JP2002080239A - Synthetic quarts glass for optical piece and method of manufacturing synthetic quarts glass - Google Patents

Synthetic quarts glass for optical piece and method of manufacturing synthetic quarts glass

Info

Publication number
JP2002080239A
JP2002080239A JP2000270546A JP2000270546A JP2002080239A JP 2002080239 A JP2002080239 A JP 2002080239A JP 2000270546 A JP2000270546 A JP 2000270546A JP 2000270546 A JP2000270546 A JP 2000270546A JP 2002080239 A JP2002080239 A JP 2002080239A
Authority
JP
Japan
Prior art keywords
gas
quartz glass
carbon
synthetic quartz
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000270546A
Other languages
Japanese (ja)
Other versions
JP4663860B2 (en
Inventor
Koji Moriguchi
晃治 森口
Shinji Muneto
伸治 宗藤
Katsuhiro Nishihara
克浩 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000270546A priority Critical patent/JP4663860B2/en
Publication of JP2002080239A publication Critical patent/JP2002080239A/en
Application granted granted Critical
Publication of JP4663860B2 publication Critical patent/JP4663860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/26Doped silica-based glasses containing non-metals other than boron or halide containing carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthetic quarts glass having a specified large refractive index and to provide a method of manufacturing it. SOLUTION: This synthetic quarts glass for an optical piece contains carbon atom at a concentration of 50 ppm or more by substituting a part of silicon atoms into carbon atoms in a synthetic quarts glass where network structure of silica is formed. This method of manufacturing synthetic quarts glass comprises hydrolysis of a mixed gas of a silicon containing gas added by a rare earth gas and a carbon containing gas comprising either one or two or more of hydrocarbon gas, carbon dioxide gas and carbon monoxide gas. As shown in Figure, the refractive index can be adjusted by substituted carbon concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は紫外線波長を有する
レーザを用いる光学系装置に使用するのに好適な光学部
材用合成石英ガラスおよび合成石英ガラスの製造方法に
係り、特に、光学系装置のレンズ、ミラー、プリズム、
窓部材などの光学部材として使用される合成石英ガラス
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz glass for an optical member suitable for use in an optical system using a laser having an ultraviolet wavelength, and a method for producing the synthetic quartz glass. , Mirrors, prisms,
The present invention relates to a synthetic quartz glass used as an optical member such as a window member and a method for producing the same.

【0002】[0002]

【従来の技術】Siウエハ上に集積パターンを描像する光
リソグラフィー技術において、近年、MPU集積回路の微
細加工化、高集積化が要求され、集積パターンの線幅を
描像するために、光源からの光の短波長化が進んでい
る。従来では比較的波長の長い水銀ランプを光源(波長
436nmまたは365nm)として使用していたが、現在では、
KrFレーザ(波長248nm)、ArFレーザ(波長193nm)といった
エキシマレーザが用いられるようになっている。一方
で、これらのエキシマレーザを用いるには、その波長に
対し、透過性に優れた石英ガラスを用いる必要がある。
しかしながら、エキシマレーザはそのエネルギー密度が
大きく長時間のレーザ照射による透過率の低下は避けら
れず、レーザに対する耐久性(レーザ耐性)が求められ
ていた。また、高いレーザ耐性を有していても光学的均
質性が悪ければ、石英ガラスを通して結んだ結像は焦点
が不安定なものになってしまう。
2. Description of the Related Art In photolithography technology for imaging integrated patterns on Si wafers, in recent years, fine processing and high integration of MPU integrated circuits have been required, and in order to image the line width of integrated patterns, light from a light source has been required. The wavelength of light is becoming shorter. Conventionally, a mercury lamp with a relatively long wavelength is used as the light source (wavelength
436nm or 365nm), but now,
Excimer lasers such as a KrF laser (wavelength 248 nm) and an ArF laser (wavelength 193 nm) have been used. On the other hand, in order to use these excimer lasers, it is necessary to use quartz glass having excellent transmittance for the wavelength.
However, an excimer laser has a large energy density and a decrease in transmittance due to long-time laser irradiation is inevitable, and durability (laser resistance) to the laser is required. In addition, if the optical homogeneity is poor even if the laser has high laser resistance, the image formed through the quartz glass has an unstable focus.

【0003】そこで、このような短波長レーザ照射によ
る石英ガラスのレーザ耐性、光学的均質性の向上を図る
ために、特開平10−338531号公報には炭素原子
を含む化合物であるオルガノジシラザン化合物から製造
した光学用合成石英ガラスについての発明が記載されて
いる。この発明では、通常、合成石英ガラスを製造する
際に出発原料として使用される四塩化ケイ素(SiCl4
に変え、オルガノジシラザン化合物を使用することで、
高いレーザ耐性、光学的均質性を得ている。
[0003] In order to improve the laser resistance and optical homogeneity of quartz glass by such short-wavelength laser irradiation, Japanese Patent Application Laid-Open No. 10-338531 discloses an organodisilazane compound which is a compound containing a carbon atom. Describes an invention relating to a synthetic quartz glass for optics manufactured by the Company. In the present invention, silicon tetrachloride (SiCl 4 ) which is usually used as a starting material when producing synthetic quartz glass
By using an organodisilazane compound,
High laser resistance and optical homogeneity.

【0004】一方、石英ガラスには、光の屈折率に対す
る特性も求められ、屈折率を制御するため、Ge、Cl、T
i、Al、F、B等を石英ガラスにドープした合成石英ガ
ラスが開発されている。例えば、露光装置の光学系で
は、屈折率を調整するために、複数の石英ガラスからな
るレンズを用いるが、それぞれのガラスの屈折率を調整
することができれば、光学系全体の設計の自由度が大き
くなる。
On the other hand, quartz glass is also required to have characteristics with respect to the refractive index of light, and Ge, Cl, T
Synthetic quartz glass in which quartz glass is doped with i, Al, F, B, etc. has been developed. For example, in the optical system of an exposure apparatus, a lens made of a plurality of quartz glass is used to adjust the refractive index. However, if the refractive index of each glass can be adjusted, the degree of freedom in designing the entire optical system is increased. growing.

【0005】[0005]

【発明が解決しようとする課題】上記公報の発明は、炭
化水素を含む化合物を出発原料としているため、最終製
品である合成石英ガラスには炭素原子が含まれているこ
とが予想される。しかし、炭素原子が合成石英ガラス中
にどれくらい含まれているか、あるいは、その存在状態
については開示されていない。また、ケイ素と炭化水素
基を共に有するオルガノジシラザン化合物を出発原料と
しているため、石英ガラス中の炭素量を制御することは
できない。
Since the invention of the above publication uses a compound containing a hydrocarbon as a starting material, it is expected that a synthetic quartz glass as a final product contains carbon atoms. However, it does not disclose how much carbon atoms are contained in the synthetic quartz glass or the state of its existence. Further, since an organodisilazane compound having both silicon and a hydrocarbon group is used as a starting material, the amount of carbon in quartz glass cannot be controlled.

【0006】さらに、炭素原子が石英ガラス中に存在し
た場合、炭素原子は石英ガラス中の屈折率を高くする効
果を有するが、石英ガラス中の炭素量を制御することが
できなければ、当然、合成石英ガラスの屈折率制御も不
可能である。
Further, when carbon atoms are present in quartz glass, the carbon atoms have the effect of increasing the refractive index in quartz glass, but if the amount of carbon in quartz glass cannot be controlled, naturally, It is impossible to control the refractive index of synthetic quartz glass.

【0007】本願発明の課題は、従来用いられてきたG
eなどをドープする屈折率の制御方法にかわる、屈折率
の制御が可能な新たな光学部材用合成石英ガラス及び合
成石英ガラスの製造方法を提供することにある。
An object of the present invention is to solve the problem of G which has been conventionally used.
An object of the present invention is to provide a new synthetic quartz glass for an optical member and a method for manufacturing a synthetic quartz glass capable of controlling the refractive index instead of the method of controlling the refractive index by doping e or the like.

【0008】[0008]

【課題を解決するための手段】本発明者らは、合成石英
ガラスがシリカを網目状に形成して作られた構造である
ことに注目した。ゲルマニウムおよび炭素はケイ素と同
じIV族元素であり、化学結合構造としてsp3構造を好
む。そこで、仮想的な石英ガラス構造(α-quartz結晶
構造)を有するSiO2、GeO2、CO2についてKramers-Kroni
gの関係式より静的屈折率を計算したところ、屈折率の
比はSiO2:GeO2:CO2=1:1.1:1.2であることが判明した。
このことは、ケイ素を炭素に置換すれば、たとえ少量の
炭素でも、合成石英ガラスの屈折率は大きく高屈折率側
にシフトし、屈折率の制御ができることを意味する。し
かも、炭素原子は、ケイ素原子と置換しているため、光
透過性、均質性等の基本的な特性が劣ることはない。
Means for Solving the Problems The present inventors have noticed that a synthetic quartz glass has a structure formed by forming silica in a mesh form. Germanium and carbon are the same group IV elements as silicon, and prefer the sp 3 structure as the chemical bonding structure. Therefore, for the SiO 2 , GeO 2 , and CO 2 having a virtual quartz glass structure (α-quartz crystal structure), Kramers-Kroni
Calculation of the static refractive index from the relational expression of g revealed that the ratio of the refractive indexes was SiO 2 : GeO 2 : CO 2 = 1: 1.1: 1.2.
This means that, if silicon is replaced by carbon, even with a small amount of carbon, the refractive index of the synthetic quartz glass is largely shifted to a higher refractive index side, and the refractive index can be controlled. In addition, since the carbon atom is substituted with the silicon atom, basic characteristics such as light transmittance and homogeneity do not deteriorate.

【0009】また、炭素原子は、上述したようにsp3
造を取りやすいが、sp2構造もエネルギー的に安定なた
め、炭素原子はsp3構造と同様にsp2構造を取りやすい。
このため、ケイ素原子と炭素原子を置換し、炭素原子の
構造を単にsp3構造にすることは容易ではない。そこ
で、炭素原子がsp3構造を優先的にとり、かつそのsp3
造の量が調整できて屈折率の制御が可能な製造方法につ
いて検討した。
As described above, a carbon atom easily takes an sp 3 structure, but since the sp 2 structure is also energetically stable, a carbon atom tends to take an sp 2 structure as in the case of the sp 3 structure.
For this reason, it is not easy to replace the silicon atom with the carbon atom and simply change the structure of the carbon atom to the sp 3 structure. Therefore, the carbon atom takes a sp 3 structure preferentially, and was examined the sp 3 structure capable manufacturing process control amount of the refractive index can be adjusted for.

【0010】本発明は、シリカが網目構造を形成した合
成石英ガラスであって、シリカを構成するケイ素原子の
一部が炭素原子に置換され、前記炭素原子の濃度が50pp
m以上であることを特徴とする光学部材用合成石英ガラ
ス、を提供する。
[0010] The present invention is a synthetic quartz glass in which silica forms a network structure, wherein a part of silicon atoms constituting silica is substituted by carbon atoms, and the concentration of the carbon atoms is 50 pp.
m or more, and a synthetic quartz glass for an optical member.

【0011】また、本発明は、ケイ素化合物ガスを加水
分解することにより多孔質合成ガラスを形成し、前記多
孔質合成石英ガラスに透明化処理を施す合成石英ガラス
の製造方法において、ケイ素化合物ガスに、炭化水素ガ
ス、二酸化炭素ガス及び一酸化炭素ガスのうちの何れか
一種または二種以上からなる炭素含有ガスと希ガスとを
加えた混合ガスを加水分解させることにより、多孔質合
成ガラスを得ることを特徴とする合成石英ガラスの製造
方法、を提供する。
The present invention also provides a method for producing a synthetic quartz glass, comprising forming a porous synthetic glass by hydrolyzing a silicon compound gas and subjecting the porous synthetic quartz glass to a transparency treatment. A porous synthetic glass is obtained by hydrolyzing a mixed gas obtained by adding a carbon-containing gas composed of any one or more of a hydrocarbon gas, a carbon dioxide gas and a carbon monoxide gas and a rare gas. And a method for producing synthetic quartz glass.

【0012】[0012]

【発明の実施の形態】本発明に係る合成石英ガラスは、
網目構造を形成するシリカのケイ素原子の一部が炭素原
子に置換されている。置換によりできたC-O結合はSi-O
結合に比べ、その結合長が約15%短い。そのため、シリ
カの網目構造が収縮し、密度が増加し、その結果、屈折
率が大きくなる。しかし、炭素原子が、シリカの網目構
造間に格子間原子として存在したり、化合物を作って不
純物として存在することは好ましくない。これらの場
合、合成石英ガラスにレーザを照射したときに光透過
性、均質性が悪くなり結像特性が悪くなる。ただし、特
性に悪影響がでない程度、存在している場合はこの限り
ではない。
BEST MODE FOR CARRYING OUT THE INVENTION The synthetic quartz glass according to the present invention
Some of the silicon atoms of the silica forming the network structure are substituted with carbon atoms. CO bond formed by substitution is Si-O
The bond length is about 15% shorter than the bond. As a result, the silica network structure shrinks, the density increases, and as a result, the refractive index increases. However, it is not preferable that carbon atoms exist as interstitial atoms between the network structures of silica or as impurities by forming a compound. In these cases, when the synthetic quartz glass is irradiated with a laser, the light transmittance and homogeneity are deteriorated, and the imaging characteristics are deteriorated. However, this does not apply to the case where there is such a degree that the characteristics are not adversely affected.

【0013】C-O結合を構成する炭素濃度は50ppm以上必
要である。炭素濃度が50ppm以上であれば、その濃度を
制御することにより、屈折率を有効に制御できる。原理
的には、50ppm未満でも屈折率の制御をすることは可能
であるが、屈折率増加が極めて小さく、実用的に意味を
なさない。一方、C-O結合を構成する炭素濃度は1000ppm
以下が好ましい。これより高い濃度であるとC-C結合の
増大を促し、ひいては、グラファイト状の析出物を形成
し、光透過性、均質性を劣化させる恐れがあるからであ
る。
[0013] The concentration of carbon constituting the CO bond must be 50 ppm or more. If the carbon concentration is 50 ppm or more, the refractive index can be effectively controlled by controlling the concentration. In principle, it is possible to control the refractive index even at less than 50 ppm, but the increase in the refractive index is extremely small and does not make practical sense. On the other hand, the carbon concentration constituting the CO bond is 1000 ppm
The following is preferred. If the concentration is higher than this, the increase of CC bond is promoted, and as a result, a graphite-like precipitate may be formed, which may deteriorate light transmittance and homogeneity.

【0014】本発明に係る合成石英ガラスは、特に光学
部材に用いられる合成石英ガラスである。光学部材と
は、光学系装置のレンズ、ミラー、プリズム、窓部材な
どのことであり、合成ガラス中をレーザ光が通過するこ
とを前提に製造されたものである。
The synthetic quartz glass according to the present invention is a synthetic quartz glass used particularly for an optical member. The optical member is a lens, a mirror, a prism, a window member, or the like of an optical system device, and is manufactured on the assumption that a laser beam passes through synthetic glass.

【0015】本発明に係る合成石英ガラスの製造方法
は、ケイ素化合物ガスを加水分解することにより多孔質
合成ガラスを形成し、前記多孔質合成ガラスに透明化処
理を施すことを前提とする。多孔質合成石英ガラスを得
るには、いわゆるVAD法と呼ばれる方法を用いることが
好ましい。VAD法とは、SiCl4ガスに酸素、水素を混合さ
せ、火炎中で気相化学反応(加水分解反応)を起こさせ
得た合成石英の微粒子を種棒等に堆積させ、多孔質合成
石英ガラス(スート体)を得る方法である。その後、ス
ート体を約1400℃で焼結熱処理し、続いて約1600℃で透
明化熱処理を行うことが好ましい。
The method for producing synthetic quartz glass according to the present invention is based on the premise that a porous synthetic glass is formed by hydrolyzing a silicon compound gas, and the porous synthetic glass is subjected to a transparency treatment. In order to obtain a porous synthetic quartz glass, it is preferable to use a method called a so-called VAD method. The VAD method is a method in which oxygen and hydrogen are mixed with SiCl 4 gas, and fine particles of synthetic quartz obtained by causing a gas phase chemical reaction (hydrolysis reaction) in a flame are deposited on a seed rod or the like, and porous synthetic quartz glass is produced. (Suit body). Thereafter, the soot body is preferably subjected to a sintering heat treatment at about 1400 ° C., followed by a clearing heat treatment at about 1600 ° C.

【0016】本発明の製造方法では、出発原料であるケ
イ素化合物ガスに、炭化水素ガス、二酸化炭素ガス及び
一酸化炭素ガスのうちの何れか一種または二種以上から
なる炭素含有ガスと希ガスとを加え、混合する。ケイ素
化合物ガスはSiCl4を主に用いるが、さらにSiF4を混合
することが好ましい。SiF4を混合する場合、フッ素が合
成石英ガラス中に添加されるので、レーザ耐性がより高
くなるからである。
In the production method of the present invention, the starting material silicon compound gas is mixed with a carbon-containing gas comprising one or more of hydrocarbon gas, carbon dioxide gas and carbon monoxide gas, and a rare gas. Add and mix. As the silicon compound gas, SiCl 4 is mainly used, and it is preferable to mix SiF 4 . When SiF 4 is mixed, fluorine is added to the synthetic quartz glass, so that the laser resistance becomes higher.

【0017】炭素含有ガスは炭化水素ガス、二酸化炭素
ガス及び一酸化炭素ガスのうちの何れか一種または二種
以上を選択すればよい。炭化水素ガスは特に種類は問わ
ないが、火炎加水分解時に分解しやすい低級の炭化水素
ガスが好ましい。高級の炭化水素ガスを使用した場合に
は、分解しきれず、不純物として合成石英ガラス中に取
りこまれる可能性があるからである。炭化水素ガスとし
ては、例えばメタン、エタン、エチレンが好ましい。
As the carbon-containing gas, any one or more of a hydrocarbon gas, a carbon dioxide gas and a carbon monoxide gas may be selected. The type of the hydrocarbon gas is not particularly limited, but a low-grade hydrocarbon gas which is easily decomposed during flame hydrolysis is preferable. This is because when high-grade hydrocarbon gas is used, it cannot be completely decomposed and may be taken into synthetic quartz glass as an impurity. As the hydrocarbon gas, for example, methane, ethane, and ethylene are preferable.

【0018】炭素含有ガスと同時に希ガスも混合する。
希ガスは炭素が不均一に合成石英ガラス中に分散される
のを防止する働きをする。希ガスはHe、Ne、Ar、Kr、X
e、Rnなど特に種類は問わない。もちろん、これらにつ
いても何れか一種または二種以上混合して用いてもかま
わない。入手のし易さ、価格などを考慮に入れると、He
あるいはArを用いることが好ましい。なお、最終的に得
られる合成石英ガラスには微量ながら希ガスが混入する
が、特に問題はない。
A rare gas is mixed together with the carbon-containing gas.
The noble gas serves to prevent carbon from being unevenly dispersed in the synthetic quartz glass. Noble gas is He, Ne, Ar, Kr, X
There is no particular limitation on types such as e and Rn. Of course, any of these may be used alone or in combination of two or more. Taking into account the availability and price, He
Alternatively, it is preferable to use Ar. Although a rare gas is mixed into the synthetic quartz glass finally obtained in a small amount, there is no particular problem.

【0019】ケイ素化合物ガス、炭素含有ガス及び希ガ
スからなる混合ガスの組成比と合成石英ガラス中に導入
される炭素量の関係は、用いる設備、製造条件、ガスを
混合する装置、あるいは炭素含有ガスの種類により異な
る。したがって、最終製品に付与すべき目標となる屈折
率に合わせて、混合ガスの組成比を調整すればよい。混
合ガスの組成は限定しないが、ケイ素化合物ガスと希ガ
スの体積比を1:10〜10:1の範囲で選択し、混合して得ら
れた希釈ケイ素化合物ガスと炭素含有ガスを体積比で10
000:1〜1000000:1で混合して用いることが好ましい。
The relationship between the composition ratio of the mixed gas comprising the silicon compound gas, the carbon-containing gas and the rare gas and the amount of carbon introduced into the synthetic quartz glass depends on the equipment used, the production conditions, the apparatus for mixing the gas, Depends on the type of gas. Therefore, the composition ratio of the mixed gas may be adjusted according to the target refractive index to be given to the final product. Although the composition of the mixed gas is not limited, the volume ratio of the silicon compound gas and the rare gas is selected in the range of 1:10 to 10: 1, and the diluted silicon compound gas obtained by mixing and the carbon-containing gas are mixed in a volume ratio. Ten
It is preferable to use a mixture of 000: 1 to 1000000: 1.

【0020】[0020]

【実施例】本発明に係る合成石英ガラスをVAD法に従っ
て以下の手順で作製した。まず、合成石英ガラスのもと
となる混合ガスを調合した。はじめに、高純度ケイ素化
合物である四塩化ケイ素(SiCl4)とアルゴン(Ar)を
体積比で6:4の割合で混合し、得られたガスに対するエ
チレンガス(C2H4)の体積比を種々変えて原料となる混
合ガスを得た。この混合ガスをフローさせながら、酸素
・水素火炎中で気相化学反応(化学分解反応)させるこ
とで微粒子状の合成石英ガラスを合成し、これを種棒の
周囲に付着・堆積させ、多孔質合成石英ガラス(スート
体)を形成した。
EXAMPLE A synthetic quartz glass according to the present invention was produced by the following procedure according to the VAD method. First, a mixed gas serving as a base for synthetic quartz glass was prepared. First, silicon tetrachloride (SiCl 4 ), a high-purity silicon compound, and argon (Ar) are mixed at a volume ratio of 6: 4, and the volume ratio of ethylene gas (C 2 H 4 ) to the resulting gas is determined. A mixed gas as a raw material was obtained by various changes. The mixed gas is allowed to flow while undergoing a gas phase chemical reaction (chemical decomposition reaction) in an oxygen / hydrogen flame to synthesize fine-particle synthetic quartz glass, which is attached and deposited around a seed rod to form a porous material. A synthetic quartz glass (soot body) was formed.

【0021】続いて、このスート体を酸素雰囲気下100P
aのもと、1400℃で10時間焼結した後、さらに、1550℃
で6時間保持し、透明化処理を行った。透明化処理によ
り孔の除去されたスート体(プリフォーム材)を直径18
0mm、厚さ100mmに切り出した。
Subsequently, the soot body was placed in an oxygen atmosphere at 100 P
After sintering at 1400 ° C for 10 hours under a,
For 6 hours to perform a clearing process. The soot body (preform material) from which holes were removed by the transparency
It cut out to 0mm and thickness 100mm.

【0022】その後、このプリフォーム材をアルゴンガ
ス大気圧雰囲気で1100℃、15時間保持した後、10℃/時
間以下の冷却速度で徐冷し、400℃になった時点でアニ
ール炉から取り出し室温まで放置した。なお、プリフォ
ーム材は、アニール中雰囲気からの汚染を防止するた
め、同じくプリフォーム材から切り出したダミー材で挟
みこんで行った。
Thereafter, the preform material is kept at 1100 ° C. for 15 hours in an atmosphere of atmospheric pressure of argon gas, and then gradually cooled at a cooling rate of 10 ° C./hour or less. Left until. The preform material was sandwiched between dummy materials cut out from the preform material in order to prevent contamination from the atmosphere during annealing.

【0023】一方、以上に記した実施例の製造方法の一
部を変え、比較例として、混合ガス調合においてエチレ
ンガス(C2H4)を混合させなかったもの(比較例1)に
ついても同様に最終製品である合成石英ガラスを作製し
た。
On the other hand, a part of the manufacturing method of the above-described embodiment is changed, and a comparative example in which ethylene gas (C 2 H 4 ) is not mixed (Comparative Example 1) is also used as a comparative example. Finally, a synthetic quartz glass as a final product was produced.

【0024】まず、得られた実施例、比較例1の合成石
英ガラスについて、原子吸光分析法にて、金属元素の不
純物濃度を測定した。不純物金属の存在は、屈折率を大
きく変えるといった合成石英ガラスの特性変化をもたら
す。そのため、実施例および比較例に含まれる不純物金
属の影響を調べる必要がある。測定の結果、実施例、比
較例における不純物(アルカリ金属Li、Na、K、アルカ
リ土類金属Mg、Ca、および遷移金属Ti、V、Cr、Mn、F
e、Co、Ni、Cu)は合計で200ppb以下と低く、得られた
石英ガラスは非常に高純度であることがわかった。よっ
て、不純物金属の実施例、比較例への影響はほとんどな
いことが判明した。
First, the impurity concentrations of the metal elements of the obtained synthetic quartz glass of Example and Comparative Example 1 were measured by atomic absorption spectrometry. The presence of the impurity metal causes a characteristic change of the synthetic quartz glass, such as a large change in the refractive index. Therefore, it is necessary to examine the influence of the impurity metals contained in the examples and comparative examples. As a result of the measurement, impurities (alkali metals Li, Na, K, alkaline earth metals Mg, Ca, and transition metals Ti, V, Cr, Mn, F
e, Co, Ni, and Cu) were as low as 200 ppb or less in total, and it was found that the obtained quartz glass had extremely high purity. Therefore, it was found that the impurity metal hardly affected the examples and the comparative examples.

【0025】実施例、比較例についてフーリエ変換赤外
線分光法(FT-IR法)を用いて炭素濃度を、フィゾー型
光干渉計を用いて波長589.3nmにおける屈折率を測定し
た。なお、Siの一部を炭素で置換した場合は、Si-O-C結
合の形態を取るが、Si-O-C結合は、非晶質中にある結合
であるため、周囲の結合状態のバラツキが大きく、FT-I
R法によるスペクトル測定ではブロードなピークが発現
する。そこで、予め意図的にイオン注入により炭素の濃
度を変えてドープした濃度が既知の合成石英ガラスを作
製し、この合成石英ガラスのスペクトルと本発明により
作製した合成石英ガラスのスペクトルを比較し、濃度を
求めた。また、測定にあたり、合成石英ガラスを20×20
×10mmに切り出し、3つの試料の平均値を測定値とし
た。結果を表1に示す。表1において屈折率増加量/炭
素濃度は炭素濃度1ppmあたりの屈折率の増加量を示す。
In Examples and Comparative Examples, the carbon concentration was measured using Fourier transform infrared spectroscopy (FT-IR method), and the refractive index at a wavelength of 589.3 nm was measured using a Fizeau optical interferometer. When a part of Si is substituted with carbon, the form of Si-OC bond is taken, but since the Si-OC bond is a bond existing in the amorphous state, a variation in surrounding bonding state is large, FT-I
In the spectrum measurement by the R method, a broad peak appears. Therefore, a synthetic quartz glass having a known concentration doped with a carbon concentration intentionally changed by ion implantation in advance is prepared, and the spectrum of the synthetic quartz glass is compared with the spectrum of the synthetic quartz glass produced according to the present invention. I asked. When measuring, synthetic quartz glass was 20 × 20
The sample was cut into a size of × 10 mm, and the average value of three samples was used as a measured value. Table 1 shows the results. In Table 1, the amount of increase in the refractive index / the carbon concentration indicates the amount of increase in the refractive index per 1 ppm of the carbon concentration.

【0026】[0026]

【表1】 表1の炭素濃度と屈折率の関係を図1に示す。図1より明
らかなように、炭素濃度と屈折率にはほぼ比例の関係が
成り立ち、シリカのケイ素を炭素原子で置換すれば、炭
素濃度を調整することで容易に合成石英ガラスの屈折率
を調整でき、光学部材用の合成石英ガラスとしてその使
用目的に合わせた屈折率を有する合成石英ガラスを容易
に得ることができる。
[Table 1] FIG. 1 shows the relationship between the carbon concentration and the refractive index in Table 1. As is evident from Fig. 1, there is an almost proportional relationship between the carbon concentration and the refractive index. If the silicon in silica is replaced with carbon atoms, the refractive index of the synthetic quartz glass can be easily adjusted by adjusting the carbon concentration. As a result, a synthetic quartz glass having a refractive index suitable for the intended use can be easily obtained as a synthetic quartz glass for an optical member.

【0027】また、製造方法としての希ガスの効果、炭
素含有ガスの効果を調べるために、上記実施例と同様な
製造方法で混合ガスに希ガスを含有させなかったもの
(比較例2)あるいはエチレン以外の炭素含有ガスを用
いたもの(実施例6〜8)についてそれぞれ試料を3つ
づつ用意し、FT-IR法でC-O結合している炭素含有量を調
べた。その結果を表2に示す。
Further, in order to examine the effect of the rare gas and the effect of the carbon-containing gas as the production method, a mixed gas containing no rare gas in the same production method as in the above embodiment (Comparative Example 2) or Three samples were prepared for each of those using a carbon-containing gas other than ethylene (Examples 6 to 8), and the carbon content of CO-bonded was examined by the FT-IR method. The results are shown in Table 2.

【0028】[0028]

【表2】 表2よりAr(希ガス)を用いない場合、試料に含有する
炭素濃度にむらができ、そのむらは500ppmにも達するこ
とがわかる。また、炭素含有ガスはエチレンに限らず、
種々な気体を用いることができることも明らかである。
[Table 2] Table 2 shows that when Ar (rare gas) was not used, the carbon concentration contained in the sample was uneven, and the unevenness reached 500 ppm. In addition, the carbon-containing gas is not limited to ethylene,
It is clear that various gases can be used.

【0029】[0029]

【発明の効果】本発明に係る合成石英ガラスは、その成
分である網目状のシリカのケイ素の一部が炭素に置換し
ているため、光透過性、均質性等の特性の劣化を伴うこ
となく、所望の高い屈折率をもつことができ、光学部材
用として使用するのにより好ましい特性を有する。
According to the synthetic quartz glass of the present invention, since a part of silicon of the reticulated silica, which is a component thereof, is substituted with carbon, deterioration of characteristics such as light transmittance and homogeneity is accompanied. In addition, it can have a desired high refractive index, and has more preferable characteristics for use as an optical member.

【0030】また、本発明に係る合成石英ガラスの製造
方法では、ケイ素化合物ガスに炭素含有ガスと希ガスと
を加えるため、シリカのケイ素と炭素の置換が容易に行
われ、しかも炭素が均一に分散するので、合成石英ガラ
スの高屈折率化を容易に達成できるだけでなく、品質の
よい合成石英ガラスが得られる。
Further, in the method for producing synthetic quartz glass according to the present invention, since the carbon-containing gas and the rare gas are added to the silicon compound gas, the replacement of silicon with carbon in silica is easily performed, and the carbon is evenly distributed. Because of the dispersion, it is possible to easily achieve a high refractive index of the synthetic quartz glass and obtain a high-quality synthetic quartz glass.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の合成石英ガラスの炭素含有量と屈折率
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the carbon content and the refractive index of the synthetic quartz glass of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西原 克浩 兵庫県尼崎市扶桑町1番8号 エレクトロ ニクス技術研究所内 Fターム(参考) 4G014 AH12 AH23 4G062 AA04 BB02 CC07 MM02 NN16 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Katsuhiro Nishihara 1-8 Fuso-cho, Amagasaki-shi, Hyogo F-term in Electronics Research Laboratory (reference) 4G014 AH12 AH23 4G062 AA04 BB02 CC07 MM02 NN16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリカが網目構造を形成した合成石英ガラ
スであって、シリカを構成するケイ素原子の一部が炭素
原子に置換され、前記炭素原子の濃度が50ppm以上であ
ることを特徴とする光学部材用合成石英ガラス。
1. A synthetic quartz glass in which silica has a network structure, wherein a part of silicon atoms constituting the silica is replaced by carbon atoms, and the concentration of the carbon atoms is 50 ppm or more. Synthetic quartz glass for optical components.
【請求項2】ケイ素化合物ガスを加水分解することによ
り多孔質合成ガラスを形成し、前記多孔質合成石英ガラ
スに透明化処理を施す合成石英ガラスの製造方法におい
て、ケイ素化合物ガスに、炭化水素ガス、二酸化炭素ガ
ス及び一酸化炭素ガスのうちの何れか一種または二種以
上からなる炭素含有ガスと希ガスとを加えた混合ガスを
加水分解させることにより、多孔質合成ガラスを得るこ
とを特徴とする合成石英ガラスの製造方法。
2. A method for producing a synthetic quartz glass, wherein a porous synthetic glass is formed by hydrolyzing a silicon compound gas, and the porous synthetic quartz glass is subjected to a transparentizing treatment. A porous synthetic glass is obtained by hydrolyzing a mixed gas obtained by adding a carbon-containing gas composed of any one or more of carbon dioxide gas and carbon monoxide gas and a rare gas. Method for producing synthetic quartz glass.
【請求項3】製品合成石英ガラスに付与すべき目標屈折
率に応じて、上記炭素含有ガスと希ガスの量を調整し、
ケイ素原子の炭素原子による置換を制御することを特徴
とする請求項2記載の合成石英ガラスの製造方法。
3. The amount of the carbon-containing gas and the rare gas is adjusted according to a target refractive index to be given to a synthetic quartz glass product,
3. The method for producing synthetic quartz glass according to claim 2, wherein the substitution of silicon atoms with carbon atoms is controlled.
JP2000270546A 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass Expired - Fee Related JP4663860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270546A JP4663860B2 (en) 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270546A JP4663860B2 (en) 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass

Publications (2)

Publication Number Publication Date
JP2002080239A true JP2002080239A (en) 2002-03-19
JP4663860B2 JP4663860B2 (en) 2011-04-06

Family

ID=18756969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270546A Expired - Fee Related JP4663860B2 (en) 2000-09-06 2000-09-06 Synthetic quartz glass for optical members and method for producing synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP4663860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835360A1 (en) * 2013-08-06 2015-02-11 Heraeus Quarzglas GmbH & Co. KG Process for making silica soot body in presence of carbon monoxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162143A (en) * 1983-03-03 1984-09-13 Shin Etsu Chem Co Ltd Production of synthetic quartz
JPH01167255A (en) * 1987-12-24 1989-06-30 Fujikura Ltd Production of oxynite glass
JPH03126638A (en) * 1989-10-09 1991-05-29 Asahi Glass Co Ltd Production of glass containing carbon
JPH0986937A (en) * 1995-09-25 1997-03-31 Shin Etsu Chem Co Ltd Production of synthetic silica glass member
JPH09221326A (en) * 1996-02-09 1997-08-26 Olympus Optical Co Ltd Production of porous body or glass body and producing device
JPH09281534A (en) * 1996-04-12 1997-10-31 Nippon Steel Chem Co Ltd Silica glass for shg element and its production
JPH11349340A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Production of synthetic silica glass powder and production of silica glass molded form
JP2000016820A (en) * 1998-07-03 2000-01-18 Fuso Shirutekku:Kk Silica glass granule and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162143A (en) * 1983-03-03 1984-09-13 Shin Etsu Chem Co Ltd Production of synthetic quartz
JPH01167255A (en) * 1987-12-24 1989-06-30 Fujikura Ltd Production of oxynite glass
JPH03126638A (en) * 1989-10-09 1991-05-29 Asahi Glass Co Ltd Production of glass containing carbon
JPH0986937A (en) * 1995-09-25 1997-03-31 Shin Etsu Chem Co Ltd Production of synthetic silica glass member
JPH09221326A (en) * 1996-02-09 1997-08-26 Olympus Optical Co Ltd Production of porous body or glass body and producing device
JPH09281534A (en) * 1996-04-12 1997-10-31 Nippon Steel Chem Co Ltd Silica glass for shg element and its production
JPH11349340A (en) * 1998-06-04 1999-12-21 Mitsubishi Chemical Corp Production of synthetic silica glass powder and production of silica glass molded form
JP2000016820A (en) * 1998-07-03 2000-01-18 Fuso Shirutekku:Kk Silica glass granule and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835360A1 (en) * 2013-08-06 2015-02-11 Heraeus Quarzglas GmbH & Co. KG Process for making silica soot body in presence of carbon monoxide

Also Published As

Publication number Publication date
JP4663860B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP3069562B1 (en) Silica glass optical material for excimer laser and excimer lamp and method for producing the same
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
US20060183623A1 (en) Synthetic quartz glass for optical member and its production method
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
EP1204611A1 (en) Synthetic quartz glass optical material and optical member for f 2? excimer lasers
EP1067096B1 (en) Quartz glass members for excimer laser, and their method of manufacture
JP4158009B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH0959034A (en) Synthetic quartz glass material and its production
JP3654500B2 (en) Quartz glass material and optical member for F2 excimer laser optical member
JP2936138B2 (en) Quartz glass, optical member including the same, and method of manufacturing the same
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JP2000290026A (en) Optical quartz glass member for excimer laser
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP4663860B2 (en) Synthetic quartz glass for optical members and method for producing synthetic quartz glass
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP4085633B2 (en) Synthetic quartz glass for optical components
JPH0558668A (en) Synthetic quartz glass optical member for uv ray laser
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH1067526A (en) Optical quartz glass element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4663860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees