JPWO2005101456A1 - Synthetic quartz glass tube for excimer UV lamp and manufacturing method thereof - Google Patents

Synthetic quartz glass tube for excimer UV lamp and manufacturing method thereof Download PDF

Info

Publication number
JPWO2005101456A1
JPWO2005101456A1 JP2006512212A JP2006512212A JPWO2005101456A1 JP WO2005101456 A1 JPWO2005101456 A1 JP WO2005101456A1 JP 2006512212 A JP2006512212 A JP 2006512212A JP 2006512212 A JP2006512212 A JP 2006512212A JP WO2005101456 A1 JPWO2005101456 A1 JP WO2005101456A1
Authority
JP
Japan
Prior art keywords
quartz glass
less
glass tube
excimer
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006512212A
Other languages
Japanese (ja)
Inventor
隆之 大嶋
隆之 大嶋
藤ノ木 朗
朗 藤ノ木
茂 山形
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Publication of JPWO2005101456A1 publication Critical patent/JPWO2005101456A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Compositions (AREA)

Abstract

本発明のエキシマUVランプ用合成石英ガラス管は、高純度の合成石英ガラスからなり、波長150〜250nmの真空紫外光を放出するエキシマUVランプ用合成石英ガラス管において、該合成石英ガラス管の寸法が長さ1000mm以上、外径10mm以上50mm以下、肉厚0.8mm以上2.8mm以下で表面に幅0.5mm以上または長さ150mm以上のキズがなく、外径の最大値と最小値の差が1.4mm以下好ましくは0.7mm以下、肉厚の最大値と最小値の差が0.5mm以下好ましくは0.3mm以下、長さ1000mmあたりの曲がりが1.5mm以下好ましくは0.7mm以下であることを特徴とするものである。本発明のエキシマUVランプ用合成石英ガラス管を用いれば、高性能で均一に発光することのできるエキシマUVランプを得ることができる。The synthetic quartz glass tube for excimer UV lamp of the present invention is made of high-purity synthetic quartz glass, and is a synthetic quartz glass tube for excimer UV lamp that emits vacuum ultraviolet light having a wavelength of 150 to 250 nm. Has a length of 1000 mm or more, an outer diameter of 10 mm or more and 50 mm or less, a wall thickness of 0.8 mm or more and 2.8 mm or less, and no scratches on the surface having a width of 0.5 mm or more or a length of 150 mm or more. The difference is 1.4 mm or less, preferably 0.7 mm or less, the difference between the maximum value and the minimum value of the wall thickness is 0.5 mm or less, preferably 0.3 mm or less, and the bending per 1000 mm in length is 1.5 mm or less, preferably 0.00. It is 7 mm or less. If the synthetic quartz glass tube for excimer UV lamps of the present invention is used, an excimer UV lamp capable of emitting light uniformly with high performance can be obtained.

Description

本発明は、波長150〜250nmの真空紫外光を放出するエキシマUVランプの光透過性部分を構成する合成石英ガラス管に関する。  The present invention relates to a synthetic quartz glass tube constituting a light transmissive portion of an excimer UV lamp that emits vacuum ultraviolet light having a wavelength of 150 to 250 nm.

LCD基板の大型化に伴って基板の洗浄装置も大型化し、これに搭載されるエキシマUVランプの寸法においても長尺化が進められている。エキシマUVランプを構成する合成石英ガラス管には放電特性や発光効率の面から寸法精度の高さが求められるが、かかる長尺の石英ガラス管においては、長尺のランプ全長にわたって放電特性や発光効率が均一となることが必要であるために、寸法精度に対する要求がさらに厳しくなってきている。
特開平7−215731には紫外線ランプ用高純度シリカガラスおよびその製造方法が開示されているが、今日のエキシマUVランプに求められているような長尺で寸法精度の高い石英ガラス管を製造するために必要な条件が明らかではなく、直径30mm、肉厚2mm、長さ200mmの合成石英ガラス管を作製したに留まっている。
Along with the increase in size of the LCD substrate, the size of the substrate cleaning apparatus has also increased, and the length of the excimer UV lamp mounted thereon has also been increased. The synthetic quartz glass tube constituting the excimer UV lamp is required to have high dimensional accuracy in terms of discharge characteristics and light emission efficiency. However, in such a long quartz glass tube, the discharge characteristics and light emission over the entire length of the long lamp are required. Due to the need for uniform efficiency, the demands on dimensional accuracy are becoming more stringent.
Japanese Patent Application Laid-Open No. 7-215731 discloses a high-purity silica glass for ultraviolet lamps and a method for producing the same, but a long and high dimensional accuracy quartz glass tube is required as required for today's excimer UV lamps. The conditions necessary for this are not clear, and only a synthetic quartz glass tube having a diameter of 30 mm, a thickness of 2 mm, and a length of 200 mm has been produced.

