JP3274955B2 - Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material - Google Patents

Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material

Info

Publication number
JP3274955B2
JP3274955B2 JP21084595A JP21084595A JP3274955B2 JP 3274955 B2 JP3274955 B2 JP 3274955B2 JP 21084595 A JP21084595 A JP 21084595A JP 21084595 A JP21084595 A JP 21084595A JP 3274955 B2 JP3274955 B2 JP 3274955B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
temperature
distribution
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21084595A
Other languages
Japanese (ja)
Other versions
JPH0952719A (en
Inventor
茂利 林
忠久 荒堀
哲之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21084595A priority Critical patent/JP3274955B2/en
Publication of JPH0952719A publication Critical patent/JPH0952719A/en
Application granted granted Critical
Publication of JP3274955B2 publication Critical patent/JP3274955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は合成石英ガラス母材
の製造方法に関し、より詳細には紫外領域から赤外領域
にわたる広い波長領域における光を利用した機器のレン
ズ、ミラー、プリズム、窓部材等の光学部品の形成に用
いられる合成石英ガラス材の原料となる合成石英ガラス
母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a synthetic quartz glass preform, and more particularly, to a lens, a mirror, a prism, a window member, and the like of an apparatus utilizing light in a wide wavelength range from an ultraviolet region to an infrared region. The present invention relates to a method for producing a synthetic quartz glass base material which is a raw material of a synthetic quartz glass material used for forming the optical component.

【0002】[0002]

【発明の属する技術分野】本発明は光学部品用合成石英
ガラス母材の製造方法、及び光学部品用石英ガラス材の
製造方法に関し、より詳細には紫外領域における光を利
用した機器のレンズ、ミラー、プリズム、窓部材等の光
学部品の形成に用いられる合成石英ガラス材の原料とな
紫外領域用途の光学部品用合成石英ガラス母材の製造
方法、及び紫外領域用途の光学部品用合成石英ガラス材
の製造方法に関する。
The present invention relates to processes for the preparation of an optical component for synthetic quartz glass preform, and the optical component of quartz glass material
Regarding the manufacturing method , more specifically, synthesis for optical components in the ultraviolet region used as a raw material of synthetic quartz glass material used for forming optical components such as lenses, mirrors, prisms, and window members of equipment utilizing light in the ultraviolet region. Method for producing quartz glass base material , and synthetic quartz glass material for optical components for use in ultraviolet region
And a method for producing the same .

【0003】このような優れた特性を生かし、例えば紫
外領域から赤外領域にわたる広い波長領域における光を
利用した機器のレンズ、ミラー、プリズム、窓部材等の
光学部品等に用いられている。
Utilizing such excellent characteristics, it is used for optical components such as lenses, mirrors, prisms, and window members of devices utilizing light in a wide wavelength range from the ultraviolet region to the infrared region.

【0004】これらの光学部品の形成に用いられる石英
ガラス材料には、種々の特性が要求されるが、特に屈折
率の均質性、及び使用波長での耐光性が高いこと(光照
射後に透過率が低下しにくいこと)等が要求される。
[0004] Quartz glass materials used for forming these optical components are required to have various characteristics, but in particular, homogeneity of refractive index and high light resistance at the wavelength used (transmissivity after light irradiation). Is difficult to lower).

【0005】このような厳しい条件に適合可能な石英ガ
ラスとして、合成石英ガラスが挙げられる。一般的に合
成石英ガラスという呼び名は、出発原料として天然のシ
リカ原料を用いていない全ての石英ガラスに適用される
が、この合成石英ガラスを製造する方法としては、種々
の方法が存在する。従って、原料の純度や製造方法に起
因して、製造された合成石英ガラスの不純物元素濃度
(金属元素濃度、非金属元素濃度)や欠陥濃度等も様々
なグレードのものが存在し、すべての合成石英ガラスが
理想的な透過光学系用のガラス材料となり得るわけでは
ない。
[0005] Synthetic quartz glass is an example of quartz glass that can meet such severe conditions. In general, the term synthetic quartz glass is applied to all quartz glass that does not use a natural silica material as a starting material, but there are various methods for producing this synthetic quartz glass. Therefore, depending on the purity of the raw materials and the manufacturing method, there are various grades of impurity element concentration (metal element concentration, non-metal element concentration), defect concentration, and the like in the manufactured synthetic quartz glass. Quartz glass cannot be the ideal glass material for transmission optics.

【0006】合成石英ガラスの製造法には大別して気相
法と液相法があり、光学系に用いられる材料の製造方法
としては気相法が主流であるが、この気相法も直接合成
法、プラズマCVD法、気相軸付け法(VAD法)等の
種類があり、原料や製造方法に起因して合成石英ガラス
中における金属等の不純物、OH基、Cl、H2 、O
2 、酸素過剰欠陥、酸素欠乏欠陥、環構造欠陥等の濃度
が異なる。これらの不純物や欠陥等の濃度は、合成石英
ガラスの光吸収、蛍光、屈折率等の光学特性に大きな影
響を及ぼすことが知られている。
[0006] Synthetic quartz glass production methods are roughly classified into a gas phase method and a liquid phase method, and a gas phase method is mainly used as a method for producing a material used for an optical system. There are various types such as a CVD method, a plasma CVD method, and a gas phase axial method (VAD method). The impurities such as metals, OH groups, Cl, H 2 , O
2. Concentrations of oxygen excess defects, oxygen deficiency defects, ring structure defects, etc. are different. It is known that the concentration of these impurities and defects has a great influence on optical characteristics such as light absorption, fluorescence and refractive index of synthetic quartz glass.

【0007】[0007]

【発明が解決しようとする課題】例えば前記VAD法
は、バーナーからケイ素化合物、水素、酸素などの原料
ガスを鉛直に懸下した種棒に向けて供給し、前記ケイ素
化合物を酸素−水素火炎中で加水分解させて生成させた
石英ガラスの微粒子を石英製等の種棒の下端部に付着、
堆積させて多孔質合成石英ガラスを形成した後、加熱す
ることにより透明ガラス化する合成石英ガラスの製造法
であるが、そのためにケイ素化合物として四塩化ケイ素
を使用した場合には、塩素やOH基等が合成石英ガラス
内に残留し、その濃度が不均一になり易く、これらの不
純物に起因して屈折率等に分布が生じるという問題があ
った。
For example, in the VAD method, a raw material gas such as a silicon compound, hydrogen, or oxygen is supplied from a burner to a vertically suspended seed rod, and the silicon compound is supplied to an oxygen-hydrogen flame. Attach the fine particles of quartz glass produced by hydrolysis in the lower end of a seed rod made of quartz, etc.
This is a method for producing synthetic quartz glass, which is formed by depositing to form a porous synthetic quartz glass, and then heated to be transparent and vitrified.However, when silicon tetrachloride is used as a silicon compound, chlorine or OH groups are used. And the like remain in the synthetic quartz glass, the concentration of which tends to be non-uniform, and there is a problem in that the refractive index and the like are distributed due to these impurities.

【0008】また、通常、透明ガラス化は1420〜1
600℃の温度範囲で行うが、その後の徐冷時の合成石
英ガラス体の内部と外部とにおける冷却速度の差に起因
して、屈折率に分布が生じる。そして、通常は、主とし
てOH基の分布によって生じる屈折率の分布と透明ガラ
ス化後の徐冷によって生じる屈折率分布とが重なり合う
ため、より大きな屈折率分布を生じ易いという問題があ
った。
[0008] In general, the vitrification of the transparent glass is 1420 to 1
This is performed in a temperature range of 600 ° C., but a distribution occurs in the refractive index due to a difference in cooling rate between the inside and the outside of the synthetic quartz glass body during the subsequent slow cooling. Usually, since the distribution of the refractive index mainly caused by the distribution of the OH group and the refractive index distribution caused by the slow cooling after the vitrification of the transparent glass overlap, there is a problem that a larger refractive index distribution is easily generated.

【0009】このような不純物の残留濃度分布に起因す
る屈折率分布と、製造過程の冷却条件等の熱履歴に起因
する屈折率分布とを相反する分布として消去し合うよう
に不純物濃度や加熱後の冷却速度を調整し、実際の屈折
率分布が小さく、良好な品質の光学用石英ガラスを得る
方法が提案されている(特開平2−102139号公
報、特開平2−239127号公報等)。
[0009] The refractive index distribution caused by the residual impurity concentration distribution and the refractive index distribution caused by the thermal history such as the cooling conditions in the manufacturing process are erased as contradictory distributions. A method has been proposed in which the cooling rate is adjusted to obtain an optical quartz glass having a small actual refractive index distribution and good quality (Japanese Patent Application Laid-Open Nos. 2-102139 and 2-239127).

