JP4663860B2 - Synthetic quartz glass for optical members and method for producing synthetic quartz glass - Google Patents

Synthetic quartz glass for optical members and method for producing synthetic quartz glass Download PDF

Info

Publication number
JP4663860B2
JP4663860B2 JP2000270546A JP2000270546A JP4663860B2 JP 4663860 B2 JP4663860 B2 JP 4663860B2 JP 2000270546 A JP2000270546 A JP 2000270546A JP 2000270546 A JP2000270546 A JP 2000270546A JP 4663860 B2 JP4663860 B2 JP 4663860B2
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
gas
carbon
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000270546A
Other languages
Japanese (ja)
Other versions
JP2002080239A (en
Inventor
晃治 森口
伸治 宗藤
克浩 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2000270546A priority Critical patent/JP4663860B2/en
Publication of JP2002080239A publication Critical patent/JP2002080239A/en
Application granted granted Critical
Publication of JP4663860B2 publication Critical patent/JP4663860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/26Doped silica-based glasses containing non-metals other than boron or halide containing carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は紫外線波長を有するレーザを用いる光学系装置に使用するのに好適な光学部材用合成石英ガラスおよび合成石英ガラスの製造方法に係り、特に、光学系装置のレンズ、ミラー、プリズム、窓部材などの光学部材として使用される合成石英ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
Siウエハ上に集積パターンを描像する光リソグラフィー技術において、近年、MPU集積回路の微細加工化、高集積化が要求され、集積パターンの線幅を描像するために、光源からの光の短波長化が進んでいる。従来では比較的波長の長い水銀ランプを光源(波長436nmまたは365nm)として使用していたが、現在では、KrFレーザ(波長248nm)、ArFレーザ(波長193nm)といったエキシマレーザが用いられるようになっている。一方で、これらのエキシマレーザを用いるには、その波長に対し、透過性に優れた石英ガラスを用いる必要がある。しかしながら、エキシマレーザはそのエネルギー密度が大きく長時間のレーザ照射による透過率の低下は避けられず、レーザに対する耐久性(レーザ耐性)が求められていた。また、高いレーザ耐性を有していても光学的均質性が悪ければ、石英ガラスを通して結んだ結像は焦点が不安定なものになってしまう。
【0003】
そこで、このような短波長レーザ照射による石英ガラスのレーザ耐性、光学的均質性の向上を図るために、特開平10−338531号公報には炭素原子を含む化合物であるオルガノジシラザン化合物から製造した光学用合成石英ガラスについての発明が記載されている。この発明では、通常、合成石英ガラスを製造する際に出発原料として使用される四塩化ケイ素(SiCl4)に変え、オルガノジシラザン化合物を使用することで、高いレーザ耐性、光学的均質性を得ている。
【0004】
一方、石英ガラスには、光の屈折率に対する特性も求められ、屈折率を制御するため、Ge、Cl、Ti、Al、F、B等を石英ガラスにドープした合成石英ガラスが開発されている。例えば、露光装置の光学系では、屈折率を調整するために、複数の石英ガラスからなるレンズを用いるが、それぞれのガラスの屈折率を調整することができれば、光学系全体の設計の自由度が大きくなる。
【0005】
【発明が解決しようとする課題】
上記公報の発明は、炭化水素を含む化合物を出発原料としているため、最終製品である合成石英ガラスには炭素原子が含まれていることが予想される。しかし、炭素原子が合成石英ガラス中にどれくらい含まれているか、あるいは、その存在状態については開示されていない。また、ケイ素と炭化水素基を共に有するオルガノジシラザン化合物を出発原料としているため、石英ガラス中の炭素量を制御することはできない。
【0006】
さらに、炭素原子が石英ガラス中に存在した場合、炭素原子は石英ガラス中の屈折率を高くする効果を有するが、石英ガラス中の炭素量を制御することができなければ、当然、合成石英ガラスの屈折率制御も不可能である。
【0007】
本願発明の課題は、従来用いられてきたGeなどをドープする屈折率の制御方法にかわる、屈折率の制御が可能な新たな光学部材用合成石英ガラス及び合成石英ガラスの製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、合成石英ガラスがシリカを網目状に形成して作られた構造であることに注目した。ゲルマニウムおよび炭素はケイ素と同じIV族元素であり、化学結合構造としてsp3構造を好む。そこで、仮想的な石英ガラス構造(α-quartz結晶構造)を有するSiO2、GeO2、CO2についてKramers-Kronigの関係式より静的屈折率を計算したところ、屈折率の比はSiO2:GeO2:CO2=1:1.1:1.2であることが判明した。このことは、ケイ素を炭素に置換すれば、たとえ少量の炭素でも、合成石英ガラスの屈折率は大きく高屈折率側にシフトし、屈折率の制御ができることを意味する。しかも、炭素原子は、ケイ素原子と置換しているため、光透過性、均質性等の基本的な特性が劣ることはない。
【0009】
また、炭素原子は、上述したようにsp3構造を取りやすいが、sp2構造もエネルギー的に安定なため、炭素原子はsp3構造と同様にsp2構造を取りやすい。このため、ケイ素原子と炭素原子を置換し、炭素原子の構造を単にsp3構造にすることは容易ではない。そこで、炭素原子がsp3構造を優先的にとり、かつそのsp3構造の量が調整できて屈折率の制御が可能な製造方法について検討した。
【0010】
本発明は、ケイ素化合物ガスを加水分解することにより多孔質合成ガラスを形成し、前記多孔質合成石英ガラスに透明化処理を施して得た合成石英ガラス(含フッ素化合物を含むものを除く。)であって、シリカが網目構造を形成しており、シリカを構成するケイ素原子の一部が炭素原子に置換され、前記炭素原子の濃度が50ppm以上1000ppm以下であることを特徴とする光学部材用合成石英ガラス、を提供する。
【0011】
また、本発明は、イ素化合物ガスに、炭化水素ガス、二酸化炭素ガス及び一酸化炭素ガスのうちの何れか一種または二種以上からなる炭素含有ガスと希ガスとを加えた混合ガスを加水分解させることにより、多孔質合成ガラスを形成し、前記多孔質合成石英ガラスに透明化処理を施す合成石英ガラスの製造方法であって、製品合成石英ガラスに付与すべき目標屈折率に応じて、上記炭素含有ガスと希ガスの量を調整し、ケイ素原子の炭素原子による置換を制御し、透明化後の炭素原子の濃度を50ppm以上1000ppm以下とすることを特徴とする合成石英ガラスの製造方法、を提供する。
【0012】
【発明の実施の形態】
本発明に係る合成石英ガラスは、網目構造を形成するシリカのケイ素原子の一部が炭素原子に置換されている。置換によりできたC-O結合はSi-O結合に比べ、その結合長が約15%短い。そのため、シリカの網目構造が収縮し、密度が増加し、その結果、屈折率が大きくなる。しかし、炭素原子が、シリカの網目構造間に格子間原子として存在したり、化合物を作って不純物として存在することは好ましくない。これらの場合、合成石英ガラスにレーザを照射したときに光透過性、均質性が悪くなり結像特性が悪くなる。ただし、特性に悪影響がでない程度、存在している場合はこの限りではない。
【0013】
C-O結合を構成する炭素濃度は50ppm以上必要である。炭素濃度が50ppm以上であれば、その濃度を制御することにより、屈折率を有効に制御できる。原理的には、50ppm未満でも屈折率の制御をすることは可能であるが、屈折率増加が極めて小さく、実用的に意味をなさない。一方、C-O結合を構成する炭素濃度は1000ppm以下が好ましい。これより高い濃度であるとC-C結合の増大を促し、ひいては、グラファイト状の析出物を形成し、光透過性、均質性を劣化させる恐れがあるからである。
【0014】
本発明に係る合成石英ガラスは、特に光学部材に用いられる合成石英ガラスである。光学部材とは、光学系装置のレンズ、ミラー、プリズム、窓部材などのことであり、合成ガラス中をレーザ光が通過することを前提に製造されたものである。
【0015】
本発明に係る合成石英ガラスの製造方法は、ケイ素化合物ガスを加水分解することにより多孔質合成ガラスを形成し、前記多孔質合成ガラスに透明化処理を施すことを前提とする。多孔質合成石英ガラスを得るには、いわゆるVAD法と呼ばれる方法を用いることが好ましい。VAD法とは、SiCl4ガスに酸素、水素を混合させ、火炎中で気相化学反応(加水分解反応)を起こさせ得た合成石英の微粒子を種棒等に堆積させ、多孔質合成石英ガラス(スート体)を得る方法である。その後、スート体を約1400℃で焼結熱処理し、続いて約1600℃で透明化熱処理を行うことが好ましい。
【0016】
本発明の製造方法では、出発原料であるケイ素化合物ガスに、炭化水素ガス、二酸化炭素ガス及び一酸化炭素ガスのうちの何れか一種または二種以上からなる炭素含有ガスと希ガスとを加え、混合する。ケイ素化合物ガスはSiCl4を主に用いるが、さらにSiF4を混合することが好ましい。SiF4を混合する場合、フッ素が合成石英ガラス中に添加されるので、レーザ耐性がより高くなるからである。
【0017】
炭素含有ガスは炭化水素ガス、二酸化炭素ガス及び一酸化炭素ガスのうちの何れか一種または二種以上を選択すればよい。炭化水素ガスは特に種類は問わないが、火炎加水分解時に分解しやすい低級の炭化水素ガスが好ましい。高級の炭化水素ガスを使用した場合には、分解しきれず、不純物として合成石英ガラス中に取りこまれる可能性があるからである。炭化水素ガスとしては、例えばメタン、エタン、エチレンが好ましい。
【0018】
炭素含有ガスと同時に希ガスも混合する。希ガスは炭素が不均一に合成石英ガラス中に分散されるのを防止する働きをする。希ガスはHe、Ne、Ar、Kr、Xe、Rnなど特に種類は問わない。もちろん、これらについても何れか一種または二種以上混合して用いてもかまわない。入手のし易さ、価格などを考慮に入れると、HeあるいはArを用いることが好ましい。なお、最終的に得られる合成石英ガラスには微量ながら希ガスが混入するが、特に問題はない。
【0019】
ケイ素化合物ガス、炭素含有ガス及び希ガスからなる混合ガスの組成比と合成石英ガラス中に導入される炭素量の関係は、用いる設備、製造条件、ガスを混合する装置、あるいは炭素含有ガスの種類により異なる。したがって、最終製品に付与すべき目標となる屈折率に合わせて、混合ガスの組成比を調整すればよい。混合ガスの組成は限定しないが、ケイ素化合物ガスと希ガスの体積比を1:10〜10:1の範囲で選択し、混合して得られた希釈ケイ素化合物ガスと炭素含有ガスを体積比で10000:1〜1000000:1で混合して用いることが好ましい。
【0020】
【実施例】
本発明に係る合成石英ガラスをVAD法に従って以下の手順で作製した。まず、合成石英ガラスのもととなる混合ガスを調合した。はじめに、高純度ケイ素化合物である四塩化ケイ素(SiCl4)とアルゴン(Ar)を体積比で6:4の割合で混合し、得られたガスに対するエチレンガス(C2H4)の体積比を種々変えて原料となる混合ガスを得た。この混合ガスをフローさせながら、酸素・水素火炎中で気相化学反応(化学分解反応)させることで微粒子状の合成石英ガラスを合成し、これを種棒の周囲に付着・堆積させ、多孔質合成石英ガラス(スート体)を形成した。
【0021】
続いて、このスート体を酸素雰囲気下100Paのもと、1400℃で10時間焼結した後、さらに、1550℃で6時間保持し、透明化処理を行った。透明化処理により孔の除去されたスート体(プリフォーム材)を直径180mm、厚さ100mmに切り出した。
【0022】
その後、このプリフォーム材をアルゴンガス大気圧雰囲気で1100℃、15時間保持した後、10℃/時間以下の冷却速度で徐冷し、400℃になった時点でアニール炉から取り出し室温まで放置した。なお、プリフォーム材は、アニール中雰囲気からの汚染を防止するため、同じくプリフォーム材から切り出したダミー材で挟みこんで行った。
【0023】
一方、以上に記した実施例の製造方法の一部を変え、比較例として、混合ガス調合においてエチレンガス(C2H4)を混合させなかったもの(比較例1)についても同様に最終製品である合成石英ガラスを作製した。
【0024】
まず、得られた実施例、比較例1の合成石英ガラスについて、原子吸光分析法にて、金属元素の不純物濃度を測定した。不純物金属の存在は、屈折率を大きく変えるといった合成石英ガラスの特性変化をもたらす。そのため、実施例および比較例に含まれる不純物金属の影響を調べる必要がある。測定の結果、実施例、比較例における不純物(アルカリ金属Li、Na、K、アルカリ土類金属Mg、Ca、および遷移金属Ti、V、Cr、Mn、Fe、Co、Ni、Cu)は合計で200ppb以下と低く、得られた石英ガラスは非常に高純度であることがわかった。よって、不純物金属の実施例、比較例への影響はほとんどないことが判明した。
【0025】
実施例、比較例についてフーリエ変換赤外線分光法(FT-IR法)を用いて炭素濃度を、フィゾー型光干渉計を用いて波長589.3nmにおける屈折率を測定した。なお、Siの一部を炭素で置換した場合は、Si-O-C結合の形態を取るが、Si-O-C結合は、非晶質中にある結合であるため、周囲の結合状態のバラツキが大きく、FT-IR法によるスペクトル測定ではブロードなピークが発現する。そこで、予め意図的にイオン注入により炭素の濃度を変えてドープした濃度が既知の合成石英ガラスを作製し、この合成石英ガラスのスペクトルと本発明により作製した合成石英ガラスのスペクトルを比較し、濃度を求めた。また、測定にあたり、合成石英ガラスを20×20×10mmに切り出し、3つの試料の平均値を測定値とした。結果を表1に示す。表1において屈折率増加量/炭素濃度は炭素濃度1ppmあたりの屈折率の増加量を示す。
【0026】
【表1】

Figure 0004663860
表1の炭素濃度と屈折率の関係を図1に示す。図1より明らかなように、炭素濃度と屈折率にはほぼ比例の関係が成り立ち、シリカのケイ素を炭素原子で置換すれば、炭素濃度を調整することで容易に合成石英ガラスの屈折率を調整でき、光学部材用の合成石英ガラスとしてその使用目的に合わせた屈折率を有する合成石英ガラスを容易に得ることができる。
【0027】
また、製造方法としての希ガスの効果、炭素含有ガスの効果を調べるために、上記実施例と同様な製造方法で混合ガスに希ガスを含有させなかったもの(比較例2)あるいはエチレン以外の炭素含有ガスを用いたもの(実施例6〜8)についてそれぞれ試料を3つづつ用意し、FT-IR法でC-O結合している炭素含有量を調べた。その結果を表2に示す。
【0028】
【表2】
Figure 0004663860
表2よりAr(希ガス)を用いない場合、試料に含有する炭素濃度にむらができ、そのむらは500ppmにも達することがわかる。また、炭素含有ガスはエチレンに限らず、種々な気体を用いることができることも明らかである。
【0029】
【発明の効果】
本発明に係る合成石英ガラスは、その成分である網目状のシリカのケイ素の一部が炭素に置換しているため、光透過性、均質性等の特性の劣化を伴うことなく、所望の高い屈折率をもつことができ、光学部材用として使用するのにより好ましい特性を有する。
【0030】
また、本発明に係る合成石英ガラスの製造方法では、ケイ素化合物ガスに炭素含有ガスと希ガスとを加えるため、シリカのケイ素と炭素の置換が容易に行われ、しかも炭素が均一に分散するので、合成石英ガラスの高屈折率化を容易に達成できるだけでなく、品質のよい合成石英ガラスが得られる。
【図面の簡単な説明】
【図1】本発明の合成石英ガラスの炭素含有量と屈折率の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic quartz glass for an optical member suitable for use in an optical system apparatus using a laser having an ultraviolet wavelength, and a method for producing the synthetic quartz glass, and in particular, a lens, a mirror, a prism, and a window member of the optical system apparatus. The present invention relates to a synthetic quartz glass used as an optical member such as the above and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, optical lithography technology for imaging integrated patterns on Si wafers has required microfabrication and high integration of MPU integrated circuits. In order to image the line width of integrated patterns, the wavelength of light from the light source has been shortened. Is progressing. Conventionally, a mercury lamp with a relatively long wavelength was used as a light source (wavelength 436 nm or 365 nm). However, excimer lasers such as KrF laser (wavelength 248 nm) and ArF laser (wavelength 193 nm) are now used. Yes. On the other hand, in order to use these excimer lasers, it is necessary to use quartz glass having excellent transparency with respect to the wavelength. However, the excimer laser has a large energy density, and a decrease in transmittance due to laser irradiation for a long time cannot be avoided, and durability (laser resistance) to the laser has been demanded. In addition, if the optical homogeneity is poor even though the laser has high resistance, the image formed through the quartz glass becomes unstable in focus.
[0003]
Therefore, in order to improve the laser resistance and optical homogeneity of quartz glass by such short-wavelength laser irradiation, Japanese Patent Application Laid-Open No. 10-338531 has been produced from an organodisilazane compound which is a compound containing a carbon atom. An invention about optical synthetic quartz glass is described. In the present invention, high laser resistance and optical homogeneity are obtained by using an organodisilazane compound instead of silicon tetrachloride (SiCl 4 ), which is usually used as a starting material in the production of synthetic quartz glass. ing.
[0004]
On the other hand, quartz glass is also required to have characteristics with respect to the refractive index of light, and synthetic quartz glass in which Ge, Cl, Ti, Al, F, B or the like is doped into quartz glass has been developed in order to control the refractive index. . For example, in an optical system of an exposure apparatus, a lens made of a plurality of quartz glasses is used to adjust the refractive index. However, if the refractive index of each glass can be adjusted, the degree of freedom in designing the entire optical system is increased. growing.
[0005]
[Problems to be solved by the invention]
Since the invention of the above publication uses a compound containing hydrocarbon as a starting material, it is expected that synthetic quartz glass, which is the final product, contains carbon atoms. However, it is not disclosed how much carbon atoms are contained in the synthetic quartz glass or the existence state thereof. In addition, since an organodisilazane compound having both silicon and a hydrocarbon group is used as a starting material, the amount of carbon in quartz glass cannot be controlled.
[0006]
Further, when carbon atoms are present in the quartz glass, the carbon atoms have an effect of increasing the refractive index in the quartz glass. However, if the amount of carbon in the quartz glass cannot be controlled, naturally the synthetic quartz glass is used. It is impossible to control the refractive index.
[0007]
An object of the present invention is to provide a new synthetic quartz glass for optical members capable of controlling the refractive index, and a method for producing the synthetic quartz glass, in place of the conventionally used refractive index control method for doping Ge or the like. It is in.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have noticed that synthetic quartz glass has a structure made by forming silica in a mesh shape. Germanium and carbon are the same group IV elements as silicon and prefer the sp 3 structure as the chemical bond structure. Therefore, the static refractive index of SiO 2 , GeO 2 , and CO 2 having a virtual quartz glass structure (α-quartz crystal structure) was calculated from the Kramers-Kronig relational expression. The refractive index ratio was SiO 2 : It was found that GeO 2 : CO 2 = 1: 1.1: 1.2. This means that if silicon is replaced with carbon, even if a small amount of carbon is used, the refractive index of synthetic quartz glass is greatly shifted to the high refractive index side, and the refractive index can be controlled. Moreover, since carbon atoms are substituted with silicon atoms, basic properties such as light transmission and homogeneity are not inferior.
[0009]
Further, the carbon atoms is likely to take a sp 3 structure as described above, since sp 2 structure is also energetically stable, the carbon atoms are easy to take similarly sp 2 structure and sp 3 structure. For this reason, it is not easy to replace the silicon atom with the carbon atom and simply change the structure of the carbon atom to the sp 3 structure. Therefore, the carbon atom takes a sp 3 structure preferentially, and was examined the sp 3 structure capable manufacturing process control amount of the refractive index can be adjusted for.
[0010]
In the present invention, a porous synthetic glass is formed by hydrolyzing a silicon compound gas, and a synthetic quartz glass obtained by subjecting the porous synthetic quartz glass to a transparency treatment (excluding those containing a fluorine-containing compound). a is, silica forms a network structure, part of the silicon atoms constituting the silica is replaced with carbon atoms, optical member, wherein the concentration of the carbon atoms is 50ppm or 1000ppm or less Synthetic quartz glass.
[0011]
The present invention also provides a silicic containing compound gas, hydrocarbon gas, carbon dioxide gas and any one or a carbon-containing gas and mixed gas obtained by adding a rare gas consisting of two or more of the carbon monoxide gas A method for producing a synthetic quartz glass by forming a porous synthetic glass by hydrolysis and subjecting the porous synthetic quartz glass to a transparent treatment, according to a target refractive index to be imparted to the product synthetic quartz glass The production of synthetic quartz glass characterized in that the amount of the carbon-containing gas and the rare gas is adjusted, the substitution of silicon atoms with carbon atoms is controlled, and the concentration of carbon atoms after clarification is 50 ppm or more and 1000 ppm or less Method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the synthetic quartz glass according to the present invention, a part of silicon atoms of silica forming a network structure is substituted with carbon atoms. The CO bond formed by substitution is about 15% shorter than the Si-O bond. Therefore, the silica network structure shrinks and the density increases, and as a result, the refractive index increases. However, it is not preferable that carbon atoms exist as interstitial atoms between silica network structures or exist as impurities by forming a compound. In these cases, when the synthetic quartz glass is irradiated with a laser, the light transmission and homogeneity are deteriorated, and the imaging characteristics are deteriorated. However, this does not apply if it exists to the extent that the characteristics are not adversely affected.
[0013]
The concentration of carbon constituting the CO bond must be 50 ppm or more. If the carbon concentration is 50 ppm or more, the refractive index can be effectively controlled by controlling the concentration. In principle, it is possible to control the refractive index even if it is less than 50 ppm, but the increase in the refractive index is extremely small and does not make practical sense. On the other hand, the carbon concentration constituting the CO bond is preferably 1000 ppm or less. If the concentration is higher than this, the increase in CC bonding is promoted, and as a result, a graphite-like precipitate is formed, which may deteriorate the light transmittance and homogeneity.