そこで、本発明は、今日のエキシマUVランプに求められているような長尺で寸法精度の高い石英ガラス管、およびその製造方法を提供することを目的とするものである。
また、本発明の発明者らは、UVランプの向上を図るべく、石英ガラス管内の不純物について鋭意研究していたところ、不純物としてのVを発見し、またこのVの濃度が所定値を超えると、紫外線を吸収し紫外線吸収端を長波長側にシフトさせ透過率の低下を招くため好ましくないことを知見した。
本発明の他の目的は、エキシマUVランプ装置の性能を向上させるため不純物濃度を極力押さえたエキシマUVランプ装置用合成石英ガラス管を提供することにある。
以上の目的は、下記1.〜8.のいずれかの構成により達成される。
1.高純度の合成石英ガラスからなり、波長150〜250nmの真空紫外光を放出するエキシマUVランプ用合成石英ガラス管において、該合成石英ガラス管の寸法が長さ1000mm以上、外径10mm以上50mm以下、肉厚0.8mm以上2.8mm以下で表面に幅0.5mm以上または長さ150mm以上のキズがなく、外径の最大値と最小値の差が1.4mm以下好ましくは0.7mm以下、肉厚の最大値と最小値の差が0.5mm以下好ましくは0.3mm以下、長さ1000mmあたりの曲がりが1.5mm以下好ましくは0.7mm以下であることを特徴とするエキシマUVランプ用合成石英ガラス管。
2.Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が5wtppb未満、好ましくは上記の全ての元素の各濃度が3wtppb未満、より好ましくは上記の全ての元素の各濃度が1wtppb未満であることを特徴とする上記1.記載のエキシマUVランプ用合成石英ガラス管。
3.肉厚0.8mm以上2.8mm以下の合成石英ガラス管の内表面から外表面への波長172nmにおける分光透過率が80%以上好ましくは83%以上であることを特徴とする上記1.または2.記載のエキシマUVランプ用合成石英ガラス管。
4.合成石英ガラス管中のOH基濃度が10wtppm以上400wtppm以下、Cl元素濃度が30wtppm以下好ましくは5wtppm以下であることを特徴とする上記1.〜3.のいずれかに記載のエキシマUVランプ用合成石英ガラス管。
5.波長150〜250nmの真空紫外光を放出するエキシマUVランプ用であって、寸法が長さ1000mm以上、外径10mm以上50mm以下、肉厚0.8mm以上2.8mm以下で表面に幅0.5mm以上または長さ150mm以上のキズがなく、外径の最大値と最小値の差が1.4mm以下好ましくは0.7mm以下、肉厚の最大値と最小値の差が0.5mm以下好ましくは0.3mm以下、長さ1000mmあたりの曲がりが1.5mm以下好ましくは0.7mm以下であるエキシマUVランプ用合成石英ガラス管を製造するエキシマUVランプ用合成石英ガラス管の製造方法であって、肉厚の変動率が1.8%以下、表面粗さが18μm以下の石英ガラスシリンダーを、円筒型電気加熱炉を使った無接触加熱延伸方法により、所定の径と肉厚になるように、管の中の内圧および管引き速度を、設定値からの変動が各々±5%以内になるように維持しつつ管引きを行って、エキシマUVランプ用合成石英ガラス管を製造することを特徴とするエキシマUVランプ用合成石英ガラス管の製造方法。
6.Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が5wtppb未満、好ましくは上記の全ての元素の各濃度が3wtppb未満であるのがよく、より好ましくは上記の全ての元素の各濃度が1wtppb未満であることを特徴とする上記5.記載のエキシマUVランプ用合成石英ガラス管の製造方法。
7.合成石英ガラス管の内表面から外表面への波長172nmにおける分光透過率が80%以上好ましくは83%以上であることを特徴とする上記5.または6.記載のエキシマUVランプ用合成石英ガラス管の製造方法。
8.合成石英ガラス管中のOH基濃度が10wtppm以上400wtppm以下、Cl元素濃度が30wtppm以下好ましくは5wtppm以下であることを特徴とする上記5.〜7.のいずれかに記載のエキシマUVランプ用合成石英ガラス管の製造方法。
なお、特開平07−109136号においては、石英ガラス管およびその製造方法が開示されているが、該石英ガラス管は光ファイバの線引き用のものであって、外径が50〜300mmφ、厚さ10mm以上と大型のものであり、本発明のエキシマUVランプ装置用合成石英ガラス管とは技術分野がまったく異なるものである。
Accordingly, an object of the present invention is to provide a long and high dimensional accuracy quartz glass tube as required for today's excimer UV lamps, and a method for manufacturing the same.
In addition, the inventors of the present invention have intensively studied impurities in the quartz glass tube in order to improve the UV lamp. As a result, they discovered V as an impurity, and when the concentration of V exceeds a predetermined value. The present inventors have found that it is not preferable because it absorbs ultraviolet rays and shifts the ultraviolet absorption edge to the longer wavelength side to cause a decrease in transmittance.
Another object of the present invention is to provide a synthetic quartz glass tube for an excimer UV lamp apparatus in which the impurity concentration is suppressed as much as possible in order to improve the performance of the excimer UV lamp apparatus.
The above purpose is as follows. ~ 8. This is achieved by any one of the configurations.
1. In a synthetic quartz glass tube for excimer UV lamps, which is made of high purity synthetic quartz glass and emits vacuum ultraviolet light with a wavelength of 150 to 250 nm, the synthetic quartz glass tube has a length of 1000 mm or more, an outer diameter of 10 mm or more and 50 mm or less, The thickness is 0.8 mm or more and 2.8 mm or less, the surface has no scratch of width 0.5 mm or more or length 150 mm or more, and the difference between the maximum value and the minimum value of the outer diameter is 1.4 mm or less, preferably 0.7 mm or less, For excimer UV lamps, characterized in that the difference between the maximum value and the minimum value of the wall thickness is 0.5 mm or less, preferably 0.3 mm or less, and the bending per 1000 mm in length is 1.5 mm or less, preferably 0.7 mm or less. Synthetic quartz glass tube.
2. Each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 5 wtppb, preferably each concentration of all the above elements is less than 3 wtppb, more preferably Each of the above-mentioned concentrations of all the elements is less than 1 wtppb. A synthetic quartz glass tube for the excimer UV lamp described.
3. 1. The spectral transmittance at a wavelength of 172 nm from the inner surface to the outer surface of a synthetic quartz glass tube having a wall thickness of 0.8 mm or more and 2.8 mm or less is 80% or more, preferably 83% or more. Or 2. A synthetic quartz glass tube for the excimer UV lamp described.
4). 1. The above-mentioned 1. characterized in that the OH group concentration in the synthetic quartz glass tube is 10 wtppm or more and 400 wtppm or less, and the Cl element concentration is 30 wtppm or less, preferably 5 wtppm or less. ~ 3. A synthetic quartz glass tube for excimer UV lamps according to any one of the above.
5. For excimer UV lamps that emit vacuum ultraviolet light with a wavelength of 150 to 250 nm, the dimensions are 1000 mm or more in length, the outer diameter is 10 mm or more and 50 mm or less, the wall thickness is 0.8 mm or more and 2.8 mm or less, and the width is 0.5 mm on the surface. There is no scratch with a length of 150 mm or more, the difference between the maximum value and the minimum value of the outer diameter is 1.4 mm or less, preferably 0.7 mm or less, and the difference between the maximum value and the minimum value of the wall thickness is 0.5 mm or less, preferably A method for producing a synthetic quartz glass tube for excimer UV lamps for producing a synthetic quartz glass tube for excimer UV lamps having a bend of not more than 0.3 mm and a length per 1000 mm of 1.5 mm or less, preferably 0.7 mm or less, A quartz glass cylinder having a wall thickness variation rate of 1.8% or less and a surface roughness of 18 μm or less is determined by a non-contact heating drawing method using a cylindrical electric heating furnace. Synthetic quartz for excimer UV lamps by pulling while maintaining the internal pressure and pulling speed in the tube so that the variation from the set value is within ± 5% so that the diameter and the wall thickness can be obtained. A method for producing a synthetic quartz glass tube for excimer UV lamps, characterized by producing a glass tube.
6). The concentration of each element of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, and V is less than 5 wtppb, and preferably the concentration of all the above elements is less than 3 wtppb. More preferably, the respective concentrations of all the above elements are less than 1 wtppb. A method for producing a synthetic quartz glass tube for an excimer UV lamp as described.
7). 4. Spectral transmittance at a wavelength of 172 nm from the inner surface to the outer surface of the synthetic quartz glass tube is 80% or more, preferably 83% or more. Or 6. A method for producing a synthetic quartz glass tube for an excimer UV lamp as described.
8). 4. The above-mentioned 5. characterized in that the OH group concentration in the synthetic quartz glass tube is 10 wtppm or more and 400 wtppm or less, and the Cl element concentration is 30 wtppm or less, preferably 5 wtppm or less. ~ 7. A method for producing a synthetic quartz glass tube for an excimer UV lamp according to any one of the above.
In Japanese Patent Laid-Open No. 07-109136, a quartz glass tube and a method for manufacturing the same are disclosed. The quartz glass tube is used for drawing an optical fiber and has an outer diameter of 50 to 300 mmφ and a thickness. It is a large size of 10 mm or more, and the technical field is completely different from the synthetic quartz glass tube for excimer UV lamp apparatus of the present invention.

図1は、本発明の実施例により得られたエキシマUVランプの概略及びそれに用いられる合成石英ガラス管の性能試験を説明するための図である。
図2は、本発明の実施例によるエキシマUVランプ用合成石英ガラス管の製造方法を説明するための図である。
FIG. 1 is a diagram for explaining an outline of an excimer UV lamp obtained by an embodiment of the present invention and a performance test of a synthetic quartz glass tube used therefor.
FIG. 2 is a diagram for explaining a method of manufacturing a synthetic quartz glass tube for an excimer UV lamp according to an embodiment of the present invention.

