JPH09328328A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH09328328A
JPH09328328A JP14147196A JP14147196A JPH09328328A JP H09328328 A JPH09328328 A JP H09328328A JP 14147196 A JP14147196 A JP 14147196A JP 14147196 A JP14147196 A JP 14147196A JP H09328328 A JPH09328328 A JP H09328328A
Authority
JP
Japan
Prior art keywords
ingot
optical fiber
preform
producing
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14147196A
Other languages
Japanese (ja)
Inventor
Masami Terajima
正美 寺嶋
Isao Arisaka
勲 有阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP14147196A priority Critical patent/JPH09328328A/en
Publication of JPH09328328A publication Critical patent/JPH09328328A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a preform for an optical fiber by which the optical fiber good in optical characteristics can be obtained by removing unevennesses on the surface of a preform ingot according to a specific method. SOLUTION: This method for producing a preform for an optical fiber is to carry out the cylindrical grinding of unevennesses produced on the surface of a preform ingot 23 in the method for producing the preform ingot 23 for the optical fiber comprising dehydrating, sintering and vitrifying a soot obtained by depositing a clad part on a starting core member according to an outside vapor deposition method. When the cylindrical grinding of the preform ingot 23 is performed, the position of a core part of the preform ingot 23 is optically measured to determine the central position of the core part 3 and the preform ingot 23 is attached to the center of rotation of the cylindrical grinder machine to carry out the cylindrical grinding in this state. The position of the core part 3 is detected in at least both ends of the preform ingot 23. Concretely, the preform ingot 23 is fixed with ingot gripping chucks 21 supported by chuck supporting parts 24 and then ground with a diamond wheel 22. The setting is performed by aligning the center of the core part 3 with that of the supporting parts 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ母材イ
ンゴットの表面に凹凸ができても、光学特性が良好な光
ファイバを得ることができる、光ファイバ母材の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber preform capable of obtaining an optical fiber having good optical characteristics even if the surface of the optical fiber preform ingot has irregularities.

【0002】[0002]

【従来の技術】光ファイバ母材インゴットは、例えば出
発コア部材の表面に外付け法(以下OVD法と略記す
る)でクラッド部を堆積させて得たスートを、脱水、焼
結などの工程で製造されるが、スート堆積速度の向上は
酸水素火炎中での火炎加水分解によるガラス微粒子の発
生増加にあるため、バーナーを大径化する方法、バーナ
ーの数を増やす方法などが知られている。
2. Description of the Related Art An optical fiber preform ingot is manufactured by, for example, dehydrating or sintering soot obtained by depositing a clad portion on the surface of a starting core member by an external attachment method (hereinafter abbreviated as OVD method). Although produced, the soot deposition rate is improved by increasing the generation of glass particles due to flame hydrolysis in an oxyhydrogen flame.Therefore, methods for increasing the diameter of burners and methods for increasing the number of burners are known. .

【0003】しかし、バーナーを大径化する方法は出発
コア母材の表面にスートを堆積させる初期においてガラ
ス微粒子の付着が極めて悪いという難点があり、複数の
バーナーを用いる場合は炎の干渉があるためガラス微粒
子の堆積効率が良好にならず、またバーナーを出発部材
に対し平行にして、左右に移動させると、堆積スートの
両端に不良部(テーパー部)が出来、特に原料ガスを増
量して高速堆積を行なうと、バーナーが複数であるため
堆積スート表面の凹凸現象が顕著になる。
However, the method of increasing the diameter of the burner has a drawback that the adhesion of glass particles is extremely poor at the initial stage of depositing soot on the surface of the starting core base material, and flame interference occurs when a plurality of burners are used. Therefore, the deposition efficiency of the glass particles is not good, and when the burner is moved in parallel to the starting member and moved left and right, defective parts (tapered parts) are formed at both ends of the deposition soot, especially when the raw material gas is increased. When high-speed deposition is performed, the uneven phenomenon on the surface of the deposited soot becomes remarkable because of the plurality of burners.