[0014]
The synthetic quartz glass according to the present invention is a synthetic quartz glass particularly used for optical members. The optical member is a lens, mirror, prism, window member, or the like of the optical system device, and is manufactured on the assumption that laser light passes through the synthetic glass.
[0015]
The synthetic quartz glass manufacturing method according to the present invention is based on the premise that a porous synthetic glass is formed by hydrolyzing a silicon compound gas, and the porous synthetic glass is subjected to a transparent treatment. In order to obtain porous synthetic quartz glass, it is preferable to use a so-called VAD method. The VAD method is a porous synthetic quartz glass made by mixing SiCl 4 gas with oxygen and hydrogen and depositing synthetic quartz fine particles that can cause a gas phase chemical reaction (hydrolysis reaction) in a flame on a seed rod. This is a method for obtaining a soot body. Thereafter, the soot body is preferably subjected to a sintering heat treatment at about 1400 ° C., followed by a transparent heat treatment at about 1600 ° C.
[0016]
In the production method of the present invention, to the silicon compound gas that is the starting material, a carbon-containing gas consisting of any one or more of hydrocarbon gas, carbon dioxide gas, and carbon monoxide gas and a rare gas are added, Mix. As the silicon compound gas, SiCl 4 is mainly used, but it is preferable to further mix SiF 4 . This is because when SiF 4 is mixed, since fluorine is added to the synthetic quartz glass, the laser resistance becomes higher.
[0017]
The carbon-containing gas may be selected from one or more of hydrocarbon gas, carbon dioxide gas, and carbon monoxide gas. The hydrocarbon gas is not particularly limited, but a lower hydrocarbon gas that is easily decomposed during flame hydrolysis is preferable. This is because when high-grade hydrocarbon gas is used, it cannot be decomposed and may be incorporated into synthetic quartz glass as impurities. As the hydrocarbon gas, for example, methane, ethane, and ethylene are preferable.
[0018]
A rare gas is also mixed with the carbon-containing gas. The noble gas functions to prevent carbon from being dispersed unevenly in the synthetic quartz glass. There are no particular types of rare gases such as He, Ne, Ar, Kr, Xe, and Rn. Of course, any of these may be used alone or in combination. In view of availability, price, etc., it is preferable to use He or Ar. In addition, although rare gas mixes in the synthetic quartz glass finally obtained although it is trace amount, there is no problem in particular.
[0019]
The relationship between the composition ratio of the mixed gas consisting of silicon compound gas, carbon-containing gas and rare gas and the amount of carbon introduced into the synthetic quartz glass depends on the equipment used, the manufacturing conditions, the gas mixing device, or the type of carbon-containing gas. Varies by Therefore, the composition ratio of the mixed gas may be adjusted in accordance with the target refractive index to be given to the final product. The composition of the mixed gas is not limited, but the volume ratio of the silicon compound gas to the rare gas is selected in the range of 1:10 to 10: 1, and the diluted silicon compound gas and the carbon-containing gas obtained by mixing are mixed in a volume ratio. It is preferable to use a mixture of 10000: 1 to 1000000: 1.
[0020]
【Example】
The synthetic quartz glass according to the present invention was produced according to the following procedure according to the VAD method. First, the mixed gas used as the base of synthetic quartz glass was prepared. First, silicon tetrachloride (SiCl 4 ), which is a high-purity silicon compound, and argon (Ar) are mixed at a volume ratio of 6: 4, and the volume ratio of ethylene gas (C 2 H 4 ) to the obtained gas is determined. Various mixed materials were obtained as raw materials. While this mixed gas is flowing, a fine synthetic silica glass is synthesized by a gas phase chemical reaction (chemical decomposition reaction) in an oxygen / hydrogen flame, and this is adhered and deposited around the seed rod, and is porous. Synthetic quartz glass (soot body) was formed.
[0021]
Subsequently, the soot body was sintered at 1400 ° C. for 10 hours under 100 Pa in an oxygen atmosphere, and further maintained at 1550 ° C. for 6 hours to perform a transparent treatment. A soot body (preform material) from which holes were removed by the clearing treatment was cut into a diameter of 180 mm and a thickness of 100 mm.