【0010】前記特開平2−102139号公報に記載
された発明においては、ガラスの中央部分にOH基の極
小濃度域を存在させるとともに、周辺部に近づくにつれ
て徐々に高濃度となるOH基濃度分布を形成する。この
とき、前記OH基濃度分布に起因する屈折率分布は中央
部分で極大値を有し、周辺部に近づくにつれて低下する
分布(以下、凸型分布と記す)をなしている。一方、前
記OH基濃度分布に起因する屈折率分布を打ち消すよう
に、熱処理条件を選択することによる屈折率分布を形成
する。すなわち、800〜1300℃の範囲に所定時間
加熱した後、所定の速度で徐冷する方法により仮想温度
分布をコントロールし、この仮想温度分布に起因する中
央部分に極小値を有し、周辺部に近づくにつれて大きく
なる屈折率分布(以下、凹型分布と記す)を形成する。
このような相反する不純物濃度に起因する屈折率分布と
仮想温度分布に起因する屈折率分布を形成することによ
り、総合的に屈折率分布が小さく、良好な品質を有する
光学用合成石英ガラスを得ることができることが前記公
報に記載されている。
In the invention described in Japanese Patent Application Laid-Open No. 2-102139, an OH group concentration distribution in which a minimum concentration area of OH groups exists in the central portion of the glass and the concentration gradually increases as approaching the peripheral portion. To form At this time, the refractive index distribution caused by the OH group concentration distribution has a local maximum value at the center portion, and has a distribution (hereinafter, referred to as a convex distribution) that decreases as approaching the peripheral portion. On the other hand, a refractive index distribution is formed by selecting a heat treatment condition so as to cancel the refractive index distribution caused by the OH group concentration distribution. In other words, after heating to a temperature in the range of 800 to 1300 ° C. for a predetermined time, the virtual temperature distribution is controlled by a method of gradually cooling at a predetermined speed, and has a local minimum value caused by the virtual temperature distribution, A refractive index distribution (hereinafter, referred to as a concave distribution) that increases as approaching is formed.
By forming the refractive index distribution caused by such contradictory impurity concentrations and the refractive index distribution caused by the virtual temperature distribution, a synthetic quartz glass for optics having a small overall refractive index distribution and good quality is obtained. It is described in the publication that this is possible.

【0011】また、特開平2−239127号公報に記
載された発明においては、OH基濃度と塩素濃度とに起
因した屈折率分布を凸型分布とし、前記凸型の屈折率分
布を打ち消すように仮想温度分布をコントロールするこ
とにより凹型の屈折率分布を形成し、総合的に屈折率分
布を小さく、良好な品質の光学用合成石英ガラスを得る
ことができることが記載されている。
In the invention described in Japanese Patent Application Laid-Open No. 2-239127, the refractive index distribution caused by the OH group concentration and the chlorine concentration is set as a convex distribution, and the convex refractive index distribution is canceled. It is described that by controlling a virtual temperature distribution, a concave refractive index distribution is formed, the refractive index distribution is reduced overall, and a synthetic quartz glass for optics of good quality can be obtained.

【0012】しかしながら、前記したように、通常の方
法で製造した合成石英ガラス中のOH基濃度と塩素濃度
は、ガラス塊の内部ほど残留し易いため、いずれも中央
部分に極大濃度域があり、その周辺部に近づくにつれて
徐々に低濃度となり、前記OH基濃度分布及び塩素濃度
分布に起因する屈折率分布はいずれも凹型となる。従っ
て、ガラス塊の中央部分に極小値を有するようなOH基
濃度分布及び塩素濃度分布を形成することは難しく、ま
たその濃度分布をコントロールすることは一層難しいた
め、このような合成石英ガラスの製造方法は現実的な方
法ではなく、また仮に製造できたとしても、設備自体が
高価になるため、得られる合成石英ガラスも非常に高価
なものとなるという課題があった。
However, as described above, the OH group concentration and the chlorine concentration in the synthetic quartz glass manufactured by the ordinary method are more likely to remain in the interior of the glass lump. The concentration gradually decreases as approaching the peripheral portion, and the refractive index distribution resulting from the OH group concentration distribution and the chlorine concentration distribution becomes concave. Therefore, it is difficult to form an OH group concentration distribution and a chlorine concentration distribution having a minimum value in the central portion of the glass lump, and it is more difficult to control the concentration distribution. The method is not a practical method, and even if it can be manufactured, there is a problem in that the equipment itself becomes expensive, and thus the synthetic quartz glass obtained becomes very expensive.

【0013】本発明はこのような課題に鑑みなされたも
のであり、屈折率が均一で屈折率分布がほとんどない合
成石英ガラスを得ることが可能な紫外領域用途の光学部
品用合成石英ガラス母材の製造方法、及び紫外領域用途
の光学部品用合成石英ガラス材の製造方法を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an optical section for use in an ultraviolet region capable of obtaining a synthetic quartz glass having a uniform refractive index and almost no refractive index distribution.
For manufacturing synthetic quartz glass base material for products and applications in the ultraviolet region
It is an object of the present invention to provide a method for producing a synthetic quartz glass material for an optical component .

【0014】[0014]

【課題を解決するための手段】本発明に係る紫外領域用
途の光学部品用合成石英ガラス母材の製造方法は、気相
軸付け法により形成された多孔質合成石英ガラスに、事
前仮焼工程として、1.5〜50パスカルの圧力下、1
300〜1400℃で1〜5時間の加熱処理を施して密
度を均質化し、次に仮焼工程として、同じ圧力下、12
00〜1300℃の温度で10〜40時間加熱して水分
等を除去した後、0.5〜5℃/分の速度で昇温し、さ
らに透明化工程を行い透明ガラス化することを特徴とし
ている。また本発明に係る紫外領域用途の光学部品用合
成石英ガラス材の製造方法は、上記光学部品用合成石英
ガラス母材の製造方法により製造された合成石英ガラス
母材を1600〜2000℃の温度まで加熱して成形し
た後、1500〜1600℃の温度まで冷却して均温化
し、次に少なくとも1500℃以上の温度から、5℃/
分未満の速度で冷却し、さらに1×10 3 〜1×10 6
パスカルの水素ガス雰囲気下、610〜790℃で加熱
することにより水素をドープすることを特徴としてい
る。
SUMMARY OF THE INVENTION According to the present invention, there is provided a light source for use in an ultraviolet region.
The production method of the synthetic quartz glass preform for optical parts is to add a porous synthetic quartz glass formed by a gas phase axial method under a pressure of 1.5 to 50 Pascal as a preliminary calcination step.
A heat treatment is performed at 300 to 1400 ° C. for 1 to 5 hours to homogenize the density.
After removing water and the like by heating at a temperature of 00 to 1300 ° C. for 10 to 40 hours, the temperature is increased at a rate of 0.5 to 5 ° C./min, and a clearing step is further performed to form a transparent glass. I have. In addition, according to the present invention, there is provided an optical component for an ultraviolet region.
The method for producing synthetic quartz glass material is as described above for synthetic quartz for optical parts.
Synthetic quartz glass manufactured by the method of manufacturing a glass base material
The base material is formed by heating to a temperature of 1600 to 2000 ° C.
After that, cool to a temperature of 1500 to 1600 ° C and equalize the temperature.
Then, from a temperature of at least 1500 ° C., 5 ° C. /
Cooling at a rate of less than 1 minute, and then 1 × 10 3 -1 × 10 6
Heat at 610-790 ° C under Pascal's hydrogen gas atmosphere
Is characterized by doping with hydrogen
You.

【0015】[0015]

【発明の実施の形態】上記したように、原料となる高純
度ケイ素化合物としては、例えば四塩化ケイ素が挙げら
れるが、前記原料中の金属不純物の総含有量が0.05
ppm以下、Alの含有量が0.005ppm以下、N
a、K、及びLiの各含有量が0.008ppm以下、
Ca、Fe、Ti、Cr、Ni、P、B、Mg、Cu、
Zr、及びZnの各含有量が0.003ppm以下であ
るのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, as a high-purity silicon compound to be used as a raw material, for example, silicon tetrachloride can be mentioned, and the total content of metal impurities in the raw material is 0.05%.
ppm or less, the content of Al is 0.005 ppm or less, N
each content of a, K, and Li is 0.008 ppm or less;
Ca, Fe, Ti, Cr, Ni, P, B, Mg, Cu,
It is preferable that each content of Zr and Zn is 0.003 ppm or less.

【0016】前記原料中の不純物濃度は、原料をCVD
炉中で約1000℃に加熱して基体上に蒸着させ、その
蒸着した金属シリコン中の金属不純物量を放射化分析法
で分析することにより測定することができる。
The concentration of impurities in the raw material is determined by
It can be measured by heating to about 1000 ° C. in a furnace to deposit on the substrate, and analyzing the amount of metal impurities in the deposited metallic silicon by activation analysis.

【0017】多孔質合成石英ガラスの合成では、特別な
条件は必要でなく、気相軸付け法による通常の酸水素火
炎を用いた加水分解を行えばよい。
In the synthesis of the porous synthetic quartz glass, no special conditions are required, and hydrolysis may be carried out using a normal oxyhydrogen flame by a gas phase axial method.

【0018】次に、前記工程により得られた多孔質合成
石英ガラス(スート体)を真空下で熱処理等を行って合
成石英ガラス材を製造するが、この合成石英ガラス材の
製造工程は、事前仮焼、仮焼、昇温、及び透明化の工程
による合成石英ガラス母材の製造工程、及び前記母材を
使用して加工等を行った後、加熱成形、冷却、均温化、
冷却により合成石英ガラス製品の製造を行う工程とに分
けられる。
Next, the synthetic quartz glass material is manufactured by subjecting the porous synthetic quartz glass (soot body) obtained in the above process to a heat treatment or the like under vacuum. Calcination, calcination, temperature rise, and the manufacturing process of the synthetic quartz glass base material by the process of transparency, and after performing processing and the like using the base material, heat forming, cooling, soaking,
It is divided into a step of manufacturing a synthetic quartz glass product by cooling.

【0019】ケイ素化合物の加水分解により得られたス
ート体の空隙は、その分布が不均一で周辺部分に空隙が
多く、中央にいくに従って順次空隙が少なくなってお
り、その密度も周辺部分が小さく、中央に近づくに従っ
て大きくなっている。
The voids in the soot body obtained by hydrolysis of the silicon compound have a non-uniform distribution, many voids in the peripheral portion, and the number of voids decreases gradually toward the center. , Getting bigger toward the center.

【0020】そこで前記事前仮焼工程により、主として
スート体周辺の最も密度の小さい部分を他の部分と比べ
て急激にその密度を高める操作、すなわち焼きしめを行
って、スート体の密度を均一化させる。この事前仮焼に
より、次工程である仮焼工程でのゆっくりとした焼結に
よる脱水効果をスート体全体にわたってほぼ均一に進行
させることができ、透明ガラス化後の合成石英ガラス中
のOH基濃度を所望の分布を有するように設定すること
ができる。
Therefore, in the pre-calcining step, an operation of rapidly increasing the density of the portion having the lowest density around the soot body as compared with the other portions, that is, baking is performed to make the density of the soot body uniform. To By this preliminary calcination, the dehydration effect of the slow sintering in the subsequent calcination step can be made to proceed almost uniformly throughout the soot body, and the OH group concentration in the synthetic quartz glass after vitrification becomes transparent. Can be set to have a desired distribution.

【0021】この際の加熱は、約1.5〜50パスカル
の圧力下、約1300〜1400℃で1〜5時間と、後
で行う仮焼よりも若干高い温度で短時間行うのが好まし
い。前記事前仮焼の温度が約1300℃未満であると、
前記事前仮焼による焼きしめ効果が少なく、他方約13
00℃と低温でも加熱時間が5時間を超えるとスート体
の密度の低い周辺部分のみならず、スート体全体がゆっ
くりと焼きしまり、目的とするスート体密度の均一化が
進みにくい傾向が表われる。前記事前仮焼の温度が約1
400℃を超えると、急激に空隙の収縮が進行し、なか
でもスート体周辺部分の焼きしめが急激に進行するた
め、その表層部分が透明ガラス化し、その後の仮焼、透
明化工程により十分な脱水効果が得られず所望の合成石
英ガラスを得ることができない。他方1400℃と高い
温度でも、加熱時間を1時間未満とすると、焼きしめ効
果が得られず、スート体の密度を均一化することができ
ない。
The heating at this time is preferably carried out at a pressure of about 1.5 to 50 Pascal, at about 1300 to 1400 ° C. for 1 to 5 hours, and at a temperature slightly higher than the calcination performed later, for a short time. When the temperature of the pre-calcination is less than about 1300 ° C,
The baking effect of the pre-calcination is small, while about 13
If the heating time exceeds 5 hours even at a low temperature of 00 ° C., not only the peripheral portion where the density of the soot body is low, but also the entire soot body is slowly baked, so that the target soot body density tends to be hardly uniform. . The pre-calcination temperature is about 1
When the temperature exceeds 400 ° C., the shrinkage of the voids rapidly progresses, and particularly, the baking of the peripheral portion of the soot body rapidly progresses, so that the surface layer portion becomes transparent vitrified, and the subsequent calcining and clearing process are sufficient. A desired synthetic quartz glass cannot be obtained because a dehydration effect cannot be obtained. On the other hand, even at a high temperature of 1400 ° C., if the heating time is less than 1 hour, the baking effect cannot be obtained, and the density of the soot body cannot be made uniform.

【0022】前記事前仮焼の際の圧力が約1.5パスカ
ルよりも小さいと、加熱の際に酸素が石英ガラスより抜
け易くなり、これにより酸素欠乏欠陥が生じて紫外及び
真空紫外光の透過率低下の原因となり易く、他方前記事
前仮焼の際の圧力が約50パスカルを超えると、スート
体の焼きしめ効果が少なく、スート体の密度を均一化す
ることが難しい。
If the pressure during the preliminary calcination is smaller than about 1.5 Pascal, oxygen tends to escape from the quartz glass during heating, thereby causing oxygen deficiency defects and causing ultraviolet and vacuum ultraviolet light. If the pressure during the preliminary calcination exceeds about 50 Pascal, the effect of baking the soot body is small, and it is difficult to make the density of the soot body uniform.

【0023】この後、仮焼処理を同じ真空条件下、約1
200〜1300℃で約10〜40時間行い、スート体
中の石英ガラス微粒子中に一部含まれるSi−OHをS
i−O−Siに変化させたり付着水を気化脱気せしめ、
その際に生じる水分を除去脱水する。また、この仮焼処
理によりスート体中のOH基濃度の分布を調整する。前
記仮焼の温度が約1200℃未満であると、水分の除去
がゆっくりとしか進行せず、OH基濃度が十分に低下せ
ず、またその濃度分布の調整もうまく行かない。他方、
前記仮焼の温度が1300℃を超えると、内部から十分
に水分が除去されないうちに緻密化してしまい、やはり
高濃度のOH基が残留することになる。
Thereafter, the calcination is performed for about 1 hour under the same vacuum conditions.
The reaction is carried out at 200 to 1300 ° C. for about 10 to 40 hours, and the Si—OH partially contained in the fine silica glass particles in the soot body is converted to
Change to i-O-Si or vaporize and degas attached water,
The water generated at that time is removed and dehydrated. Further, the distribution of the OH group concentration in the soot body is adjusted by this calcining treatment. If the calcination temperature is less than about 1200 ° C., the removal of water proceeds only slowly, the OH group concentration does not sufficiently decrease, and the concentration distribution cannot be adjusted well. On the other hand,
When the temperature of the calcination exceeds 1300 ° C., densification occurs before moisture is sufficiently removed from the inside, so that a high concentration of OH groups also remains.

【0024】この仮焼により、中央部分に近づくに従っ
てOH基濃度が高く、中央部分にOH濃度の極大値とな
る部分が存在し、逆に周辺部分にいくに従ってその濃度
が低下するOH基濃度の分布が形成される。
By this calcining, the OH group concentration increases as approaching the central portion, there is a portion where the OH concentration reaches a maximum value in the central portion, and conversely, the OH group concentration decreases toward the peripheral portion. A distribution is formed.

【0025】次に、同じ真空条件下、仮焼後の石英ガラ
スを加熱して0.5〜5℃/分の条件で昇温させ、通常
行われている条件、すなわち約1420〜1600℃の
温度範囲で3〜8時間透明化処理を行う。前記透明化の
温度が約1420℃未満では、緻密化が進行しにくく生
産性が悪くなり、他方前記透明化の温度が約1600℃
を超えると電力の消費によりコスト増加となる。
Next, the calcined quartz glass is heated under the same vacuum condition to increase the temperature at a rate of 0.5 to 5 ° C./min. The clearing process is performed in the temperature range for 3 to 8 hours. When the temperature for the transparency is less than about 1420 ° C., the densification hardly proceeds and the productivity is deteriorated, while the temperature for the transparency is about 1600 ° C.
Exceeding the cost increases due to power consumption.

