KR20000028910A - Manufacturing method of Qurtz Glass preform for optical fiber - Google Patents

Manufacturing method of Qurtz Glass preform for optical fiber Download PDF

Info

Publication number
KR20000028910A
KR20000028910A KR1019990043327A KR19990043327A KR20000028910A KR 20000028910 A KR20000028910 A KR 20000028910A KR 1019990043327 A KR1019990043327 A KR 1019990043327A KR 19990043327 A KR19990043327 A KR 19990043327A KR 20000028910 A KR20000028910 A KR 20000028910A
Authority
KR
South Korea
Prior art keywords
quartz glass
optical fiber
base material
glass tube
manufacturing
Prior art date
Application number
KR1019990043327A
Other languages
Korean (ko)
Other versions
KR100314699B1 (en
Inventor
시마다아쯔시
카토토시유키
스즈키마사노리
와타베유타카
Original Assignee
마쯔자끼히로시
신에쯔 세끼에이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마쯔자끼히로시, 신에쯔 세끼에이 가부시키가이샤 filed Critical 마쯔자끼히로시
Publication of KR20000028910A publication Critical patent/KR20000028910A/en
Application granted granted Critical
Publication of KR100314699B1 publication Critical patent/KR100314699B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE: A manufacturing method of quartz glass preform for optical fiber is provided to produce that preform for large-sized optical fiber without air bubbles on the welded inter surface fit for mass production and low costs. CONSTITUTION: A manufacturing method of quartz glass preform for optical fiber is processed to insert the core glass rod for optical fiber preform into a quartz glass tube for base materials. In the manufacturing method of quartz glass preform for melt-welding optical fiber after heating, the quartz glass tube for base materials is mechanically grinding-processed the inner and outer circumstances of quartz glass ingot at a high degree of purity by diamond whetstone powder. Then that tube is mechanically polishing-processed the inner circumstance by cerium oxide abrasive powder.

Description

광파이버용 석영유리모재의 제조방법{Manufacturing method of Qurtz Glass preform for optical fiber}Manufacturing method of quartz glass base material for optical fiber {Manufacturing method of Qurtz Glass preform for optical fiber}

본 발명은, 광파이버용석영유리모재의 제조방법, 더욱 상세하게는, 면정밀도가 높은 모재용 석영유리관을 사용하여, 모재용 코어유리로드와의 용착계명(界面)에 기포가 존재하지 않는 광파이버용 석영유리모재의 제조방법에 관한 것이다.The present invention relates to a method for producing a quartz glass base material for an optical fiber, and more specifically, to an optical fiber in which bubbles are not present in a welding boundary with a core glass rod for a base material by using a quartz glass tube for a base material having a high surface precision. It relates to a method for producing a quartz glass base material.

최근, 광파이버가 대량으로 이용하게 됨에 따라 그 양산화, 저코스트화가 열망되게 되었다. 상기 양산화, 저코스트화에는 대형의 광파이버모재를 작성하고, 그것을 와이어드로잉하는 것이 가장 간편한 방법이되나, 종래 실용화되어 왔던 축부착법(VAD법)이나 외부부착법(OVD법)에서는, 코어부도 피복부도 모두 VAD법이나 OVD법에 의해 작성하는 부분에서, 더한층의 대형화를 꾀하고자하면, 광파이버용 모재의 생산성을 저하시키지 않는다고 말할 수 없는 결점이 있었다. 또, 그 모재가 투명유리화되기전의 다공질체(실리카유리미립자가 퇴적한 수우트체란 말이고, 이하 「다공질수우트체」라 칭함)그 자체를 크게 형성하고자하면, 균열이 발생하거나, 다공질수우트체의 낙하 등의 트러블이 발생하거나 함으로써 생산성을 현저하게 저하시킬 우려가 있다는 문제점이 있었다. 이 문제점을 해소하는 광파이버의 제조방법으로서 단면적의 80%이상을 점하는 피복부를 고성능이며 저코스트화가 가능한 방법으로 작성하고, 이것과 VAD법이나 OVD법에 의해 작성한 코어유리로드를 일체화하는 제조방법이 일본국 특개평 7-109141호 공보등에 의해 제안되어 있다.In recent years, as optical fibers have been used in large quantities, their mass production and low cost have become eager. In the mass production and the low cost, it is the most convenient method to make a large optical fiber base material and wire draw it, but in the axial attachment method (VAD method) or the external attachment method (OVD method), which have been put to practical use, both the core part and the coating part are used. In the portion created by the VAD method or the OVD method, there is a drawback that it cannot be said that the productivity of the base material for the optical fiber is not lowered in order to further increase the size. In addition, if the base material is to form a large porous body (the soot body in which silica glass fine particles have been deposited, hereinafter referred to as a “porous water body”) before the glass is transparent, cracking may occur or the porous water may be formed. There existed a problem that there existed a possibility that the productivity might be remarkably reduced by the troubles, such as falling of the ut body. As a manufacturing method of an optical fiber that solves this problem, a coating part covering 80% or more of the cross-sectional area is produced by a high performance and low cost method, and a manufacturing method integrating the core glass rod made by the VAD method or the OVD method It is proposed by Unexamined-Japanese-Patent No. 7-109141.

그러나, 상기 공보등에 기재된 제조방법에 있어서는, 석영유리관의 내주면을 기계적 연삭 및 연마가공으로 형성하는 반면, 외주면을 기계적의 깎아내기 가공하는데 그치는 정도에서, 외주면의 가공상태가 거칠고 요철이나 균열의 발생이 있으며, 거기에 연삭시의 냉각액이나 연삭가루, 숫돌가루가 들어가고, 가공후의 불산에 의한 세정에 의해서도 상기 이물이 충분히 제거할 수 없어, 코어유리로드와의 용착일체화시에 거품이 발생하고, 그 거품의 잔존등에 의해 와이어드로잉후의 광파이버의 접속에 지장을 초래하거나 하는 등의 결점이 있었다. 이 요철이나 균열의 완전제거를 위해 강력한 에칭처리도 고려할 수 있으나, 이 에칭처리에서는 석영유리관의 움푹팬부분이나 티가 선택적으로 에칭되고, 그것이 석영유리관의 내외표면을 한층더 거칠은 것으로하고 상기 결점을 해소하는 것이 아니었다. 그러나, 상기 특개평 7-109141호공보등에 기재된 광파이버의 제조방법은 광파이버용 모재의 대형화가 용이하며, 양산화, 저코스트화에 적합한 제조방법이기 때문에, 그 제조방법의 개선을 도모하기 위하여 본 발명자등은 예의 연구하였던바, 석영유리잉곳의 내외둘레면의 연삭을, 다이아몬드숫돌기루에 의해 정확히 행하고, 이어서 안둘레면을 산화세륨숫돌가루에 의해 연마하고, 면정밀도를 높임으로써 상기 결점을 해결할 수 있는 것을 발견해서, 본 발명을 완성한 것이다. 즉,However, in the manufacturing method described in the above publication, the inner circumferential surface of the quartz glass tube is formed by mechanical grinding and polishing, while the outer circumferential surface is roughly mechanically cut, so that the outer circumferential surface is roughly processed and irregularities and cracks are generated. In this case, the coolant, the grinding powder, and the grindstone powder during grinding are contained therein, and the foreign matter cannot be sufficiently removed even by washing with hydrofluoric acid after processing, and foaming occurs during the integral deposition with the core glass rod. There is a drawback that the connection of the optical fiber after the wire drawing is disturbed due to the remaining of. A strong etching treatment can also be considered for the complete removal of unevenness or cracking, but in this etching treatment, the depressions or tees of the quartz glass tube are selectively etched, which makes the inner and outer surfaces of the quartz glass tube rougher, and thus the above defects. It was not to relieve. However, the manufacturing method of the optical fiber described in Japanese Patent Application Laid-Open No. 7-109141 or the like is easy to enlarge the base material for the optical fiber, and is a manufacturing method suitable for mass production and low cost. As a result of intensive studies, grinding of the inner and outer circumferential surfaces of quartz glass ingots can be precisely performed by diamond grinding wheels, and then the inner circumferences are polished by cerium oxide grinding powder, and the surface precision can be solved. The present invention has been found by completing this study. In other words,

본 발명은, 광파이버모재용의 석영유리관과 코어유리로드와의 용착계면에 기포가 존재하지 않는 광파이버용 석영유리모재의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a quartz glass base material for an optical fiber in which bubbles are not present at the welding interface between the quartz glass tube for the optical fiber base material and the core glass rod.

또, 본 발명은, 양산화, 저코스트화에 썩알맞는 대형의 광파이버용의 석영유리모재의 제조방법을 제공하는 것을 목적으로 한다.Moreover, an object of this invention is to provide the manufacturing method of the quartz glass base material for large size optical fibers suitable for mass production and low cost.

상기 목적을 달성하는 본 발명은, 광파이버모재용 석영유리관속에 광파이버모재용 코어유리로드를 삽입하고, 가열하여 용착일체화하는 광파이버용 석영유리모재의 제조방법에 있어서, 상기 모재용 석영유리관이 고순도의 석영유리잉곳의 내외주면을 다이아몬드숫돌가루에 의해 기계적연삭가공한 후에, 내주면을 산화세륨숫돌가루에 의해 기계적 연마가공한 석영유리관인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법에 관한 것이다.The present invention which achieves the above object is a method of manufacturing a quartz glass base material for an optical fiber in which a core glass rod for an optical fiber base material is inserted into a quartz glass tube for an optical fiber base material, and heated and welded together, wherein the quartz glass tube for the base material is high-purity quartz. The present invention relates to a method for producing a quartz glass base material for an optical fiber, wherein the inner and outer circumferential surfaces of the glass ingot are mechanically ground by diamond grinding powder, and the inner circumferential surface is quartz grinding.