【0004】[0004]

【発明が解決しようとする課題】OVD法で光ファイバ
母材を製造するとき、ガラス微粒子堆積用のバーナーを
複数本とし、原料ガスを増量して高速堆積を行なえば、
スートの堆積速度を飛躍的に向上できるが、この場合は
スートの表面や焼結して得たインゴットの表面にも凹凸
が現われるので、光ファイバとするにはインゴット表面
の凹凸を予め取り除く必要がある。
When manufacturing an optical fiber preform by the OVD method, if a plurality of burners for depositing glass particles are used and the raw material gas is increased to perform high-speed deposition,
The soot deposition rate can be dramatically improved, but in this case, unevenness appears on the surface of the soot and the surface of the ingot obtained by sintering, so it is necessary to remove the unevenness of the ingot surface in advance to make an optical fiber. is there.

【0005】[0005]

【課題を解決するための手段】本発明はこのような問題
点を解決した光ファイバ母材の製造方法に関するもの
で、これは出発コア部材にOVD法でクラッド部を堆積
させて得たスートを、脱水・焼結ガラス化して光ファイ
バ母材インゴットを製造する方法において、該インゴッ
トの表面に生じた凹凸を円筒研削することからなるもの
である。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber preform which solves the above problems, in which a soot obtained by depositing a clad portion on a starting core member by an OVD method is used. In the method of manufacturing an optical fiber preform ingot by dehydration / sinter vitrification, the unevenness formed on the surface of the ingot is cylindrically ground.

【0006】すなわち、従来のOVD法では出発部材の
表面にガラス微粒子を堆積する際、堆積初期に酸水素
量、原料ガス量をコントロールし、炎を絞ってガラス微
粒子がコア部材の表面に付着しやすくし、スート径が大
きくなるにつれてガス量を増やして堆積速度を上げ、ス
ート表面を観察しながら平滑に仕上げていくという方法
が行なわれている。しかし、バーナーを従来使用のもの
より大径化すると共に、複数本としてコア部材の長手方
法にトラバースさせながらガラス微粒子を堆積させ、目
標量堆積したスートを焼結炉に入れて脱水・焼結ガラス
化すると、得られた光ファイバ母材インゴットの表面に
凹凸がはっきり現われたが、この凹凸は円筒研削で除去
でき、従来法で製作したものと同様に表面が平滑なイン
ゴットを得ることができることを確認した。
That is, in the conventional OVD method, when glass particles are deposited on the surface of the starting member, the amount of oxyhydrogen and the amount of raw material gas are controlled at the initial stage of deposition, and the flame is squeezed to adhere the glass particles to the surface of the core member. A method of increasing the amount of gas as the soot diameter increases to increase the deposition rate and smoothing the soot surface while observing the soot surface is used. However, the burner has a larger diameter than that of the conventional one, and glass particles are deposited while traversing the longitudinal direction of the core member as a plurality of burners, and the soot deposited in the target amount is put into a sintering furnace and dehydrated / sintered glass. As a result, irregularities appeared clearly on the surface of the obtained optical fiber preform ingot, but this irregularity can be removed by cylindrical grinding, and it is possible to obtain an ingot with a smooth surface like the one produced by the conventional method. confirmed.

【0007】[0007]

【発明の実施の形態】OVD法で得たインゴットの表面
に凹凸があると、インゴットを所望の径に延伸し、線引
きをして得た光ファイバにはコア径の変動により光学特
性に悪影響を与えるので、このインゴットを本願発明に
したがって円筒研削すれば表面が平滑なものとなるの
で、これから作られる光ファイバは光学特性のよいもの
になる。
If the surface of the ingot obtained by the OVD method has irregularities, the optical characteristics of the optical fiber obtained by drawing the ingot to a desired diameter and drawing the wire will adversely affect the optical characteristics. Therefore, if this ingot is cylindrically ground according to the present invention, the surface becomes smooth, and the optical fiber made from this has good optical characteristics.

【0008】円筒研削を施すときには、加工インゴット
の真円度とコア部の偏芯量に注意する必要がある。すな
わち、インゴットを円筒研削加工し、所望の径に延伸し
た母材(プリフォーム)から線引きして光ファイバケー
ブルにすると、ケーブル敷設においてファイバの接続を
行なうときファイバの真円度とコア部の偏芯量が光学特
性(接続ロス)に大きな影響を与える。
When performing cylindrical grinding, it is necessary to pay attention to the roundness of the processed ingot and the eccentricity of the core portion. That is, when an ingot is cylindrically ground and drawn from a base material (preform) stretched to a desired diameter to form an optical fiber cable, when the fibers are connected during cable installation, the circularity of the fiber and the deviation of the core The core amount has a great influence on the optical characteristics (connection loss).

【0009】したがって、本発明ではインゴットを円筒
研削するときに、インゴットのコア部の位置を光学的に
計測してコア部中心位置を決定し、円筒研削機の回転中
心に取付け、この状態で円筒研削すれば光ファイバとし
たときの非円性や、コア部の偏芯不良の発生を防止でき
るので、本発明によれば光学的特性のよい光ファイバ母
材を高速合成することが可能になった。
Therefore, according to the present invention, when the ingot is cylindrically ground, the position of the core of the ingot is optically measured to determine the center position of the core, and the core is attached to the center of rotation of the cylindrical grinder. By grinding, it is possible to prevent non-circularity when an optical fiber is used and the occurrence of eccentricity defects in the core portion. Therefore, according to the present invention, it becomes possible to rapidly synthesize an optical fiber preform having good optical characteristics. It was

【0010】つぎに本発明による光ファイバ母材の製造
方法を図面に基づいて説明する。図1は本発明による光
ファイバ用の母材スート(多孔質ガラス母材)の製造装
置の縦断面要図、図2は本発明で使用される円筒研削機
の縦断面要図、図3はこの円筒研削機の横断面要図を示
したものである。図1における光ファイバ用の母材スー
ト製造装置は、密閉型反応炉10の中でコア部材回転用モ
ーター7で回転しているダミー部1に溶接されたコア部
材に、バーナーガイド機構9に取り付けられ、酸水素火
炎バーナートラバース用モーター8でトラバースされる
大口径、複数本の酸水素火炎バーナー5からの火炎をあ
て、排気フード6から排気させて、テーパー部2を有す
る母材スート4を形成させるものである。
Next, a method of manufacturing an optical fiber preform according to the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of an apparatus for producing a base material soot (porous glass base material) for an optical fiber according to the present invention, FIG. 2 is a vertical cross-sectional view of a cylindrical grinder used in the present invention, and FIG. It is a cross-sectional view of this cylindrical grinding machine. The optical fiber preform soot manufacturing apparatus in FIG. 1 is attached to the burner guide mechanism 9 on the core member welded to the dummy part 1 which is rotated by the core member rotating motor 7 in the closed reactor 10. And a flame from a plurality of oxyhydrogen flame burners 5 traversed by an oxyhydrogen flame burner traverse motor 8 is applied and exhausted from an exhaust hood 6 to form a base metal soot 4 having a tapered portion 2. It is what makes me.

【0011】図2は図1の装置で作られた母材スート4
を脱水・焼結ガラス化して得られた光ファイバ母材イン
ゴット23の表面の凹凸を研削するための円筒研削機を示
したものであるが、これはインゴット23をチャック支持
部24に支持されているインゴット掴み用チャック21で固
定し、ダイヤモンドホイール22で研削するのである。イ
ンゴット23の取付けは図3に示したように、インゴット
23のコア部3の位置を光学計測器でインゴットの両端末
から検出し、インゴット掴み用チャック21を移動させて
コア部3の中心位置を円筒研削機の回転中心である支持
部24の中心に合わせてセッティングし、ダイヤモンドホ
イール22で切削すればよい。
FIG. 2 is a base material soot 4 produced by the apparatus of FIG.
The figure shows a cylindrical grinder for grinding irregularities on the surface of the optical fiber base material ingot 23 obtained by dehydration / sinter vitrification of the ingot 23, which is supported by the chuck support 24. It is fixed by the chuck 21 for gripping the ingot and is ground by the diamond wheel 22. As shown in FIG. 3, the ingot 23 is attached to the ingot.
The position of the core part 3 of 23 is detected from both ends of the ingot by an optical measuring instrument, and the chuck 21 for gripping the ingot is moved so that the center position of the core part 3 becomes the center of the support part 24 which is the rotation center of the cylindrical grinding machine. Set them together and cut with the diamond wheel 22.

【0012】[0012]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1 図1に示した光ファイバ用の母材スート(多孔質ガラス
部材)製造装置を用いて、外径が25mmφ、長さが 1,200
mmのシングルモード光ファイバ用に屈折率を調整したコ
ア用石英ガラス棒をダミー用石英棒と溶接し、これを密
閉型反応炉の中にあるスート回転機構に取り付けて 40r
pmで回転させると共に、口径28mmの多重管酸水素火炎バ
ーナー2台に図示していない原料供給装置より2台のバ
ーナーに酸素ガス75L/分、水素ガス 150L/分、キャリア
ガスとしての酸素ガス9L/分に同伴して原料ガスのSiCl
4 38g/分を導入した。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 Using the base material soot (porous glass member) manufacturing apparatus for optical fibers shown in FIG. 1, the outer diameter is 25 mmφ and the length is 1,200.
Welded a quartz silica rod for core with a refractive index adjusted for mm single mode optical fiber to a quartz rod for dummy, and attached this to a soot rotating mechanism in a closed reactor,
While rotating at pm, oxygen gas 75L / min, hydrogen gas 150L / min and oxygen gas 9L as carrier gas were supplied to two burners from a raw material supply device (not shown) Per minute accompanied by SiCl of raw material gas
4 38 g / min was introduced.

【0013】このバーナーをバーナートラバース用モー
ターにより150mm/分の速度で 1,600mmの範囲に往復運動
させ、SiCl4 の火炎加水分解で発生したガラス微粒子を
コア用石英ガラス棒に堆積させ、堆積が進むにつれて原
料ガス量を増量し、堆積終了直前には酸素ガス 150L/
分、水素ガス 300L/分、キャリアガス15L/分でSiCl4 80
g/分としたところ、24時間後に外径が 230mmφの母材ス
ートが得られたが、平均堆積速度が28g/分という高速合
成であることから、母材スートの表面に螺旋状の凹凸の
あることが確認された。
This burner is reciprocated in the range of 1,600 mm at a speed of 150 mm / min by a motor for traversing the burner to deposit glass fine particles generated by flame hydrolysis of SiCl 4 on a quartz glass rod for core, and the deposition proceeds. The amount of raw material gas was increased accordingly, and oxygen gas of 150 L /
Min, hydrogen gas 300 L / min, carrier gas 15 L / min, SiCl 4 80
When g / min was set, a base metal soot with an outer diameter of 230 mmφ was obtained after 24 hours, but since the average deposition rate was 28 g / min for high-speed synthesis, the surface of the base metal soot had spiral irregularities. It was confirmed that there is.

【0014】つぎに、ここに得られた母材スートを焼結
炉に入れ、脱水・焼結ガラス化して外径 130mmの透明な
光ファイバ用母材インゴットを得たところ、この表面に
は螺旋状の凹凸が残っており、凹凸の深さは最大で1.15
mmあった。インゴットを図2、図3の円筒研削機チャッ
クに取付け、次にインゴットのコア部を光学計測器にて
位置の測定をインゴットを回転させながらその両端につ
いて行い、コア部の中心位置をチャックを移動させてチ
ャック支持部の回転中心に合わせてインゴットのセッテ
ィングを行なった。次いでダイヤモンドホイールを粗さ
# 140番のものとして、削り込み深さ0.25mm、インゴッ
ト送り速度 50mm/分で研削部を水冷しながら5回研削
し、さらに# 600番のダイヤモンドホイールを用いて削
り込み深さ0.05mm、インゴット送り速度 50mm/分で2回
仕上げ研削を行なって円筒研削を終了させた。
Next, the base material soot obtained here was put into a sintering furnace, dehydrated and sintered to obtain a transparent base material ingot for an optical fiber having an outer diameter of 130 mm. -Shaped unevenness remains, the maximum depth of unevenness is 1.15
There was mm. Attach the ingot to the cylindrical grinder chuck shown in Fig. 2 and Fig. 3, then measure the position of the core of the ingot with an optical measuring device on both ends of the ingot while rotating the ingot, and move the chuck to the center position of the core. Then, the ingot was set according to the center of rotation of the chuck support. Then, using a diamond wheel with a roughness of # 140, the grinding depth was 0.25 mm, the ingot feed rate was 50 mm / min, and the grinding part was ground 5 times with water cooling. Cylindrical grinding was completed by finishing grinding twice with a depth of 0.05 mm and an ingot feed rate of 50 mm / min.

【0015】この場合の円筒研削の所要時間は約 200分
であったが、これで得られたインゴットの表面は平滑
で、従来法で作製したものと比べて遜色のないもので、
製造時間は円筒研削を含めて従来の約 1/2程度に短縮さ
れた。なお、ここに得られたインゴットを電気炉で45mm
φに延伸して光ファイバプリフォームとし、ついでこれ
を線引き機で線引きをして外径 125μの光ファイバと
し、この光ファイバの光学特性を測定したところ、表1
に示す結果が得られた。
The time required for the cylindrical grinding in this case was about 200 minutes, but the surface of the ingot thus obtained was smooth and comparable to that produced by the conventional method.
The manufacturing time has been reduced to about 1/2 of that of conventional products, including cylindrical grinding. The ingot obtained here is 45 mm in an electric furnace.
An optical fiber preform was drawn by φ, and then drawn with a drawing machine to give an optical fiber with an outer diameter of 125μ. The optical characteristics of this optical fiber were measured.
The result shown in FIG.

【0016】実施例2 実施例1と同様の方法で合成したスートを焼結炉に入
れ、脱水焼結ガラス化して透明な光ファイバ用母材イン
ゴットを作製したところ、その表面には螺旋状の凹凸が
残っており、凹凸の深さは最大で1.20mmあった。次いで
このインゴットを実施例1と同様の方法で円筒研削機に
セットし、ダイヤモンドホイールを粗さ#60番の物を使
って削り込み深さ 0.5mm、インゴット送り速度 70mm/分
で研削部を水冷しながら3回研削し、ついで# 600番の
ダイヤモンドホイールを用いて削り込み深さ 0.1mm、イ
ンゴット送り速度 50mm/分で1回研削し、さらに同一の
ホイールを用いて削り込み深さ0.05mm、インゴット送り
速度 50mm/分で1回研削して円筒研削を終了させた。
Example 2 A soot synthesized in the same manner as in Example 1 was placed in a sintering furnace and dehydrated and sintered to form a transparent base material ingot for optical fiber. The unevenness remained, and the maximum depth of the unevenness was 1.20 mm. Then, this ingot was set in a cylindrical grinder in the same manner as in Example 1, and the diamond wheel was shaving using a material with a roughness of # 60 to a depth of 0.5 mm and an ingot feed rate of 70 mm / min. While grinding 3 times, then using a # 600 diamond wheel, the grinding depth is 0.1 mm, the ingot feed speed is 50 mm / min, and the grinding depth is 0.05 mm. Cylindrical grinding was completed by grinding once at an ingot feed rate of 50 mm / min.

【0017】この場合の円筒研削の所要時間は約 110分
であったが、得られたインゴットの表面は極めて平滑
で、従来法で作製したものに比べて遜色のないもので、
製造時間は円筒研削を含めて約 1/2程度に短縮できた。
なお、ここに得られたインゴットを電気炉で45mmφに延
伸して光ファイバプリフォームとし、ついでこれを線引
き機で線引きをして外径 125μの光ファイバとし、この
光ファイバの光学特性を測定したところ、表1に示す結
果が得られた。
In this case, the time required for cylindrical grinding was about 110 minutes, but the surface of the obtained ingot was extremely smooth, which was comparable to that produced by the conventional method.
The manufacturing time was reduced to about 1/2 including the cylindrical grinding.
The ingot obtained here was stretched to 45 mmφ in an electric furnace to form an optical fiber preform, which was then drawn by a drawing machine into an optical fiber having an outer diameter of 125 μ, and the optical characteristics of this optical fiber were measured. However, the results shown in Table 1 were obtained.

【0018】比較例 実施例1と同様の方法で合成した母材スートを焼結炉で
脱水焼結ガラス化して透明な光ファイバ用母材インゴッ
トを作製したところ、表面には螺旋状の凹凸が残ってお
り、凹凸の深さは最大で1.15mmあった。しかし、このイ
ンゴットは円筒研削することなく、電気炉で45mmφに延
伸して光ファイバプリフォームとし、ついでこれを線引
き機で線引きをして外径 125μの光ファイバとし、光フ
ァイバの光学特性を測定したところ、表1に示す結果が
得られ、融着接続において偏芯による接続ロスが大きい
結果を示した。
Comparative Example A base material soot synthesized in the same manner as in Example 1 was dehydrated and sintered into a vitrification in a sintering furnace to prepare a transparent base material ingot for optical fiber. Spiral irregularities were formed on the surface. The remaining depth was 1.15 mm at the maximum. However, this ingot was stretched to 45 mmφ in an electric furnace to form an optical fiber preform without cylindrical grinding, and then drawn with a drawing machine into an optical fiber with an outer diameter of 125 μ, and the optical characteristics of the optical fiber were measured. As a result, the results shown in Table 1 were obtained, showing a large connection loss due to eccentricity in fusion splicing.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明によれば、高速合成法で製造した
光ファイバ母材から、従来のものよりも接続損失や偏芯
率の小さい光学特性をもつ光ファイバを作製することが
できる。
According to the present invention, from the optical fiber preform manufactured by the high-speed synthesis method, it is possible to manufacture an optical fiber having optical characteristics with smaller splice loss and eccentricity than those of the conventional ones.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光ファイバ用母材スート(多孔質
ガラス母材)製造装置の縦断面要図を示したものであ
る。
FIG. 1 is a vertical cross-sectional view of an optical fiber preform soot (porous glass preform) manufacturing apparatus according to the present invention.

【図2】本発明による光ファイバ母材インゴット円筒研
削機の縦断面要図を示したものである。
FIG. 2 is a vertical cross-sectional view of an optical fiber preform ingot cylindrical grinding machine according to the present invention.

【図3】本発明による光ファイバ母材インゴット円筒研
削機の横断面要図を示したものである。
FIG. 3 is a schematic cross-sectional view of an optical fiber preform ingot cylindrical grinding machine according to the present invention.

【符号の説明】 1…ダミー部 2…テーパー部 3…コア部 4…母材スート 5…バーナー 6…排気フード 7…スート回転機構 8…バーナートラバース用モーター 9…バーナーガイド機構 10…密閉型反応炉 21…インゴット掴み用チャック 22…ダイヤモンドホイール 23…光ファイバ用母材インゴット 24…チャック支持部[Explanation of Codes] 1 ... Dummy part 2 ... Tapered part 3 ... Core part 4 ... Base material soot 5 ... Burner 6 ... Exhaust hood 7 ... Soot rotation mechanism 8 ... Burner traverse motor 9 ... Burner guide mechanism 10 ... Sealed reaction Furnace 21… Ingot gripping chuck 22… Diamond wheel 23… Optical fiber base material ingot 24… Chuck support

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 出発コア部材に外付け法でクラッド部を
堆積させて得たスートを、脱水・焼結ガラス化して光フ
ァイバ母材インゴットを製造する方法において、該イン
ゴットの表面に生じた凹凸を円筒研削することを特徴と
する光ファイバ母材の製造方法。
1. A method for producing an optical fiber preform ingot by dehydrating and sintering vitrification of a soot obtained by depositing a clad portion on a starting core member by an external attachment method, and producing unevenness on the surface of the ingot. 1. A method for manufacturing an optical fiber preform, which comprises cylindrically grinding.
【請求項2】 コア部の位置を検出して該インゴットを
円筒研削機の回転中心に取り付け、コア部の偏芯を防止
する請求項1に記載した光ファイバ母材の製造方法。
2. The method for producing an optical fiber preform according to claim 1, wherein the position of the core portion is detected and the ingot is attached to the center of rotation of a cylindrical grinding machine to prevent eccentricity of the core portion.
【請求項3】 コア部の位置検出が、少なくとも該イン
ゴットの両端で行なわれる請求項1または2に記載した
光ファイバ母材の製造方法。
3. The method for producing an optical fiber preform according to claim 1, wherein the position of the core portion is detected at least at both ends of the ingot.
JP14147196A 1996-06-04 1996-06-04 Production of preform for optical fiber Pending JPH09328328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14147196A JPH09328328A (en) 1996-06-04 1996-06-04 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14147196A JPH09328328A (en) 1996-06-04 1996-06-04 Production of preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH09328328A true JPH09328328A (en) 1997-12-22

Family

ID=15292666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14147196A Pending JPH09328328A (en) 1996-06-04 1996-06-04 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH09328328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565417B2 (en) 2000-10-26 2003-05-20 Shin-Etsu Chemical Co., Ltd. Method for manufacturing glass base material and glass base material grinding apparatus
US7062941B2 (en) 2001-03-29 2006-06-20 Sumitomo Electric Industries, Ltd. Manufacturing method of optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565417B2 (en) 2000-10-26 2003-05-20 Shin-Etsu Chemical Co., Ltd. Method for manufacturing glass base material and glass base material grinding apparatus
US7062941B2 (en) 2001-03-29 2006-06-20 Sumitomo Electric Industries, Ltd. Manufacturing method of optical fiber preform

Similar Documents

Publication Publication Date Title
EP0885853B1 (en) Apparatus for drawing a glass preform for optical fibers
US4596589A (en) Method for producing a single mode fiber preform
JPH0425210B2 (en)
KR100782393B1 (en) A method of manufacturing a preform ingot for optical fiber
KR970006994B1 (en) Method of flame grinding glass preform
JP2000047039A (en) Optical fiber preform ingot and its production
JP4200103B2 (en) Method of manufacturing an optical fiber
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
JP3489345B2 (en) Optical fiber manufacturing method
JPH09328328A (en) Production of preform for optical fiber
JP3678294B2 (en) Flame polishing method for glass base material
JPH1059739A (en) Production of optical fiber preform
JP3491642B2 (en) Optical fiber preform, optical fiber, and manufacturing method thereof
KR100912863B1 (en) Method for producing an optical fiber and an optical fiber
JP4148619B2 (en) Optical fiber base material ingot and method of manufacturing the same
JP3854843B2 (en) Glass base material grinding apparatus and glass base material manufacturing method
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP2003146683A (en) Optical fiber preform ingot and its manufacturing method
JPH03103333A (en) Apparatus for producing optical fiber preform
JP4413715B2 (en) Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof
JPS5948771B2 (en) Optical fiber manufacturing method
JPS61186240A (en) Production of piled material of glass fine particles
JPH06247734A (en) Production of preform for polarizing plane maintaining optical fiber
JP2003327441A (en) Method and apparatus for producing glass pipe for optical fiber
JP2003226542A (en) Method and apparatus for grinding optical fiber preform ingot to cylinder