本発明の実施の形態によるエキシマUVランプ用合成石英ガラス管は、波長150〜250nmの真空紫外光を放出するエキシマUVランプ用のものであって、高純度の合成石英ガラスからなり、該合成石英ガラス管の寸法が長さ1000mm以上、外径10mm以上50mm以下、肉厚0.8mm以上2.8mm以下である。
本合成石英ガラス管の寸法長さが上記未満であると、洗浄装置の大型化に対応できないからである。なお、現在のところその長さの上限値は、5000mm程度である。
肉厚が上記未満であると、ランプ管としての強度が不足するおそれがあり、それをこえると、十分な光透過性が得られなくなる。
エキシマUVランプ用の合成石英ガラス管には、表面に幅0.5mm以上または長さ150mm以上のキズがなく、外径の最大値と最小値の差が1.4mm以下好ましくは0.7mm以下、肉厚の最大値と最小値の差が0.5mm以下好ましくは0.3mm以下、長さ1000mmあたりの曲がりが1.5mm以下好ましくは0.7mm以下である合成石英ガラス管が好適である。幅0.5mm以上あるいは長さ150mm以上のキズがあると、エキシマUV光が散乱したり、あるいはランプそのものが破損するおそれがある。また外径の最大値と最小値の差が1.4mmよりも大きくなるとエキシマUVランプを構成したときに内部電極間の距離にばらつきが出ることから放電が均等に行われなくなる。0.001mmよりも小さくするには歩留まりが低下し、コストの面から望まれない。同様に、肉厚の最大値と最小値の差が0.5mmよりも大きくなったり、長さ1000mmあたりの曲がりが1.5mmを超えたりするようなものについても、二重管構造を有するエキシマUVランプを構成したときに外管の外側と内管の内側各々につけられた電極間の放電特性の悪化のおそれがある。いずれも0.001mmよりも小さくするには歩留まりが低下するためコストの面から好ましくない。
さらに該合成石英ガラス管はLi、Na、K、Ca、Mg、Ti、Cr、Fe、Ni、Cu、Mo、W、Vの各元素濃度が5wtppb未満、好ましくは上記の全ての元素の各濃度が3wtppb未満であるのがよく、より好ましくは上記の全ての元素の各濃度が1wtppb未満であるのがよい。Li、Na、K、Caなどのアルカリ金属元素およびアルカリ土類金属元素は工場の建材等に含まれるが、これらが前記範囲以上であると石英ガラスの再結晶化が促進されクリストバライトを生成しやすくなり白色失透が起こる。またTi、Cr、Fe、Ni、Cu、Mo、Wなどの遷移金属元素は合成石英ガラスを製造する装置に使用される耐熱合金等に含まれることが多いがこれらの濃度が前記範囲を超えると紫外線を吸収し紫外線吸収端を長波長側にシフトさせ透過率の低下を招くため好ましくない。またVについても、所定の濃度を超えると紫外線を吸収し紫外線吸収端を長波長側にシフトさせ透過率の低下を招くため好ましくない。しかしいずれの元素も濃度が0.01wtppb未満になるようにするにはすべての製造工程でクリーンルーム並みの清浄な製造環境が必要となりコストが高くなるため望ましくない。なお、不純物であるVは、本発明の際に、本発明の発明者らによって初めて発見されたものである。
さらに肉厚0.8mm以上2.8mm以下の該合成石英ガラス管は内表面から外表面への初期の波長172nmにおける分光透過率が80%以上好ましくは83%以上、OH基濃度が10wtppm以上400wtppm以下好ましくは190wtppm以上320wtppm以下、Cl元素濃度が30wtppm以下好ましくは5wtppm以下であることが望ましい。波長172nmにおける内表面から外表面への分光透過率が80%未満になるとエキシマUVランプを構成したときに紫外線光量の不足により被洗浄物への洗浄効果が低下する。
またOH基は石英ガラス網目構造において構造の終端部になるが、このOH基が石英ガラス中に適量含まれていると網目構造内の内部歪みが緩和され、Si−O−Si結合角が安定値に近づきSi−Oの平均結合エネルギーが上昇すると言われている。ところが、OH基は高濃度に含まれると紫外域の透過率を低下させることになる。そこで本発明の合成石英ガラス管ではOH基濃度を10wtppm以上400wtppm以下の範囲とする。
またCl元素により形成するSi−Clは210〜220nmの吸収帯、いわゆるE’センターの前駆体となるがCl元素濃度が30wtppm以下好ましくは5wtppm以下であれば透過率の低下はほとんど問題にならない。0.01wtppm未満である必要はない。
本発明の実施の形態により、本発明のエキシマUVランプ用の長尺の合成石英ガラス管を製造するには、円柱状石英ガラスインゴットを切削・研磨して得られた原管である円筒状石英ガラスシリンダーの肉厚の変動幅を1.8%以下、表面粗さを18μm以下程度にし、さらに無接触加熱延伸方法によって、所定の径と肉厚となるように管の内圧と管引き速度を正しく一定に保ちながら製造する。原管である円筒状石英ガラスシリンダーの肉厚の変動幅が1.8%以下でなければ、合成石英ガラス管を製造したときに外径の最大値と最小値の差および肉厚の最大値と最小値の差および曲がりが本発明の範囲に入らず、表面粗さ18μm以下でなければたとえ無接触加熱延伸方法で管引きを行ったとしても表面に幅0.5mm以上あるいは長さ150mm以上のキズが残るおそれがある。
尚、原管である円筒状石英ガラスシリンダーの肉厚の変動率とは次式で定義される。
変動率(%)=(最大肉厚−最小肉厚)/{(最大肉厚+最小肉厚)/2}×100
すなわち、気相軸付法(VAD法)あるいは外付法(OVD法)等で作られた円柱状石英ガラスインゴットをダイヤモンド砥粒を備えた円筒研削装置で所定の寸法に正確に研削し、次いで酸化セリウム研磨装置で研磨し非接触レーザー式測定機で寸法合わせを行い、外径の円中心を正確に求めてこの外径の円中心に合わせて超精密ホーニング装置で開孔し、フッ酸によるエッチング処理、純水による水洗、及び乾燥を行うと外周円と内周円の中心が一致した円筒状石英ガラスシリンダーを得ることができる。
次に円筒型電気加熱炉を使った無接触加熱延伸方法によって、上記円筒状石英ガラスシリンダーの寸法、厚さ、加熱時のガラス粘度、延伸比などから求まる所定の管内圧と管引き速度を各々設定値の±5%正確に保持しながら加熱加工処理を行う。尚、このときの管内圧は2気圧から10分の1気圧の範囲で設定され、管引き速度は1m/分〜60m/分の範囲で設定される。また、このときの高温加熱処理により機械研削時の研削面の粗さ、キズ等も解消されるため、エキシマUVランプ用途に好適な寸法精度が高く平滑な表面を持つ長尺石英ガラス管を製造することができる。
管内圧と管引き速度を各々設定値の±5%正確に保持するには、管内圧については、精密圧力コントローラを用いて制御を行い、管引き速度については、高精度回転モータを用いた制御を行えばよい。
[寸法の測定]
外径は、所定の長さの石英ガラス管に対し、50mm間隔毎に非接触レーザー式測定器で測定してその円周上での外径の最大値と最小値との差を求める。肉厚は、所定の長さの石英ガラス管に対し、50mm間隔毎に非接触レーザー式測定器で測定してその円周上での肉厚の最大値と最小値との差を求める。また、曲がりとは管の両端からそれぞれ50mmの箇所を支点として所定の長さの石英ガラス管を回転させ、非接触レーザー式測定器で管中央部における変位の最大値と最小値を求めてその差を2分の1にした値とする。長さ1000mmあたりの曲がりとは、支点間の曲がりの値を該合成石英ガラス管の1000mmあたりの数値に比例換算した数値とする。
[表面のキズ]
散乱光の下で目視観察し、キズが発見された場合にこの大きさを測定する。
[不純物元素分析]
ICP発光分光分析法による。
[透過率測定]
真空紫外分光光度計による測定法。
[OH基濃度]
D.M.DODD and D.B.FRASER,Optical determination of OH in fused silica,Journal of Applied Physics,Vol.37(1966)p.3911文献記載の赤外分光光度計による測定法。
[Cl元素濃度]
HF水溶液により分解後、AgNO添加による比濁法による測定法。
A synthetic quartz glass tube for excimer UV lamps according to an embodiment of the present invention is for excimer UV lamps that emit vacuum ultraviolet light having a wavelength of 150 to 250 nm, and is made of high-purity synthetic quartz glass. The glass tube has a length of 1000 mm or more, an outer diameter of 10 mm or more and 50 mm or less, and a wall thickness of 0.8 mm or more and 2.8 mm or less.
This is because when the size of the synthetic quartz glass tube is less than the above, it is impossible to cope with an increase in the size of the cleaning device. Currently, the upper limit of the length is about 5000 mm.
If the wall thickness is less than the above, the strength as a lamp tube may be insufficient, and if it exceeds that, sufficient light transmission cannot be obtained.
Synthetic quartz glass tubes for excimer UV lamps have no scratches with a width of 0.5 mm or more or a length of 150 mm or more on the surface, and the difference between the maximum and minimum outer diameters is 1.4 mm or less, preferably 0.7 mm or less. A synthetic quartz glass tube in which the difference between the maximum value and the minimum value of the wall thickness is 0.5 mm or less, preferably 0.3 mm or less, and the bending per 1000 mm in length is 1.5 mm or less, preferably 0.7 mm or less is suitable. . If there is a scratch having a width of 0.5 mm or more or a length of 150 mm or more, the excimer UV light may be scattered or the lamp itself may be damaged. Further, if the difference between the maximum value and the minimum value of the outer diameter is larger than 1.4 mm, the distance between the internal electrodes varies when the excimer UV lamp is configured, so that the discharge is not performed uniformly. If it is smaller than 0.001 mm, the yield decreases, which is undesirable from the viewpoint of cost. Similarly, an excimer having a double-pipe structure in which the difference between the maximum value and the minimum value of the wall thickness is larger than 0.5 mm or the bending per 1000 mm in length exceeds 1.5 mm. When a UV lamp is constructed, there is a risk of deterioration of discharge characteristics between electrodes attached to the outer side of the outer tube and the inner side of the inner tube. In either case, if it is smaller than 0.001 mm, the yield decreases, which is not preferable from the viewpoint of cost.
Further, the synthetic quartz glass tube has a concentration of each element of Li, Na, K, Ca, Mg, Ti, Cr, Fe, Ni, Cu, Mo, W, and V of less than 5 wtppb, preferably each of the above elements. Is preferably less than 3 wtppb, more preferably each concentration of all the above elements is less than 1 wtppb. Alkali metal elements and alkaline earth metal elements such as Li, Na, K, and Ca are contained in factory building materials, etc., but if they are above the above range, recrystallization of quartz glass is promoted and cristobalite is easily generated. White devitrification occurs. In addition, transition metal elements such as Ti, Cr, Fe, Ni, Cu, Mo, and W are often contained in heat-resistant alloys used in an apparatus for producing synthetic quartz glass, but when their concentration exceeds the above range. This is not preferable because it absorbs ultraviolet rays and shifts the ultraviolet absorption edge to the longer wavelength side, leading to a decrease in transmittance. V is also unfavorable if it exceeds a predetermined concentration because it absorbs ultraviolet rays and shifts the ultraviolet absorption edge to the longer wavelength side, leading to a decrease in transmittance. However, in order to make the concentration of any element less than 0.01 wtppb, a clean manufacturing environment equivalent to a clean room is required in all the manufacturing steps, which is not desirable because the cost increases. Note that the impurity V was first discovered by the inventors of the present invention in the present invention.
Further, the synthetic quartz glass tube having a wall thickness of 0.8 mm or more and 2.8 mm or less has a spectral transmittance at an initial wavelength of 172 nm from the inner surface to the outer surface of 80% or more, preferably 83% or more, and an OH group concentration of 10 wtppm or more and 400 wtppm. In the following, it is preferable that 190 wtppm or more and 320 wtppm or less, and the Cl element concentration be 30 wtppm or less, preferably 5 wtppm or less. If the spectral transmittance from the inner surface to the outer surface at a wavelength of 172 nm is less than 80%, when an excimer UV lamp is constructed, the cleaning effect on the object to be cleaned is reduced due to insufficient ultraviolet light quantity.
In addition, the OH group becomes the end of the structure in the quartz glass network structure. If an appropriate amount of this OH group is contained in the quartz glass, the internal strain in the network structure is relaxed, and the Si—O—Si bond angle is stable. It is said that the average bond energy of Si—O increases as the value approaches. However, when OH groups are contained in a high concentration, the transmittance in the ultraviolet region is lowered. Therefore, in the synthetic quartz glass tube of the present invention, the OH group concentration is set in the range of 10 wtppm to 400 wtppm.
Si-Cl formed by Cl element becomes an absorption band of 210 to 220 nm, that is, a so-called E 'center precursor. However, if the Cl element concentration is 30 wtppm or less, preferably 5 wtppm or less, a decrease in transmittance is not a problem. It need not be less than 0.01 wtppm.
In order to manufacture the long synthetic quartz glass tube for the excimer UV lamp of the present invention according to the embodiment of the present invention, cylindrical quartz which is an original tube obtained by cutting and polishing a cylindrical quartz glass ingot The fluctuation range of the thickness of the glass cylinder is set to 1.8% or less, the surface roughness is set to about 18 μm or less, and the inner pressure and the drawing speed of the pipe are adjusted so as to obtain a predetermined diameter and thickness by a non-contact heating drawing method. Manufacture while keeping it correct and constant. If the fluctuation range of the thickness of the cylindrical quartz glass cylinder, which is the original tube, is not less than 1.8%, the difference between the maximum and minimum outside diameters and the maximum thickness when the synthetic quartz glass tube is manufactured If the difference between the minimum value and the bending does not fall within the scope of the present invention and the surface roughness is 18 μm or less, the surface is 0.5 mm or more in width or 150 mm or more in length even if the tube is drawn by the non-contact heating drawing method. There is a risk of scratches remaining.
In addition, the fluctuation rate of the thickness of the cylindrical quartz glass cylinder which is the original tube is defined by the following equation.
Fluctuation rate (%) = (maximum thickness−minimum thickness) / {(maximum thickness + minimum thickness) / 2} × 100
That is, a cylindrical quartz glass ingot made by a gas phase shaft attaching method (VAD method) or an external attaching method (OVD method) or the like is accurately ground to a predetermined dimension by a cylindrical grinding apparatus equipped with diamond abrasive grains, Polishing with a cerium oxide polishing machine, aligning the dimensions with a non-contact laser type measuring machine, accurately determining the center of the outer diameter, opening it with an ultra-precision honing device in accordance with the center of the outer diameter, and using hydrofluoric acid When an etching process, washing with pure water, and drying are performed, a cylindrical quartz glass cylinder in which the centers of the outer circumference circle and the inner circumference circle coincide with each other can be obtained.
Next, by a non-contact heating and stretching method using a cylindrical electric heating furnace, predetermined tube pressure and tube drawing speed determined from the dimensions and thickness of the cylindrical quartz glass cylinder, the glass viscosity at the time of heating, the stretching ratio, etc. Heat processing is performed while accurately maintaining ± 5% of the set value. At this time, the internal pressure of the pipe is set in a range of 2 atm to 1/10 atm, and the pulling speed is set in a range of 1 m / min to 60 m / min. Also, since the high-temperature heat treatment at this time eliminates the roughness and scratches of the grinding surface during mechanical grinding, manufactures a long quartz glass tube with a smooth surface with high dimensional accuracy suitable for excimer UV lamp applications. can do.
To maintain the pipe pressure and pipe drawing speed accurately within ± 5% of the set values, the pipe pressure is controlled using a precision pressure controller, and the pipe drawing speed is controlled using a high-precision rotary motor. Can be done.
[Measurement of dimensions]
The outer diameter is measured with a non-contact laser type measuring device at intervals of 50 mm for a quartz glass tube having a predetermined length, and the difference between the maximum value and the minimum value of the outer diameter on the circumference is obtained. The wall thickness is measured with a non-contact laser type measuring device at intervals of 50 mm with respect to a quartz glass tube having a predetermined length, and the difference between the maximum value and the minimum value of the wall thickness on the circumference is obtained. In addition, bending refers to rotating a quartz glass tube of a predetermined length around 50 mm from both ends of the tube as a fulcrum, and obtaining the maximum and minimum displacements at the center of the tube using a non-contact laser measuring instrument. The difference is set to a half. The bending per 1000 mm in length is a value obtained by proportionally converting the value of bending between fulcrums to the value per 1000 mm of the synthetic quartz glass tube.
[Scratches on the surface]
Visual observation is performed under scattered light, and this size is measured when scratches are found.
[Impurity element analysis]
By ICP emission spectroscopy.
[Transmittance measurement]
Measuring method using vacuum ultraviolet spectrophotometer.
[OH group concentration]
D. M.M. DODD and D.D. B. FRASER, Optical determination of OH in fused silica, Journal of Applied Physics, Vol. 37 (1966) p. Measurement method using infrared spectrophotometer described in 3911 document.
[Cl element concentration]
Measurement method by turbidimetric method with AgNO 3 addition after decomposition with HF aqueous solution.

▲1▼回転するターゲット上に気化した四塩化珪素を酸水素中で火炎加水分解してシリカスートを堆積させる外付法(OVD法)により作製した大型多孔質スート体を真空雰囲気下1600℃で透明ガラス化して円柱状石英ガラスインゴットを製造した。この円柱状石英ガラスインゴットの両端を切断し、その外周をダイヤモンド砥粒を備えた円筒研削装置で所定の寸法に正確に研削し、次いで酸化セリウム研磨装置で研磨し非接触レーザー式測定機で寸法合わせを行い、外径の円中心を求めた。この外径の円中心に合わせて超精密ホーニング装置で開孔し、フッ酸によるエッチング処理、純水による水洗、及び乾燥を行って長さ3000mm、外径200mm、内径50mmの石英ガラスシリンダーを得た。この石英ガラスシリンダーの肉厚の変動率は1.6%、表面粗さは17μmであった。
上記石英ガラスシリンダーを、図2に示す如くカーボン製円筒型発熱体を有する縦型抵抗加熱炉内にセットし、円筒状ヒーターの温度を2200℃に設定し、管の下端部をダミー管によって封止して上端部より管内に窒素ガスを導入し、圧力コントローラによって管内の窒素ガス圧を正確に保持しつつ、延伸ロールにより一定の管引き速度で外径35mm、肉厚1mmの合成石英ガラス管に延伸した。この延伸中における管の中の内圧および管引き速度の設定値からの変動は、それぞれ、±3%、±2%であった。
得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が0.3mm、肉厚の最大値と最小値の差が0.1mm、曲がりが0.6mmであった。すなわち長さ1000mmあたりの曲がりは0.43mmであった。また、表面に幅0.5mm以上または長さ150mm以上のキズは見られなかった。
得られた合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲2▼▲1▼と同様の方法によって外径12mm、肉厚1mmの合成石英ガラス管を製造した。得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が0.4mm、肉厚の最大値と最小値の差が0.1mm、曲がりが0.6mmであった。すなわち長さ1000mmあたりの曲がりは0.43mmであった。また、表面に幅0.5mm以上または長さ150mm以上のキズは見られなかった。
該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲3▼得られた▲1▼の合成石英ガラス管を外側管、また▲2▼の合成石英ガラス管を内側管として電極部を構成しキセノンガスを封入して図1に示す全長1400mmのエキシマUVランプを作製した。このランプを図1記載の高周波電源装置に接続して所定の電圧をかけ、点灯させて100時間後のランプ表面での波長172nmの放射光強度を測定した。一方の発光部端部から他方の端部方向にA)80mm、B)ランプ中央、C)1320mmの位置で測定した。それぞれの位置での放射光強度を、B)の位置における強度を100としたときの相対強度で表すと表2のように測定位置によってほぼ同一の均一な強度となった。
(1) A large porous soot body produced by an external method (OVD method) in which silicon tetrachloride vaporized on a rotating target is flame-hydrolyzed in oxyhydrogen to deposit silica soot is transparent at 1600 ° C. in a vacuum atmosphere. Vitrified to produce a cylindrical quartz glass ingot. Both ends of this cylindrical quartz glass ingot are cut, and the outer periphery thereof is accurately ground to a predetermined size with a cylindrical grinding machine equipped with diamond abrasive grains, then polished with a cerium oxide polishing machine and dimensioned with a non-contact laser type measuring machine. The circle center of the outer diameter was obtained. A quartz glass cylinder having a length of 3000 mm, an outer diameter of 200 mm, and an inner diameter of 50 mm is obtained by opening with an ultra-precision honing device in accordance with the circle center of the outer diameter, and performing etching treatment with hydrofluoric acid, washing with pure water, and drying. It was. The variation rate of the thickness of the quartz glass cylinder was 1.6%, and the surface roughness was 17 μm.
The quartz glass cylinder is set in a vertical resistance heating furnace having a carbon cylindrical heating element as shown in FIG. 2, the temperature of the cylindrical heater is set to 2200 ° C., and the lower end of the tube is sealed with a dummy tube. The synthetic quartz glass tube with an outer diameter of 35 mm and a wall thickness of 1 mm at a constant tube drawing speed by a drawing roll while nitrogen gas is introduced into the tube from the upper end and the nitrogen gas pressure in the tube is accurately maintained by a pressure controller. Stretched. The fluctuations from the set values of the internal pressure and the drawing speed in the pipe during the drawing were ± 3% and ± 2%, respectively.
The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the thickness was 0.3 mm, and the bending was 0.6 mm. That is, the bending per 1000 mm in length was 0.43 mm. Further, no scratch with a width of 0.5 mm or more or a length of 150 mm or more was observed on the surface.
Table 1 shows the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the obtained synthetic quartz glass tube.
(2) A synthetic quartz glass tube having an outer diameter of 12 mm and a wall thickness of 1 mm was produced in the same manner as in (1). The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. 0.4 mm, the difference between the maximum value and the minimum value of the wall thickness was 0.1 mm, and the bending was 0.6 mm. That is, the bending per 1000 mm in length was 0.43 mm. Further, no scratch with a width of 0.5 mm or more or a length of 150 mm or more was observed on the surface.
Table 1 shows the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube.
(3) The excimer having a total length of 1400 mm shown in FIG. 1 is formed by forming an electrode section using the obtained synthetic silica glass tube of (1) as an outer tube and the synthetic silica glass tube of (2) as an inner tube and enclosing xenon gas. A UV lamp was produced. The lamp was connected to the high-frequency power supply device shown in FIG. 1, applied with a predetermined voltage, turned on, and the intensity of radiated light having a wavelength of 172 nm on the lamp surface after 100 hours was measured. The measurement was performed at a position of A) 80 mm, B) lamp center, and C) 1320 mm from one light emitting portion end to the other end portion. When the radiated light intensity at each position is expressed by relative intensity when the intensity at the position B) is 100, almost uniform intensity is obtained depending on the measurement position as shown in Table 2.

▲1▼回転するターゲット上に気化した四塩化珪素を酸水素中で火炎加水分解してシリカスートを堆積させる気相軸付法(VAD法)により多孔質スート体を作製した以外は実施例1と同様の方法によって外径35mm、肉厚1mmの合成石英ガラス管を製造した。なお、製造途中での石英ガラスシリンダーの肉厚の変動率は1.7%、表面粗さは17μmであった。
得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が0.7mm、肉厚の最大値と最小値の差が0.3mm、曲がりが1.1mmであった。すなわち長さ1000mmあたりの曲がりは0.79mmであった。また、表面に幅0.5mm以上または長さ150mm以上のキズは見られなかった。
得られた合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲2▼▲1▼と同様の方法によって外径12mm、肉厚1mmの合成石英ガラス管を製造した。得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が0.7mm、肉厚の最大値と最小値の差が0.25mm、曲がりが1.1mmであった。すなわち長さ1000mmあたりの曲がりは0.79mmであった。また、表面に幅0.5mm以上または長さ150mm以上のキズは見られなかった。
該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲3▼得られた▲1▼の合成石英ガラス管を外側管、また▲2▼の合成石英ガラス管を内側管として電極部を構成しキセノンガスを封入して図1に示す全長1400mmのエキシマUVランプを作製した。このランプを図1記載の高周波電源装置に接続して所定の電圧をかけ、点灯させて100時間後のランプ表面での波長172nmの放射光強度を測定した。一方の発光部端部から他方の端部方向にA)80mm、B)ランプ中央、C)1320mmの位置で測定した。それぞれの位置での放射光強度を、実施例1のB)の位置における強度を100としたときの相対強度で表すと表2のように実施例1と同様に測定位置によってほぼ同一の均一な強度となった。
[比較例1]
▲1▼円柱状石英ガラスインゴットの外径の円中心を合わせることなくホーニング装置で開孔した以外は実施例1と同様にして外径35mm、肉厚1mmの合成石英ガラス管を製造した。なお、製造途中での石英ガラスシリンダーの肉厚の変動率は5.2%、表面粗さは32μmであった。
得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が1.7mm、肉厚の最大値と最小値の差が0.4mm、曲がりが3.3mmであった。すなわち長さ1000mmあたりの曲がりは2.29mmであった。また、該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲2▼▲1▼と同様の方法によって外径12mm、肉厚1mmの合成石英ガラス管を製造した。得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が1.8mm、肉厚の最大値と最小値の差が0.35mm、曲がりが3.2mmであった。すなわち長さ1000mmあたりの曲がりは2.29mmであった。また、該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲3▼得られた▲1▼の合成石英ガラス管を外側管、また▲2▼の合成石英ガラス管を内側管として電極部を構成しキセノンガスを封入して図1に示すような全長1400mmのエキシマUVランプを作製した。このランプを図1記載の高周波電源装置に接続して所定の電圧をかけ、点灯させて100時間後のランプ表面での波長172nmの放射光強度を測定した。一方の発光部端部から他方の端部方向にA)80mm、B)ランプ中央、C)1320mmの位置で測定した。それぞれの位置での放射光強度を、実施例1のB)の位置における強度を100としたときの相対強度で表すと表2のように測定位置によって値が大きく変化した結果となった。
[比較例2]
▲1▼合成石英ガラスシリンダー内の窒素ガス圧を制御することなく、また管引き速度を一定に保持することなく管引きした以外は実施例1と同様の方法によって外径35mm、肉厚1mmの合成石英ガラス管を製造した。この延伸中における管の中の内圧および管引き速度の設定値からの変動はそれぞれ、±7%および±6%であった。得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が1.9mm、肉厚の最大値と最小値の差が0.35mm、曲がりが3.2mmであった。すなわち長さ1000mmあたりの曲がりは2.29mmであった。また、該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲2▼▲1▼と同様の方法によって外径12mm、肉厚1mmの合成石英ガラス管を製造した。得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が1.8mm、肉厚の最大値と最小値の差が0.4mm、曲がりが3.1mmであった。すなわち長さ1000mmあたりの曲がりは2.29mmであった。また、該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲3▼得られた▲1▼の合成石英ガラス管を外側管、また▲2▼の合成石英ガラス管を内側管として電極部を構成しキセノンガスを封入して図1に示すような全長1400mmのエキシマUVランプを作製した。このランプを図1記載の高周波電源装置に接続して所定の電圧をかけ、点灯させて100時間後のランプ表面での波長172nmの放射光強度を測定した。一方の発光部端部から他方の端部方向にA)80mm、B)ランプ中央、C)1320mmの位置で測定した。それぞれの位置での放射光強度を、実施例1のB)の位置における強度を100としたときの相対強度で表すと表2のように測定位置によって値が大きく変化し、強度が不均一となった。
[比較例3]
▲1▼合成石英ガラスシリンダーを管引きする際に、無接触加熱延伸方法を用いる代わりに縦型抵抗加熱炉内で当該合成石英ガラスシリンダーにグラファイト製ガイドを直接接触させる接触式加熱加工法を用いて管引きした以外は実施例1と同様の方法によって外径35mm、肉厚1mmの合成石英ガラス管を製造した。
得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が0.7mm、肉厚の最大値と最小値の差が0.4mm、曲がりが1.7mmであった。すなわち長さ1000mmあたりの曲がりは1.21mmであった。また、該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
▲2▼▲1▼と同様の方法によって外径12mm、肉厚1mmの合成石英ガラス管を製造した。得られた合成石英ガラス管を長さ1500mmに切断し、非接触レーザー式測定器で外径、肉厚および回転軸からの変位をそれぞれ測定したところ、外径の最大値と最小値の差が0.5mm、肉厚の最大値と最小値の差が0.35mm、曲がりが1.5mmであった。すなわち長さ1000mmあたりの曲がりは1.07mmであった。また、該合成石英ガラス管の不純物元素濃度、波長172nmの透過率、OH基濃度、Cl元素濃度はそれぞれ表1に示す通りであった。
この比較例において不純物濃度が増大したのは、合成石英ガラスシリンダーを管引きする際に、無接触加熱延伸方法を用いる代わりに縦型抵抗加熱炉内で当該合成石英ガラスシリンダーにグラファイト製ガイドを直接接触させる接触式加熱加工法を用いて管引きした結果であると考えられる。
▲3▼得られた▲1▼の合成石英ガラス管を外側管、また▲2▼の合成石英ガラス管を内側管として電極部を構成しキセノンガスを封入して図1に示すような全長1400mmのエキシマUVランプを作製した。このランプを図1記載の高周波電源装置に接続して所定の電圧をかけ、点灯させて100時間後のランプ表面での波長172nmの放射光強度を測定した。一方の発光部端部から他方の端部方向にA)80mm、B)ランプ中央、C)1320mmの位置で測定した。それぞれの位置での放射光強度を、実施例1のB)の位置における強度を100としたときの相対強度で表すと表2のように実施例1に比較して大幅に強度の低い値となった。
以上から本発明の効果が明らかである。
(1) Example 1 except that a porous soot body was prepared by a gas phase axial method (VAD method) in which silicon tetrachloride vaporized on a rotating target was flame-hydrolyzed in oxyhydrogen to deposit silica soot. A synthetic quartz glass tube having an outer diameter of 35 mm and a wall thickness of 1 mm was manufactured by the same method. Note that the variation rate of the thickness of the quartz glass cylinder during the production was 1.7%, and the surface roughness was 17 μm.
The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the wall thickness was 0.7 mm, and the bending was 1.1 mm. That is, the bending per 1000 mm in length was 0.79 mm. Further, no scratch with a width of 0.5 mm or more or a length of 150 mm or more was observed on the surface.
Table 1 shows the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the obtained synthetic quartz glass tube.
(2) A synthetic quartz glass tube having an outer diameter of 12 mm and a wall thickness of 1 mm was produced in the same manner as in (1). The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of 0.7 mm was 0.25 mm, and the bending was 1.1 mm. That is, the bending per 1000 mm in length was 0.79 mm. Further, no scratch with a width of 0.5 mm or more or a length of 150 mm or more was observed on the surface.
Table 1 shows the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube.
(3) The excimer having a total length of 1400 mm shown in FIG. 1 is formed by forming an electrode section using the obtained synthetic silica glass tube of (1) as an outer tube and the synthetic silica glass tube of (2) as an inner tube and enclosing xenon gas. A UV lamp was produced. The lamp was connected to the high-frequency power supply device shown in FIG. 1, applied with a predetermined voltage, turned on, and the intensity of radiated light having a wavelength of 172 nm on the lamp surface after 100 hours was measured. The measurement was performed at a position of A) 80 mm, B) lamp center, and C) 1320 mm from one light emitting portion end to the other end portion. When the radiated light intensity at each position is expressed as a relative intensity when the intensity at the position B) of Example 1 is 100, as shown in Table 2, it is almost the same and uniform depending on the measurement position as in Example 1. It became strength.
[Comparative Example 1]
{Circle around (1)} A synthetic quartz glass tube having an outer diameter of 35 mm and a wall thickness of 1 mm was produced in the same manner as in Example 1 except that a hole was opened with a honing device without aligning the circular center of the outer diameter of the cylindrical quartz glass ingot. During the production, the variation rate of the thickness of the quartz glass cylinder was 5.2%, and the surface roughness was 32 μm.
The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. 1.7 mm, the difference between the maximum value and the minimum value of the wall thickness was 0.4 mm, and the bending was 3.3 mm. That is, the bending per 1000 mm in length was 2.29 mm. Further, the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube were as shown in Table 1, respectively.
(2) A synthetic quartz glass tube having an outer diameter of 12 mm and a wall thickness of 1 mm was produced in the same manner as in (1). The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the thickness was 1.85 mm, the bending was 3.2 mm. That is, the bending per 1000 mm in length was 2.29 mm. Further, the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube were as shown in Table 1, respectively.
(3) The obtained synthetic quartz glass tube of (1) is an outer tube, and the synthetic quartz glass tube of (2) is an inner tube to constitute an electrode portion and enclose xenon gas and have a total length of 1400 mm as shown in FIG. Excimer UV lamps were manufactured. The lamp was connected to the high-frequency power supply device shown in FIG. 1, applied with a predetermined voltage, turned on, and the intensity of radiated light having a wavelength of 172 nm on the lamp surface after 100 hours was measured. The measurement was performed at a position of A) 80 mm, B) lamp center, and C) 1320 mm from one light emitting portion end to the other end portion. When the intensity of the radiated light at each position is expressed by the relative intensity when the intensity at the position B) in Example 1 is set to 100, the value greatly changed depending on the measurement position as shown in Table 2.
[Comparative Example 2]
(1) An outer diameter of 35 mm and a wall thickness of 1 mm were obtained in the same manner as in Example 1 except that the tube was drawn without controlling the nitrogen gas pressure in the synthetic quartz glass cylinder and keeping the tube drawing speed constant. A synthetic quartz glass tube was manufactured. The fluctuations from the set values of the internal pressure and the drawing speed in the pipe during the drawing were ± 7% and ± 6%, respectively. The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the wall thickness was 1.9 mm, the bend was 3.2 mm. That is, the bending per 1000 mm in length was 2.29 mm. Further, the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube were as shown in Table 1, respectively.
(2) A synthetic quartz glass tube having an outer diameter of 12 mm and a wall thickness of 1 mm was produced in the same manner as in (1). The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the thickness was 1.8 mm, and the bending was 3.1 mm. That is, the bending per 1000 mm in length was 2.29 mm. Further, the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube were as shown in Table 1, respectively.
(3) The obtained synthetic quartz glass tube of (1) is an outer tube, and the synthetic quartz glass tube of (2) is an inner tube to constitute an electrode portion and enclose xenon gas and have a total length of 1400 mm as shown in FIG. Excimer UV lamps were manufactured. The lamp was connected to the high-frequency power supply device shown in FIG. 1, applied with a predetermined voltage, turned on, and the intensity of radiated light having a wavelength of 172 nm on the lamp surface after 100 hours was measured. The measurement was performed at a position of A) 80 mm, B) lamp center, and C) 1320 mm from one light emitting portion end to the other end portion. When the intensity of the radiated light at each position is expressed by the relative intensity when the intensity at the position B) in Example 1 is 100, the value varies greatly depending on the measurement position as shown in Table 2, and the intensity is not uniform. became.
[Comparative Example 3]
(1) When drawing a synthetic quartz glass cylinder, instead of using a non-contact heating drawing method, a contact heating method is used in which a graphite guide is brought into direct contact with the synthetic quartz glass cylinder in a vertical resistance heating furnace. A synthetic quartz glass tube having an outer diameter of 35 mm and a wall thickness of 1 mm was produced in the same manner as in Example 1 except that the tube was drawn.
The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the thickness was 0.7 mm, the bending was 1.7 mm. That is, the bending per 1000 mm in length was 1.21 mm. Further, the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube were as shown in Table 1, respectively.
(2) A synthetic quartz glass tube having an outer diameter of 12 mm and a wall thickness of 1 mm was produced in the same manner as in (1). The obtained synthetic quartz glass tube was cut to a length of 1500 mm, and the outer diameter, thickness, and displacement from the rotating shaft were measured with a non-contact laser measuring instrument. The difference between the maximum value and the minimum value of the thickness was 0.55 mm, and the bending was 1.5 mm. That is, the bending per 1000 mm in length was 1.07 mm. Further, the impurity element concentration, the transmittance at a wavelength of 172 nm, the OH group concentration, and the Cl element concentration of the synthetic quartz glass tube were as shown in Table 1, respectively.
In this comparative example, the impurity concentration increased because when the synthetic quartz glass cylinder was drawn, the graphite guide was directly attached to the synthetic quartz glass cylinder in the vertical resistance heating furnace instead of using the non-contact heating drawing method. It is thought that it is the result of pipe drawing using the contact-type heat processing method to contact.
(3) The obtained synthetic quartz glass tube of (1) is an outer tube, and the synthetic quartz glass tube of (2) is an inner tube to constitute an electrode portion and enclose xenon gas and have a total length of 1400 mm as shown in FIG. Excimer UV lamps were manufactured. The lamp was connected to the high-frequency power supply device shown in FIG. 1, applied with a predetermined voltage, turned on, and the intensity of radiated light having a wavelength of 172 nm on the lamp surface after 100 hours was measured. The measurement was performed at a position of A) 80 mm, B) lamp center, and C) 1320 mm from one light emitting portion end to the other end portion. The radiated light intensity at each position is expressed as a relative intensity when the intensity at the position B) in Example 1 is set to 100. As shown in Table 2, the intensity is significantly lower than that in Example 1. became.
From the above, the effect of the present invention is clear.

本発明の合成石英ガラス管は長尺でありながら寸法精度も高いため、これを用いて二重管構造を有するエキシマUVランプを構成した場合には、ランプ全長にわたって均一な発光特性を持つ長尺のエキシマUVランプを製造することができる。

Figure 2005101456
Figure 2005101456
Since the synthetic quartz glass tube of the present invention is long but has high dimensional accuracy, when an excimer UV lamp having a double tube structure is formed using this, the long glass tube having uniform light emission characteristics over the entire length of the lamp is used. Excimer UV lamps can be manufactured.
Figure 2005101456
Figure 2005101456

Claims (18)

高純度の合成石英ガラスからなり、波長150〜250nmの真空紫外光を放出するエキシマUVランプ用合成石英ガラス管において、該合成石英ガラス管の寸法が長さ1000mm以上、外径10mm以上50mm以下、肉厚0.8mm以上2.8mm以下で表面に幅0.5mm以上または長さ150mm以上のキズがなく、外径の最大値と最小値の差が1.4mm以下、肉厚の最大値と最小値の差が0.5mm以下、長さ1000mmあたりの曲がりが1.5mm以下であることを特徴とするエキシマUVランプ用合成石英ガラス管。In a synthetic quartz glass tube for excimer UV lamps, which is made of high purity synthetic quartz glass and emits vacuum ultraviolet light with a wavelength of 150 to 250 nm, the synthetic quartz glass tube has a length of 1000 mm or more, an outer diameter of 10 mm or more and 50 mm or less, The thickness is 0.8 mm or more and 2.8 mm or less, there is no scratch on the surface of width 0.5 mm or more or length 150 mm or more, the difference between the maximum value and the minimum value of the outer diameter is 1.4 mm or less, A synthetic quartz glass tube for excimer UV lamps, wherein the difference between the minimum values is 0.5 mm or less, and the bending per 1000 mm in length is 1.5 mm or less. 外径の最大値と最小値の差が0.7mm以下、肉厚の最大値と最小値の差が0.3mm以下、長さ1000mmあたりの曲がりが0.7mm以下であることを特徴とする請求項1のエキシマUVランプ用合成石英ガラス管。The difference between the maximum value and the minimum value of the outer diameter is 0.7 mm or less, the difference between the maximum value and the minimum value of the wall thickness is 0.3 mm or less, and the bending per 1000 mm in length is 0.7 mm or less. The synthetic quartz glass tube for excimer UV lamps of Claim 1. Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が5wtppb未満であることを特徴とする請求項1または2のエキシマUVランプ用合成石英ガラス管。The composition for excimer UV lamp according to claim 1 or 2, wherein each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 5 wtppb. Quartz glass tube. Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が3wtppb未満であることを特徴とする請求項1または2のエキシマUVランプ用合成石英ガラス管。The composition for excimer UV lamp according to claim 1 or 2, wherein each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 3 wtppb. Quartz glass tube. Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が1wtppb未満であることを特徴とする請求項1または2のエキシマUVランプ用合成石英ガラス管。The composition for excimer UV lamp according to claim 1 or 2, wherein each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 1 wtppb. Quartz glass tube. 肉厚0.8mm以上2.8mm以下の合成石英ガラス管の内表面から外表面への波長172nmにおける分光透過率が80%以上であることを特徴とする請求項1〜5のいずれかのエキシマUVランプ用合成石英ガラス管。6. The excimer according to claim 1, wherein a spectral transmittance at a wavelength of 172 nm from an inner surface to an outer surface of a synthetic quartz glass tube having a wall thickness of 0.8 mm or more and 2.8 mm or less is 80% or more. Synthetic quartz glass tube for UV lamp. 前記分光透過率が83%以上であることを特徴とする請求項6のエキシマUVランプ用合成石英ガラス管。The synthetic quartz glass tube for excimer UV lamp according to claim 6, wherein the spectral transmittance is 83% or more. 合成石英ガラス管中のOH基濃度が10wtppm以上400wtppm以下、Cl元素濃度が30wtppm以下であることを特徴とする請求項1〜7のいずれかのエキシマUVランプ用合成石英ガラス管。The synthetic quartz glass tube for excimer UV lamp according to any one of claims 1 to 7, wherein the synthetic quartz glass tube has an OH group concentration of 10 wtppm to 400 wtppm and a Cl element concentration of 30 wtppm or less. 合成石英ガラス管中のCl元素濃度が5wtppm以下であることを特徴とする請求項1〜8のいずれかのエキシマUVランプ用合成石英ガラス管。The synthetic quartz glass tube for excimer UV lamp according to any one of claims 1 to 8, wherein the concentration of Cl element in the synthetic quartz glass tube is 5 wtppm or less. 波長150〜250nmの真空紫外光を放出するエキシマUVランプ用であって、寸法が長さ1000mm以上、外径10mm以上50mm以下、肉厚0.8mm以上2.8mm以下で表面に幅0.5mm以上または長さ150mm以上のキズがなく、外径の最大値と最小値の差が1.4mm以下、肉厚の最大値と最小値の差が0.5mm以下、長さ1000mmあたりの曲がりが1.5mm以下であるエキシマUVランプ用合成石英ガラス管を製造るエキシマUVランプ用合成石英ガラス管の製造方法であって、肉厚の変動率が1.8%以下、表面粗さが18μm以下の石英ガラス原管である円筒状石英ガラスシリンダーを、無接触加熱延伸方法により、所定の径と肉厚になるように、管の中の内圧および管引き速度を、設定値からの変動が各々±5%以内になるように維持しつつ管引きを行って、エキシマUVランプ用合成石英ガラス管を製造することを特徴とするエキシマUVランプ用合成石英ガラス管の製造方法。For excimer UV lamps that emit vacuum ultraviolet light having a wavelength of 150 to 250 nm, the dimensions are 1000 mm or more, outer diameter is 10 mm or more and 50 mm or less, wall thickness is 0.8 mm or more and 2.8 mm or less, and the width is 0.5 mm on the surface. There are no scratches of 150 mm or more in length, the difference between the maximum value and the minimum value of the outer diameter is 1.4 mm or less, the difference between the maximum value and the minimum value of the wall thickness is 0.5 mm or less, and there is a bend per 1000 mm in length. A method for producing a synthetic quartz glass tube for excimer UV lamps having a thickness of 1.5 mm or less, wherein the variation rate of wall thickness is 1.8% or less, and the surface roughness is 18 μm or less. Fluctuation of the internal pressure and pulling speed in the tube from the set values so that the cylindrical quartz glass cylinder, which is the silica glass tube of, can be made to the specified diameter and wall thickness by the non-contact heating drawing method. Each performed Kanbiki while being maintained to within ± 5%, the production method of the excimer UV lamp synthetic quartz glass tube, characterized in that to produce an excimer UV lamp synthetic quartz glass tube. 外径の最大値と最小値の差が0.7mm以下、肉厚の最大値と最小値の差が0.3mm以下、長さ1000mmあたりの曲がりが0.7mm以下であることを特徴とする請求項10のエキシマUVランプ用合成石英ガラス管の製造方法。The difference between the maximum value and the minimum value of the outer diameter is 0.7 mm or less, the difference between the maximum value and the minimum value of the wall thickness is 0.3 mm or less, and the bending per 1000 mm in length is 0.7 mm or less. The manufacturing method of the synthetic quartz glass tube for excimer UV lamps of Claim 10. Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が5wtppb未満であることを特徴とする請求項10または11のエキシマUVランプ用合成石英ガラス管の製造方法。The composition for excimer UV lamp according to claim 10 or 11, wherein each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 5 wtppb. A method of manufacturing a quartz glass tube. Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が3wtppb未満であることを特徴とする請求項10または11のエキシマUVランプ用合成石英ガラス管の製造方法。The composition for excimer UV lamp according to claim 10 or 11, wherein each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 3 wtppb. A method of manufacturing a quartz glass tube. Li、Na、K、Ca、Mg、Ti、Fe、Ni、Cu、Cr、Mo、W、Vの各元素濃度が1wtppb未満であることを特徴とする請求項10または11のエキシマUVランプ用合成石英ガラス管の製造方法。The composition for excimer UV lamp according to claim 10 or 11, wherein each element concentration of Li, Na, K, Ca, Mg, Ti, Fe, Ni, Cu, Cr, Mo, W, V is less than 1 wtppb. A method of manufacturing a quartz glass tube. 肉厚0.8mm以上2.8mm以下の合成石英ガラス管の内表面から外表面への波長172nmにおける分光透過率が80%以上であることを特徴とする請求項10〜14のいずれかのエキシマUVランプ用合成石英ガラス管の製造方法。The excimer according to any one of claims 10 to 14, wherein a spectral transmittance at a wavelength of 172 nm from an inner surface to an outer surface of a synthetic quartz glass tube having a wall thickness of 0.8 mm or more and 2.8 mm or less is 80% or more. A method for producing a synthetic quartz glass tube for a UV lamp. 前記分光透過率が83%以上であることを特徴とする請求項15のエキシマUVランプ用合成石英ガラス管の製造方法。16. The method for producing a synthetic quartz glass tube for excimer UV lamps according to claim 15, wherein the spectral transmittance is 83% or more. 合成石英ガラス管中のOH基濃度が10wtppm以上400wtppm以下、Cl元素濃度が30wtppm以下であることを特徴とする請求項10〜16のいずれかのエキシマUVランプ用合成石英ガラス管の製造方法。The method for producing a synthetic quartz glass tube for an excimer UV lamp according to any one of claims 10 to 16, wherein an OH group concentration in the synthetic quartz glass tube is 10 wtppm or more and 400 wtppm or less, and a Cl element concentration is 30 wtppm or less. 合成石英ガラス管中のCl元素濃度が5wtppm以下であることを特徴とする請求項10〜17のいずれかのエキシマUVランプ用合成石英ガラス管の製造方法。The method for producing a synthetic quartz glass tube for excimer UV lamps according to any one of claims 10 to 17, wherein the concentration of Cl element in the synthetic quartz glass tube is 5 wtppm or less.
JP2006512212A 2004-04-12 2004-04-12 Synthetic quartz glass tube for excimer UV lamp and manufacturing method thereof Pending JPWO2005101456A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005208 WO2005101456A1 (en) 2004-04-12 2004-04-12 Synthetic quartz glass tube for excimer uv lamp and method for production thereof

Publications (1)

Publication Number Publication Date
JPWO2005101456A1 true JPWO2005101456A1 (en) 2008-03-06

Family

ID=35150240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006512212A Pending JPWO2005101456A1 (en) 2004-04-12 2004-04-12 Synthetic quartz glass tube for excimer UV lamp and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPWO2005101456A1 (en)
WO (1) WO2005101456A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013107435B4 (en) * 2013-07-12 2015-01-29 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a quartz glass large tube
JP6787091B2 (en) * 2016-12-05 2020-11-18 セイコーエプソン株式会社 Liquid crystal device, electronic device, manufacturing method of liquid crystal device, mother substrate for liquid crystal device, and manufacturing method of mother substrate for liquid crystal device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3619510A1 (en) * 1986-06-10 1987-12-17 Philips Patentverwaltung METHOD FOR PRODUCING GLASS OR CERAMIC BODIES
JP2980510B2 (en) * 1994-01-28 1999-11-22 信越石英株式会社 High purity silica glass for ultraviolet lamp and method for producing the same
JP3025414B2 (en) * 1994-09-20 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP2854250B2 (en) * 1994-09-20 1999-02-03 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP3292016B2 (en) * 1995-12-20 2002-06-17 ウシオ電機株式会社 Discharge lamp and vacuum ultraviolet light source device
JP3188624B2 (en) * 1995-12-27 2001-07-16 信越石英株式会社 High purity synthetic silica glass for far ultraviolet rays and method for producing the same
DE19915509C1 (en) * 1999-04-07 2000-06-08 Heraeus Quarzglas Production of a cylindrical component made of quartz glass has a flue with guiding elements arranged behind each other along the pulling axis
JP4144176B2 (en) * 2000-11-22 2008-09-03 日本碍子株式会社 Luminescent container for high pressure discharge lamp
JP3915596B2 (en) * 2001-12-27 2007-05-16 ウシオ電機株式会社 Excimer lamp and discharge vessel for excimer lamp
JP3912139B2 (en) * 2002-02-27 2007-05-09 ウシオ電機株式会社 Discharge lamp device

Also Published As

Publication number Publication date
WO2005101456A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP2006335577A (en) Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
US6143676A (en) Synthetic silica glass used with uv-rays and method producing the same
JP5922649B2 (en) High purity synthetic silica and products such as jigs made from the high purity synthetic silica
US20240034667A1 (en) Method for making halogen doped optical element
JP5419453B2 (en) Thermal reflow of fused silica and glass
EP2463250B1 (en) Methods for producing and for heat-treating a tio2-sio2 glass body
JP3228732B2 (en) Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography
JP2006294440A (en) Deformed synthetic quartz tube for excimer uv lamp, and its manufacturing method
JP4111940B2 (en) Method for producing synthetic silica glass large plate for high output vacuum ultraviolet light
JPWO2005101456A1 (en) Synthetic quartz glass tube for excimer UV lamp and manufacturing method thereof
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
EP1000908A2 (en) Method for producing quartz glass preform for optical fibers
WO2010134449A1 (en) Method for producing tio2-sio2 glass body, method for heat-treating tio2-sio2 glass body, tio2-sio2 glass body, and optical base for euvl
JP6655008B2 (en) Mirror blank for EUV lithography that does not expand under EUV irradiation
JP3274955B2 (en) Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material
JP3630533B2 (en) Synthetic silica glass large plate for high output vacuum ultraviolet ray and method for producing the same
EP1229004B1 (en) Method of producing a quartz glass preform for optical fibers by drawing a tube
JPH0952722A (en) Optical synthetic quartz glass preform, its production and synthetic quartz glass product using the same
JP2003176143A (en) Synthetic quartz glass
KR100315050B1 (en) manufacturing method of Qurtz glass preform for optical fiber
JP7507979B2 (en) Microstructured optical fiber and preform thereof
JP2003226545A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform
JP2005298322A (en) Large size synthetic quartz glass plate for excimer uv lamp device
JP2002121038A (en) Heat treatment method for synthetic quartz glass
JP2002053338A (en) Quartz glass for uv ray and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112