[0022]
Thereafter, this preform material was held at 1100 ° C. for 15 hours in an argon gas atmospheric pressure atmosphere, then slowly cooled at a cooling rate of 10 ° C./hour or less, and when it reached 400 ° C., it was taken out of the annealing furnace and allowed to stand at room temperature. . The preform material was sandwiched between dummy materials cut out from the preform material in order to prevent contamination from the atmosphere during annealing.
[0023]
On the other hand, a part of the manufacturing method of the embodiment described above was changed, and as a comparative example, the final product was similarly produced for a mixture gas mixture in which ethylene gas (C 2 H 4 ) was not mixed (Comparative Example 1). A synthetic quartz glass was produced.
[0024]
First, with respect to the obtained synthetic quartz glass of Example and Comparative Example 1, the impurity concentration of the metal element was measured by atomic absorption spectrometry. The presence of the impurity metal causes a change in the characteristics of the synthetic quartz glass, such as greatly changing the refractive index. Therefore, it is necessary to investigate the influence of the impurity metal contained in the examples and comparative examples. As a result of the measurement, impurities (alkali metals Li, Na, K, alkaline earth metals Mg, Ca, and transition metals Ti, V, Cr, Mn, Fe, Co, Ni, Cu) in the examples and comparative examples in total It was found that the obtained quartz glass had a very high purity as low as 200 ppb or less. Therefore, it was found that there is almost no influence on the examples and comparative examples of the impurity metal.
[0025]
In Examples and Comparative Examples, the carbon concentration was measured using Fourier transform infrared spectroscopy (FT-IR method), and the refractive index at a wavelength of 589.3 nm was measured using a Fizeau optical interferometer. In addition, when a part of Si is replaced with carbon, it takes the form of Si-OC bond, but since Si-OC bond is a bond in the amorphous state, there is a large variation in the surrounding bond state, A broad peak appears in the spectrum measurement by the FT-IR method. Therefore, a synthetic quartz glass having a known doped concentration was prepared by intentionally changing the carbon concentration by ion implantation in advance, and the spectrum of this synthetic quartz glass was compared with the spectrum of the synthetic quartz glass produced according to the present invention. Asked. In the measurement, synthetic quartz glass was cut into 20 × 20 × 10 mm, and the average value of the three samples was taken as the measured value. The results are shown in Table 1. In Table 1, the refractive index increase / carbon concentration indicates the refractive index increase per 1 ppm of carbon concentration.
[0026]
[Table 1]
Figure 0004663860
The relationship between the carbon concentration and the refractive index in Table 1 is shown in FIG. As is clear from Fig. 1, the carbon concentration and refractive index are almost proportional, and if the silica silicon is replaced with carbon atoms, the refractive index of the synthetic quartz glass can be easily adjusted by adjusting the carbon concentration. In addition, it is possible to easily obtain a synthetic quartz glass having a refractive index suitable for the intended use as a synthetic quartz glass for an optical member.
[0027]
In addition, in order to investigate the effect of the rare gas as a production method and the effect of the carbon-containing gas, a mixed gas containing no rare gas in the production method similar to the above example (Comparative Example 2) or other than ethylene Three samples were prepared for each of the carbon-containing gases (Examples 6 to 8), and the carbon content that was CO-bonded was examined by the FT-IR method. The results are shown in Table 2.
[0028]
[Table 2]
Figure 0004663860
From Table 2, it can be seen that when Ar (rare gas) is not used, the concentration of carbon contained in the sample is uneven, and the unevenness reaches 500 ppm. It is also clear that the carbon-containing gas is not limited to ethylene, and various gases can be used.
[0029]
【The invention's effect】
In the synthetic quartz glass according to the present invention, since a part of the silicon of the network-like silica as a component thereof is substituted with carbon, the desired high without causing deterioration of characteristics such as light transmittance and homogeneity. It can have a refractive index and has more preferable characteristics when used as an optical member.
[0030]
Further, in the method for producing synthetic quartz glass according to the present invention, since a carbon-containing gas and a rare gas are added to the silicon compound gas, the silica is easily replaced with silicon and carbon, and the carbon is uniformly dispersed. Thus, not only can the high refractive index of synthetic quartz glass be easily achieved, but also high quality synthetic quartz glass can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the carbon content and the refractive index of a synthetic quartz glass of the present invention.