상기한 바와 같이, 본 발명의 제조방법에 있어서는, 고순도의 석영유리잉곳의 내외주면을 연삭속도가 빠르고, 연삭면의 거칠음이 작은데에 숫돌의 열악화가 적은 다이아몬드숫돌가루에 의해 기계적으로 연삭가공하고, 이어서 내주면을 산화세륨숫돌가루에 의해 기계적으로 연마해서 면정밀도를 높이는 것을 필수로 한다. 상기 면정밀도는 석영유리관의 내주면의 최대거칠음 Rmax가 1㎛이하, 중심선평균거칠음 Ra가 0.1㎛이하, 외주면의 최대거칠음 Rmax가 10㎛이하, 중심선평균거칠음 Ra가 1㎛이하이다. 둘레면의 최대거칠음 및 중심선평균거칠음이 상기 범위를 초과하면, 광파이버용 모재의 용착계면에 기포가 발생하는 일이 있어 바람직하지 않다. 상기 다이아몬드숫돌가루에 의한 기계적연삭가공에서는, 입자크기가 다른 다이아몬드숫돌가루를 사용하여, 최초입자크기의 거칠은 다이아몬드숫돌가루에 의해 거칠게 깎아내고, 이어서 입자크기가 미세한 다이아몬드숫돌가루에 의해 마무리연삭하는 것이 좋다. 이 다이아몬드숫돌가루에 의한 연삭에서는 석영유리관의 내외주면에 미세한 균열이 발생하나, 외주면의 균열은 코어유리로드와의 용착일체화시의 가열용융에 의해 평활화한다. 한편, 내주면은 상대적으로 가열온도가 낮기 때문에, 미세한 균열이 충분히 용융되지 않고, 그대로 잔류함으로, 산화세륨숫돌가루에 의한 연마를 필요로한다. 보다 바람직하게는 상기 연마후에 가열용융하고, 석영유리관의 내·외주면의 최대거칠음 Rmax를 0.5㎛이하, 중심선평균거칠음 Ra를 0.1㎛이하로 경면화처리하는 것이 좋다. 상기 가열용융에는 산수소 또는 프로판 등의 화염에 의한 용융 또는 전기로등에 의한 외부가열용융등을 사용할 수 있다. 이들의 가열용융에 의해서 경면화된 석영유리관을 코어유리로드의 피복용(또는 오버피복용)의 관으로서 사용함으로써, 모재용 코어유리로드와의 용착계면에 기포가 존재하지 않는 양호한 광파이버용 석영유리모재가 제조가능하고, 또, 이 모재용석영유리관과 모재용 코어유리로드와의 용착일체화의 뒤를 이어서 다른 석영유리관을 1개 또는 복수개를 더 용착일체화하는 경우에 있어서도, 마찬가지로 양호한 광파이버용 석영유리모재를 제조할 수 있다.As described above, in the production method of the present invention, the inner and outer circumferential surfaces of the high purity quartz glass ingot have a high grinding speed, and the grinding surface is mechanically ground by diamond grindstone powder having low grinding wheel deterioration while the roughness of the grinding surface is small. Subsequently, it is essential to mechanically polish the inner circumferential surface with cerium oxide grinding powder to increase the surface precision. The surface precision is that the maximum roughness Rmax of the inner circumferential surface of the quartz glass tube is 1 µm or less, the centerline average roughness Ra is 0.1 µm or less, the maximum roughness Rmax of the outer circumferential surface is 10 µm or less, and the centerline average roughness Ra is 1 µm or less. If the maximum roughness and the centerline average roughness of the circumferential surface exceed the above ranges, bubbles may be generated in the welding interface of the base material for the optical fiber, which is not preferable. In the mechanical grinding process using the diamond grindstone powder, the diamond grindstone powder having different particle size is used to roughly cut by the rough diamond grindstone of the initial particle size, and then finish grinding by the diamond grindstone powder having a fine grain size. It is good. In the grinding by diamond grinding powder, fine cracks are generated on the inner and outer circumferential surfaces of the quartz glass tube, but the cracks on the outer circumferential surfaces are smoothed by heat melting at the time of integral welding with the core glass rod. On the other hand, since the inner circumferential surface is relatively low in heating temperature, fine cracks are not sufficiently melted and remain as it is, and thus polishing by cerium oxide grinding wheel is required. More preferably, it is heated and melted after the polishing, and the surface roughening treatment of the maximum roughness Rmax of the inner and outer circumferential surfaces of the quartz glass tube is 0.5 µm or less and the centerline average roughness Ra of 0.1 µm or less. In the heating melting, melting with a flame such as oxyhydrogen or propane, or external heating with an electric furnace or the like can be used. By using the quartz glass tube mirrored by these heat melting as a tube for covering (or overcoating) the core glass rod, the quartz glass for good optical fiber in which bubbles are not present at the welding interface with the core glass rod for the base material The base material can be manufactured, and the quartz glass base material for an optical fiber is similarly good also when the base material quartz glass tube and the base material core glass rod are integrally welded, and when one or more other quartz glass tubes are further welded integrally. Can be prepared.

상기 석영유리잉곳은, 4염화규소, 유기규소화합물 등의 실록산화합물을 산수소화염속에서 화염가수분해해서 생성한 실리카미립자를 퇴적하고, 탈수처리한 후 용융유리화하는 방법, 또는 천연으로 산출하는 수정을 분쇄하여 화학처리에 의해 순화(純化)를 행한 수정분말을 산수소화염에 의한 베르누이법에 의해 제조하는 방법등으로 작성되나, 바람직하게는 대형이며 긴치수의 잉곳이 좋다. 이 대형이며 긴치수의 잉곳을 사용함으로써 광파이버의 양산화, 저코스트화를 썩알맞게 행할 수 있다.The quartz glass ingot is a method of depositing silica fine particles produced by flame hydrolysis of siloxane compounds such as silicon tetrachloride and organosilicon compounds in an oxyhydrogen flame, dehydrating and melting to vitrify, or crystals produced naturally. The crystal powder, which is pulverized and purified by chemical treatment, is prepared by a Bernoulli method using an oxyhydrogen flame, or the like, but a large and long ingot is preferable. By using this large, long ingot, mass production and low cost of the optical fiber can be suitably performed.

한편, 광파이버용 코어유리로드로서는, 광의 전송부로서, 석영유리로드 또는 그 주위에 광학적피복부가 형성된 석영유리로드를 들 수 있다. 즉, 본 발명에 있어서는 「코어유리로드」란, 코어로드와 피복부착코어로드를 총칭한다. 피복부를 가지지 않는 코어로드는, 널리 알려진 VAD법이나 OVD법등에 의해 형성할 수 있고, 또, 피복부착코어로드를 작성하는 수단으로서는, 코어로드에 석영유리관을 자켓하는 방법이나, 코어로드의 주위에 OVD법 등에 의해 피복부를 형성하는 방법을 들 수 있다.On the other hand, as a core glass rod for optical fibers, a quartz glass rod or the quartz glass rod in which the optical coating part was formed in the periphery is mentioned as a transmission part of light. That is, in the present invention, "core glass rod" refers to the core rod and the coated core rod collectively. The core rod which does not have a coating part can be formed by a well-known VAD method, an OVD method, etc. Moreover, as a means of producing a coating core rod, a method of jacketing a quartz glass tube on the core rod or around the core rod The method of forming a coating part by the OVD method etc. is mentioned.

상기 광파이버모재용 코어유리로드 및 광파이버모재용 석영유리관을 사용한 광파이버용 석영유리모재의 제조에 있어서는, 모재용코어 유리로드를 모재용 석영유리관속에 관의 내주면과 접촉하는 일이 없도록 주의깊게 삽입하고, 모재용 코어유리로드와 모재용 석영유리관의 각원의 중심을 맞추어 고정하고, 바람직하게는 양끝을 더미석영재료에 연결한 다음에, 전체를 회전시키면서 접속가공에 의한 구부러짐, 비틀어짐을 교정하고, 하단부로부터 세로형 전기로의 위쪽에서부터 삽입하고, 온도 1900∼2800℃에서 순차적으로 띠형상으로 가열함으로써 용착일체화하는 것이 좋다. 상기의 순차적띠형상으로 가열한다는 것은, 소위 존멜트라 호칭되는 것이며, 가열영역이 차차로 이동하는 가열을 말한다.In the manufacture of the optical fiber quartz glass base material using the optical fiber base material core glass rod and the optical fiber base material quartz glass tube, the core glass rod for the base material is carefully inserted in the base material quartz glass tube so as not to contact the inner peripheral surface of the tube. The center of the core glass rod for the base material and the quartz glass tube for the base material are fixed to each other, and preferably, both ends are connected to the dummy quartz material, and then the entire surface is rotated to correct the bending and twisting caused by the connecting process. It is good to integrally weld by inserting from the upper part of a vertical electric furnace, and heating in strip shape sequentially at the temperature of 1900-2800 degreeC. Heating in said sequential band shape is what is called so-called John Meltra, and means the heating to which a heating area moves gradually.

(실시예)(Example)

다음에 본 발명의 실시예에 대하여 설명하나 이에 의해서 본 발명은 하등 한정되는 것은 아니다.Next, examples of the present invention will be described, but the present invention is not limited thereto.

또한, 본 발명에 있어서의 최대거칠음 Rmax 및 중심선평균거칠음 Ra는, 일본공업규격(JIS)B0601의 정의에 의해, 그 측정법은, 접촉식간이 거칠음계측기(도쿄세이미쯔(주)제품, Surfcom300B)에 의해 10㎜의 길이마다 측정하고, 그때의 최대거칠음 Rmax와 중심선평균거칠음Ra를 구하는 방법에 의한다.In addition, the maximum roughness Rmax and the centerline average roughness Ra in this invention are defined by Japanese Industrial Standard (JIS) B0601, The measuring method is a contact roughness measuring instrument (Tokyo Seimitsu Co., Ltd., Surfcom300B). It measures by length of 10 mm by the method of obtaining the maximum roughness Rmax and center line average roughness Ra at that time.

(실시예 1)(Example 1)

OVD법을 사용하여, 4염화규소를 기화하여, 산수소화염속에서 화염가수분해하고, 회전하는 베이스체의 주위에 실리카유리미립자를 퇴적시켜서 대형다공질수우트체를 작성하였다. 이 다공질수우트체를 전기로에 넣고, 코어유리로드의 굴절율 등의 조건을 고려하여, He, Cl2혼합가스에 의해 1100℃에서 가열탈수하고, 계속하여 He분위기속에서 1600℃에서 투명유리화하고, 원통형상석영유리잉곳을 제조하였다. 이 원통형상석영유리잉곳의 양끝을 절단하고, 그 외경을 #100다이아몬드숫돌가루에 의해 소정의 치수가까이까지 연삭하고, 이어서 #300다이아몬드숫돌가루에 의해 연삭한 후에, 레이저외경측정기에 의해 치수측정을 행하여, 외경의 원중심을 구하고, 이 외경의 원중심에 맞추어서 코어드릴구멍뚫기장치의 #150다이아몬드숫돌가루에 의해 소정의 치수가까이까지 연삭하고, 이어서 #1000 및 #3000의 산화세륨숫돌가루에 의해 연마가공하였다. 얻게된 석영유리관을 불산에 의한 에칭, 순수에 의한 수세, 및 건조를 행하여 고정밀도의 석영유리관을 작성하였다. 이 석영유리관에 대해서 레이저외경측정기 및 두께측정기에 의해 치수측정을 행하였던바, 길이는 3500㎜, 외경은 200㎜, 내경은 40㎜였다. 또, 내·외주면의 표면거칠기에 대해서는, 내주면이 최대거칠음 Rmax가 0.7㎛, 중심선평균거칠음 Ra가 0.06㎛, 외주면의 최대거칠음 Rmax가 5.5㎛, 중심선평균거칠음 Ra가 0.5㎛였다.Using the OVD method, silicon tetrachloride was vaporized, flame hydrolyzed in an oxyhydrogen flame, and silica glass fine particles were deposited around a rotating base body to prepare a large porous sut body. The insert the porous fixes this body in an electric furnace, the core in consideration of the conditions such as the refractive index of the glass rod, He, dehydrated by heating at 1100 ℃ by the Cl 2 gas mixture and continuously and transparently vitrified at 1600 ℃ in a He atmosphere, Cylindrical phase quartz glass ingots were prepared. Both ends of the cylindrical quartz glass ingot are cut, the outside diameter is ground to a predetermined dimension by # 100 diamond grindstone, and then ground by a # 300 diamond grindstone, followed by dimensional measurement by a laser outer diameter measuring instrument. To obtain the original center of the outer diameter, and grind to the predetermined center by the # 150 diamond grindstone of the core drill perforator in accordance with the center of the outer diameter, and then by the cerium oxide grinding powder of # 1000 and # 3000. Polished. The obtained quartz glass tube was etched with hydrofluoric acid, washed with pure water, and dried to prepare a quartz glass tube with high accuracy. Dimensions of the quartz glass tube were measured by a laser outer diameter gauge and a thickness gauge. The length was 3500 mm, the outer diameter was 200 mm, and the inner diameter was 40 mm. As for the surface roughness of the inner and outer circumferential surfaces, the inner circumferential surface had a maximum roughness Rmax of 0.7 µm, a centerline average roughness Ra of 0.06 µm, a maximum roughness Rmax of the outer circumferential surface, 5.5 µm, and a centerline average roughness Ra of 0.5 µm.

한편, VAD법에 의해 피복부착의 코어로드를 작성하고, 외경제어부가의 정밀자동연신기에 의해 석영유리관의 내경에 대해서 외경을 39㎜에 맞추어서 가열연신하였다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이없도록 주의깊게 삽입하고, 모재용코어로드 및 모재용 석영유리관의 각원중심을 맞추어서 고정하고, 양끝을 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 전기로의 유쪽에서부터 삽입하고, 하단부를 용착시킨후에, 진공펌프에 의해 석영유리관내를 가압하여 순차적으로 띠형상으로 가열해서 용착일체화하고, 광파이버용 석영유리모재를 제조하였다. 얻게된 모재를 1000㎜마다 절단하고, 그 하나에 대해서 암실에 있어서 끝부분부터 백색광을 쬐었던바, 1000㎜당 육안에 의해 확인할 수 있는 최소단위가 약 0.1㎜이상의 기포수는 9개였다. 또, 외경의 치수에 대해서 레이저외경측정기에 의해 50㎜간격으로 측정하였던바, 치수오차는 ±0.2㎜이하였다. 또, 광파이버용 석영유리모재를 프리포옴분석기에 의해 측정하였던바, 원중심의 어긋남은 발견되지 않았다.On the other hand, the core rod with a coating was produced by the VAD method, and it extended | stretched by adjusting the outer diameter to 39 mm with respect to the inner diameter of the quartz glass tube with the precision automatic drawing machine of an external fisherman. Insert the core glass rod carefully into the quartz glass tube so as not to contact the inner circumferential surface of the core glass tube, fix the core core rod and the quartz glass tube for each circle, and connect both ends to the dummy quartz material. After the lower end was inserted from the oil side of the electric furnace at 2000 ° C. and the lower end was welded, the inside of the quartz glass tube was pressurized by a vacuum pump, and subsequently heated in a strip shape to be integrally welded to prepare a quartz glass base material for an optical fiber. The obtained base material was cut every 1000 mm, and one of them was exposed to white light from the end in the dark room, and the number of bubbles having a minimum unit of about 0.1 mm or more was confirmed by the naked eye per 1000 mm. In addition, the dimension of the outer diameter was measured at 50 mm intervals by a laser outer diameter measuring instrument, and the dimension error was ± 0.2 mm or less. Moreover, when the quartz glass base material for optical fibers was measured by the preform analyzer, the deviation of the center of gravity was not found.

(실시예 2)(Example 2)

VAD법을 사용하여, 4염화규소를 기화하여, 산수소화염속에서 화염가수분해하고, 회전하는 석영유리막대에 실리카유리미립자를 퇴적시켜서 대형다공질수우트체를 작성하였다. 이 다공질수우트체를 전기로에 넣고, 코어유리로드의 굴절율 등의 조건을 고려하여, He, Cl2혼합가스에 의해 1100℃에서 가열탈수하고, 계속하여 He분위기속에서 1600℃에서 투명유리화하고, 원기둥형상석영유리잉곳을 제조하였다. 이 원기둥형상석영유리잉곳의 양끝을 절단하고, 그것을 원통연삭장치의 #100다이아몬드숫돌가루에 의해 소정의 치수가까이까지 외경을 연삭하고, 이어서 #300다이아몬드숫돌가루에 의해 연삭한 후에, 레이저외경측정기에 의해 치수측정을 행하여, 외경의 원중심을 구하고, 이 외경의 원중심에 맞추어서 코어드릴구멍뚫기장치에 의해 구멍을 뚫고, 정밀호닝가공장치를 사용해서 #1000 및 #3000의 산화세륨숫돌가루에 의해 연마하였다. 연마한 석영유리관을 전기로내에 불활성가스를 흘리면서 2000℃에서 가열하여, 표면의 용융경면화처리를 행한 후에, 불산에 의한 에칭, 순수에 의한 수세 및 건조를 행하여 고정밀도의 석영유리관을 작성하였다. 이 석영유리관에 대해서 레이저외경측정기 및 두께측정기에 의해 치수측정을 행하였던바, 길이는 1000㎜, 외경은 60㎜, 내경은 20㎜였다. 또, 내·외주면의 표면거칠기를 조사했던바, 내주면이 최대거칠음 Rmax는 0.2㎛, 중심선평균거칠음 Ra는 0.03㎛, 외주면의 최대거칠음Rmax는 0.3㎛, 중심선평균거칠음Ra는 0.05㎛였다.Using VAD method, silicon tetrachloride was vaporized, flame hydrolyzed in an oxyhydrogen flame, and silica glass fine particles were deposited on a rotating quartz glass rod to prepare a large porous suit body. The insert the porous fixes this body in an electric furnace, the core in consideration of the conditions such as the refractive index of the glass rod, He, dehydrated by heating at 1100 ℃ by the Cl 2 gas mixture and continuously and transparently vitrified at 1600 ℃ in a He atmosphere, Cylindrical quartz glass ingots were prepared. After cutting both ends of the cylindrical quartz glass ingot, it is ground by the # 100 diamond grindstone of the cylindrical grinding device to a predetermined dimension, and then ground by a # 300 diamond grindstone, and then The measurement was carried out to obtain the center of the outer diameter, and the hole was drilled by the core drill boring machine according to the center of the outer diameter. Polished. The polished quartz glass tube was heated at 2000 DEG C while flowing an inert gas into the electric furnace, and subjected to surface hardening and hardening, followed by etching with hydrofluoric acid, washing with pure water, and drying to prepare a high precision quartz glass tube. Dimensions of the quartz glass tube were measured by a laser outer diameter gauge and a thickness gauge. The length was 1000 mm, the outer diameter was 60 mm, and the inner diameter was 20 mm. In addition, the surface roughness of the inner and outer circumferential surfaces was examined. The maximum roughness Rmax of the inner circumferential surface was 0.2 µm, the average roughness of the center line Ra was 0.03 µm, the maximum roughness Rmax of the outer circumferential surface was 0.3 µm, and the centerline average roughness Ra was 0.05 µm.

한편, VAD법에 의해 피복부착의 코어로드를 제조하고, 외경제어부가의 정밀자동연신기에 의해 석영유리관의 내경에 대해서 외경을 19㎜에 맞추어서 가열연신하였다. 이 코어유리로드를 상기 석영유리관속에 관내주면과 접촉하는 일이 없도록 주의깊게 삽입하고, 코어로드 및 석영유리관의 각원중심을 맞추어서 고정하고, 양끝을 더미석영재료에 연결한 다음에, 하단부로부터 2000℃의 전기로의 위쪽에서부터 삽입하고, 하단부를 용착시킨 후에, 진공펌프에 의해 석영유리관내를 감압하여 순차적으로 띠형상으로 가열해서 용착일체화하고, 광파이버용 석영유리모재를 제조하였다. 얻게된 모재를 1000㎜마다 절단하고, 그 하나에 대해서 암실에 있어서 끝부분부터 백색광을 쬐었던바, 1000㎜당 육안에 의해 확인할 수 있는 최소단위가 약 0.1㎜이상의 기포수는 4개였다. 또, 외경의 치수에 대해서 레이저외경측정기에 의해 50㎜간격으로 측정하였던바, 치수오차는 ±0.2㎜이하였다. 또 광파이버용 석영유리모재를 프리포옴분석기에 의해 측정하였던바, 원중심의 어긋남은 발견되지 않았다.On the other hand, the core rod with a coating was manufactured by the VAD method, and it extended | stretched by adjusting the outer diameter to 19 mm with respect to the inner diameter of the quartz glass tube by the precision automatic drawing machine of an external fisherman. This core glass rod is carefully inserted into the quartz glass tube so as not to come into contact with the inner circumferential surface of the core glass tube. The core glass rod is carefully inserted in the center of each circle of the core rod and the quartz glass tube, and both ends are connected to the dummy quartz material. After inserting from the upper part of the electric furnace, and welding the lower end part, the inside of the quartz glass tube was decompressed by a vacuum pump, and it heated sequentially to strip shape, and integrally welded, and produced the quartz glass base material for optical fibers. The obtained base material was cut every 1000 mm, and the one was exposed to white light from the end of the dark room, and the number of bubbles having a minimum unit of about 0.1 mm or more per 1000 mm was visible to the naked eye. In addition, the dimension of the outer diameter was measured at 50 mm intervals by a laser outer diameter measuring instrument, and the dimension error was ± 0.2 mm or less. In addition, when the quartz glass base material for optical fibers was measured by a preform analyzer, no deviation of the center of gravity was found.

본 발명의 제조방법에서는, 면정밀도가 높은 광파이버모재용 석영유리관을 사용함으로써 광파이버모재용 코어유리로드와의 용착게면에 기포가 존재하지 않는 양호한 광파이버용 석영유리모재를 제조할 수 있다. 특히 대형이며, 치수가 긴 광파이버용 석영유리모재를 저코스트로 제조할 수 있고, 그것을 와이어드로잉함으로써 고품질의 광파이버를 생산성있게 제조할 수 있다.In the production method of the present invention, by using the quartz glass tube for the optical fiber base material having a high surface accuracy, a good quartz glass base material for the optical fiber can be produced in which bubbles are not present on the surface of the welding with the core glass rod for the optical fiber base material. In particular, a large-size, long-length quartz glass base material for optical fibers can be produced in a low cost, and high-quality optical fibers can be produced in a productive manner by wire drawing them.

Claims (4)

광파이버모재용 석영유리관속에 광파이버모재용 코어유리로드를 삽입하고, 가열하여 용착일체화하는 광파이버용 석영유리모재의 제조방법에 있어서, 상기 모재용 석영유리관이 고순도의 석영유리잉곳의 내외주면을 다이아몬드숫돌가루에 의해 기계적 연삭가공한 후에, 내주면을 산화세륨숫돌가루에 의해 기계적 연마가공한 석영유리관인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.In the method of manufacturing a quartz glass base material for an optical fiber in which a core glass rod for an optical fiber base material is inserted into a quartz glass tube for an optical fiber base material, and is heated and welded together, the quartz glass tube for the base material is formed on the inner and outer peripheral surfaces of the quartz glass ingot of high purity. A method of producing a quartz glass base material for an optical fiber, wherein the inner peripheral surface is a quartz glass tube mechanically polished by cerium oxide grinding powder after mechanical grinding. 제 1항에 있어서, 광파이버모재용 석영유리관의 내주면의 최대거칠음 Rmax가 1㎛이하, 중심선평균거칠음 Ra가 0.1㎛이하, 외주면의 최대거칠음Rmax가 10㎛이하, 중심선평균거칠음Ra가 1㎛이하인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.The method of claim 1, wherein the maximum roughness Rmax of the inner circumferential surface of the quartz glass tube for optical fiber base material is 1 µm or less, the centerline average roughness Ra is 0.1 µm or less, the maximum roughness Rmax of the outer circumferential surface is 10 µm or less, and the centerline average roughness Ra is 1 µm or less. A method for producing a quartz glass base material for an optical fiber. 청구항 1기재의 석영유리관의 내외주면을 또 가열용융하여 경면화(鏡面化)하는 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.A method for producing a quartz glass base material for an optical fiber, characterized in that the inner and outer peripheral surfaces of the quartz glass tube of claim 1 are further melted and hardened. 제 3항에 있어서, 광파이버모재용 석영유리관의 내외주면의 최대거칠음 Rmax가 각각 0.5㎛이하, 내주면의 중심선 평균거칠음 Ra가 0.05㎛이하, 외주면의 중심선평균거칠음Ra가 0.1㎛이하인 것을 특징으로 하는 광파이버용 석영유리모재의 제조방법.4. The optical fiber according to claim 3, wherein the maximum roughness Rmax of the inner and outer circumferential surfaces of the quartz glass tube for the optical fiber base material is 0.5 mu m or less, the center line average roughness Ra of the inner circumferential surface is 0.05 mu m or less, and the center line average roughness Ra of the outer circumferential surface is 0.1 mu m or less. Method for producing a quartz glass base material.
KR1019990043327A 1998-10-08 1999-10-07 Manufacturing method of Qurtz Glass preform for optical fiber KR100314699B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10287060A JP2000119034A (en) 1998-10-08 1998-10-08 Production of quartz glass preform for optical fiber
JP1998-287060 1998-10-08

Publications (2)

Publication Number Publication Date
KR20000028910A true KR20000028910A (en) 2000-05-25
KR100314699B1 KR100314699B1 (en) 2001-11-15

Family

ID=17712543

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990043327A KR100314699B1 (en) 1998-10-08 1999-10-07 Manufacturing method of Qurtz Glass preform for optical fiber

Country Status (2)

Country Link
JP (1) JP2000119034A (en)
KR (1) KR100314699B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800930B2 (en) * 2000-06-26 2006-07-26 住友金属工業株式会社 Quartz glass cylinder, quartz glass tube and manufacturing method thereof
JP4975911B2 (en) * 2001-07-02 2012-07-11 古河電気工業株式会社 Optical fiber preform manufacturing method
JP2004051455A (en) * 2002-07-23 2004-02-19 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2004243433A (en) 2003-02-12 2004-09-02 Shinetsu Quartz Prod Co Ltd Inner surface polishing method of tubular brittle material and tubular brittle material obtained by the polishing method
KR101166205B1 (en) * 2003-03-21 2012-07-18 헤라에우스 테네보 게엠베하 Synthetic silica glass tube for the production of a preform, method for producing the same in a vertical drawing process and use of said tube
DE10325539A1 (en) * 2003-06-04 2004-01-08 Heraeus Tenevo Ag Quartz glass cylinder for the production of an optical component and method for its production
CN113979631B (en) * 2021-10-12 2023-10-03 桂林电子科技大学 Preparation method of large-size multi-core optical fiber preform based on perfect combination of special-shaped sleeves
CN115353287B (en) * 2022-09-09 2023-07-14 中国建筑材料科学研究总院有限公司 Phi 40mm large-size optical fiber image inverter and surface processing method and application thereof

Also Published As

Publication number Publication date
KR100314699B1 (en) 2001-11-15
JP2000119034A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
KR0133027B1 (en) Large sized guartz glass tube, large scale quartz glass preporm, process for manufacturing same and guartz glass optical fiber
EP0147225B1 (en) Method of forming an optical fiber
JP3903987B2 (en) Polarization-maintaining optical fiber manufacturing method
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
JP2980501B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
KR100782393B1 (en) A method of manufacturing a preform ingot for optical fiber
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
EP1000908B1 (en) Method for producing quartz glass preform for optical fibers and the quartz glass tube used thereto
JP3529149B2 (en) Large quartz glass tube, large quartz glass preform, and methods for producing them
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
JP2000203860A (en) Large-sized quartz glass reform
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
KR100345355B1 (en) Preform for Optical fiber and manufacturing method thereof
KR100345357B1 (en) Quartz glass tube having taper attached-groove and Method for manufacturing preform for opitical fiber using the same
EP2481715B1 (en) Method of manufacturing an optical fiber preform
JP4413738B2 (en) Quartz glass tube for manufacturing optical fiber, quartz glass tube for manufacturing optical fiber, preform for manufacturing optical fiber, and method for manufacturing optical fiber
JPH0557215B2 (en)
CN114956543A (en) Prefabricated rod of elliptical core polarization maintaining optical fiber and preparation method of optical fiber
JPS6054935A (en) Manufacture of preform rod for optical fiber
JP2006062915A (en) Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing them, and their manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121023

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131022

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141021

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20181018

Year of fee payment: 18