JPH01167255A - Production of oxynite glass - Google Patents

Production of oxynite glass

Info

Publication number
JPH01167255A
JPH01167255A JP32529187A JP32529187A JPH01167255A JP H01167255 A JPH01167255 A JP H01167255A JP 32529187 A JP32529187 A JP 32529187A JP 32529187 A JP32529187 A JP 32529187A JP H01167255 A JPH01167255 A JP H01167255A
Authority
JP
Japan
Prior art keywords
glass
oxynite
carbon
transparent
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32529187A
Other languages
Japanese (ja)
Inventor
Suehiro Miyamoto
宮本 末広
Takao Shioda
塩田 孝夫
Kenji Nishide
西出 研二
Taiichiro Tanaka
大一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP32529187A priority Critical patent/JPH01167255A/en
Publication of JPH01167255A publication Critical patent/JPH01167255A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/26Doped silica-based glasses containing non-metals other than boron or halide containing carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain an oxynite glass, having a high N2 content and excellent water and hydrogen resistance and high-temperature strength characteristics and useful in the field of quartz glass, by heating a specific glass body at a high temperature in an N2-containing gas atmosphere and converting the glass body into transparent glass. CONSTITUTION:A glass-forming raw material is subjected to flame hydrolysis or thermal oxidative reaction with a carbon-containing combustion gas 2, such as methane, to form fine glass particles (A), which are then applied to a support 4 to provide a carboncontaining porous glass body 3 (B). The resultant body 3 (B) is subsequently introduced into a quartz glass furnace core tube 5 having a gas fed port 6, such as N2, a gas discharge port 7 and a carbon heating unit 8 and heated at a high temperature in an N2-containing gas atmosphere to liberate O2 from Si-0 bonds of the body 3 (B) and bind N2 to Si. Thereby the aimed transparent oxynite silica glass sufficiently containing N2 is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、耐水性、耐水素特性、高強度特性を向上さ
せるなめ窒素をドープしたガラスに関するもので、その
トープ量を増加させる方法を提供する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a glass doped with nitrogen to improve water resistance, hydrogen resistance, and high strength properties, and provides a method for increasing the amount of topes. do.

(従来の技術) たとえば、石英ガラスの耐水性、耐水素特性、高強度特
性を向上させるなめに、Sj −0結合をそれよりもさ
らにち密で結合特性の良い5i−N結合で置換えていわ
ゆるオキシナイトガラスとする試みが行われている9こ
のオキシナイトガラスを作製する方法として、才ずSj
qのカラス微粒子((101〜0−1μm粒径)を火炎
加水分解または熱酸化反゛応で作製し、これをN2、N
 H,等の窒素含有カス雰囲気で高温に加熱して透明ガ
ラス化することによって得るという方法がある。
(Prior art) For example, in order to improve the water resistance, hydrogen resistance, and high strength properties of quartz glass, the Sj-0 bond is replaced with a 5i-N bond that is denser and has better bonding properties, resulting in a so-called oxy-oxygen bond. Attempts have been made to make oxynite glass9.As a method for producing this oxynite glass,
q of crow fine particles ((particle size: 101 to 0-1 μm) were prepared by flame hydrolysis or thermal oxidation reaction, and then heated with N2, N
There is a method of obtaining transparent glass by heating to high temperature in a nitrogen-containing gas atmosphere such as H, etc.

(この発明が解決しようとする問題点)しかしこの方法
によって得られるガラスの窒素トープ量は処理濃度、処
理温度、処理時間を変えても高々Iwt%程度であって
耐水性、耐水素特性、高強度特性を向上させるには至ら
なかった。
(Problem to be solved by this invention) However, the amount of nitrogen tope in the glass obtained by this method is at most about Iwt% even if the treatment concentration, treatment temperature, and treatment time are changed. This did not lead to improvement in strength properties.

(問題点を解決するための手段) この発明者等は、その原因が強固なSi−〇結合にある
との観点から炭素で還元してはとの考えに至ったもので
、その特徴とするところはガラス形成原料を炭素を含む
燃焼ガスを用いて火炎加水分解または熱酸化反応させて
炭素を含有する多孔質ガラス体となし、これを窒素含有
カス雰囲気で高温加熱して透明ガラス化することにある
(Means for solving the problem) The inventors came up with the idea of reducing the problem with carbon from the viewpoint that the cause of the problem lies in the strong Si-〇 bond. However, glass forming raw materials are subjected to flame hydrolysis or thermal oxidation reaction using combustion gas containing carbon to form a porous glass body containing carbon, which is then heated at high temperature in a nitrogen-containing scum atmosphere to form transparent glass. It is in.

なお、炭素を含む燃焼ガスとしては例えばメタン、エタ
ン、ブタン、アセチレン、エタノール、メタノールなど
の炭素化合物ガスがあけられる。
The combustion gas containing carbon may be, for example, a carbon compound gas such as methane, ethane, butane, acetylene, ethanol, or methanol.

そして燃焼によって分解生成された炭素は、火炎加水分
解または熱酸化反応によって生成された多孔質ガラス体
を形成するガラス微粒子の周囲やそれらの間の隙間にス
スとして付着し、窒素化合物ガス雰囲気で高温処理する
際にSi −0結合から酸素を奪って一酸化炭素もしく
は二酸化炭素として多孔質ガラス体中から離散する。か
くして5j−N結合が容易となり窒素のドーピング量を
増すことができる。窒素含有カスとしてはN2、N1−
1.。
Carbon, which is decomposed and produced through combustion, adheres as soot around and in the gaps between glass particles that form porous glass bodies produced by flame hydrolysis or thermal oxidation reactions, and is exposed to high temperatures in a nitrogen compound gas atmosphere. During the treatment, oxygen is removed from the Si-0 bond and dispersed from the porous glass body as carbon monoxide or carbon dioxide. In this way, 5j-N bonding becomes easy and the amount of nitrogen doping can be increased. As nitrogen-containing scum, N2, N1-
1. .

NF、などがあζヂられる。さらに前記雰囲気にヘリウ
ムを導入することにより、加熱炉の熱を効率よく多孔質
ガラス体に伝えるとともに気泡内に残留したガスを速や
かに外部に排出させることができる。
NF, etc. are changed. Furthermore, by introducing helium into the atmosphere, the heat of the heating furnace can be efficiently transferred to the porous glass body, and the gas remaining in the bubbles can be quickly discharged to the outside.

(実施例) 第1図は、この発明方法の一工程である多孔質ガラス体
を得るための説明図である。図において1は、4重管バ
ーすてその中心には5icf1.、、第2層目には燃焼
ガスとしてのC2ル、第3層目にはAr、第4層目には
O7が供給される。2は、C,I−1゜とqとの反応に
よる燃焼炎でこの燃焼熱によりS i O2カラス微粒
子か生成される93は、生成されたSiqガラス微粒子
からなる多孔質ガラス体で各微粒子の周囲及びそれらの
間には炭素が付着している。なお、4はこの多孔質ガラ
ス体を支持するための支持体で、回転かつ上下動可能に
支承される。第2図は、第1図の方法によって得られた
多孔質ガラス体3を窒素を含む透明ガラス体にするため
の加熱炉を示したもので、5は、石英ガラス炉心管でそ
の底部にはNよ、及びHe等のガスを供給するための供
給口6が設けられ、またその上部側壁にはカス排出ロア
が設けられている。8は、炉心管5の外周に位置された
カーボン発熱体である。かくして炭素Cを含むSiOよ
多孔質ガラス体3を炉心管5内に導入すると5i−0結
合から炭素が酸素を奪ってC○まなはCqとなって排出
ロアから排出される。一方酸素が遊離した硅素には窒素
が結合し窒素を十分に含む透明なオキシナイトシリカガ
ラスとなる。
(Example) FIG. 1 is an explanatory drawing for obtaining a porous glass body, which is one step of the method of this invention. In the figure, 1 is a quadruple tube bar with 5icf1. , C2 as a combustion gas is supplied to the second layer, Ar is supplied to the third layer, and O7 is supplied to the fourth layer. 2 is a combustion flame caused by the reaction between C, I-1° and q, and SiO2 glass fine particles are generated by this combustion heat. 93 is a porous glass body consisting of the generated Siq glass particles. Carbon is attached around and between them. In addition, 4 is a support body for supporting this porous glass body, and is supported so that it can rotate and move up and down. Fig. 2 shows a heating furnace for turning the porous glass body 3 obtained by the method shown in Fig. 1 into a transparent glass body containing nitrogen. A supply port 6 for supplying gases such as N and He is provided, and a waste discharge lower is provided on the upper side wall thereof. 8 is a carbon heating element located on the outer periphery of the furnace core tube 5. Thus, when the SiO porous glass body 3 containing carbon C is introduced into the furnace tube 5, the carbon deprives oxygen from the 5i-0 bonds and becomes Cq, which is discharged from the discharge lower. On the other hand, nitrogen is bonded to silicon from which oxygen has been liberated, forming transparent oxynite silica glass containing sufficient nitrogen.

(具体例) 第1図に示す方法により直径60mm、長さ30cmの
炭素を含むSlqからなる多孔質ガラス体を得た。この
ときのバーナへのガスの供給条件及び支持体の上昇速度
は表1に示すとうりであった。
(Specific Example) A porous glass body made of carbon-containing Slq and having a diameter of 60 mm and a length of 30 cm was obtained by the method shown in FIG. The gas supply conditions to the burner and the lifting speed of the support at this time were as shown in Table 1.

表1 次にこの多孔質ガラス体を第2図に示す方法を用いて表
2の条件の下に透明ガラス化をはかったところ、直径2
5mm、長さ15cmの窒素を15wt%含むオキシナ
イトシリカガラスが得られた。
Table 1 Next, this porous glass body was made into transparent vitrification using the method shown in Figure 2 under the conditions shown in Table 2.
Oxinite silica glass containing 15 wt% nitrogen and having a size of 5 mm and a length of 15 cm was obtained.

=4− 表2 かくして得られたガラスの耐水性、耐水素特性および耐
強度特性を測定したところ、疲労係数nは35(水中8
0°C)、水素分子の拡散係数はほとんどO,最大強度
は524Kg/mmであった。なお上記具体例において
は、石英ガラスに窒素を含ませる例について説明したが
、これに限定されることなく多成分ガラス、ハロゲンガ
ラス、さらには石英ガラスにGe、P、B、、Aρ、S
b等をドープしたガラスにも適用できる。
=4− Table 2 When the water resistance, hydrogen resistance, and strength resistance characteristics of the thus obtained glass were measured, the fatigue coefficient n was 35 (8
0°C), the diffusion coefficient of hydrogen molecules was almost O, and the maximum strength was 524 Kg/mm. In the above specific example, an example in which nitrogen is contained in quartz glass has been described, but the invention is not limited to this, and multi-component glass, halogen glass, and even Ge, P, B, Aρ, S, etc.
It can also be applied to glass doped with b or the like.

(発明の効果) この発明は、以上のように炭素を含む還元状態の多孔質
ガラス体を得、これを窒素を含む雰囲気て透明カラス化
するようにしたので5i−0結合状態にある酸素を容易
に遊離させ窒素と置換させることができ、以って窒素を
十分に含んなカラスを得ることかできる。
(Effects of the Invention) This invention obtains a porous glass body containing carbon in a reduced state as described above, and transforms it into a transparent glass in an atmosphere containing nitrogen, thereby removing oxygen in the 5i-0 bond state. It can be easily liberated and replaced with nitrogen, making it possible to obtain glass containing sufficient nitrogen.

【図面の簡単な説明】 第1.2図は、この発明方法を示す説明図。図において
、3は、炭素を含むS]q多孔質ガラス体、イは、窒素
を含む透明なオキシナイトカラス休9
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1.2 is an explanatory diagram showing the method of this invention. In the figure, 3 is a porous glass body containing carbon, and A is a transparent oxynite glass body containing nitrogen.

Claims (1)

【特許請求の範囲】[Claims] ガラス形成原料を炭素を含む燃焼ガスを用いて火炎加水
分解または熱酸化反応させて炭素を含有する多孔質ガラ
ス体となし、これを窒素含有ガス雰囲気で高温に加熱し
て透明ガラス化することを特徴とするオキシナイトガラ
スの製造方法。
Glass forming raw materials are subjected to flame hydrolysis or thermal oxidation reaction using combustion gas containing carbon to form a porous glass body containing carbon, which is then heated to a high temperature in a nitrogen-containing gas atmosphere to form transparent glass. Characteristic method for producing oxynite glass.
JP32529187A 1987-12-24 1987-12-24 Production of oxynite glass Pending JPH01167255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32529187A JPH01167255A (en) 1987-12-24 1987-12-24 Production of oxynite glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32529187A JPH01167255A (en) 1987-12-24 1987-12-24 Production of oxynite glass

Publications (1)

Publication Number Publication Date
JPH01167255A true JPH01167255A (en) 1989-06-30

Family

ID=18175173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32529187A Pending JPH01167255A (en) 1987-12-24 1987-12-24 Production of oxynite glass

Country Status (1)

Country Link
JP (1) JPH01167255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080239A (en) * 2000-09-06 2002-03-19 Sumitomo Metal Ind Ltd Synthetic quarts glass for optical piece and method of manufacturing synthetic quarts glass
WO2023136349A1 (en) * 2022-01-17 2023-07-20 国立研究開発法人物質・材料研究機構 Method for producing silicon oxynitride glass, method for producing optical waveguide, silicon oxynitride glass, optical waveguide, infrared image furnace, window material, and optical member
WO2024004546A1 (en) * 2022-06-29 2024-01-04 住友電気工業株式会社 Glass material and optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080239A (en) * 2000-09-06 2002-03-19 Sumitomo Metal Ind Ltd Synthetic quarts glass for optical piece and method of manufacturing synthetic quarts glass
WO2023136349A1 (en) * 2022-01-17 2023-07-20 国立研究開発法人物質・材料研究機構 Method for producing silicon oxynitride glass, method for producing optical waveguide, silicon oxynitride glass, optical waveguide, infrared image furnace, window material, and optical member
WO2024004546A1 (en) * 2022-06-29 2024-01-04 住友電気工業株式会社 Glass material and optical fiber

Similar Documents

Publication Publication Date Title
JP5296207B2 (en) Method for producing nitrogen-doped quartz glass and quartz glass grains suitable for carrying out the method
TWI320780B (en)
CN101061075B (en) Holder made from quartz glass for the processing of semiconductor wafers and method for production of the holder
JP4173564B2 (en) Method for producing non-porous body of high purity fused silica glass
JP2004203736A (en) Method of manufacturing high purity fused silica
JP2013530920A (en) High purity synthetic silica and products such as jigs made from the high purity synthetic silica
JPH01167255A (en) Production of oxynite glass
JPWO2010103858A1 (en) Optical fiber preform manufacturing method
JPS5998726A (en) Formation of oxide film
JPS61270232A (en) Method for treating optical fiber base material
TW200400370A (en) Lower-loss base material for optical fibres and manufacturing method thereof
JPS58161939A (en) Drawing furnace for optical fiber
JPH03109223A (en) Quartz glass and production thereof
JP2001503007A (en) Apparatus and method for reducing the source of break in drawn fiber
JPH01167252A (en) Production of optical fiber preform
JP4776263B2 (en) Optical fiber preform and manufacturing method thereof
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH0450130A (en) Production of preform for optical fiber
JPH0264029A (en) Production of oxynitride glass and production of oxynitride glass-coated optical fiber
JP2001521871A (en) Apparatus and method for drawing waveguide fiber
JPH02180729A (en) Production of optical fiber preform
JP4162952B2 (en) Synthetic quartz glass manufacturing method and porous quartz glass manufacturing apparatus
JPH04139033A (en) Production of sio2-c composite material and sio2-sic composite material
JPH02217308A (en) Production of oxide powder