 1/ r2f:a(r)−r d r
−a(r) r2) −−(2)Σzz=(ΔT−E
/ 1−cr )(2/ ’& f:a(r)−r d
r−α(r)’t −−−−−−−−−−−−−(3
)但し、上記式中、Σrr、Σθθ、Σzzは円柱座標
におけるr、θ、2の各方向の応力、bはファイバ径、
ΔTは温度変化量、Eはヤング率、σはポアソン比、α
は線膨張係数をそれぞれ示している。Σrr=(ΔT-E/1-cr) (b" f
: α(r)・r d r−I/r'■,'cx(r)
−r d r) ”−−−−−(1)Σ 00 = (
Δ TE / 1-cr) (1/b”J:a(r),
r d r+ 1/ r2f:a(r)-r d r
−a(r) r2) −−(2)Σzz=(ΔT−E
/1-cr)(2/'&f:a(r)-rd
r-α(r)'t ----------(3
) However, in the above formula, Σrr, Σθθ, Σzz are the stresses in each direction of r, θ, and 2 in cylindrical coordinates, b is the fiber diameter,
ΔT is the amount of temperature change, E is Young's modulus, σ is Poisson's ratio, α
indicate the coefficient of linear expansion, respectively.
さて、上述のドーパントが松加されているクラッド部を
有するプリフォームロッドにより#51図(A)に示す
ように、S+02から成るコア2と、B20.及びFを
含む5i02から成るクラッド3とを有する石英ファイ
バlを作成すると、熱膨張率の差にて生ずるその内部応
力は上記式から明らかなように、コア2で第1図(13
)に示すように圧縮応力として、又クラッド3で同図に
示すように引張応力としてそれぞれ作用する。従って、
ファイバはその表面に漱小な傷が4=Iされるだけでも
この傷から破断が進行し、短期間で断線してしまう。Now, as shown in Figure #51 (A), a preform rod having a cladding portion coated with the above-mentioned dopant is used to form a core 2 consisting of S+02, B20. When a silica fiber 1 is fabricated with a cladding 3 consisting of 5i02 and 5i02 containing
), it acts as a compressive stress, and the cladding 3 acts as a tensile stress, as shown in the figure. Therefore,
Even if a fiber has only a small scratch on its surface, the fiber will break from the scratch and break in a short period of time.
(発明の目的)
本発明の目的は、クラックが殆ど生ずることがない上に
強度的に優れた光ファイバがfutられるプリフォーム
ロッドを製造することができる方法を提供することにあ
る。(Objective of the Invention) An object of the present invention is to provide a method for producing a preform rod into which an optical fiber having excellent strength and almost no cracks will occur.
(発明の概要)
本発明は、石英コア部周面に設けた低屈折率ドーパント
を含む熱膨張率の大きいクラッド部の周面に、熱膨張率
の小さいガラス層を設けたことを特徴とする。(Summary of the Invention) The present invention is characterized in that a glass layer having a small coefficient of thermal expansion is provided on the circumferential surface of a cladding portion having a high coefficient of thermal expansion and containing a low refractive index dopant provided on the circumferential surface of a quartz core portion. .
(発明の実施例)
以下、本発明の実施例を図面を参照して詳細に説明する
。(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
先ず、外径121111のコア部となる石英製ガラスロ
ッドを用意し、このガラスロッドをガラス旋盤に固定し
た。そして、このガラスロッドを1分間に数十回転の速
度で回転すると共に移動バーナにFを含む5iCua(
四塩化ケイ素)ガスと酸素及び水素ガスとを送給し、こ
のバーナからFを含む5i02スートをロッドに吹き付
けた。移動バーナはロッドの軸方向に沿った移動を15
c+s/+winの速度で繰り返すので、ロッド上には
Fを含むクラッド部としての5i02層が径方向に順次
成長する。First, a quartz glass rod serving as a core portion having an outer diameter of 121111 was prepared, and this glass rod was fixed to a glass lathe. Then, this glass rod was rotated at a speed of several tens of revolutions per minute, and a moving burner was heated with 5iCua containing F (
Silicon tetrachloride) gas, oxygen, and hydrogen gas were supplied, and 5i02 soot containing F was blown onto the rod from this burner. The moving burner moves along the axial direction of the rod.