【0026】前記工程の後、約0.5〜5℃/分の条件
下で徐冷することにより、透明化された合成石英ガラス
母材が製造される。
After the above step, the transparent synthetic quartz glass base material is manufactured by slow cooling at about 0.5 to 5 ° C./min.

【0027】前記方法により製造された合成石英ガラス
母材は、金属不純物等の含有量が極めて少ないため、通
常の石英ガラス材として使用することも可能である。し
かし、前記OH基濃度の分布をコントロールすることに
より、屈折率に分布が形成されているので、光学的な用
途に使用しようとすれば、この合成石英ガラス母材に以
下に説明するような仮想温度分布を形成するのが好まし
く、これにより全体が均一な屈折率を有する合成石英ガ
ラス材を製造することができる。
Since the synthetic quartz glass base material produced by the above method has a very small content of metal impurities and the like, it can be used as a normal quartz glass material. However, since the distribution of the refractive index is formed by controlling the distribution of the OH group concentration, the synthetic quartz glass base material has a virtual Preferably, a temperature distribution is formed, whereby a synthetic quartz glass material having a uniform refractive index as a whole can be manufactured.

【0028】この場合、初めに前記合成石英ガラス母材
を下記の条件で加熱成形し徐冷した後、切削加工等を行
って所定の大きさにし、製品を製造する。勿論、得られ
た合成石英ガラス母材を冷却せず、同様の条件で処理を
行うことも可能である。
In this case, first, the synthetic quartz glass base material is heat-molded under the following conditions, cooled slowly, and then cut to a predetermined size to manufacture a product. Of course, it is also possible to perform processing under the same conditions without cooling the obtained synthetic quartz glass base material.

【0029】成形の際には、前記母材を約1600〜2
000℃の温度まで加熱し、例えば高純度カーボン等か
らなる型を用いてプレスすることにより大型のレンズ、
ミラー、窓部材等の光学部材の形状を有するものに成形
する。この成形された光学用合成石英ガラスを一旦、5
〜30℃/分の条件で約1500〜1600℃まで冷却
し、この温度範囲で0〜10時間保持する均温化処理を
行う。ここで、0時間の場合は厳密には均温化処理を行
っておらず、この温度で冷却速度を切り替えるのみであ
るが、ここでは0時間の場合も含めて均温化処理という
ことにする。
At the time of molding, the above-mentioned base material is
A large lens by heating to a temperature of 000 ° C. and pressing using a mold made of, for example, high-purity carbon,
It is shaped into an optical member such as a mirror or a window member. The molded optical synthetic quartz glass is temporarily
Cooling is performed to about 1500 to 1600 ° C. under the condition of 30 ° C./min, and a soaking process of maintaining the temperature in this temperature range for 0 to 10 hours is performed. Here, in the case of 0 hour, the temperature equalization process is not strictly performed, and only the cooling rate is switched at this temperature. However, here, the temperature equalization process is also included including the case of 0 hour. .

【0030】この均温化処理の温度が約1500℃未満
であると、徐冷する前の温度が低過ぎるため、以下に述
べるような状態の仮想温度分布を形成するのが難しくな
る。
If the temperature in the soaking process is lower than about 1500 ° C., the temperature before the slow cooling is too low, so that it is difficult to form a virtual temperature distribution in the state described below.

【0031】前記均温化処理の後、少なくとも1500
℃以上の温度から、5℃/分未満、好ましくは0.1〜
4℃/分未満の温度で冷却することにより合成石英ガラ
ス材の仮想温度分布を形成する。
After the soaking treatment, at least 1500
From a temperature of not less than 5 ° C / min, preferably from 0.1 to
By cooling at a temperature of less than 4 ° C./min, a virtual temperature distribution of the synthetic quartz glass material is formed.

【0032】室温における石英ガラスの密度、屈折率等
の特性は、そのガラスが過去の製造過程における高温度
域及び前記高温度域から室温までの冷却過程での熱履歴
を反映したものであり、仮想温度(Fictive Temperatu
re)とは、そのガラスが過去の熱履歴のなかで、なじま
されたときの温度、すなわち上記特性値が決定されたと
きの温度をいう(R.Bruckner,J.Non-Crystaline Solids,
5,1970, pp.133-134)。この仮想温度の概念は、石英ガ
ラスのみならず、ガラス全般に当てはまる概念であり、
もう少し簡略にいうならば、室温のガラス密度、屈折率
等の特性値がその仮想温度(室温よりも高温度)のガラ
スの平衡状態の特性値になっていることを意味する。
The properties of the quartz glass at room temperature, such as the density and the refractive index, reflect the heat history of the glass in the high temperature range in the past manufacturing process and the cooling process from the high temperature range to room temperature. Virtual temperature (Fictive Temperatu
re) means the temperature at which the glass has been adapted in the past thermal history, that is, the temperature at which the above characteristic values have been determined (R. Bruckner, J. Non-Crystaline Solids,
5,1970, pp.133-134). This concept of virtual temperature is a concept that applies not only to quartz glass but also to glass in general.
To put it more simply, it means that the characteristic values such as the glass density and the refractive index at room temperature are the characteristic values in the equilibrium state of the glass at the virtual temperature (higher than room temperature).

【0033】図1は前記公報に記載された石英ガラスの
温度と密度との関係、及び冷却の際の密度の変化の様子
を示したグラフであり、gs 、gt で示した温度tは、
それぞれゆっくりとした冷却の場合のガラス転移温度及
び早い冷却の場合のガラス転移温度を示している。
[0033] Figure 1 is a graph relationship, and showing how the change in density upon cooling the temperature and density of the quartz glass described in the publication, g s, the temperature t indicated by g t is ,
The glass transition temperature for slow cooling and the glass transition temperature for fast cooling, respectively, are shown.

【0034】前述のR.Brucknerによると、第1図に示す
ように、石英ガラスは約1500℃において密度が最小
になり、1500℃より高い温度から冷却する場合と、
1500℃より低い温度から冷却する場合とで、石英ガ
ラス中の密度の分布状態が異なることが知られている。
すなわち、1500℃より低い温度から冷却する場合に
は、周囲が早く冷却されるために内部に比べて周囲がよ
り密度が大きくなり、他方1500℃よりも高い温度か
ら冷却する場合には、周囲が内部に比べて早く冷却され
ることは上記の場合と同様であるが、密度は内部に比べ
て周囲の方が小さくなる。密度と相関関係を有する仮想
温度も、前記密度と同様の分布を生じ、仮想温度を測定
することにより前記仮想温度に起因する屈折率分布を特
定することが可能になるが、本発明の場合のように、約
1500℃より高い温度から冷却すると、内部の仮想温
度分布の方が周囲の仮想温度分布より低い状態となり、
内部の密度の方が周囲の密度より大きい状態、すなわち
内部の方が周囲より屈折率の高い分布が生じ、OH基濃
度分布により生じる屈折率分布と逆になるため、お互い
の屈折率の変動を打ち消し合い、極めて均一な屈折率分
布を形成することができる。
According to the aforementioned R. Bruckner, as shown in FIG. 1, quartz glass has a minimum density at about 1500 ° C. and cools from a temperature higher than 1500 ° C.
It is known that the state of distribution of density in quartz glass differs between when cooling from a temperature lower than 1500 ° C.
That is, when cooling from a temperature lower than 1500 ° C., the surroundings are cooled faster because the surroundings are cooled faster, and when cooling from a temperature higher than 1500 ° C., the surroundings are cooled. Cooling faster than inside is the same as in the above case, but the density is lower around the periphery than inside. The virtual temperature having a correlation with the density also produces the same distribution as the density, and it becomes possible to specify the refractive index distribution caused by the virtual temperature by measuring the virtual temperature. Thus, when cooling from a temperature higher than about 1500 ° C., the internal virtual temperature distribution becomes lower than the surrounding virtual temperature distribution,
A state in which the inner density is larger than the surrounding density, that is, a distribution having a higher refractive index in the inner part than the surroundings is generated, which is opposite to the refractive index distribution caused by the OH group concentration distribution. It is possible to cancel each other out and to form a very uniform refractive index distribution.

【0035】次に、このようにして製造された光学用合
成石英ガラス材を1×103 〜1×106 Paの水素ガ
ス雰囲気下、610〜790℃で加熱することにより水
素をドープする。
Next, the thus-produced synthetic quartz glass material for optics is doped with hydrogen by heating at 610 to 790 ° C. in a hydrogen gas atmosphere of 1 × 10 3 to 1 × 10 6 Pa.

【0036】水素ガス雰囲気が1×106 Paを超える
と水素ドープの速度が早過ぎてドープ量の制御が難しく
なり、他方水素ガス雰囲気が1×103 Pa未満では溶
存させる水素ガスの揮発が促進され、ドープが困難とな
る。
When the hydrogen gas atmosphere exceeds 1 × 10 6 Pa, the rate of hydrogen doping is too fast to control the doping amount. On the other hand, when the hydrogen gas atmosphere is less than 1 × 10 3 Pa, volatilization of the dissolved hydrogen gas is difficult. Accelerated and difficult to dope.

【0037】また、加熱温度が790℃を超えるとドー
プした水素のうち、(原子状水素/分子状水素)の比が
大きくなり、レーザー耐光性の向上に効果的な分子状水
素のドープ量が不足し、他方加熱温度が610℃未満で
あるとドープ速度が遅過ぎ、ドープ時間が長くかかりす
ぎる。なお、610〜790℃の温度範囲での加熱は比
較的低温であるため、前工程で生じた石英ガラス中の仮
想温度分布を変えるものではない。
When the heating temperature exceeds 790 ° C., the ratio of (atomic hydrogen / molecular hydrogen) in the doped hydrogen becomes large, and the doping amount of molecular hydrogen effective for improving the laser light resistance is reduced. If the heating temperature is lower than 610 ° C., the doping speed is too slow and the doping time is too long. Since heating in a temperature range of 610 to 790 ° C. is relatively low, it does not change the virtual temperature distribution in the quartz glass generated in the previous step.

【0038】前記した合成石英ガラス材又は光学用合成
石英ガラス製品(以下、両者を含めて合成石英ガラス材
とも記す)の製造工程により、OH基濃度の分布に基づ
く屈折率分布を打ち消すように、仮想温度分布に起因す
る屈折率分布を形成することができ、屈折率の変動幅が
極めて小さく、かつレーザー照射によっても真空紫外光
〜紫外光の透過率が低下しない合成石英ガラス材を製造
することが可能となる。
By the above-described manufacturing process of the synthetic quartz glass material or the synthetic quartz glass product for optical use (hereinafter, also referred to as a synthetic quartz glass material including both), the refractive index distribution based on the distribution of the OH group concentration is canceled. Manufacture of a synthetic quartz glass material that can form a refractive index distribution caused by a virtual temperature distribution, has a very small variation in refractive index, and does not reduce the transmittance of vacuum ultraviolet light to ultraviolet light even by laser irradiation. Becomes possible.

【0039】前記工程により製造された合成石英ガラス
材中のOH基濃度の最大値は、約60ppm程度以下で
あることが好ましく、20〜45ppm程度がより好ま
しい。また、OH基濃度の最大値と最小値との差は45
ppm以下であることが好ましく、30ppm以下であ
ることがより好ましい。
The maximum value of the OH group concentration in the synthetic quartz glass material produced by the above process is preferably about 60 ppm or less, more preferably about 20 to 45 ppm. The difference between the maximum value and the minimum value of the OH group concentration is 45
ppm or less, and more preferably 30 ppm or less.

【0040】OH基の濃度の最大値と最小値との差が約
45ppmのとき、屈折率の変動幅(Δn)は約4.5
×10-6となり、これより大きい場合には、前記OH基
濃度の分布に基づく屈折率の変動分布を、仮想温度分布
を調節することにより打ち消すのが困難になる。
When the difference between the maximum value and the minimum value of the OH group concentration is about 45 ppm, the fluctuation range (Δn) of the refractive index is about 4.5.
If it is larger than × 10 −6 , it becomes difficult to cancel the fluctuation distribution of the refractive index based on the distribution of the OH group concentration by adjusting the virtual temperature distribution.

【0041】このようにして得られた光学用合成石英ガ
ラス材は、均質性に優れ、屈折率の変動幅(Δn)が極
めて小さい。前記屈折率の変動幅(Δn)は、そのサイ
ズにより異なるが、例えば直径が約200〜300mm
で、長さが約60〜150mmとサイズの大きいものに
おいても、その屈折率の変動幅(Δn)が約1×10-6
未満と小さい。前記サイズよりも小さなものにおいて
は、当然、屈折率の変動幅は約1×10-6未満と小さ
く、その複屈折率も約3nm/cm以下となる。
The synthetic quartz glass material for optics thus obtained is excellent in homogeneity and has a very small fluctuation range (Δn) in refractive index. The variation width (Δn) of the refractive index varies depending on the size, for example, the diameter is about 200 to 300 mm.
The fluctuation width (Δn) of the refractive index is about 1 × 10 −6 even in a large size having a length of about 60 to 150 mm.
Less than and small. If the size is smaller than the above size, the fluctuation range of the refractive index is naturally smaller than about 1 × 10 −6 and the birefringence is also about 3 nm / cm or less.

【0042】また、前記光学用合成石英ガラス材はこの
ような均質性を有することから、少なくとも一方向脈理
フリーであり、製造条件によっては三方向脈理フリーと
極めて均質性に優れたものとなる。
Further, since the synthetic quartz glass material for optics has such homogeneity, it is at least one-way stria-free and, depending on the production conditions, it is extremely excellent in three-way stria-free and extremely excellent in homogeneity. Become.

【0043】本発明に係る合成石英ガラス材は、得られ
たスートを、事前仮焼、仮焼、昇温、透明化の工程を経
て透明化しており、このような連続的な処理により前記
OH基濃度の分布は変曲点を有さない。
In the synthetic quartz glass material according to the present invention, the obtained soot is made transparent through the steps of preliminary calcination, calcination, temperature rise, and transparency. The distribution of the base concentration has no inflection point.

【0044】塩素の濃度についても、スート体形成後の
加熱処理によってかなりの程度除去することが可能であ
り、最終的な合成石英ガラス材の濃度は10ppm以下
であることが好ましく、1ppm以下であることがより
好ましい。また、塩素濃度の最大値と最小値との差は1
ppm以下であることが好ましい。塩素濃度が10pp
mを超えると、塩素濃度の最大値と最小値との差を1p
pm以下に保つのが難しくなる場合がある。また、塩素
濃度の最大値と最小値との差が1ppmを超えると、前
記塩素濃度の不均一性が屈折率に影響し、屈折率を小さ
く保つことが難しくなる。
The chlorine concentration can also be removed to a considerable extent by heat treatment after the formation of the soot body, and the final concentration of the synthetic quartz glass material is preferably 10 ppm or less, and more preferably 1 ppm or less. Is more preferable. The difference between the maximum value and the minimum value of the chlorine concentration is 1
It is preferably at most ppm. Chlorine concentration is 10pp
m, the difference between the maximum and minimum values of chlorine concentration is 1p
pm or less in some cases. If the difference between the maximum value and the minimum value of the chlorine concentration exceeds 1 ppm, the non-uniformity of the chlorine concentration affects the refractive index, and it is difficult to keep the refractive index small.

【0045】金属不純物については、原料中の金属不純
物の含有量に大きく左右され、製造方法自体には余り左
右されない。従って、いずれの製造方法においても、合
成石英ガラス材中の金属不純物の総含有量が0.15p
pm以下であり、Alの含有量が0.01ppm以下、
Na、K、及びLiの各含有量が0.02ppm以下、
Ca、Fe、Ti、Cr、Ni、P、B、Mg、Cu、
Zr、及びZnの各含有量が0.008ppm以下であ
ることが好ましい。
The metal impurities largely depend on the content of the metal impurities in the raw material, and are not so much influenced by the production method itself. Therefore, in any of the manufacturing methods, the total content of metal impurities in the synthetic quartz glass material is 0.15 p.
pm or less, the content of Al is 0.01 ppm or less,
Each content of Na, K, and Li is 0.02 ppm or less;
Ca, Fe, Ti, Cr, Ni, P, B, Mg, Cu,
It is preferable that each content of Zr and Zn is 0.008 ppm or less.

【0046】また、前記光学用合成石英ガラス材中に
は、後述するようにレーザー光照射時にガラス構造の欠
陥を生じることによる、光吸収、蛍光発光等の問題発生
を防止するために、水素が5×1015〜1×1019mo
l/cm3 含まれている。本願発明者が先に出願した特
願平6−216233号の明細書に記載しているよう
に、高エネルギー密度のレーザー光の照射により合成石
英ガラス中に、≡Si−O°(非結合酸素)欠陥や≡S
i・(E’中心)欠陥等の欠陥が生成され易くなるが、
合成石英ガラス中に水素(H2 分子あるいはH原子)、
特に分子状水素(H2 分子)が適量溶存すると、レーザ
ー光照射時に上記欠陥のうち、特に非酸素結合欠陥を抑
制することができる。その好ましいH2 分子含有量10
15〜1018個/cm3 程度を得るためには、水素の含有
量は5×1015〜1×1019mol/cm3 程度が必要
となる。
In addition, hydrogen is contained in the synthetic quartz glass material for optics in order to prevent problems such as light absorption and fluorescent light emission due to the occurrence of defects in the glass structure upon irradiation with a laser beam as described later. 5 × 10 15 to 1 × 10 19 mo
l / cm 3 . As described in the specification of Japanese Patent Application No. 6-216233 filed by the inventor of the present application, ≡Si—O ° (non-bonded oxygen) ) Defects and ΔS
Defects such as i · (E ′ center) defects are easily generated,
Hydrogen (H 2 molecule or H atom) in synthetic quartz glass,
In particular, when an appropriate amount of molecular hydrogen (H 2 molecules) is dissolved, non-oxygen bond defects among the above defects can be suppressed during laser irradiation. Its preferred H 2 molecular content of 10
In order to obtain about 15 to 10 18 / cm 3 , the hydrogen content needs to be about 5 × 10 15 to 1 × 10 19 mol / cm 3 .

【0047】前記水素の含有量が5×1015mol/c
3 未満であると、レーザー光等を照射した際に欠陥等
が生成し易く、透過率の低下が大きくなる傾向が表わ
れ、他方前記水素の含有量が1×1019mol/cm3
を超えると、原子状水素(H原子)の含有量が増加し、
レーザー光照射時に下記の化1式の反応が進行してE’
中心欠陥が生成し易くなる。前記非結合酸素欠陥は、上
記のような条件で合成石英ガラス材を製造することによ
り、最小限の濃度に止めることができる。
When the hydrogen content is 5 × 10 15 mol / c
If it is less than m 3 , a defect or the like is likely to be generated upon irradiation with a laser beam or the like, and the transmittance tends to decrease significantly, while the hydrogen content is 1 × 10 19 mol / cm 3.
Exceeds, the content of atomic hydrogen (H atom) increases,
Upon irradiation with laser light, the reaction of the following chemical formula 1 proceeds and E '
Central defects are easily generated. The non-bonded oxygen vacancies can be reduced to a minimum concentration by producing a synthetic quartz glass material under the above conditions.

【0048】[0048]

【化1】≡Si−H → ≡Si・(E’中心)+H・Embedded image −Si—H → ≡Si · (E ′ center) + H ·

【0049】[0049]

【作用】本発明に係る紫外領域用途の光学部品用合成石
英ガラス母材の製造方法によれば、気相軸付け法により
形成された多孔質合成石英ガラスに、事前仮焼工程とし
て、1.5〜50パスカルの圧力下、1300〜140
0℃で1〜5時間の加熱処理を施して密度を均質化し、
次に仮焼工程として、同じ圧力下、1200〜1400
℃の温度で10〜40時間加熱して水分等を除去した
後、0.5〜5℃/分の速度で昇温し、さらに透明化工
程を行い透明ガラス化するので、前記合成石英ガラス母
材中に塩素や金属等の不純物含有量が極めて少なく、中
央部分に極大となる領域が存在し、該領域を中心に周辺
部分にいくに従って次第に低下するOH基濃度の分布が
形成される。
According to the method of the present invention for producing a synthetic quartz glass preform for an optical component for use in the ultraviolet region, a porous synthetic quartz glass formed by a vapor phase axial method is preliminarily calcined. 1300-140 under pressure of 5-50 Pascal
Heat treatment at 0 ° C. for 1 to 5 hours to homogenize the density,
Next, as a calcination step, under the same pressure, 1200 to 1400
After removing water and the like by heating at a temperature of 10 ° C. for 10 to 40 hours, the temperature is increased at a rate of 0.5 to 5 ° C./min, and a clearing step is performed to form a transparent vitreous. The material has an extremely low content of impurities such as chlorine and metal, and has a region having a maximum in the central portion, and a distribution of the OH group concentration which gradually decreases from the region toward the peripheral portion is formed.

【0050】この紫外領域用途の光学部品用合成石英ガ
ラス母材を使用して1500〜2000℃の温度に加熱
した後、少なくとも1500℃以上の温度から室温まで
5℃/分以下の速度で徐冷し、前記OH基濃度の分布に
基づく屈折率分布を打ち消すように、仮想温度分布を形
成することにより、極めて均一な屈折率を有する紫外領
域用途の光学部品用合成石英ガラス材を製造することが
できる。
After heating to a temperature of 1500 to 2000 ° C. using the synthetic quartz glass base material for optical parts for use in the ultraviolet region, it is gradually cooled from a temperature of at least 1500 ° C. to room temperature at a rate of 5 ° C./min or less. Then, by forming a virtual temperature distribution so as to cancel the refractive index distribution based on the distribution of the OH group concentration, an ultraviolet region having an extremely uniform refractive index can be obtained.
It is possible to manufacture a synthetic quartz glass material for an optical component for use in a region .

【0051】[0051]

【実施例及び比較例】以下、本発明の実施例に係る合成
石英ガラス材及びその製造方法を説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Hereinafter, a synthetic quartz glass material and a method of manufacturing the same according to examples of the present invention will be described.

【0052】[実施例1〜13及び比較例1〜14]V
AD法により多孔質合成石英ガラス(スート体)を合成
した。
[Examples 1 to 13 and Comparative Examples 1 to 14]
Porous synthetic quartz glass (soot body) was synthesized by the AD method.

【0053】高純度ケイ素化合物である四塩化ケイ素
(SiCl4 )を原料とし、酸素−水素火炎中で気相化
学反応により石英ガラス微粒子を合成するとともにこれ
を種棒の周囲に付着、堆積させ、多孔質合成石英ガラス
(スート体)を合成した。
Using silicon tetrachloride (SiCl 4 ), which is a high-purity silicon compound, as a raw material, quartz glass fine particles are synthesized by a gas phase chemical reaction in an oxygen-hydrogen flame, and the quartz glass fine particles are adhered and deposited around a seed rod. Porous synthetic quartz glass (soot body) was synthesized.

【0054】次に、この合成された多孔質合成石英ガラ
スを下記の表1に示した条件で事前仮焼、仮焼、昇温、
透明化、及び冷却を行い、下記の表3に示した寸法の合
成石英ガラス母材を製造した。この合成石英ガラス母材
の特性を同じく下記の表3に示している。
Next, the synthesized porous synthetic quartz glass was calcined in advance, calcined, heated, and heated under the conditions shown in Table 1 below.
It was made transparent and cooled to produce a synthetic quartz glass base material having the dimensions shown in Table 3 below. The properties of this synthetic quartz glass preform are also shown in Table 3 below.

【0055】次に、前記工程で製造された合成石英ガラ
ス母材の切削、加工等を行い、得られた部材を用いて、
表1に示した加熱成形条件で、加熱、成形、均温化処理
を行った。その後、表1に示した速度で冷却することに
より仮想温度分布を形成した。次に、前記仮想温度分布
が形成された合成石英ガラス材を用い、表1に示した条
件で水素ガス処理を行い、前記合成石英ガラス材に水素
をドープさせた。得られた光学用合成石英ガラス製品の
特性を下記の表5に示している。
Next, the synthetic quartz glass base material manufactured in the above process is cut, processed, and the like.
Under the heat molding conditions shown in Table 1, heating, molding and soaking were performed. Thereafter, cooling was performed at the rate shown in Table 1 to form a virtual temperature distribution. Next, using the synthetic quartz glass material in which the virtual temperature distribution was formed, hydrogen gas treatment was performed under the conditions shown in Table 1 to dope the synthetic quartz glass material with hydrogen. The properties of the obtained synthetic quartz glass for optical use are shown in Table 5 below.

【0056】また、屈折率変動幅(Δn)が実施例に係
る合成石英ガラス材に比べて大きい、比較例に係る合成
石英ガラス材についても、合成石英ガラス材の製造条
件、加熱成形条件及び水素ドープ条件を下記の表2に、
合成石英ガラス母材の特性を表4に、合成石英ガラス製
品の特性を下記の表6に示している。
Further, the synthetic quartz glass material according to the comparative example, in which the refractive index fluctuation width (Δn) is larger than that of the synthetic quartz glass material according to the embodiment, is also manufactured under the conditions for manufacturing the synthetic quartz glass material, heat molding conditions, and hydrogen. Table 2 below shows the doping conditions.
Table 4 shows the properties of the synthetic quartz glass base material, and Table 6 below shows the properties of the synthetic quartz glass product.

【0057】なお、仮想温度については、K.M.Davis ら
が提案した赤外線分光光度計を用いた方法(K.M.Davis
and M.Tomozawa ニューガラスフォーラム 平成5年度
第4回シリカガラス研究会 215〜255頁 199
4年1月17日)により測定し、屈折率変動幅(Δn)
については、Zygo社製のフィゾー型干渉計(Mar
k−IV)により測定し、複屈折率については、オーク
製作所社製の高感度複屈折率測定装置(ADR−30
0)により測定した。また、水素ガス放出量について
は、森本らが提案した放出ガス量を質量分析する方法
(森本幸裕他 照明学会 東京支部大会誌 16〜25
頁 1989年)及びレーザーラマン散乱測定法により
測定した。
The fictive temperature is determined by a method using an infrared spectrophotometer proposed by KDavis et al.
and M. Tomozawa New Glass Forum 1993 4th Silica Glass Workshop pp. 215-255 199
The refractive index fluctuation width (Δn)
About the Fizeau type interferometer manufactured by Zygo (Mar
k-IV), and the birefringence is measured by a high-sensitivity birefringence measuring device (ADR-30) manufactured by Oak Manufacturing Co., Ltd.
0). Regarding the amount of hydrogen gas released, mass spectrometry of the amount of released gas proposed by Morimoto et al. (Yukihiro Morimoto et al. Journal of the Illuminating Engineering Institute of Japan Tokyo Section 16-25)
1989) and laser Raman scattering measurement.

【0058】図2は実施例及び比較例に係る合成石英ガ
ラス母材の製造方法で、所定の工程の終了後における合
成石英ガラスの密度分布を示したグラフである。図2に
おいて、実線は実施例1の場合の密度分布を示したもの
であり、が熱処理前の多孔質合成石英ガラス(スート
体)、が事前仮焼処理後の多孔質合成石英ガラス(事
前仮焼後スート体)、が仮焼処理後の合成石英ガラス
体を示しており、における点線は事前仮焼を行わない
場合(比較例1)の合成石英ガラス体を示している。
FIG. 2 is a graph showing the density distribution of the synthetic quartz glass after completion of the predetermined steps in the method of manufacturing the synthetic quartz glass base material according to the example and the comparative example. In FIG. 2, the solid line shows the density distribution in the case of Example 1, where the porous synthetic quartz glass (soot body) before the heat treatment and the porous synthetic quartz glass after the pre-calcining treatment (the pre-temporary The soot body after sintering) shows the synthetic quartz glass body after the calcination treatment, and the dotted line in the figure shows the synthetic quartz glass body without pre-sintering (Comparative Example 1).

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【表5】 [Table 5]

【0064】[0064]

【表6】 [Table 6]

【0065】上記の表3及び表5に示した結果より明ら
かなように、実施例に係る光学用合成石英ガラス母材及
び光学用合成石英ガラス製品の中央部分にOH基濃度の
極大となる領域が存在し、該領域を中心に周辺部分にい
くに従ってOH基濃度が次第に低下し、壁面部分で濃度
の最小値となる濃度分布が存在しており、このOH基濃
度分布に基づく屈折率分布を打ち消すように、仮想温度
分布に起因する屈折率分布が形成されているので、前記
合成石英ガラス材内部全体の屈折率が極めて均一(屈折
率変動幅Δn≦0.9×10-6)になる。また、塩素の
濃度は1ppm未満であり、複屈折率も3nm/cm以
下と極めて小さく、脈理も三方向フリーと均質性に優れ
た材料となっている。さらに、表には示していないが実
施例に係る光学用合成石英ガラス製品の金属不純物含有
量はトータル量として、0.15ppm未満であり、各
金属不純物含有量は、Alの含有量が0.01ppm以
下、Na、K、及びLiの各含有量が0.02ppm以
下、Ca、Fe、Ti、Cr、Ni、P、B、Mg、C
u、Zr、及びZnの各含有量が0.008ppm以下
であった。この光学用合成石英ガラス製品中の不純物濃
度はプラズマ発光(ICP)分析法及び放射化分析法に
より測定した。
As is clear from the results shown in Tables 3 and 5, the region where the OH group concentration is maximized is located in the central portion of the optical synthetic quartz glass base material and the optical synthetic quartz glass product according to the examples. Exists, and the OH group concentration gradually decreases toward the peripheral portion around the region, and there is a concentration distribution at which the concentration becomes the minimum value on the wall surface portion. The refractive index distribution based on this OH group concentration distribution is Since the refractive index distribution due to the virtual temperature distribution is formed so as to cancel out, the refractive index of the entire inside of the synthetic quartz glass material becomes extremely uniform (refractive index fluctuation width Δn ≦ 0.9 × 10 −6 ). . Further, the chlorine concentration is less than 1 ppm, the birefringence is extremely small at 3 nm / cm or less, and the striae is free in three directions and has excellent homogeneity. Furthermore, although not shown in the table, the total content of metal impurities in the synthetic quartz glass product for optics according to the examples is less than 0.15 ppm, and the content of each metal impurity is such that the content of Al is 0.1%. 01 ppm or less, each content of Na, K, and Li is 0.02 ppm or less, Ca, Fe, Ti, Cr, Ni, P, B, Mg, C
Each content of u, Zr, and Zn was 0.008 ppm or less. The impurity concentration in this synthetic quartz glass product for optics was measured by a plasma emission (ICP) analysis method and an activation analysis method.

【0066】図2に示したように、実施例に係る製造方
法においては、事前仮焼工程によりほぼ全体にわたって
嵩密度が均一な多孔質体が得られたおり、仮焼によって
もその密度分布は変化していないため、ゆっくりと脱水
を行うことができ、OH基の濃度を低下させることがで
きるとともに、その濃度分布をコントロールすることが
可能となる。
As shown in FIG. 2, in the manufacturing method according to the embodiment, a porous body having a uniform bulk density was obtained over almost the entirety by the pre-calcining step. Since there is no change, the dehydration can be performed slowly, the concentration of the OH group can be reduced, and the concentration distribution can be controlled.

【0067】また、実施例に係る光学用合成石英ガラス
材は、水素を5×1015〜1×1019mol/cm3
有しているため、対レーザー耐性に優れ、少なくともK
rF光レーザー(波長:248nm)を約400mJ/
cm2 の照射光エネルギー密度で1×106 ショット以
上照射しても248nmも内部透過率が0.5%未満で
あった。
Further, the synthetic quartz glass material for optics according to the examples contains 5 × 10 15 to 1 × 10 19 mol / cm 3 of hydrogen, so that it has excellent resistance to laser and at least K
rF light laser (wavelength: 248 nm) is about 400 mJ /
Even when irradiation was performed at 1 × 10 6 shots or more at an irradiation light energy density of cm 2, the internal transmittance at 248 nm was less than 0.5%.

【0068】他方、比較例に係る光学用合成石英ガラス
製品においては、OH基の最大値と最小値との濃度差が
大きすぎるか、又はOH基濃度分布により形成される屈
折率の変動分布と、形成された仮想温度分布による屈折
率変動分布が加算されたかたちになっているため、全体
の屈折率変動幅が実施例に係る光学用合成石英ガラス製
品の3倍を超えた値となっている。また、均温化の後の
冷却で、その速度が早すぎる場合には、複屈折率が10
nm/cm以下と異方性が大きくなっている。さらに、
対レーザー耐性についても、KrFレーザーを約400
mJ/cm2 の照射光エネルギー密度で1×106 ショ
ット照射することにより、内部透過率が0.5%以上低
下してものが存在し、対レーザー耐性に劣る。
On the other hand, in the synthetic quartz glass product for optics according to the comparative example, the difference in concentration between the maximum value and the minimum value of the OH group is too large, or the variation in the refractive index formed by the OH group concentration distribution and Since the refractive index fluctuation distribution due to the formed virtual temperature distribution is in the form of being added, the entire refractive index fluctuation width is a value exceeding three times the optical synthetic quartz glass product according to the embodiment. I have. If the cooling rate after the temperature equalization is too fast, the birefringence is 10%.
The anisotropy is large at nm / cm or less. further,
About KrF laser is about 400
By irradiating 1 × 10 6 shots at an irradiation light energy density of mJ / cm 2 , there is a case where the internal transmittance is reduced by 0.5% or more, and the laser resistance is poor.

