JP2002356341A - Method for producing optical fiber preform ingot - Google Patents

Method for producing optical fiber preform ingot

Info

Publication number
JP2002356341A
JP2002356341A JP2001166304A JP2001166304A JP2002356341A JP 2002356341 A JP2002356341 A JP 2002356341A JP 2001166304 A JP2001166304 A JP 2001166304A JP 2001166304 A JP2001166304 A JP 2001166304A JP 2002356341 A JP2002356341 A JP 2002356341A
Authority
JP
Japan
Prior art keywords
ingot
optical fiber
fiber preform
base material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001166304A
Other languages
Japanese (ja)
Inventor
Hirobumi Kase
博文 加瀬
Tadakatsu Shimada
忠克 島田
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001166304A priority Critical patent/JP2002356341A/en
Publication of JP2002356341A publication Critical patent/JP2002356341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a preform ingot having excellent eccentricity ratio of core part and capable of obtaining an optical fiber excellent in connection loss and eccentricity of core part by spinning at a low cost. SOLUTION: This method for producing an optical fiber preform ingot 1 comprising piling up soot on the starting core member, glassifying by dehydrating and sintering, thereafter cylindrically grinding the surface while rotating, characterized in that the radius of the master ingot is measured with an outer shape measuring device for each 90 deg. or 180 deg. of rotation in advance to the grinding, the position of rotating axis of the cylindrical grinder 4 is obtained by calculation based on the measured values, and the outer circumference of the preform ingot 1 is finished by grinding based on the calculated value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れたコア部偏芯
率を有する光ファイバ母材インゴット(以下、単に母材
インゴットと称する)の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber preform ingot having an excellent core eccentricity (hereinafter simply referred to as preform ingot).

【0002】[0002]

【従来の技術】母材インゴットはその製造工程におい
て、例えば、出発コア部材の表面にOVD(外付け)法に
よりクラッド部を堆積させた後、脱水・焼結等の工程を
経て母材インゴットとなる。このOVD法では、出発コ
ア部材の表面にスートを堆積させる工程において、生産
速度を向上させる一般的に知られている方法としては、
原料ガスを供給し、酸水素火炎中で加水分解させて生じ
るガラス微粒子を堆積させるバーナーを大口径化する方
法及びそのバーナーの数を増やす等の方法が知られてい
る。
2. Description of the Related Art In a manufacturing process of a base material ingot, for example, after a cladding portion is deposited on the surface of a starting core member by an OVD (external attachment) method, the base material ingot is subjected to processes such as dehydration and sintering. Become. In the OVD method, in the step of depositing soot on the surface of the starting core member, generally known methods for improving the production speed include:
A method of increasing the diameter of a burner for supplying a raw material gas and depositing glass fine particles generated by hydrolysis in an oxyhydrogen flame and a method of increasing the number of the burners are known.

【0003】また、OVD法において生産性をあげる技
術として、コアの長さを長くし、母材インゴットの製品
となる直胴部の比率を上げる方法が知られている。
As a technique for increasing productivity in the OVD method, there is known a method in which the length of a core is increased to increase the ratio of a straight body portion which is a product of a base material ingot.

【0004】[0004]

【発明が解決しようとする課題】原料ガスを供給するバ
ーナーを大口径化して生産速度を向上させる方法を採用
した場合は、出発コア部材の表面にスートを堆積させる
初期において、スートの付着が極めて悪いという問題が
ある。さらに、大口径化したバーナーを複数本使用した
場合は炎の干渉があり、堆積効率は思うように良好にな
らないという問題があった。
When a method of increasing the production rate by increasing the diameter of a burner for supplying a raw material gas is adopted, soot is extremely deposited at the initial stage of depositing soot on the surface of a starting core member. There is a problem of bad. Further, when a plurality of burners having a large diameter are used, there is a problem that flame interference occurs and the deposition efficiency is not improved as expected.

【0005】バーナーの数を増やす方法を採用した場合
は、バーナーが複数本あるために堆積されたスートの表
面に凹凸ができてしまい、特に、原料ガスを増量して高
速度堆積を行なうと、その現象が顕著に現れるという問
題がある。その結果、得られる光ファイバには良好な光
学特性、特に単一モード光ファイバにおいて所望のカッ
トオフ波長や分散波長が備えられない。
[0005] When the method of increasing the number of burners is adopted, the surface of the soot deposited becomes uneven due to the presence of a plurality of burners. In particular, when a high-speed deposition is performed by increasing the amount of source gas, There is a problem that the phenomenon appears remarkably. As a result, the resulting optical fiber does not have good optical properties, especially the desired cut-off wavelength or dispersion wavelength in a single mode optical fiber.

【0006】一方、コアの長さを長くする方法は、コア
の長さが長くなるため、曲がりが大きくなり、形状が不
均一になってしまうことが多いという問題があった。
On the other hand, the method of increasing the length of the core has a problem in that since the length of the core is increased, the bending is increased and the shape is often non-uniform.

【0007】このような母材インゴットの凹凸やコア部
を母材インゴットの中心にもってくる方法としてコアの
回転軸と母材インゴットの回転軸を合わせる方法(特開
2000-47039号公報参照)が知られている。しか
し、実際の母材インゴットの回転軸を簡単に測定する方
法が無いため、毎日定期的なチェックができず、温度変
化等の要因で誤差が発生していた。
A method for aligning the rotation axis of the core with the rotation axis of the base material ingot as a method of bringing the unevenness and the core portion of the base material ingot to the center of the base material ingot is disclosed in Japanese Patent Application Laid-Open No. 2000-47039. Are known. However, since there is no method for simply measuring the actual rotation axis of the base material ingot, it is not possible to perform a regular check every day, and errors have occurred due to factors such as temperature changes.

【0008】前述の問題を解決する手段として、母材イ
ンゴットのコアの位置を測定する装置を円筒研削装置に
具備し、母材インゴットを90°あるいは180°回転
毎にコアの位置を測定する方法があるが、費用が高くま
た装置の稼動率も上がらない。
As a means for solving the above-mentioned problem, a method is provided in which a device for measuring the position of the core of the base material ingot is provided in a cylindrical grinding device, and the position of the core is measured every time the base material ingot is rotated by 90 ° or 180 °. However, the cost is high and the operation rate of the apparatus is not increased.

【0009】本発明は、このような問題点に鑑みなされ
たもので、紡糸して接続損失及びコア部偏芯率に優れた
光ファイバを得ることのできる、優れたコア部偏芯率を
有し安価に製造できる母材インゴットの製造方法を提供
することを主な目的としている。
The present invention has been made in view of the above problems, and has an excellent core eccentricity which can be spun to obtain an optical fiber having excellent connection loss and core eccentricity. The main object of the present invention is to provide a method for manufacturing a base material ingot which can be manufactured at low cost.

【0010】[0010]

【問題を解決するための手段】本発明は上記課題を解決
するためになされたもので、本発明の母材インゴットの
製造方法は、出発コア部材にスートを堆積させ、脱水焼
結ガラス化し、次いで回転させながら表面を円筒研削加
工する母材インゴットの製造方法において、研削前に外
形測定機にてマスターインゴットの半径を90°又は1
80°回転毎に測定し、該測定値に基づいて円筒研削装
置の回転軸位置を計算して求め、これに基づいて母材イ
ンゴットの外周を研削して仕上げることを特徴としてい
る。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and a method of manufacturing a base material ingot of the present invention comprises depositing soot on a starting core member, dehydrating and sintering the glass, Next, in a method for manufacturing a base material ingot in which the surface is cylindrically ground while rotating, the radius of the master ingot is set to 90 ° or 1 by a contour measuring machine before grinding.
It is characterized in that it is measured every 80 ° rotation, the rotational axis position of the cylindrical grinding device is calculated and obtained based on the measured value, and based on this, the outer periphery of the base material ingot is ground and finished.

【0011】マスターインゴットには、真円度が50μ
m以下、長さが1m以上のものを使用し、マスターイン
ゴットあるいは母材インゴットの半径の測定は、2回以
上行うのが好ましい。計算して求めた円筒研削装置の回
転軸位置と、コア中心がインゴット外形に対して既知の
母材インゴットの位置とから、円筒研削装置の回転軸に
対するコアの位置を推定することができる。この推定で
得た円筒研削装置の回転軸に対するコアの位置に基づ
き、母材インゴットの中心とコア中心が一致するよう
に、母材インゴットの外周を研削して仕上げると良い。
The master ingot has a roundness of 50 μm.
m and a length of 1 m or more are used, and the measurement of the radius of the master ingot or the base material ingot is preferably performed twice or more. The position of the core with respect to the rotation axis of the cylindrical grinding device can be estimated from the calculated rotation axis position of the cylindrical grinding device and the position of the base metal ingot whose core center is known with respect to the outer shape of the ingot. Based on the position of the core with respect to the rotation axis of the cylindrical grinding device obtained by this estimation, the outer periphery of the base material ingot may be ground and finished so that the center of the base material ingot coincides with the center of the core.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて説明するが、本発明はこれらに限定され
るものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

【0013】図1は、円筒研削装置のチャックに取り付
けられた母材インゴットの半径を、外形測定機を用いて
測定する様子を示す概略断面図である。外形測定機の測
定基準Oからの母材インゴット1の半径は、左右の測定
子移動部2,2'に取り付けられた測定子3,3' を各
々サーボモーター等の駆動により母材インゴット1に接
触するまで移動させ、測定子3,3'が停止した位置か
ら外形測定機に対するインゴットの半径ra,rbが測定さ
れる。
FIG. 1 is a schematic cross-sectional view showing how a radius of a base material ingot attached to a chuck of a cylindrical grinding device is measured using an external shape measuring machine. The radius of the base material ingot 1 from the measurement standard O of the contour measuring machine is determined by moving the tracing styluses 3 and 3 'attached to the left and right tracing stylus moving parts 2 and 2' to the base material ingot 1 by driving a servomotor or the like. The ingots are moved until they come into contact with each other, and radii ra and rb of the ingot with respect to the contour measuring machine are measured from the positions where the tracing styluses 3 and 3 'are stopped.

【0014】図1に示すように、外形測定機に対する円
筒研削装置の回転軸のX座標を求めるには、原点と18
0°回転位置とで2回の半径測定を行い、原点での測定
値を(ra0°、rb0°)、180°回転位置での測定値を
(ra180°、rb180°)とすると、外形測定機に対す
る円筒研削装置の回転軸のX座標は、 ((ra0°−rb0°)+(ra180°−rb180°)) /2 で計算することができる。
As shown in FIG. 1, in order to obtain the X coordinate of the rotation axis of the cylindrical grinding machine with respect to the contour measuring machine, the origin and the 18
The radius measurement is performed twice at the 0 ° rotation position, the measurement value at the origin (ra0 °, rb0 °) and the measurement value at the 180 ° rotation position are calculated.
Assuming (ra180 °, rb180 °), the X coordinate of the rotation axis of the cylindrical grinding device with respect to the contour measuring machine can be calculated by ((ra0 ° −rb0 °) + (ra180 ° −rb180 °)) / 2. .

【0015】外形測定機に対する円筒研削装置の回転軸
のX座標位置を、外形に対するコア位置が既知である真
円度の高いマスターインゴットを使用して上記計算で求
め、これからマスターインゴットのコア中心の位置を推
定し、該コア中心を中心とする円筒に母材インゴットを
取り付けて仕上げると、偏芯の少ない母材インゴットを
製造することができる。また、母材インゴットを回転さ
せて90°又は180°毎に半径を測定することによ
り、マスターインゴットの取り付けが悪く、回転振れが
大きい場合でも、この方法が有効であることが分かっ
た。本発明の母材インゴットは、その後、公知の方法で
延伸して光ファイバー用プリフォームとし、次いで紡糸
して光ファイバーとされる。
The X coordinate position of the rotation axis of the cylindrical grinding device with respect to the contour measuring machine is obtained by the above calculation using a master ingot having a high roundness whose core position with respect to the contour is known. By estimating the position and attaching the base material ingot to a cylinder having the center of the core as the center, a base material ingot with less eccentricity can be manufactured. Further, by rotating the base material ingot and measuring the radius at every 90 ° or 180 °, it was found that this method was effective even when the mounting of the master ingot was poor and the rotational runout was large. The base material ingot of the present invention is then drawn by a known method to obtain an optical fiber preform, and then spun into an optical fiber.

【0016】研削装置は公知のものが使用できるが、例
えば、円筒研削装置を使用するのが望ましく、これによ
って複数の円筒砥石による同時研削が可能になる。その
際、研削時間を短くするには、円筒研削加工を粗さの異
なる複数の円筒砥石を用いた多刃研削により行なえばよ
い。例えば、図2に示すように、円筒研削装置4に被研
削母材インゴット1をチャック5,5'により取り付
け、粗さの異なるダイヤモンドホイール6,7,8を用
いて、所望のコア/クラッド比になるまで研削を行な
う。このとき、砥石の位置はコアの位置と切り込み量に
あわせ、調整される。
Although a known grinding device can be used, for example, it is desirable to use a cylindrical grinding device, which enables simultaneous grinding with a plurality of cylindrical grinding wheels. At that time, in order to shorten the grinding time, the cylindrical grinding may be performed by multi-blade grinding using a plurality of cylindrical grindstones having different roughnesses. For example, as shown in FIG. 2, the base material ingot 1 to be ground is attached to the cylindrical grinding device 4 by the chucks 5, 5 ', and the desired core / clad ratio is determined using diamond wheels 6, 7, 8 having different roughness. Grind until it becomes. At this time, the position of the grindstone is adjusted according to the position of the core and the cutting depth.

【0017】従来、円筒研削装置の回転軸位置は、装置
の立ち上げ時や定期点検時の測定値を使用していたが、
室内の温度変化等の要因により、実際の円筒研削装置の
回転軸の位置と推定値が異なった位置となり、研削を行
なっても偏芯率が改善されない場合があったが、本発明
の方法によれば、円筒研削装置の回転軸の位置が容易か
つ正確に計算できることになり、得られる母材インゴッ
トが凹凸の無い高い真円度を有しているのみならず、コ
ア部を母材インゴットの中心に正確に配置することが可
能になる。その結果、これを紡糸して得られる光ファイ
バは良好な光学特性を有し、特に、従来問題となってい
た光ファイバケーブルを敷設する際のファイバ融着接続
作業における接続損失などの光学特性上の問題も解決さ
れることが判った。
Conventionally, the rotational axis position of a cylindrical grinding device has been measured at the time of starting the device or at the time of periodic inspection.
Due to factors such as room temperature changes, the position of the actual rotation axis of the cylindrical grinding device and the estimated value are different from each other, and the eccentricity may not be improved even if grinding is performed. According to this, the position of the rotation axis of the cylindrical grinding device can be easily and accurately calculated, and not only the obtained base material ingot has a high roundness without irregularities, but also the core part is formed of the base material ingot. It becomes possible to arrange it accurately in the center. As a result, the optical fiber obtained by spinning the fiber has good optical characteristics, and particularly, in terms of optical characteristics such as connection loss in fiber fusion splicing work when laying an optical fiber cable, which has been a problem in the past. The problem was solved.

【0018】[0018]

【実施例】以下、本発明を実施例及び比較例を挙げて詳
細に説明する。 (実施例1)先ず、長さ2m、直径150mmφ、真円度
が最大で30μmのマスターインゴットと、脱水・ガラ
ス化された外径約140mmφの透明な被研削母材イン
ゴットを用意した。この母材インゴットの表面を肉眼で
観察すると、最大で深さ1.11mmの凹凸が螺旋状に
存在していた。
The present invention will be described below in detail with reference to examples and comparative examples. (Example 1) First, a master ingot having a length of 2 m, a diameter of 150 mmφ, and a maximum roundness of 30 μm, and a transparent deground and vitrified transparent base material ingot having an outer diameter of about 140 mmφ were prepared. Observation of the surface of the base material ingot with the naked eye revealed that irregularities with a maximum depth of 1.11 mm were spirally formed.

【0019】次いで、上記マスターインゴットを円筒研
削装置のチャックに取り付け、外形測定機でマスターイ
ンゴット端から長さ250mmの位置での半径を180
°回転毎に2度測定した。得られた測定値は、原点でra
0°=70.11mm、rb0°=69.92mm、180°
回転位置でra180°=69.67mm、rb180°=7
0.39mmであった。これらの測定値から外形測定機
に対する円筒研削装置の回転軸のX座標を計算して求め
ると、下記のように−0.265mmとなる。((70.
11−69.92)+(69.67−70.39))/2=−
0.265mmさらに、マスターインゴットの長手方向
に500mm間隔に測定を続け、それぞれ−0.257
mm、−0.248mm、−0.238mmという測定値
を得た。
Next, the master ingot was attached to a chuck of a cylindrical grinding device, and a radius of 180 mm at a position 250 mm from the end of the master ingot was measured by an external shape measuring machine.
Measured twice per ° rotation. The measured value obtained is
0 ° = 70.11mm, rb0 ° = 69.92mm, 180 °
In the rotation position, ra180 ° = 69.67mm, rb180 ° = 7
0.39 mm. When the X coordinate of the rotation axis of the cylindrical grinding device with respect to the external shape measuring machine is calculated and obtained from these measured values, it becomes -0.265 mm as described below. ((70.
11−69.92) + (69.67−70.39)) / 2 = −
0.265 mm Further, the measurement was continued at 500 mm intervals in the longitudinal direction of the master ingot, and each measurement was -0.257.
mm, -0.248 mm and -0.238 mm.

【0020】次に、マスターインゴットを取り外して被
研削母材インゴットを円筒研削装置のチャックに取り付
け、外形測定機で母材インゴットの形状を測定し、先に
測定した円筒研削装置の回転軸に対するコアの位置を母
材インゴットの長手方向にわたって推定計算した。得ら
れた結果にもとづき、母材インゴットの長手方向にわた
って母材インゴットの中心とコア中心が一致するように
母材インゴットの仕上げ寸法を設計し、これに沿って母
材インゴットの外周を研削して仕上げた。
Next, the master ingot is removed, the base material ingot to be ground is attached to the chuck of the cylindrical grinding device, and the shape of the base material ingot is measured by an external shape measuring machine. Was estimated and calculated over the longitudinal direction of the base material ingot. Based on the obtained results, the finishing dimensions of the base material ingot are designed so that the center of the base material ingot and the center of the core match over the longitudinal direction of the base material ingot, and the outer periphery of the base material ingot is ground along this. Finished.

【0021】研削は、#120のダイヤモンドホイール
を使用し、最大切り込み量0.3mmで4回の粗研削を
行った。次いで、仕上研削を#300のダイヤモンドホ
イールを使用し、切り込み量0.05mmで1回行っ
た。研削した仕上面の凹凸は0.01mmであった。
The grinding was performed four times with a maximum cutting depth of 0.3 mm using a # 120 diamond wheel. Next, finish grinding was performed once using a # 300 diamond wheel at a cutting depth of 0.05 mm. The roughness of the ground surface was 0.01 mm.

【0022】このようにして得られた母材インゴットを
電気炉中で直径45mmφに延伸して光ファイバ用プリ
フォームとし、これを線引き機で紡糸して外径125μ
mφの光ファイバを得た。この光ファイバの接続損失、
コア部偏芯率を後述する測定方法で測定したところ、表
1に示すように良好な結果が得られた。
The preform ingot obtained as described above was drawn in an electric furnace to a diameter of 45 mmφ to obtain a preform for optical fiber, which was spun with a wire drawing machine to obtain an outer diameter of 125 μm.
An optical fiber of mφ was obtained. Connection loss of this optical fiber,
When the core eccentricity was measured by a measuring method described later, good results were obtained as shown in Table 1.

【0023】(比較例1)先ず、被研削母材インゴットと
して、脱水・ガラス化された外径約140mmφの透明
な母材インゴットを用意した。この母材インゴットの表
面の凹凸の深さは最大で1.04mmであった。この母
材インゴットを用いて、実施例1と同様に、外形測定機
に対する円筒研削装置の回転軸のX座標を500mm間
隔で4点測定し、それぞれ−0.05mm、−0.16
mm、−0.19mm及び−0.33mmという測定値を
得た。さらに外形測定機で外形を測定し、円筒研削装置
の回転軸に対するコアの位置を推定計算した。
Comparative Example 1 First, as a base material ingot to be ground, a transparent base material ingot dehydrated and vitrified and having an outer diameter of about 140 mmφ was prepared. The maximum depth of the irregularities on the surface of the base material ingot was 1.04 mm. Using this base material ingot, in the same manner as in Example 1, the X coordinate of the rotation axis of the cylindrical grinding device with respect to the outer shape measuring device was measured at four points at 500 mm intervals, and was -0.05 mm and -0.16 respectively.
mm, -0.19 mm and -0.33 mm were obtained. Furthermore, the outer shape was measured with an outer shape measuring machine, and the position of the core with respect to the rotation axis of the cylindrical grinding device was estimated and calculated.

【0024】次に、得られた結果にもとづき、母材イン
ゴットの長手方向に渡って母材インゴットの中心とコア
中心が一致するように母材インゴットの仕上げ寸法を設
計し、これに沿って母材インゴットの外周を円筒研削し
た。これには#120のダイヤモンドホイールを使用し
て、最大切り込み量0.3mmで4回の粗研削を行っ
た。次いで、仕上研削を#300のダイヤモンドホイー
ルを使用し、切り込み量0.05mmで1回行った。研
削した仕上面の凹凸の深さは0.01mmであった。
Next, based on the obtained results, the finishing dimensions of the base material ingot are designed so that the center of the base material ingot and the center of the core coincide with each other in the longitudinal direction of the base material ingot, and the base material is aligned with this. The outer periphery of the material ingot was cylindrically ground. For this, four rough grindings were performed with a maximum cutting depth of 0.3 mm using a # 120 diamond wheel. Next, finish grinding was performed once using a # 300 diamond wheel at a cutting depth of 0.05 mm. The depth of the asperities on the polished finished surface was 0.01 mm.

【0025】このようにして得られた母材インゴットを
実施例1と同様にして、電気炉中で延伸し、径45mm
φの光ファイバ用プリフォームとし、これを線引き機で
紡糸し、外径125μmの光ファイバを得た。この光フ
ァイバの接続損失、コア部偏芯率を実施例1と同様にし
て測定したところ、表1に示すように、接続損失及びコ
ア部偏芯率が大きかった。
The base material ingot thus obtained was stretched in an electric furnace in the same manner as in Example 1 to obtain a base material ingot having a diameter of 45 mm.
An optical fiber preform having a diameter of φ was spun with a drawing machine to obtain an optical fiber having an outer diameter of 125 μm. The connection loss and the core eccentricity of this optical fiber were measured in the same manner as in Example 1. As shown in Table 1, the connection loss and the core eccentricity were large.

【0026】光ファイバの接続損失、コア部偏芯率の測
定方法は、以下の通りである。 a.接続損失:OTDR(Optical Time Domain Refractom
etory)法にて測定した。 b.コア部偏芯率:光ファイバ構造測定装置(Photon Kine
tics社製「Model 2400」)を用いて測定した。
The method for measuring the connection loss and the eccentricity of the core of the optical fiber is as follows. a. Connection loss: OTDR (Optical Time Domain Refractom)
etory) method. b. Core eccentricity: Optical fiber structure measurement device (Photon Kine
The measurement was performed using "Models 2400" manufactured by tics.

【0027】[0027]

【表1】 [Table 1]

【0028】本発明は、上記実施形態に限定されるもの
ではなく例示であり、本発明の特許請求の範囲に記載さ
れた技術思想と実質的に同一な構成を有し、同様な作用
効果を奏するものは、如何なるものであっても本発明の
技術範囲に包含される。
The present invention is not limited to the above embodiment, but is merely an example. The present invention has substantially the same structure as the technical idea described in the claims of the present invention, and has the same operation and effect. Whatever is played is included in the technical scope of the present invention.

【0029】[0029]

【発明の効果】本発明の母材インゴットの製造方法は、
従来の製造方法に比較し、優れたコア部偏芯率を有する
母材インゴットが得られる。
The method for producing a base material ingot of the present invention comprises:
As compared with the conventional manufacturing method, a base material ingot having an excellent core eccentricity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 外形測定機を用いて母材インゴットの半径を
測定する様子を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing how a radius of a base material ingot is measured using a profile measuring instrument.

【図2】 円筒研削装置を用いて研削する様子を示す概
略正面図である。
FIG. 2 is a schematic front view showing a state of grinding using a cylindrical grinding device.

【符号の説明】[Explanation of symbols]

1…母材インゴット、 2,2'…測定子移動部、 3,3'…測定子、 4…円筒研削装置、 5,5…チャック、 6,7,8…ダイヤモンドホイール、 ra,rb…インゴット半径。 DESCRIPTION OF SYMBOLS 1 ... Base material ingot, 2, 2 '... Contact point moving part, 3, 3' ... Contact point, 4 ... Cylindrical grinding device, 5, 5 ... Chuck, 6, 7, 8 ... Diamond wheel, ra, rb ... Ingot radius.

フロントページの続き (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 Fターム(参考) 3C034 AA01 BB91 CA01 CB01 DD01 3C043 AA01 CC02 4G021 BA00 Continuation of the front page (72) Inventor Hideo Hirasawa 2-13-1, Isobe, Annaka-shi, Gunma F-term in the Shin-Etsu Kagaku Kogyo Co., Ltd. Precision Functional Materials Laboratory 3C034 AA01 BB91 CA01 CB01 DD01 3C043 AA01 CC02 4G021 BA00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 出発コア部材にスートを堆積させ、脱水
焼結ガラス化し、次いで回転させながら表面を円筒研削
加工する光ファイバ母材インゴットの製造方法におい
て、研削前に外形測定機にてマスターインゴットの半径
を90°又は180°回転毎に測定し、該測定値に基づ
いて円筒研削装置の回転軸位置を計算して求め、これに
基づいて母材インゴットの外周を研削して仕上げること
を特徴とする光ファイバ母材インゴットの製造方法。
1. A method for manufacturing an optical fiber preform ingot in which a soot is deposited on a starting core member, dehydrated and sintered into a glass, and then the surface is cylindrically ground while being rotated. Is measured at every 90 ° or 180 ° rotation, the rotational axis position of the cylindrical grinding device is calculated and obtained based on the measured value, and the outer periphery of the base material ingot is ground and finished based on this. A method for producing an optical fiber preform ingot.
【請求項2】 前記マスターインゴットの真円度が50
μm以下、長さが1m以上である請求項1に記載の光フ
ァイバ母材インゴットの製造方法。
2. The master ingot has a roundness of 50.
The method for manufacturing an optical fiber preform ingot according to claim 1, wherein the length is 1 m or less and 1 m or more.
【請求項3】 前記光ファイバ母材インゴットの半径の
測定が、2回以上行われる請求項1に記載の光ファイバ
母材インゴットの製造方法。
3. The method of manufacturing an optical fiber preform ingot according to claim 1, wherein the measurement of the radius of the optical fiber preform ingot is performed twice or more.
【請求項4】 前記計算して求めた円筒研削装置の回転
軸位置と、コア中心がインゴット外形に対して既知の光
ファイバ母材インゴットの位置とから、円筒研削装置の
回転軸に対するコアの位置を推定する請求項1に記載の
光ファイバ母材インゴットの製造方法。
4. The position of the core with respect to the rotation axis of the cylindrical grinding device from the calculated rotation axis position of the cylindrical grinding device and the position of the optical fiber preform ingot whose core center is known with respect to the outer shape of the ingot. The method for producing an optical fiber preform ingot according to claim 1, wherein
【請求項5】 前記推定で得た円筒研削装置の回転軸に
対するコアの位置に基づき、光ファイバ母材インゴット
の中心とコア中心が一致するように、光ファイバ母材イ
ンゴットの外周を研削して仕上げる請求項4に記載の光
ファイバ母材インゴットの製造方法。
5. An outer periphery of the optical fiber preform ingot is ground so that the center of the optical fiber preform ingot coincides with the center of the core based on the position of the core with respect to the rotation axis of the cylindrical grinding device obtained by the estimation. The method for producing an optical fiber preform ingot according to claim 4, which is finished.
JP2001166304A 2001-06-01 2001-06-01 Method for producing optical fiber preform ingot Pending JP2002356341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166304A JP2002356341A (en) 2001-06-01 2001-06-01 Method for producing optical fiber preform ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166304A JP2002356341A (en) 2001-06-01 2001-06-01 Method for producing optical fiber preform ingot

Publications (1)

Publication Number Publication Date
JP2002356341A true JP2002356341A (en) 2002-12-13

Family

ID=19008854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166304A Pending JP2002356341A (en) 2001-06-01 2001-06-01 Method for producing optical fiber preform ingot

Country Status (1)

Country Link
JP (1) JP2002356341A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263911A (en) * 2005-03-22 2006-10-05 Schott Ag Grinding method and grinding machine
JP2011005604A (en) * 2009-06-26 2011-01-13 Sumco Corp Cylinder grinding method for single crystal ingot
JP2011255454A (en) * 2010-06-09 2011-12-22 Okamoto Machine Tool Works Ltd Compound chamfering device and chamfering method of ingot block
WO2012164757A1 (en) * 2011-05-31 2012-12-06 新東工業株式会社 Device for machining columnar member
CN114102303A (en) * 2021-11-09 2022-03-01 武汉睿芯特种光纤有限责任公司 Eccentric polishing method and auxiliary polishing device for optical fiber preform

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263911A (en) * 2005-03-22 2006-10-05 Schott Ag Grinding method and grinding machine
JP2011005604A (en) * 2009-06-26 2011-01-13 Sumco Corp Cylinder grinding method for single crystal ingot
JP2011255454A (en) * 2010-06-09 2011-12-22 Okamoto Machine Tool Works Ltd Compound chamfering device and chamfering method of ingot block
WO2012164757A1 (en) * 2011-05-31 2012-12-06 新東工業株式会社 Device for machining columnar member
CN114102303A (en) * 2021-11-09 2022-03-01 武汉睿芯特种光纤有限责任公司 Eccentric polishing method and auxiliary polishing device for optical fiber preform
CN114102303B (en) * 2021-11-09 2023-09-12 武汉睿芯特种光纤有限责任公司 Eccentric polishing method and positioning device for optical fiber preform

Similar Documents

Publication Publication Date Title
KR100782393B1 (en) A method of manufacturing a preform ingot for optical fiber
Deng et al. Laser dressing of arc-shaped resin-bonded diamond grinding wheels
EP0976689B1 (en) Process of producing a preform for an optical fibre
JP2002356341A (en) Method for producing optical fiber preform ingot
Huang et al. Micro/meso ultra precision grinding of fibre optic connectors
JP4200103B2 (en) Method of manufacturing an optical fiber
JP3061714B2 (en) Large quartz glass tube, optical fiber preform, and method for producing them
JP3789672B2 (en) Grinding method
JP2000119034A (en) Production of quartz glass preform for optical fiber
JP4148619B2 (en) Optical fiber base material ingot and method of manufacturing the same
JP4975911B2 (en) Optical fiber preform manufacturing method
JP3854843B2 (en) Glass base material grinding apparatus and glass base material manufacturing method
JP2003226542A (en) Method and apparatus for grinding optical fiber preform ingot to cylinder
JPH09328328A (en) Production of preform for optical fiber
JP4346795B2 (en) Glass base material and manufacturing method thereof
CN212351515U (en) Processing equipment for outer cylindrical surface of shaft part
JP2005162511A (en) Glass preform for optical fiber and its manufacturing method
JP4625448B2 (en) Method for drawing and shrinking a preform made of quartz glass
JPH0780760A (en) Grinding method in inner surface grinder
JP2000203860A (en) Large-sized quartz glass reform
JP2003327441A (en) Method and apparatus for producing glass pipe for optical fiber
Sun et al. Influence of the Rotary Ultrasonic Vibrating Direction on Surface Quality in Aspheric Grinding Glass-Ceramics
JP2004018362A (en) Cylindrical grinding process and cylindrical grinding device for preform ingot of optical fiber
Huang et al. Ultraprecision abrasive machining of fibre optic connectors
JPH05345631A (en) Production of optical fiber preform