Since this is repeated at a speed of c+s/+win, a 5i02 layer containing F as a cladding portion grows sequentially in the radial direction on the rod.
このようにして、外付は法によりFを含むSiO2クラ
ッド部を2腸鵬の厚さでロッド」二に成長させた後は移
動バーナに酸素及び水素ガスのみを送給すると共にこの
バーナをlθ層腸/winの速度で移動させ、クラッド
部表面を2000℃の温度で火炎研磨し、プリフォーム
ロッドを作成した。In this way, the external SiO2 cladding containing F is grown into a rod with a thickness of 2 mm, and then only oxygen and hydrogen gas is supplied to the moving burner, and this burner is The cladding surface was flame polished at a temperature of 2000° C. to prepare a preform rod.
この得られたプリフォームロッドの屈折率分布を調べた
ところ、第3図に示すように、コア部となる石英製ガラ
スロッドの屈折率とクラッド部の最外層における屈折率
とは同一になっていた。これは、」二記バーナによる火
炎研磨によりクラッド部周面のドーパン)Fが蒸発し、
クラッド部周面に石英ガラス層が形成されたことによる
。尚、この石英ガラス層は約0.21の厚さで形成され
ていた。When we investigated the refractive index distribution of the obtained preform rod, we found that the refractive index of the quartz glass rod serving as the core portion and the refractive index of the outermost layer of the cladding portion were the same, as shown in Figure 3. Ta. This is because the dopane (F) on the circumferential surface of the cladding part evaporates due to flame polishing with the burner described in Section 2.
This is due to the formation of a quartz glass layer on the circumferential surface of the cladding part. Note that this quartz glass layer was formed with a thickness of about 0.21 mm.
さて、石英ガラス層は、ドーパンl−Fを含まない純石
英のみであることから、その熱膨張率はクラッド部のそ
れJ:りも小さい。従って、本発明に係るプリフォーム
ロッドにおいては、その周面に圧縮応力が作用するので
、クラックが殆ど生じることがなく、また生じたクラッ
クが成長し、進行することもない。Now, since the quartz glass layer is only pure quartz that does not contain dopant lF, its coefficient of thermal expansion is smaller than that of the cladding part. Therefore, in the preform rod according to the present invention, compressive stress acts on the circumferential surface of the rod, so that almost no cracks occur, and the cracks that do occur do not grow or progress.
石英ガラス層を有する本発明のプリフォームロッドによ
り、第2図(A)に示すように、Si02から成るコア
5と、Fを含む5i02から成るクラッド6及び石英ガ
ラス層7を有する石英ファイバ4を作成すると、前記し
た式から明らかなように、内部応力はコア5で第2図(
B)に示すように圧縮応力として、又クラッド6で引張
応力として、更に石英ガラス層7で圧縮応力としてそれ
ぞれ作用する。従って、ファイバ4表面に微小な傷が千
1されてもこの傷が進行することはない。By using the preform rod of the present invention having a quartz glass layer, as shown in FIG. When created, as is clear from the above formula, the internal stress in core 5 is as shown in Figure 2 (
As shown in B), the stress acts as a compressive stress, acts as a tensile stress in the cladding 6, and acts as a compressive stress in the quartz glass layer 7. Therefore, even if minute scratches are made on the surface of the fiber 4, these scratches will not progress.
」二記実施例において、クラッド部周面に石英ガラス管
をジャケットし、プリフォームロッドの周面に圧縮応力
を作用させるようにしてもよい。イロし、ジャケット管
を別個に必要とするので、その分だけ材tS費が嵩む。In the second embodiment, a quartz glass tube may be jacketed on the circumferential surface of the cladding part to apply compressive stress to the circumferential surface of the preform rod. Since this requires a separate jacket tube, the cost of materials increases accordingly.
また、クラッド部周面に、更に、二酸化ケイ素のみのス
ート、即ちドーパントを含まないスートを吹き付けてガ
ラス層を形成するようにしてもよい。この場合にはバー
ナへの送給すべきスーi・原料を変える必要がある。Further, a glass layer may be formed by further spraying a soot containing only silicon dioxide, that is, a soot containing no dopant, onto the circumferential surface of the cladding portion. In this case, it is necessary to change the soot/raw material to be fed to the burner.
尚、上記実施例では外付は法により作成したプリフォー
ムロッドにガラス層を形成したが、ロッドインチューブ
V:により作成したプリフォームロッドにガラス層を形
成することでも同一の効果が得られる。In the above embodiment, a glass layer was formed on a preform rod made by the external method, but the same effect can also be obtained by forming a glass layer on a preform rod made by rod-in-tube V:.
(発明の効果)
本発明によれば、外伺は法やロッドインチューブ法にて
作」戊した低屈折率ドーパントを含むクラッド部周面に
、該クラッド部よりも熱膨張率の小さいガラス層を設け
たことで、プリフォームロッドの周面に熱膨張率の差に
より引張応力ではなく圧縮応力を作用させることができ
る。従って、クラックが殆ど生じることのないプリフォ
ームロッドが得られる上にこのロッドを用いることで表
面に圧縮応力が作用する光ファイバを製造することがで
きるので、機械的強度の優れた信頼性を有する光ファイ
バを提供することができる。(Effects of the Invention) According to the present invention, the outer surface is formed by a method or a rod-in-tube method, and a glass layer having a coefficient of thermal expansion smaller than that of the cladding is provided on the circumferential surface of the cladding containing a low refractive index dopant. By providing this, compressive stress rather than tensile stress can be applied to the circumferential surface of the preform rod due to the difference in thermal expansion coefficients. Therefore, a preform rod with almost no cracks can be obtained, and by using this rod, it is possible to manufacture optical fibers with compressive stress acting on the surface, which has excellent mechanical strength and reliability. Optical fiber can be provided.
また、上記ガラス層を設けることで、クラッド部のドー
パントであるFが空気中の水分と反応17てf(Fとな
ることを有効に1111 +l−できるので、ロッド若
しくはファイバが溶けることもなくなる。Further, by providing the above-mentioned glass layer, F as a dopant in the cladding part can effectively react with moisture in the air to form f(F), so that the rod or fiber will not melt.
第1図(A)、(B)は従来のプリフォームロッドによ
り作成した光ファイバの断面図とその内部応力を示す図
、第2図(A)、(B)は本発明方法に係るプリフォー
ムロッドにより作成した光ファイバの断面図とその内部
応力を示す図、第3図は本発明方法に係るプリフォーム
ロッドの屈折率分布図である。
■、4−−−−一石英ファイバ、
2.5−一−−−コア、
3.6−−−−−クラツド、
7−−−−−−−石英ガラス層。
第1図 第2図Figures 1 (A) and (B) are cross-sectional views of an optical fiber made using a conventional preform rod and diagrams showing its internal stress, and Figures 2 (A) and (B) are preforms according to the method of the present invention. FIG. 3 is a cross-sectional view of an optical fiber made using a rod and a diagram showing its internal stress. FIG. 3 is a refractive index distribution diagram of a preform rod according to the method of the present invention. ■, 4-----1 quartz fiber, 2.5--1--core, 3.6--1 clad, 7-------- quartz glass layer. Figure 1 Figure 2
Claims (1)
張率の大きいクラッド部を形成する光フアイバ用プリフ
ォームロッドの製造方法であって、前記クラッド部周面
に、該クラッド部よりも熱膨張率の小さい石英ガラス層
を設けることを特徴とする光フアイバ用プリフォームロ
ッドの製造方法2、前記クラッド部周面を火炎研磨して
前記低屈折率ドーパントを蒸発させ、前記クラッド部周
面に石英ガラス層を形成することを特徴とする特許請求
の範囲第1項に記載の光フアイバ用プリフォームロッド
の製造方法。 3、前記クラッド部周面に、二酸化ケイ素のみから成る
スートを吹き付け、石英ガラス層を形成することを特徴
とする特許請求の範囲第1項に記載の光フアイバ用プリ
フォームロッドの製造方法。 4、前記クラッド部周面に石英ガラス管をジャケットす
ることを特徴とする特許請求の範囲第1項に記載の光フ
ァイバ用ブリフォームロッドノ製造方法。[Scope of Claims] 1. A method for manufacturing an optical fiber preform rod in which a cladding portion containing a low refractive index dopant and having a high coefficient of thermal expansion is formed on the circumferential surface of a quartz core portion, the method comprising: 2, a method for manufacturing an optical fiber preform rod, characterized in that a quartz glass layer having a coefficient of thermal expansion smaller than that of the cladding portion is provided, flame polishing the peripheral surface of the cladding portion to evaporate the low refractive index dopant; The method for manufacturing an optical fiber preform rod according to claim 1, characterized in that a quartz glass layer is formed on the circumferential surface of the cladding portion. 3. The method for manufacturing an optical fiber preform rod according to claim 1, characterized in that a quartz glass layer is formed by spraying soot consisting only of silicon dioxide onto the circumferential surface of the cladding portion. 4. The method for manufacturing a preform rod for an optical fiber according to claim 1, characterized in that a quartz glass tube is jacketed on the circumferential surface of the cladding portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58162298A JPS6054935A (en) | 1983-09-02 | 1983-09-02 | Manufacture of preform rod for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58162298A JPS6054935A (en) | 1983-09-02 | 1983-09-02 | Manufacture of preform rod for optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6054935A true JPS6054935A (en) | 1985-03-29 |
Family
ID=15751834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58162298A Pending JPS6054935A (en) | 1983-09-02 | 1983-09-02 | Manufacture of preform rod for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6054935A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360124U (en) * | 1989-10-18 | 1991-06-13 |
-
1983
- 1983-09-02 JP JP58162298A patent/JPS6054935A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360124U (en) * | 1989-10-18 | 1991-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4243298A (en) | High-strength optical preforms and fibers with thin, high-compression outer layers | |
US5482525A (en) | Method of producing elliptic core type polarization-maintaining optical fiber | |
EP0381473A2 (en) | Polarization-maintaining optical fiber | |
NO843957L (en) | PROCEDURE FOR MANUFACTURING LAMINATED SINGLE POLARIZATION FIBERS | |
US4874416A (en) | Base material of optical fibers and a method for the preparation thereof | |
JP3061714B2 (en) | Large quartz glass tube, optical fiber preform, and method for producing them | |
EP1000908B1 (en) | Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto | |
JPS61191543A (en) | Quartz base optical fiber | |
WO2020177352A1 (en) | Optical fiber preform based on continuous fused quartz bushing, and manufacturing method therefor | |
JP4079204B2 (en) | Quartz glass tube for optical fiber preform and manufacturing method thereof | |
JPS6054935A (en) | Manufacture of preform rod for optical fiber | |
JPH0236535B2 (en) | ||
JPH0281004A (en) | Optical fiber and its production | |
JPH0742131B2 (en) | Method for manufacturing glass base material for optical fiber | |
JP2000203860A (en) | Large-sized quartz glass reform | |
JPS62167235A (en) | Production of base material for optical fiber | |
JPH0327491B2 (en) | ||
JPS632900B2 (en) | ||
JP2994829B2 (en) | Manufacturing method of preform for optical fiber | |
GB2180232A (en) | Optical fibre | |
JP3174682B2 (en) | Method for producing glass preform for optical fiber | |
JPH0798671B2 (en) | Method for manufacturing preform for optical fiber | |
JPH0557215B2 (en) | ||
JPS60231435A (en) | Manufacture of preform rod | |
JPH01148723A (en) | Production of constant-polarization fiber |