【0069】[0069]

【発明の効果】以上詳述したように本発明に係る紫外領
域用途の光学部品用合成石英ガラス母材の製造方法にあ
っては、気相軸付け法により形成された多孔質合成石英
ガラスに、事前仮焼工程として、1.5〜50パスカル
の圧力下、1300〜1400℃で1〜5時間の加熱処
理を施して密度を均質化し、次に仮焼工程として、同じ
圧力下、1200〜1400℃の温度で10〜40時間
加熱して水分等を除去した後、0.5〜5℃/分の速度
で昇温し、さらに透明化工程を行い透明ガラス化するの
で、前記合成石英ガラス母材中に塩素や金属等の不純物
含有量が極めて少なく、中央部分に極大値となる領域が
存在し、該領域を中心に周辺部分にいくに従って次第に
低下するOH基濃度分布を形成することができる。
As described in detail above, the ultraviolet region according to the present invention
In the method for producing a synthetic quartz glass base material for optical components for use in a region, a porous synthetic quartz glass formed by a vapor phase axial method is subjected to a pre-calcination step under a pressure of 1.5 to 50 Pascal. Heat treatment at 1300 to 1400 ° C for 1 to 5 hours to homogenize the density. Then, as a calcination step, heat at 1200 to 1400 ° C for 10 to 40 hours under the same pressure to remove moisture and the like. After that, the temperature is increased at a rate of 0.5 to 5 ° C./min, and further a transparentizing step is performed to form a transparent vitreous, so that the content of impurities such as chlorine and metal in the synthetic quartz glass base material is extremely small, There is a region having a maximum value in the central portion, and an OH group concentration distribution that gradually decreases from the region toward the peripheral portion can be formed.

【0070】従って、この合成石英ガラス母材を使用し
て、1500〜2000℃の温度に加熱した後、前記加
熱温度より室温まで5℃/分以下の速度で徐冷し、前記
OH基濃度の分布に基づく屈折率分布を打ち消すよう
に、仮想温度分布を形成することにより、極めて均一な
屈折率を有する紫外領域用途の光学部品用合成石英ガラ
ス材を製造することができる。
Therefore, using this synthetic quartz glass base material, after heating to a temperature of 1500 to 2000 ° C., it was gradually cooled from the heating temperature to room temperature at a rate of 5 ° C./min or less, and the OH group concentration was lowered. By forming the virtual temperature distribution so as to cancel the refractive index distribution based on the distribution, it is possible to manufacture a synthetic quartz glass material for an optical component for an ultraviolet region having an extremely uniform refractive index.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石英ガラスの温度と密度との関係、及び冷却の
際の密度の変化の様子を示したグラフである。
FIG. 1 is a graph showing the relationship between the temperature and the density of quartz glass and how the density changes during cooling.

【図2】実施例及び比較例に係る合成石英ガラス母材の
製造方法で、所定の工程の終了後における合成石英ガラ
スの密度分布を示したグラフである。
FIG. 2 is a graph showing a density distribution of a synthetic quartz glass after a predetermined process is completed in the method of manufacturing a synthetic quartz glass base material according to the examples and the comparative examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 哲之 兵庫県尼崎市東向島東之町1番地 住金 石英株式会社内 (56)参考文献 特開 昭62−182126(JP,A) 特開 平5−24854(JP,A) 特開 平9−52723(JP,A) 特開 平9−52722(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/04 C03B 20/00 C03B 37/014 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tetsuyuki Nakamura 1 Higashi-Muko, Higashi-Mukojima, Hyogo Prefecture Sumikin Quartz Co., Ltd. (56) References JP-A-62-182126 (JP, A) 24854 (JP, A) JP-A-9-52723 (JP, A) JP-A-9-52722 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 8/04 C03B 20 / 00 C03B 37/014

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気相軸付け法により形成された多孔質合
成石英ガラスに、事前仮焼工程として、1.5〜50パ
スカルの圧力下、1300〜1400℃で1〜5時間の
加熱処理を施して密度を均質化し、次に仮焼工程とし
て、同じ圧力下、1200〜1300℃の温度で10〜
40時間加熱して水分等を除去した後、0.5〜5℃/
分の速度で昇温し、さらに透明化工程を行い透明ガラス
化することを特徴とする紫外領域用途の光学部品用合成
石英ガラス母材の製造方法。
1. A porous synthetic quartz glass formed by a gas phase axial method is subjected to a heat treatment at 1300 to 1400 ° C. for 1 to 5 hours under a pressure of 1.5 to 50 Pascal as a pre-calcining step. At the same pressure and at a temperature of 1200 to 1300 ° C.
After heating for 40 hours to remove moisture and the like, 0.5 to 5 ° C /
A method for producing a synthetic quartz glass base material for an optical component for use in an ultraviolet region , wherein the temperature is raised at a speed of one minute, and further a transparentizing step is performed to form a transparent glass.
【請求項2】 請求項1記載の光学部品用合成石英ガラ2. The synthetic quartz glass for an optical component according to claim 1.
ス母材の製造方法により製造された合成石英ガラス母材Synthetic quartz glass base material manufactured by the method of manufacturing base material
を1600〜2000℃の温度まで加熱して成形したWas heated to a temperature of 1600 to 2000 ° C. and molded.
後、1500〜1600℃の温度まで冷却して均温化After that, it is cooled to a temperature of 1500 to 1600 ° C. and made uniform.
し、次に少なくとも1500℃以上の温度から、5℃/Then, from a temperature of at least 1500 ° C., 5 ° C. /
分以下の速度で冷却し、さらに1×101 min. 3Three 〜1×10~ 1 × 10 66
パスカルの水素ガス雰囲気下、610〜790℃で加熱Heat at 610-790 ° C under Pascal's hydrogen gas atmosphere
することにより水素をドープすることを特徴とする紫外Characterized by doping with hydrogen by doping
領域用途の光学部品用合成石英ガラス材の製造方法。Manufacturing method of synthetic quartz glass material for optical components for area use.
JP21084595A 1995-08-18 1995-08-18 Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material Expired - Lifetime JP3274955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21084595A JP3274955B2 (en) 1995-08-18 1995-08-18 Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21084595A JP3274955B2 (en) 1995-08-18 1995-08-18 Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material

Publications (2)

Publication Number Publication Date
JPH0952719A JPH0952719A (en) 1997-02-25
JP3274955B2 true JP3274955B2 (en) 2002-04-15

Family

ID=16596071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21084595A Expired - Lifetime JP3274955B2 (en) 1995-08-18 1995-08-18 Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material

Country Status (1)

Country Link
JP (1) JP3274955B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500411B2 (en) * 2000-04-24 2010-07-14 株式会社オハラ Quartz glass for ultraviolet rays and method for producing the same
US7506521B2 (en) * 2004-12-29 2009-03-24 Corning Incorporated High transmission synthetic silica glass and method of making same
JP5066784B2 (en) * 2005-02-04 2012-11-07 旭硝子株式会社 Method for producing synthetic quartz glass
EP1979283A1 (en) * 2006-01-30 2008-10-15 Asahi Glass Company, Limited Synthetic quartz glass with radial distribution of fast axes of birefringence and process for producing the same
JP2013006722A (en) * 2011-06-23 2013-01-10 Sumitomo Electric Ind Ltd Method for producing base material for synthetic quartz glass and base material for synthetic quartz glass

Also Published As

Publication number Publication date
JPH0952719A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
JP5202959B2 (en) High refractive index uniform fused silica glass and method for producing the same
US6143676A (en) Synthetic silica glass used with uv-rays and method producing the same
US20240034667A1 (en) Method for making halogen doped optical element
US8901019B2 (en) Very low CTE slope doped silica-titania glass
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP2006188424A (en) High transmission synthetic silica glass and method of making same
US9611169B2 (en) Doped ultra-low expansion glass and methods for making the same
JP3274955B2 (en) Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material
TWI651277B (en) Method for producing a blank of fluorine-and titanium-doped glass with a high silicic-acid content for use in euv lithography and blank produced according to said method
JP3274953B2 (en) Synthetic quartz glass material for optics, method for producing the same, and synthetic quartz glass product using the synthetic quartz glass material for optics
JP2861512B2 (en) Manufacturing method of quartz glass optical member
JP3274954B2 (en) Synthetic quartz glass material for optics and method for producing the same
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JPH08133753A (en) Optical synthetic quartz glass, its production and application thereof
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2003176143A (en) Synthetic quartz glass
JP4177078B2 (en) Synthetic quartz glass material for optical components
JP4159852B2 (en) Synthetic quartz glass material for optical components
JP4663860B2 (en) Synthetic quartz glass for optical members and method for producing synthetic quartz glass
JP4744046B2 (en) Method for producing synthetic quartz glass material
JPH10324528A (en) Optical quartz glass
KR20080074256A (en) A manufacturing method for high-purify quartz glass with low oh content
JPS62143834A (en) Production of preform for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term