Claims (2)

ケイ素化合物ガスを加水分解することにより多孔質合成ガラスを形成し、前記多孔質合成石英ガラスに透明化処理を施して得た合成石英ガラス(含フッ素化合物を含むものを除く。)であって、シリカが網目構造を形成しており、シリカを構成するケイ素原子の一部が炭素原子に置換され、前記炭素原子の濃度が50ppm以上1000ppm以下であることを特徴とする光学部材用合成石英ガラス。 A synthetic quartz glass (excluding those containing a fluorine-containing compound) obtained by hydrolyzing a silicon compound gas to form a porous synthetic glass and subjecting the porous synthetic quartz glass to a transparent treatment. silica forms a network structure, part of the silicon atoms constituting the silica is replaced with carbon atoms, an optical member for a synthetic quartz glass, wherein the concentration of the carbon atoms is 50ppm or 1000ppm or less. イ素化合物ガスに、炭化水素ガス、二酸化炭素ガス及び一酸化炭素ガスのうちの何れか一種または二種以上からなる炭素含有ガスと希ガスとを加えた混合ガスを加水分解させることにより、多孔質合成ガラスを形成し、前記多孔質合成石英ガラスに透明化処理を施す合成石英ガラスの製造方法であって、
製品合成石英ガラスに付与すべき目標屈折率に応じて、上記炭素含有ガスと希ガスの量を調整し、ケイ素原子の炭素原子による置換を制御し、透明化後の炭素原子の濃度を50ppm以上1000ppm以下とすることを特徴とする合成石英ガラスの製造方法。
The silicic containing compound gas, a hydrocarbon gas, by the carbon dioxide gas and any one or a carbon-containing gas and mixed gas obtained by adding a rare gas consisting of two or more of the carbon monoxide gas is hydrolyzed, A method for producing a synthetic quartz glass, comprising forming a porous synthetic glass and subjecting the porous synthetic quartz glass to a transparency treatment,
Depending on the target refractive index to be given to the product synthetic quartz glass, the amount of the carbon-containing gas and the rare gas is adjusted, the substitution of the silicon atom with the carbon atom is controlled, and the concentration of the carbon atom after the transparency is 50 ppm or more A method for producing synthetic quartz glass, characterized by comprising 1000 ppm or less .
JP2000270546A 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass Expired - Fee Related JP4663860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270546A JP4663860B2 (en) 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270546A JP4663860B2 (en) 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass

Publications (2)

Publication Number Publication Date
JP2002080239A JP2002080239A (en) 2002-03-19
JP4663860B2 true JP4663860B2 (en) 2011-04-06

Family

ID=18756969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270546A Expired - Fee Related JP4663860B2 (en) 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP4663860B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835360A1 (en) * 2013-08-06 2015-02-11 Heraeus Quarzglas GmbH & Co. KG Process for making silica soot body in presence of carbon monoxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016820A (en) * 1998-07-03 2000-01-18 Fuso Shirutekku:Kk Silica glass granule and its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162143A (en) * 1983-03-03 1984-09-13 Shin Etsu Chem Co Ltd Production of synthetic quartz
JPH01167255A (en) * 1987-12-24 1989-06-30 Fujikura Ltd Production of oxynite glass
JPH03126638A (en) * 1989-10-09 1991-05-29 Asahi Glass Co Ltd Production of glass containing carbon
JPH0986937A (en) * 1995-09-25 1997-03-31 Shin Etsu Chem Co Ltd Production of synthetic silica glass member
JPH09221326A (en) * 1996-02-09 1997-08-26 Olympus Optical Co Ltd Production of porous body or glass body and producing device
JP3924803B2 (en) * 1996-04-12 2007-06-06 セイコーエプソン株式会社 Silica glass for SHG element and method for producing the same
JPH11349340A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Production of synthetic silica glass powder and production of silica glass molded form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016820A (en) * 1998-07-03 2000-01-18 Fuso Shirutekku:Kk Silica glass granule and its production

Also Published As

Publication number Publication date
JP2002080239A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP4792706B2 (en) Silica glass containing TiO2 and method for producing the same
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
KR0165695B1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP4492123B2 (en) Silica glass
JP5754482B2 (en) Silica glass containing TiO2
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
WO2005059972A2 (en) Synthetic quartz glass for optical member and its production method
JP2001114529A (en) Silica glass optical material for excimer laser and excimer lamp, and method for production thereof
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP3228676B2 (en) High purity silica glass for far ultraviolet rays and method for producing the same
US9611169B2 (en) Doped ultra-low expansion glass and methods for making the same
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4437886B2 (en) Quartz glass blank for optical members and use thereof
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4663860B2 (en) Synthetic quartz glass for optical members and method for producing synthetic quartz glass
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP4085633B2 (en) Synthetic quartz glass for optical components
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP5417889B2 (en) Silica glass containing TiO2 and optical member for lithography using the same
JP2003183034A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2003201125A (en) Synthetic quartz glass and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees