JP2003020238A - Method for producing optical fiber preform - Google Patents

Method for producing optical fiber preform

Info

Publication number
JP2003020238A
JP2003020238A JP2001200678A JP2001200678A JP2003020238A JP 2003020238 A JP2003020238 A JP 2003020238A JP 2001200678 A JP2001200678 A JP 2001200678A JP 2001200678 A JP2001200678 A JP 2001200678A JP 2003020238 A JP2003020238 A JP 2003020238A
Authority
JP
Japan
Prior art keywords
optical fiber
opening
fiber preform
quartz glass
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001200678A
Other languages
Japanese (ja)
Other versions
JP4975911B2 (en
Inventor
Nobuaki Orita
伸昭 折田
Takeshi Yagi
健 八木
Akinari Uchikoshi
昭成 打越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001200678A priority Critical patent/JP4975911B2/en
Publication of JP2003020238A publication Critical patent/JP2003020238A/en
Application granted granted Critical
Publication of JP4975911B2 publication Critical patent/JP4975911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber preform, by which the fluctuation of the opening diameter in the longitudinal (drawing) direction of an opening part can be suppressed, in the method for producing the optical fiber preform which comprises forming an opening part in first quartz glass, then inserting second quartz glass and melt-bonding/integrating. SOLUTION: The first quartz glass 1, 2 for the optical fiber preform is ground by ultrasonic processing using a grinding tool 10 in whose tip end diamond abrasive grains having at least first coarseness are buried so as to form an opening part having a predetermined opening diameter, then the opening diameter above is expanded by 0.1 to 1 mm by the ultrasonic processing using the grinding tool 10 in whose tip end diamond abrasive grains having second coarseness finer than the first coarseness are buried, and further, the opening part H3 is formed by subjecting the quartz glass to mechanical polishing using cerium oxide abrasive grains or colloidal silica. Thereafter, second quartz glass for the optical fiber preform is inserted in the formed opening part H3 , melt-bonded and integrated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】光ファイバ母材用石英ガラス
に開口部を形成して光ファイバ母材用コアガラスロッド
あるいは光ファイバ母材用応力付与材を挿入し、加熱し
て溶着一体化する光ファイバ母材の製造方法に関する。
BACKGROUND OF THE INVENTION A light for forming an opening in quartz glass for an optical fiber preform and inserting a core glass rod for the optical fiber preform or a stress applying material for the optical fiber preform, and heating and integrating them. The present invention relates to a method for manufacturing a fiber preform.

【0002】[0002]

【従来の技術】近年のインターネットの普及により伝送
される情報量が飛躍的に増大しており、この増大する情
報量に対応するするために、光ファイバの伝送容量を増
大することができるWDM(波長分割多重)伝送が行わ
れるようになっている。上記のWDM伝送においては、
複雑な屈折率プロファイルを持った光ファイバや、PA
NDAファイバなどの偏波保持ファイバが必要となって
いる。
2. Description of the Related Art The amount of information transmitted has increased dramatically due to the spread of the Internet in recent years, and in order to cope with this increasing amount of information, it is possible to increase the transmission capacity of an optical fiber (WDM). Wavelength division multiplexing) transmission is performed. In the above WDM transmission,
Optical fiber with complex refractive index profile, PA
A polarization maintaining fiber such as an NDA fiber is required.

【0003】上記の光ファイバの一般的な製造方法とし
ては、例えば、VAD(vapor-phase axial depositio
n)法やOVD(outside vapor deposition)法でスー
ト(ガラス微粒子)を堆積させて多孔質のスート母材を
合成し、脱水、焼結および延伸などを経てガラスロッド
とし、あるいはMCVD(modified chemical vapor de
position)法によって直接ガラスロッドを形成し、得ら
れたガラスロッドの外周部にOVD法などによりクラッ
ドとなるスートを堆積させ、脱水および焼結などを経て
光ファイバ母材(プリフォーム)とし、その先端から線
引して光ファイバとする。
As a general method for manufacturing the above optical fiber, for example, VAD (vapor-phase axial depositio) is used.
n) method or OVD (outside vapor deposition) method is used to deposit soot (glass particles) to synthesize a porous soot base material, which is then dehydrated, sintered and stretched into a glass rod, or MCVD (modified chemical vapor). de
position) method to directly form a glass rod, and a soot to be a clad is deposited on the outer peripheral portion of the obtained glass rod by an OVD method or the like, and is dehydrated and sintered to be an optical fiber preform (preform). An optical fiber is drawn from the tip.

【0004】上記の一般的な製造方法に対して、工程の
簡略化と製造コスト削減のために、光ファイバ母材用石
英ガラスロッドの中心に開口部を形成して、光ファイバ
母材用コアガラスロッドを挿入し、あるいは光ファイバ
母材のコアの両側に開口部を形成して光ファイバ母材用
応力付与材を挿入し、加熱して溶着一体化する光ファイ
バ母材の製造方法が開発されている。
In contrast to the above-mentioned general manufacturing method, in order to simplify the process and reduce the manufacturing cost, an opening is formed at the center of the silica glass rod for optical fiber preform to form a core for optical fiber preform. A method for manufacturing optical fiber preforms has been developed, in which a glass rod is inserted, or openings are formed on both sides of the core of the optical fiber preform to insert stress applying materials for the optical fiber preform, and heating and fusion are integrated. Has been done.

【0005】上記の光ファイバ母材用石英ガラスロッド
あるいは光ファイバ母材に開口部を形成する方法として
は、ダイヤモンド砥粒を先端に埋め込んだコアドリルを
用いた超音波加工により研削加工して開口し、次いでダ
イヤモンド、SiCあるいはアルミナなどの砥粒を用い
て上記開口部内壁面を研削加工し、さらに酸化セリウム
砥粒を用いて上記開口部内壁面を機械的研磨する方法が
知られている。
As a method of forming an opening in the above-mentioned quartz glass rod for optical fiber preform or in the optical fiber preform, an opening is made by grinding by ultrasonic machining using a core drill having diamond abrasive grains embedded at the tip. Then, a method is known in which the inner wall surface of the opening is ground by using abrasive grains such as diamond, SiC, or alumina, and the inner wall surface of the opening is mechanically polished by using cerium oxide abrasive grains.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
光ファイバ母材用石英ガラスロッドあるいは光ファイバ
母材に開口部を形成する方法による光ファイバ母材の製
造方法では、上記のコアドリルを用いた超音波加工での
破砕層を除去するために、形成した開口部の開口径を研
削加工により0.5〜1mm広げる必要があり、特に、
この開口径拡大のための研削をダイヤモンド、SiCあ
るいはアルミナなどの砥粒とブラシを用いて行う場合に
は、開口径の正確な管理が難しく、開口部の長手(延
伸)方向での開口径の変動が大きいという問題があっ
た。
However, in the method for producing an optical fiber preform by the method of forming an opening in the above-mentioned quartz glass rod for optical fiber preform or the optical fiber preform, the above-mentioned core drill is used. In order to remove the crushed layer by sonication, it is necessary to widen the opening diameter of the formed opening by 0.5 to 1 mm by grinding,
When grinding for expanding the opening diameter is performed using abrasive grains such as diamond, SiC, or alumina and a brush, it is difficult to accurately control the opening diameter, and the opening diameter in the longitudinal (stretching) direction of the opening is There was a problem of large fluctuations.

【0007】上記のように開口部の長手(延伸)方向で
の開口径の変動が大きい場合、得られた開口部に光ファ
イバ母材用コアガラスロッドなどを挿入し、加熱して溶
着一体化して形成した光ファイバ母材から線引したとき
に、コア偏芯量が大きくなったり、気泡の発生回数が多
いなどの不都合を生じさせてしまう。
When the opening diameter varies greatly in the longitudinal (stretching) direction of the opening as described above, a core glass rod for optical fiber preform is inserted into the obtained opening and heated to be integrated by welding. When drawn from the optical fiber preform formed as described above, inconveniences such as a large core eccentricity and a large number of bubbles are generated.

【0008】本発明は上記の状況に鑑みてなされたもの
であり、従って本発明の目的は、光ファイバ母材用石英
ガラスロッドなどの第1石英ガラスに開口部を形成し、
光ファイバ母材用コアガラスロッドなどの第2石英ガラ
スを挿入し、加熱して溶着一体化する方法による光ファ
イバ母材の製造方法において、開口部の長手(延伸)方
向での開口径の変動を抑制することができる光ファイバ
母材の製造方法を提供することである。
The present invention has been made in view of the above circumstances. Therefore, an object of the present invention is to form an opening in a first quartz glass such as a quartz glass rod for an optical fiber preform,
In a method of manufacturing an optical fiber preform by inserting a second quartz glass such as a core glass rod for an optical fiber preform, and heating and fusion-integrating the same, a change in opening diameter in the longitudinal (stretching) direction of the opening An object of the present invention is to provide a method for manufacturing an optical fiber preform capable of suppressing the above.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の光ファイバ母材の製造方法は、光ファイバ
母材用第1石英ガラスに開口部を形成する工程と、上記
開口部に光ファイバ母材用第2石英ガラスを挿入する工
程と、加熱して上記第1石英ガラスおよび上記第2石英
ガラスを溶着一体化する工程とを有し、上記第1石英ガ
ラスに開口部を形成する工程が、少なくとも、第1の粗
さのダイヤモンド砥粒を先端に埋め込んだ研削具を用い
た超音波加工により所定の開口径となるように研削する
第1研削工程と、上記第1の粗さよりも微細な第2の粗
さのダイヤモンド砥粒を先端に埋め込んだ研削具を用い
た超音波加工により上記所定の開口径を広げる第2研削
工程とを含む。
In order to achieve the above object, a method of manufacturing an optical fiber preform according to the present invention comprises a step of forming an opening in a first quartz glass for an optical fiber preform, and the opening. A step of inserting the second quartz glass for an optical fiber preform into the above, and a step of heating to fuse and integrate the first quartz glass and the second quartz glass, and an opening is formed in the first quartz glass. The forming step includes at least a first grinding step of grinding to a predetermined opening diameter by ultrasonic processing using a grinding tool having a tip with diamond abrasive grains of a first roughness embedded therein, and the above first step. A second grinding step of expanding the above-mentioned predetermined opening diameter by ultrasonic processing using a grinding tool in which diamond abrasive grains having a second roughness finer than the roughness is embedded at the tip.

【0010】上記の本発明の光ファイバ母材の製造方法
は、好適には、上記第2石英ガラスが、光ファイバ母材
用コアガラスロッドまたは光ファイバ母材用応力付与母
材である。
In the above-described method for producing an optical fiber preform of the present invention, preferably, the second quartz glass is a core glass rod for an optical fiber preform or a stress applying preform for an optical fiber preform.

【0011】上記の本発明の光ファイバ母材の製造方法
は、好適には、上記第1の粗さのダイヤモンド砥粒が#
100〜160のダイヤモンド砥粒であり、上記第2の
粗さのダイヤモンド砥粒が#600〜2000のダイヤ
モンド砥粒である。
In the above-described method for producing an optical fiber preform according to the present invention, the diamond abrasive grains having the first roughness are preferably
The diamond abrasive grains are 100 to 160, and the diamond abrasive grains having the second roughness are # 600 to 2000 diamond abrasive grains.

【0012】上記の本発明の光ファイバ母材の製造方法
は、好適には、上記第2研削工程において、上記所定の
開口径を0.1〜1mm広げる。
In the method for producing an optical fiber preform according to the present invention, preferably, the predetermined opening diameter is expanded by 0.1 to 1 mm in the second grinding step.

【0013】上記の本発明の光ファイバ母材の製造方法
は、好適には、上記第1石英ガラスに開口部を形成する
工程が、上記第2研削工程の後に、酸化セリウム砥粒ま
たはコロイダルシリカを用いて上記開口部内壁面を機械
的研磨する工程をさらに有する。さらに好適には、上記
機械的研磨する工程において、ナイロンブラシを上記開
口部内壁面にあて、回転させながら上記開口部の延伸方
向に往復駆動させる。
In the above-described method for producing an optical fiber preform of the present invention, preferably, the step of forming the opening in the first quartz glass is performed after the second grinding step, after the cerium oxide abrasive grains or colloidal silica. The method further includes a step of mechanically polishing the inner wall surface of the opening using. More preferably, in the mechanical polishing step, a nylon brush is applied to the inner wall surface of the opening and reciprocally driven in the extending direction of the opening while rotating.

【0014】上記の本発明の光ファイバ母材の製造方法
は、光ファイバ母材用第1石英ガラスに、少なくとも、
#100〜160程度の第1の粗さのダイヤモンド砥粒
を先端に埋め込んだ研削具を用いた超音波加工により所
定の開口径となるように研削し、次に上記第1の粗さよ
りも微細な#600〜2000程度の第2の粗さのダイ
ヤモンド砥粒を先端に埋め込んだ研削具を用いた超音波
加工により上記所定の開口径を0.1〜1mm程度広
げ、さらには、酸化セリウム砥粒またはコロイダルシリ
カを用いて、ナイロンブラシを開口部内壁面にあて、回
転させながら開口部の延伸方向に往復駆動させて開口部
内壁面を機械的研磨して、開口部を形成する。次に、開
口部に光ファイバ母材用コアガラスロッドまたは光ファ
イバ母材用応力付与母材などの光ファイバ母材用第2石
英ガラスを挿入し、加熱して第1石英ガラスおよび第2
石英ガラスを溶着一体化する。
The above-described method for producing an optical fiber preform according to the present invention comprises at least the first quartz glass for optical fiber preform,
Grinding to a predetermined opening diameter by ultrasonic machining using a grinder having a diamond abrasive grain with a first roughness of about # 100 to 160 embedded in its tip, and then finer than the first roughness. The predetermined opening diameter is expanded by about 0.1 to 1 mm by ultrasonic processing using a grinding tool having diamond abrasive grains with a second roughness of about # 600 to 2000 embedded in the tip, and further, cerium oxide grinding is performed. A nylon brush is applied to the inner wall surface of the opening using particles or colloidal silica, and the inner wall surface of the opening is mechanically polished by reciprocally driving the nylon brush in the extending direction of the opening to form the opening. Next, a second quartz glass for optical fiber preform such as a core glass rod for optical fiber preform or a stress applying preform for optical fiber preform is inserted into the opening and heated to heat the first quartz glass and the second quartz glass.
Quartz glass is fused and integrated.

【0015】上記の本発明の光ファイバ母材の製造方法
によれば、第1石英ガラスに開口部を形成して第2石英
ガラスを挿入し、加熱して溶着一体化する方法による光
ファイバ母材の製造方法において、第1石英ガラスに開
口部を形成するときに、第1の粗さのダイヤモンド砥粒
を先端に埋め込んだ研削具を用いた超音波加工と第1の
粗さよりも微細な第2の粗さのダイヤモンド砥粒を先端
に埋め込んだ研削具を用いた超音波加工とを行うこと
で、開口部の長手(延伸)方向での開口径の変動を抑制
することができる。
According to the above-described method for producing an optical fiber preform of the present invention, the optical fiber preform is formed by forming an opening in the first quartz glass, inserting the second quartz glass, and heating and integrating them. In the manufacturing method of the material, when forming the opening in the first quartz glass, ultrasonic machining using a grinding tool having diamond abrasive grains of the first roughness embedded at the tip and finer than the first roughness are used. By performing ultrasonic processing using a grinding tool having diamond abrasive grains of the second roughness embedded at the tip, it is possible to suppress variation in the opening diameter in the longitudinal (stretching) direction of the opening.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0017】第1実施形態 本実施形態に係る光ファイバは、偏波保持ファイバの一
種であるPANDAファイバであり、その断面図を図1
に示す。PANDAファイバは、例えばゲルマニウムを
含有するシリカガラスなどの高屈折率材料よりなるコア
1aと、コア1aより屈折率が低いシリカガラスなどの
材料よりなり、コア1aの外周を被覆しているクラッド
2aとを有し、さらにクラッド2a中におけるコア1a
の両側に、例えばB23 を含有するシリカガラスなど
のクラッド2aよりも熱膨張係数が数倍大きい材料から
なる応力付与部3aが設けられている。上記のクラッド
2aと応力付与部3aとの熱膨張係数の差により、コア
1aに非対象な応力が与えられており、これによって複
屈折性が増大し、光の偏波状態を安定に保って伝送する
ものであり、伝送特性やクロストークなどの特性におい
て優れた特性を有する偏波保持ファイバである。
First Embodiment The optical fiber according to the present embodiment is a PANDA fiber which is a kind of polarization maintaining fiber, and its sectional view is shown in FIG.
Shown in. The PANDA fiber includes, for example, a core 1a made of a high refractive index material such as silica glass containing germanium, and a clad 2a made of a material such as silica glass having a refractive index lower than that of the core 1a and covering the outer periphery of the core 1a. The core 1a in the clad 2a
A stress applying portion 3a made of a material having a thermal expansion coefficient several times larger than that of the clad 2a such as silica glass containing B 2 O 3 is provided on both sides of the. Due to the difference in the coefficient of thermal expansion between the clad 2a and the stress imparting portion 3a, asymmetric stress is applied to the core 1a, which increases birefringence and keeps the polarization state of light stable. It is a polarization-maintaining fiber that is transmitted and has excellent characteristics such as transmission characteristics and crosstalk.

【0018】次に、本実施形態に係る光ファイバ母材
(プリフォーム)の製造方法について説明する。例え
ば、VAD(vapor-phase axial deposition)法やOV
D(outside vapor deposition)法でスート(ガラス微
粒子)を堆積させて多孔質のスート母材を合成し、脱
水、焼結および延伸などを経てコアガラスロッド1と
し、あるいはMCVD(modified chemical vapor depo
sition)法によって直接コアガラスロッド1を形成し、
得られたコアガラスロッド1の外周部にOVD法などに
よりクラッドとなるスートを堆積させ、脱水および焼結
などを経て、図2(A)の模式断面図に示すように、コ
アガラスロッド1の外周部にクラッド2が形成された光
ファイバ母材Pを形成する。
Next, a method of manufacturing the optical fiber preform (preform) according to this embodiment will be described. For example, VAD (vapor-phase axial deposition) method and OV
Soot (glass fine particles) is deposited by the D (outside vapor deposition) method to synthesize a porous soot base material, and the core glass rod 1 is obtained through dehydration, sintering and stretching, or MCVD (modified chemical vapor depo
sition) method to directly form the core glass rod 1,
Soot to be a clad is deposited on the outer peripheral portion of the obtained core glass rod 1 by the OVD method or the like, and after dehydration and sintering, as shown in the schematic cross-sectional view of FIG. The optical fiber preform P having the cladding 2 formed on the outer peripheral portion is formed.

【0019】以降の工程においては、上記の光ファイバ
母材Pから所定の長さで切り出し、図2(B)および
(C)に示す円柱状の母材とする。ここで、図2(B)
は上面図であり、図2(C)は図2(B)中のX−X’
における断面図である。
In the subsequent steps, the optical fiber preform P is cut into a predetermined length to obtain a cylindrical preform shown in FIGS. 2B and 2C. Here, FIG. 2 (B)
2C is a top view, and FIG. 2C is XX ′ in FIG.
FIG.

【0020】次の工程においては、上記の円柱状の母材
の所定の位置に所定の開口径の開口部を形成するが、こ
こでは図3の断面図に示す構成のコアドリル10を用い
る。コアドリル10は、例えばステンレスなどの金属製
のパイプ11の一方の先端に、ダイヤモンド砥粒を混ぜ
た焼結金属12が取り付けられ、他方の先端に保持部1
3を取り付けられている構成の研削具である。
In the next step, an opening having a predetermined opening diameter is formed at a predetermined position in the above-mentioned cylindrical base material. Here, the core drill 10 having the structure shown in the sectional view of FIG. 3 is used. In the core drill 10, for example, a sintered metal 12 mixed with diamond abrasive grains is attached to one end of a pipe 11 made of metal such as stainless steel, and the holding portion 1 is attached to the other end.
3 is a grinding tool having a structure to which 3 is attached.

【0021】次に、図4の断面図に示すように、コアド
リル10を用いて円柱状の母材の所定の位置に、コアド
リル10の長手方向を回転軸として回転させながら焼結
金属12側から押圧し、超音波振動させることにより、
クラッド2中におけるコアガラスロッド1の両側に開口
部H3 を形成する。この研削においては、まず第1研削
工程として、例えば#100〜160程度の第1の粗さ
のダイヤモンド砥粒を先端に埋め込んだコアドリルを用
いて、所定の開口径となるように研削する。次に、第2
研削工程として、第1の粗さよりも微細である、例えば
#600〜2000程度の第2の粗さのダイヤモンド砥
粒を先端に埋め込んだコアドリルを用いて、上記所定の
開口径を広げるように研削する。ここで、開口径を広げ
る量は0.1〜1mm程度が好ましい。
Next, as shown in the cross-sectional view of FIG. 4, the core drill 10 is used at a predetermined position of the cylindrical base material while rotating the core drill 10 with the longitudinal direction of the core drill 10 as a rotation axis from the sintered metal 12 side. By pressing and ultrasonic vibration,
Openings H 3 are formed on both sides of the core glass rod 1 in the clad 2. In this grinding, first, as a first grinding step, for example, a core drill having diamond abrasive grains of a first roughness of about # 100 to 160 embedded in its tip is ground to a predetermined opening diameter. Then the second
As a grinding step, a core drill finer than the first roughness, for example, a diamond abrasive having a second roughness of about # 600 to 2000 is embedded in the tip, is ground so as to widen the predetermined opening diameter. To do. Here, the amount of expanding the opening diameter is preferably about 0.1 to 1 mm.

【0022】上記の研削工程により、図5に示す構成の
母材とする。ここで、図5(A)は上面図であり、図5
(B)は図5(A)中のX−X’における断面図であ
る。即ち、コアガラスロッド1の外周部にクラッド2が
形成された円柱状の母材において、クラッド2中におけ
るコアガラスロッド1の両側に開口部H3 が形成された
構成である。上記の開口部H3 は、粗さの異なるダイヤ
モンド砥粒を用いた2回の研削工程により開口されたも
のであり、開口部内壁面の表面粗さと開口径の長手方向
の変動を従来の開口方法よりも抑制された開口部となっ
ている。
By the above-mentioned grinding process, the base material having the structure shown in FIG. 5 is obtained. Here, FIG. 5A is a top view.
5B is a cross-sectional view taken along line XX ′ in FIG. That is, in the cylindrical base material in which the cladding 2 is formed on the outer peripheral portion of the core glass rod 1, the openings H 3 are formed on both sides of the core glass rod 1 in the cladding 2. The opening H 3 is opened by two grinding steps using diamond abrasive grains having different roughnesses, and the surface roughness of the inner wall surface of the opening and the variation in the opening diameter in the longitudinal direction are adjusted by the conventional opening method. The opening is more suppressed.

【0023】次に、図6の断面図に示すように、開口部
3 内に、例えば酸化セリウム砥粒またはコロイダルシ
リカなどの砥粒30を供給しながら、ナイロンブラシ2
0を開口部H3 の内壁面にあて、回転させながら開口部
3 の延伸方向に往復駆動させて、開口部H3 の内壁面
を機械的研磨する。
Next, as shown in the sectional view of FIG. 6, while supplying abrasive grains 30 such as cerium oxide abrasive grains or colloidal silica into the opening H 3 , the nylon brush 2
Applying a 0 on the inner wall surface of the opening H 3, while rotating reciprocally so driven in the extending direction of the opening H 3, mechanically polishing the inner wall surface of the opening H 3.

【0024】次に、図7の断面図に示すように、別途形
成しておいた応力付与材3を開口部H3 に挿入する。応
力付与材3は、例えばVAD法またはMCVD法あるい
はその他の方法により、B23 を含有するシリカガラ
スのロッドとして形成する。
Next, as shown in the sectional view of FIG. 7, the stress-applying material 3 formed separately is inserted into the opening H 3 . The stress applying material 3 is formed as a rod of silica glass containing B 2 O 3 by, for example, the VAD method, the MCVD method, or another method.

【0025】次に、コアガラスロッド1の外周部にクラ
ッド2が形成された円柱状の母材と応力付与材3とを加
熱して、溶着一体化し、図8に示す構成の光ファイバ母
材とする。ここで、図8(A)は母材本体部分の上面図
であり、図8(B)は本体下部に線引用おもり40が備
えられ、本体上部に応力付与材3を押える押え材41、
おもり42と石英パイプ43が備えられた形態の断面図
であり、図8(A)中のX−X’が図8(B)中のX−
X’に相当する。上記の光ファイバ母材から線引するこ
とで、図1に示すPANDAファイバを製造することが
できる。
Next, the cylindrical base material having the clad 2 formed on the outer peripheral portion of the core glass rod 1 and the stress applying material 3 are heated and fused and integrated, and the optical fiber preform having the structure shown in FIG. And Here, FIG. 8 (A) is a top view of the base material main body portion, and FIG. 8 (B) is provided with a line quoting weight 40 at the lower portion of the main body, and a pressing material 41 for pressing the stress applying material 3 at the upper portion of the main body.
FIG. 9 is a cross-sectional view of a configuration in which a weight 42 and a quartz pipe 43 are provided, and XX ′ in FIG. 8A is XX ′ in FIG. 8B.
Corresponds to X '. The PANDA fiber shown in FIG. 1 can be manufactured by drawing from the above optical fiber preform.

【0026】上記の本実施形態の光ファイバ母材の製造
方法によれば、コアガラスロッド1の外周部にクラッド
2が形成された円柱状の母材(第1石英ガラス)に開口
部を形成して応力付与材3(第2石英ガラス)を挿入
し、加熱して溶着一体化する方法による光ファイバ母材
の製造方法において、第1石英ガラスに開口部を形成す
るときに、第1の粗さのダイヤモンド砥粒を先端に埋め
込んだ研削具を用いた超音波加工と第1の粗さよりも微
細な第2の粗さのダイヤモンド砥粒を先端に埋め込んだ
研削具を用いた超音波加工とを行うことで、開口部の長
手(延伸)方向での開口径の変動を抑制することができ
る。これにより、線引後の光ファイバにおける気泡の発
生回数を抑制することができる。
According to the above-described method of manufacturing the optical fiber preform of the present embodiment, the opening is formed in the cylindrical preform (first quartz glass) having the clad 2 formed on the outer periphery of the core glass rod 1. In the method of manufacturing the optical fiber preform by inserting the stress-applying material 3 (second quartz glass) into the first quartz glass and then heating and integrating them together, when the opening is formed in the first quartz glass, Ultrasonic processing using a grinding tool with a diamond abrasive grain of roughness embedded in the tip and ultrasonic processing with a grinding tool with a second roughness diamond abrasive finer than the first roughness in the tip By performing the above, it is possible to suppress the variation of the opening diameter in the longitudinal (stretching) direction of the opening. As a result, the number of bubbles generated in the optical fiber after drawing can be suppressed.

【0027】第2実施形態 図9は、本実施形態に係る光ファイバの断面図である。
例えばゲルマニウムを含有するシリカガラスなどの高屈
折率材料よりなるコア1aと、コア1aより屈折率が低
いシリカガラスなどの材料よりなり、コア1aの外周を
被覆しているクラッド2aとを有する。
Second Embodiment FIG. 9 is a sectional view of an optical fiber according to this embodiment.
For example, it has a core 1a made of a high refractive index material such as silica glass containing germanium, and a clad 2a made of a material such as silica glass having a lower refractive index than the core 1a and covering the outer periphery of the core 1a.

【0028】次に、本実施形態に係る光ファイバ母材
(プリフォーム)の製造方法について説明する。まず、
図10の断面図に示すように、例えば、VAD法やOV
D法でスート(ガラス微粒子)を堆積させて多孔質のス
ート母材を合成し、脱水、焼結および延伸などを経て、
クラッドとなるコアガラスロッド2を形成し、その中心
に、上記第1実施形態と同様に開口部を形成する。即
ち、まず第1研削工程として、例えば#100〜160
程度の第1の粗さのダイヤモンド砥粒を先端に埋め込ん
だコアドリルを用いて、所定の開口径となるように研削
する。次に、第2研削工程として、第1の粗さよりも微
細である、例えば#600〜2000程度の第2の粗さ
のダイヤモンド砥粒を先端に埋め込んだコアドリルを用
いて、上記所定の開口径を広げるように研削する。
Next, a method of manufacturing the optical fiber preform (preform) according to this embodiment will be described. First,
As shown in the sectional view of FIG. 10, for example, the VAD method or the OV method is used.
Soot (glass particles) is deposited by the D method to synthesize a porous soot base material, and after dehydration, sintering and stretching,
A core glass rod 2 serving as a clad is formed, and an opening is formed in the center of the core glass rod 2 as in the first embodiment. That is, first, as the first grinding step, for example, # 100 to 160
Using a core drill in which diamond abrasive grains having a first roughness of a certain degree are embedded at the tip, grinding is performed so as to have a predetermined opening diameter. Next, in the second grinding step, using a core drill having a finer than the first roughness, for example, diamond abrasive grains having a second roughness of about # 600 to 2000 embedded in the tip thereof, the above predetermined opening diameter is used. Grind to spread.

【0029】上記の研削工程により、図11に示す構成
の母材とする。ここで、図11(A)は上面図であり、
図11(B)は図11(A)中のX−X’における断面
図である。即ち、クラッドとなるガラスロッド2の中心
部に開口部H1 が形成された構成である。上記の開口部
1 は、粗さの異なるダイヤモンド砥粒を用いた2回の
研削工程により開口されたものであり、開口部内壁面の
表面粗さと開口系の長手方向の変動を従来の開口方法よ
りも抑制された開口部となっている。
By the above grinding process, the base material having the structure shown in FIG. 11 is obtained. Here, FIG. 11A is a top view,
FIG. 11B is a cross-sectional view taken along line XX ′ in FIG. That is, the opening H 1 is formed in the center of the glass rod 2 serving as the clad. The opening H 1 is opened by two grinding steps using diamond abrasive grains having different roughnesses, and the surface roughness of the inner wall surface of the opening and the variation in the longitudinal direction of the opening system are adjusted by the conventional opening method. The opening is more suppressed.

【0030】次に、図12に示すように、開口部H1
に、例えば酸化セリウム砥粒またはコロイダルシリカな
どの砥粒30を供給しながら、ナイロンブラシ20を開
口部H1 の内壁面にあて、回転させながら開口部H3
延伸方向に往復駆動させて、開口部H1 の内壁面を機械
的研磨する。
Next, as shown in FIG. 12, in the opening H 1, for example, while supplying the abrasive grains 30, such as cerium oxide abrasive grains or colloidal silica, a nylon brush 20 on the inner wall surface of the opening H 1 The inner wall surface of the opening H 1 is mechanically polished by reciprocating in the extending direction of the opening H 3 while rotating.

【0031】次に、図13に示すように、別途形成して
おいたコアガラスロッド1を開口部H1 に挿入する。コ
アガラスロッド1は、例えばVAD法、OVD法あるい
はMCVD法などにより形成する。
Next, as shown in FIG. 13, the separately formed core glass rod 1 is inserted into the opening H 1 . The core glass rod 1 is formed by, for example, the VAD method, the OVD method, the MCVD method, or the like.

【0032】次に、クラッドとなるガラスロッド2とコ
アガラスロッド1とを加熱して、溶着一体化し、図14
に示す構成の光ファイバ母材とする。ここで、図14
(A)は上面図であり、図14(B)は図14(A)中
のX−X’における断面図である。上記の光ファイバ母
材から線引することで、図9に示す光ファイバを製造す
ることができる。
Next, the glass rod 2 serving as the clad and the core glass rod 1 are heated to be fused and integrated, and
The optical fiber preform having the structure shown in FIG. Here, FIG.
14A is a top view, and FIG. 14B is a cross-sectional view taken along line XX ′ in FIG. By drawing from the above optical fiber preform, the optical fiber shown in FIG. 9 can be manufactured.

【0033】上記の本実施形態の光ファイバ母材の製造
方法によれば、クラッドとなるガラスロッド2(第1石
英ガラス)に開口部を形成してコアガラスロッド1(第
2石英ガラス)を挿入し、加熱して溶着一体化する方法
による光ファイバ母材の製造方法において、第1石英ガ
ラスに開口部を形成するときに、第1の粗さのダイヤモ
ンド砥粒を先端に埋め込んだ研削具を用いた超音波加工
と第1の粗さよりも微細な第2の粗さのダイヤモンド砥
粒を先端に埋め込んだ研削具を用いた超音波加工とを行
うことで、開口部の長手(延伸)方向での開口径の変動
を抑制することができる。これにより、線引後の光ファ
イバにおけるコア偏芯量や気泡の発生回数を抑制するこ
とができる。
According to the above-described method of manufacturing the optical fiber preform of the present embodiment, the core glass rod 1 (second quartz glass) is formed by forming an opening in the glass rod 2 (first quartz glass) which becomes the cladding. In a method of manufacturing an optical fiber preform by a method of inserting and heating to integrate by fusion, a grinding tool having diamond abrasive grains of a first roughness embedded at the tip when forming an opening in a first quartz glass. Of the opening portion (stretching) by performing ultrasonic processing using a tool and ultrasonic processing using a grinding tool in which diamond abrasive grains having a second roughness smaller than the first roughness are embedded in the tip. It is possible to suppress the variation of the opening diameter in the direction. This makes it possible to suppress the amount of core eccentricity and the number of times bubbles are generated in the optical fiber after drawing.

【0034】(実施例1)コアの外周部にクラッドが形
成された構成の光ファイバ母材(直径40mm、長さ3
00mm)のコアの両側に、#140のダイヤモンド砥
粒を先端に埋め込んだコアドリルを用いて超音波加工機
により直径10.8mmの開口部を2本開口した。次
に、コアドリルを#600のダイヤモンド砥粒を先端に
埋め込んだコアドリルに交換し、超音波加工をして開口
径を11.0mmまで広げた。上記加工後の2本の開口
部の開口径は等しく、また、接触式粗さ計で測定した開
口部内壁面の平均の表面粗さRaは0.1μmであっ
た。次に、開口部に酸化セリウム砥粒を流し込みながら
ナイロンブラシを3000rpmで回転させ、光ファイ
バ母材の軸方向に往復運動させて、30分間研磨加工し
た。研磨後の開口部内壁面の平均の表面粗さRaは0.
03μmであった。上記の開口部に、B23 をドープ
したシリカガラスからなる直径10.9mmの応力付与
材を挿入し、線引炉で加熱して溶着一体化しながら線引
を行った。20kmの距離分の線引を行ったところ、気
泡の発生は見られなかった。
Example 1 An optical fiber preform (diameter 40 mm, length 3) having a clad formed on the outer periphery of a core.
Two cores having a diameter of 10.8 mm were opened on both sides of the core (00 mm) by an ultrasonic machine using a core drill having # 140 diamond abrasive grains embedded in the tip. Next, the core drill was replaced with a core drill having # 600 diamond abrasive grains embedded at its tip, and ultrasonic processing was performed to widen the opening diameter to 11.0 mm. The opening diameters of the two openings after the above-mentioned processing were the same, and the average surface roughness Ra of the inner wall surface of the opening measured by the contact type roughness meter was 0.1 μm. Next, while pouring cerium oxide abrasive grains into the opening, the nylon brush was rotated at 3000 rpm, reciprocated in the axial direction of the optical fiber preform, and polished for 30 minutes. The average surface roughness Ra of the inner wall surface of the opening after polishing is 0.
It was 03 μm. A stress imparting material made of silica glass doped with B 2 O 3 and having a diameter of 10.9 mm was inserted into the above-mentioned opening and heated in a drawing furnace to perform wire drawing while welding and integrating. No bubbles were observed when the wire was drawn for a distance of 20 km.

【0035】(実施例2)コアの外周部にクラッドが形
成された構成の光ファイバ母材(直径40mm、長さ3
00mm)のコアの両側に、#100のダイヤモンド砥
粒を先端に埋め込んだコアドリルを用いて超音波加工機
により直径10.5mmの開口部を2本開口した。#1
00のダイヤモンド砥粒を埋め込んだドリルでは、#1
40のダイヤモンド砥粒を埋め込んだドリルよりも加工
速度を速くすることができる。次に、コアドリルを#6
00のダイヤモンド砥粒を先端に埋め込んだコアドリル
に交換し、超音波加工をして開口径を10.8mmまで
広げた。さらに、コアドリルを#2000のダイヤモン
ド砥粒を先端に埋め込んだコアドリルに交換し、超音波
加工をして開口径を11.0mmまで広げた。上記加工
後の2本の開口部の開口径は等しく、また、接触式粗さ
計で測定した開口部内壁面の平均の表面粗さRaは0.
07μmであった。次に、開口部にコロイダルシリカを
流し込みながらナイロンブラシを5000rpmで回転
させ、光ファイバ母材の軸方向に100mm/分の速さ
で往復運動させて、30分間研磨加工した。研磨後の開
口部内壁面の平均の表面粗さRaは0.03μmであっ
た。コロイダルシリカは、酸化セリウムに比べて沈殿が
生じにくいので研磨液の管理を行いやすく、洗浄後の砥
粒の残存が少ないという利点がある。上記の開口部に、
23 をドープしたシリカガラスからなる直径10.
9mmの応力付与材を挿入し、線引炉で加熱して溶着一
体化しながら線引を行った。20kmの距離分の線引を
行ったところ、気泡の発生は見られなかった。
(Embodiment 2) An optical fiber preform having a structure in which a clad is formed on the outer peripheral portion of a core (diameter 40 mm, length 3)
Two cores having a diameter of 10.5 mm were opened on both sides of the core (00 mm) by an ultrasonic machine using a core drill having # 100 diamond abrasive grains embedded in the tip. # 1
For a drill with 00 diamond abrasive grains embedded, # 1
The processing speed can be made higher than that of a drill having 40 diamond abrasive grains embedded therein. Next, the core drill # 6
The diamond was replaced with a core drill in which the diamond abrasive grains of No. 00 were embedded in the tip, and ultrasonic processing was performed to widen the opening diameter to 10.8 mm. Further, the core drill was replaced with a core drill having # 2000 diamond abrasive grains embedded at the tip, and ultrasonic processing was performed to widen the opening diameter to 11.0 mm. After the above-mentioned processing, the opening diameters of the two openings are equal, and the average surface roughness Ra of the inner wall surface of the opening measured by a contact type roughness meter is 0.
It was 07 μm. Next, while pouring colloidal silica into the opening, the nylon brush was rotated at 5000 rpm, reciprocated at a speed of 100 mm / min in the axial direction of the optical fiber preform, and polished for 30 minutes. The average surface roughness Ra of the inner wall surface of the opening after polishing was 0.03 μm. Colloidal silica has advantages in that precipitation is less likely to occur as compared with cerium oxide, so that the polishing liquid can be easily managed, and the amount of abrasive grains remaining after cleaning is small. In the above opening,
Diameter of silica glass doped with B 2 O 3 10.
A 9 mm stress-applying material was inserted and heated in a drawing furnace to perform wire drawing while integrally welding. No bubbles were observed when the wire was drawn for a distance of 20 km.

【0036】(比較例1)コアの外周部にクラッドが形
成された構成の光ファイバ母材(直径40mm、長さ3
00mm)のコアの両側に、#140のダイヤモンド砥
粒を先端に埋め込んだコアドリルを用いて超音波加工機
により直径10.5mmの開口部を2本開口した。次
に、開口部にSiC砥粒を流し込みながらブラシを20
00rpmで回転させ、光ファイバ母材の軸方向に往復
運動させて、上記の研削工程で付いた傷や凹凸を慣らし
て平坦化するラップ処理を2時間行った。加工後、開口
径を測定したところ、2本の内の一方の開口部の開口径
が11.1mmであるのに対し、他方の開口部の開口径
は11.0mmであった。また、開口部内壁面の平均の
表面粗さRaは0.15μmであった。次に、開口部に
酸化セリウム砥粒を流し込みながらナイロンブラシを3
000rpmで回転させ、光ファイバ母材の軸方向に往
復運動させて、30分間研磨加工した。研磨後の開口部
内壁面の平均の表面粗さRaは0.05μmであった。
上記の開口部に、B23 をドープしたシリカガラスか
らなる直径10.9mmの応力付与材を挿入し、線引炉
で加熱して溶着一体化しながら線引を行った。20km
の距離分の線引を行ったところ、5回の気泡の発生が見
られた。
(Comparative Example 1) An optical fiber preform having a clad formed on the outer periphery of a core (diameter 40 mm, length 3)
Two openings having a diameter of 10.5 mm were opened on both sides of the (00 mm) core by an ultrasonic machine using a core drill having # 140 diamond abrasive grains embedded in the tip. Next, while pouring SiC abrasive grains into the opening,
Lapping was performed for 2 hours by rotating at 00 rpm and reciprocatingly moving in the axial direction of the optical fiber preform to habituate the scratches and irregularities formed in the above-mentioned grinding process and flatten the surface. When the opening diameter was measured after processing, the opening diameter of one of the two openings was 11.1 mm, while the opening diameter of the other opening was 11.0 mm. The average surface roughness Ra of the inner wall surface of the opening was 0.15 μm. Next, while pouring the cerium oxide abrasive grains into the opening,
It was rotated at 000 rpm, reciprocated in the axial direction of the optical fiber preform, and polished for 30 minutes. The average surface roughness Ra of the inner wall surface of the opening after polishing was 0.05 μm.
A stress imparting material made of silica glass doped with B 2 O 3 and having a diameter of 10.9 mm was inserted into the above-mentioned opening and heated in a drawing furnace to perform wire drawing while welding and integrating. 20 km
When the line for the distance of was drawn, bubbles were observed 5 times.

【0037】(実施例3)VAD法で作製した光ファイ
バ石英母材(直径125mm、長さ300mm)のコア
の中心に、#140のダイヤモンド砥粒を先端に埋め込
んだコアドリルを用いて超音波加工機により直径9.8
mmの開口部を1本開口した。次に、コアドリルを#1
200のダイヤモンド砥粒を先端に埋め込んだコアドリ
ルに交換し、超音波加工をして開口径を10.1mmま
で広げた。上記加工後の開口部の開口径の長手方向の変
動は10μmであり、また、接触式粗さ計で測定した開
口部内壁面の平均の表面粗さRaは0.07μmであっ
た。次に、開口部にコロイダルシリカを流し込みながら
ナイロンブラシを5000rpmで回転させ、光ファイ
バ母材の軸方向に100mm/分の速さで往復運動させ
て、30分間研磨加工した。研磨後の開口部内壁面の平
均の表面粗さRaは0.03μmであった。上記の開口
部に、MCVD法で作製した直径10.0mmのコアガ
ラスロッドを挿入し、2000℃の電気炉の上方から挿
入して下端部を溶着させた後、真空ポンプで減圧しなが
ら下方から順に加熱して溶着一体化した。得られた母材
を直径60mmに延伸した後、線引を行い、300km
の光ファイバを製造した。線引中の気泡の発生は2回
で、線引した光ファイバのコア偏芯量は0.2μmであ
った。
(Embodiment 3) Ultrasonic machining was performed at the center of the core of an optical fiber quartz preform (diameter 125 mm, length 300 mm) produced by the VAD method using a core drill having # 140 diamond abrasive grains embedded in the tip. Machine diameter 9.8
One mm opening was opened. Next, the core drill # 1
The diamond was replaced with a core drill having 200 diamond abrasive grains embedded in the tip, and ultrasonic processing was performed to widen the opening diameter to 10.1 mm. The variation in the opening diameter of the opening after the above-mentioned processing in the longitudinal direction was 10 μm, and the average surface roughness Ra of the inner wall surface of the opening measured by the contact type roughness meter was 0.07 μm. Next, while pouring colloidal silica into the opening, the nylon brush was rotated at 5000 rpm, reciprocated at a speed of 100 mm / min in the axial direction of the optical fiber preform, and polished for 30 minutes. The average surface roughness Ra of the inner wall surface of the opening after polishing was 0.03 μm. A core glass rod with a diameter of 10.0 mm produced by the MCVD method was inserted into the above-mentioned opening, and the lower end was welded by inserting it from above the electric furnace at 2000 ° C. and then from below while decompressing with a vacuum pump. The pieces were heated in order and integrated by welding. The obtained base material was drawn to a diameter of 60 mm and then drawn to 300 km.
Manufactured optical fiber. Bubbles were generated twice during the drawing, and the core eccentricity of the drawn optical fiber was 0.2 μm.

【0038】(比較例2)VAD法で作製した光ファイ
バ石英母材(直径125mm、長さ300mm)のコア
の中心に、#140のダイヤモンド砥粒を先端に埋め込
んだコアドリルを用いて超音波加工機により直径9.5
mmの開口部を1本開口した。次に、開口部にSiC砥
粒を流し込みながらブラシを2000rpmで回転さ
せ、光ファイバ母材の軸方向に往復運動させるラップ処
理を2時間行った。上記加工後の開口部の開口径は1
0.1mmであったが、長手方向の変動は50μmであ
り、また、接触式粗さ計で測定した開口部内壁面の平均
の表面粗さRaは0.15μmであった。次に、開口部
に酸化セリウム砥粒を流し込みながらナイロンブラシを
5000rpmで回転させ、光ファイバ母材の軸方向に
往復運動させて、30分間研磨加工した。研磨後の開口
部内壁面の平均の表面粗さRaは0.05μmであっ
た。上記の開口部に、MCVD法で作製した直径10.
0mmのコアガラスロッドを挿入し、2000℃の電気
炉の上方から挿入して下端部を溶着させた後、真空ポン
プで減圧しながら下方から順に加熱して溶着一体化し
た。得られた母材を直径60mmに延伸した後、線引を
行い、300kmの光ファイバを製造した。線引中の気
泡の発生は10回で、線引した光ファイバのコア偏芯量
は0.5μmであった。
(Comparative Example 2) Ultrasonic machining was performed using a core drill in which # 140 diamond abrasive grains were embedded at the center of the core of an optical fiber quartz preform (diameter 125 mm, length 300 mm) produced by the VAD method. Machine diameter 9.5
One mm opening was opened. Next, a lap treatment was performed for 2 hours by rotating the brush at 2000 rpm while pouring SiC abrasive grains into the opening and reciprocating the brush in the axial direction of the optical fiber preform. The opening diameter of the opening after the above processing is 1
Although it was 0.1 mm, the variation in the longitudinal direction was 50 μm, and the average surface roughness Ra of the inner wall surface of the opening measured by the contact type roughness meter was 0.15 μm. Next, while pouring cerium oxide abrasive grains into the opening, the nylon brush was rotated at 5000 rpm, reciprocated in the axial direction of the optical fiber preform, and polished for 30 minutes. The average surface roughness Ra of the inner wall surface of the opening after polishing was 0.05 μm. In the opening, a diameter of 10.
After inserting a 0 mm core glass rod and inserting it from the upper side of an electric furnace at 2000 ° C. to weld the lower end, the pressure was reduced by a vacuum pump and the layers were heated in order from the bottom to be welded and integrated. The obtained base material was drawn to have a diameter of 60 mm and then drawn to manufacture an optical fiber of 300 km. Bubbles were generated 10 times during drawing, and the core eccentricity of the drawn optical fiber was 0.5 μm.

【0039】本発明は、上記の実施の形態に限定されな
い。例えば、光ファイバ母材用石英ガラスロッドなどの
第1石英ガラスに形成する開口部には、応力付与材やコ
アガラスロッド以外の石英ガラスを挿入してもよい。そ
の他、本発明の要旨を変更しない範囲で種々の変更をす
ることができる。
The present invention is not limited to the above embodiment. For example, a stress imparting material or quartz glass other than the core glass rod may be inserted into the opening formed in the first quartz glass such as the quartz glass rod for optical fiber preform. In addition, various modifications can be made without changing the gist of the present invention.

【0040】[0040]

【発明の効果】本発明によれば、第1石英ガラスに開口
部を形成して第2石英ガラスを挿入し、加熱して溶着一
体化する方法による光ファイバ母材の製造方法におい
て、第1石英ガラスに開口部を形成するときに、第1の
粗さのダイヤモンド砥粒を先端に埋め込んだ研削具を用
いた超音波加工と第1の粗さよりも微細な第2の粗さの
ダイヤモンド砥粒を先端に埋め込んだ研削具を用いた超
音波加工とを行うことで、開口部の長手(延伸)方向で
の開口径の変動を抑制することができる光ファイバ母材
の製造方法を提供できる。
According to the present invention, there is provided a method for manufacturing an optical fiber preform by a method of forming an opening in a first quartz glass, inserting a second quartz glass, and heating and integrating them together. When forming an opening in quartz glass, ultrasonic processing using a grinding tool having diamond abrasive grains of the first roughness embedded at the tip and diamond grinding of the second roughness finer than the first roughness It is possible to provide a method for manufacturing an optical fiber preform capable of suppressing the variation of the opening diameter in the longitudinal (stretching) direction of the opening by performing ultrasonic processing using a grinding tool having grains embedded in the tip. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、第1実施形態に係る光ファイバ(PA
NDAファイバ)の断面図である。
FIG. 1 is an optical fiber (PA according to a first embodiment.
It is sectional drawing of (NDA fiber).

【図2】図2(A)は第1実施形態に係る光ファイバの
製造方法において製造する光ファイバ母材の模式断面図
であり、図2(B)は図2(A)の光ファイバ母材から
所定の長さで切り出した母材の上面図であり、図2
(C)は図2(B)中のX−X’における断面図であ
る。
FIG. 2A is a schematic cross-sectional view of an optical fiber preform manufactured by the method for manufacturing an optical fiber according to the first embodiment, and FIG. 2B is an optical fiber base of FIG. FIG. 2 is a top view of a base material cut out from a material in a predetermined length.
FIG. 2C is a sectional view taken along line XX ′ in FIG.

【図3】図3は、第1実施形態において用いるコアドリ
ルの断面図である。
FIG. 3 is a cross-sectional view of a core drill used in the first embodiment.

【図4】図4は、第1実施形態に係る光ファイバの製造
方法においてクラッド中におけるコアガラスロッドの両
側に開口部を形成する工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a step of forming openings on both sides of a core glass rod in a clad in the method of manufacturing an optical fiber according to the first embodiment.

【図5】図5(A)は、第1実施形態に係る光ファイバ
の製造方法において開口部が形成された母材の上面図で
あり、図5(B)は図5(A)中のX−X’における断
面図である。
5 (A) is a top view of a base material in which an opening is formed in the optical fiber manufacturing method according to the first embodiment, and FIG. 5 (B) is a plan view of FIG. 5 (A). It is sectional drawing in XX '.

【図6】図6は、第1実施形態に係る光ファイバの製造
方法において開口部の内壁面を機械的研磨する工程を示
す断面図である。
FIG. 6 is a cross-sectional view showing a step of mechanically polishing the inner wall surface of the opening in the method for manufacturing an optical fiber according to the first embodiment.

【図7】図7は、第1実施形態に係る光ファイバの製造
方法において応力付与材を開口部に挿入する工程を示す
断面図である。
FIG. 7 is a cross-sectional view showing a step of inserting a stress applying material into an opening in the method for manufacturing an optical fiber according to the first embodiment.

【図8】図8(A)は、第1実施形態に係る光ファイバ
の製造方法において製造された光ファイバ母材の本体部
分の上面図であり、図8(B)は断面図であり、図8
(A)中のX−X’が図8(B)中のX−X’に相当す
る。
FIG. 8 (A) is a top view of a main body portion of an optical fiber preform manufactured by the optical fiber manufacturing method according to the first embodiment, and FIG. 8 (B) is a cross-sectional view. Figure 8
XX ′ in (A) corresponds to XX ′ in FIG.

【図9】図9は、第2実施形態に係る光ファイバの断面
図である。
FIG. 9 is a sectional view of an optical fiber according to a second embodiment.

【図10】図10は、第2実施形態に係る光ファイバの
製造方法においてクラッドとなるガラスロッドの中心に
開口部を形成する工程を示す断面図である。
FIG. 10 is a cross-sectional view showing a step of forming an opening at the center of a glass rod serving as a clad in the optical fiber manufacturing method according to the second embodiment.

【図11】図11(A)は、第2実施形態に係る光ファ
イバの製造方法において開口部が形成された母材の上面
図であり、図11(B)は図11(A)中のX−X’に
おける断面図である。
FIG. 11 (A) is a top view of a base material in which an opening is formed in the optical fiber manufacturing method according to the second embodiment, and FIG. 11 (B) is a plan view of FIG. 11 (A). It is sectional drawing in XX '.

【図12】図12は、第2実施形態に係る光ファイバの
製造方法において開口部の内壁面を機械的研磨する工程
を示す断面図である。
FIG. 12 is a cross-sectional view showing a step of mechanically polishing the inner wall surface of the opening in the method for manufacturing an optical fiber according to the second embodiment.

【図13】図13は、第2実施形態に係る光ファイバの
製造方法においてコアガラスロッドを開口部に挿入する
工程を示す断面図である。
FIG. 13 is a cross-sectional view showing a step of inserting a core glass rod into an opening in the method for manufacturing an optical fiber according to the second embodiment.

【図14】図14(A)は、第2実施形態に係る光ファ
イバの製造方法において製造された光ファイバ母材の上
面図であり、図14(B)は図14(A)中のX−X’
における断面図である。
FIG. 14 (A) is a top view of an optical fiber preform manufactured by the method for manufacturing an optical fiber according to the second embodiment, and FIG. 14 (B) is an X in FIG. 14 (A). -X '
FIG.

【符号の説明】[Explanation of symbols]

1a…コア 2a…クラッド 3a…応力付与材 1…コアガラスロッド 2…クラッド 3…応力付与材 10…コアドリル 11…パイプ 12…焼結金属 13…支持部 20…ナイロンブラシ 30…砥粒 H1 ,H3 …開口部 P…光ファイバ母材1a ... core 2a ... clad 3a ... stress imparting material 1 ... core glass rod 2 ... cladding 3 ... stress imparting material 10 ... core drill 11 ... pipe 12 ... sintered metal 13 ... supporting portion 20 ... nylon brush 30 ... abrasive grain H 1 , H 3 ... Opening P ... Optical fiber preform

フロントページの続き (72)発明者 打越 昭成 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 2H050 AA03 AA04 AA05 AB04Y AB05X AB73 AC44 3C058 AA06 AA07 CA02 CB01 DA02 4G021 BA23 Continued front page    (72) Inventor Akinari Uchikoshi             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd. F-term (reference) 2H050 AA03 AA04 AA05 AB04Y                       AB05X AB73 AC44                 3C058 AA06 AA07 CA02 CB01 DA02                 4G021 BA23

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ母材用第1石英ガラスに開口部
を形成する工程と、 上記開口部に光ファイバ母材用第2石英ガラスを挿入す
る工程と、 加熱して上記第1石英ガラスおよび上記第2石英ガラス
を溶着一体化する工程とを有し、 上記第1石英ガラスに開口部を形成する工程が、少なく
とも、第1の粗さのダイヤモンド砥粒を先端に埋め込ん
だ研削具を用いた超音波加工により所定の開口径となる
ように研削する第1研削工程と、上記第1の粗さよりも
微細な第2の粗さのダイヤモンド砥粒を先端に埋め込ん
だ研削具を用いた超音波加工により上記所定の開口径を
広げる第2研削工程とを含む光ファイバ母材の製造方
法。
1. A step of forming an opening in a first quartz glass for an optical fiber preform, a step of inserting a second quartz glass for an optical fiber preform in the opening, and the heating to heat the first quartz glass. And a step of welding and integrating the second quartz glass, wherein the step of forming an opening in the first quartz glass includes a grinding tool in which at least diamond abrasive grains of the first roughness are embedded in the tip. A first grinding step of grinding to a predetermined opening diameter by the ultrasonic processing used, and a grinding tool in which diamond abrasive grains having a second roughness finer than the above-mentioned first roughness were embedded at the tip were used. A second grinding step of expanding the predetermined opening diameter by ultrasonic processing.
【請求項2】上記第2石英ガラスが、光ファイバ母材用
コアガラスロッドまたは光ファイバ母材用応力付与母材
である請求項1に記載の光ファイバ母材の製造方法。
2. The method for producing an optical fiber preform according to claim 1, wherein the second quartz glass is a core glass rod for an optical fiber preform or a stress-applying preform for an optical fiber preform.
【請求項3】上記第1の粗さのダイヤモンド砥粒が#1
00〜160のダイヤモンド砥粒であり、 上記第2の粗さのダイヤモンド砥粒が#600〜200
0のダイヤモンド砥粒である請求項1に記載の光ファイ
バ母材の製造方法。
3. The diamond grain of the first roughness is # 1.
0 to 160 diamond abrasive grains, wherein the second roughness diamond abrasive grains are # 600 to 200.
The method for producing an optical fiber preform according to claim 1, wherein the number of diamond abrasive grains is 0.
【請求項4】上記第2研削工程において、上記所定の開
口径を0.1〜1mm広げる請求項1に記載の光ファイ
バ母材の製造方法。
4. The method for producing an optical fiber preform according to claim 1, wherein the predetermined opening diameter is increased by 0.1 to 1 mm in the second grinding step.
【請求項5】上記第1石英ガラスに開口部を形成する工
程が、上記第2研削工程の後に、酸化セリウム砥粒また
はコロイダルシリカを用いて上記開口部内壁面を機械的
研磨する工程をさらに有する請求項1に記載の光ファイ
バ母材の製造方法。
5. The step of forming an opening in the first quartz glass further comprises a step of mechanically polishing the inner wall surface of the opening with cerium oxide abrasive grains or colloidal silica after the second grinding step. The method for manufacturing an optical fiber preform according to claim 1.
【請求項6】上記機械的研磨する工程において、ナイロ
ンブラシを上記開口部内壁面にあて、回転させながら上
記開口部の延伸方向に往復駆動させる請求項5に記載の
光ファイバ母材の製造方法。
6. The method for producing an optical fiber preform according to claim 5, wherein in the step of mechanically polishing, a nylon brush is applied to the inner wall surface of the opening and is reciprocally driven in the extending direction of the opening while being rotated.
JP2001200678A 2001-07-02 2001-07-02 Optical fiber preform manufacturing method Expired - Lifetime JP4975911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200678A JP4975911B2 (en) 2001-07-02 2001-07-02 Optical fiber preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200678A JP4975911B2 (en) 2001-07-02 2001-07-02 Optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2003020238A true JP2003020238A (en) 2003-01-24
JP4975911B2 JP4975911B2 (en) 2012-07-11

Family

ID=19037763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200678A Expired - Lifetime JP4975911B2 (en) 2001-07-02 2001-07-02 Optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP4975911B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212955A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Method for manufacturing multicore optical fiber preform
EP2818288A1 (en) * 2013-06-25 2014-12-31 Schott AG Tool crown and glass or glass ceramic product which can be produced with the tool crown
CN111168497A (en) * 2020-02-25 2020-05-19 南京诺尔泰复合材料设备制造有限公司 Grinding method and grinding device suitable for wind blade girder plate
CN113084599A (en) * 2021-04-02 2021-07-09 成都光明光电股份有限公司 Processing method of glass rod
CN114199166A (en) * 2021-11-05 2022-03-18 江门市奔力达电路有限公司 Drilling quality detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797228A (en) * 1993-05-24 1995-04-11 Sumitomo Electric Ind Ltd Production of optical fiber preserving plane of polarization
JP2000119034A (en) * 1998-10-08 2000-04-25 Shinetsu Quartz Prod Co Ltd Production of quartz glass preform for optical fiber
JP2000239033A (en) * 1999-02-17 2000-09-05 Shinetsu Quartz Prod Co Ltd Quartz glass cylindrical body and apparatus for polishing inner surface thereof
JP2000239032A (en) * 1999-02-17 2000-09-05 Atokku:Kk Polishing of inner surface of quartz glass cylindrical body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797228A (en) * 1993-05-24 1995-04-11 Sumitomo Electric Ind Ltd Production of optical fiber preserving plane of polarization
JP2000119034A (en) * 1998-10-08 2000-04-25 Shinetsu Quartz Prod Co Ltd Production of quartz glass preform for optical fiber
JP2000239033A (en) * 1999-02-17 2000-09-05 Shinetsu Quartz Prod Co Ltd Quartz glass cylindrical body and apparatus for polishing inner surface thereof
JP2000239032A (en) * 1999-02-17 2000-09-05 Atokku:Kk Polishing of inner surface of quartz glass cylindrical body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212955A (en) * 2012-04-02 2013-10-17 Sumitomo Electric Ind Ltd Method for manufacturing multicore optical fiber preform
EP2818288A1 (en) * 2013-06-25 2014-12-31 Schott AG Tool crown and glass or glass ceramic product which can be produced with the tool crown
RU2661683C2 (en) * 2013-06-25 2018-07-19 Шотт Аг Tool crown and glass-ceramic article made using tool crown
US10926431B2 (en) 2013-06-25 2021-02-23 Schott Ag Tool head and glass or glass ceramic article producible using the tool head
CN111168497A (en) * 2020-02-25 2020-05-19 南京诺尔泰复合材料设备制造有限公司 Grinding method and grinding device suitable for wind blade girder plate
CN113084599A (en) * 2021-04-02 2021-07-09 成都光明光电股份有限公司 Processing method of glass rod
CN114199166A (en) * 2021-11-05 2022-03-18 江门市奔力达电路有限公司 Drilling quality detection method
CN114199166B (en) * 2021-11-05 2024-05-14 江门市奔力达电路有限公司 Drilling quality detection method

Also Published As

Publication number Publication date
JP4975911B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP2004243433A (en) Inner surface polishing method of tubular brittle material and tubular brittle material obtained by the polishing method
US4561871A (en) Method of making polarization preserving optical fiber
US4578097A (en) Method of forming a polarization preserving optical waveguide
GB2221903A (en) Method of producing elliptic core type polarization-maintaining optical fibre
US3933453A (en) Flame hydrolysis mandrel and method of using
JP2003020238A (en) Method for producing optical fiber preform
JP4200103B2 (en) Method of manufacturing an optical fiber
EP0976689B1 (en) Process of producing a preform for an optical fibre
JPH07109141A (en) Large-sized quartz glass pipe, optical fiber preform and their preparation
JP2004051455A (en) Method of manufacturing optical fiber
JP2002080238A (en) Base material for optical fiber and method of forming the same
JP2000119034A (en) Production of quartz glass preform for optical fiber
JP3923282B2 (en) Manufacturing method of optical fiber for mode field conversion
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
JP2002513729A (en) Optical fiber manufacturing method
JP2002356341A (en) Method for producing optical fiber preform ingot
EP2481715B1 (en) Method of manufacturing an optical fiber preform
US20030046956A1 (en) Method and apparatus for crucible forming
JP4799784B2 (en) Manufacturing method of gradient index lens
JP4413738B2 (en) Quartz glass tube for manufacturing optical fiber, quartz glass tube for manufacturing optical fiber, preform for manufacturing optical fiber, and method for manufacturing optical fiber
JP4625448B2 (en) Method for drawing and shrinking a preform made of quartz glass
JP4148619B2 (en) Optical fiber base material ingot and method of manufacturing the same
JPH09328328A (en) Production of preform for optical fiber
JP4455071B2 (en) Optical fiber preform processing method
JP2005162511A (en) Glass preform for optical fiber and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R151 Written notification of patent or utility model registration

Ref document number: 4975911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3