JPH0558668A - Synthetic quartz glass optical member for uv ray laser - Google Patents

Synthetic quartz glass optical member for uv ray laser

Info

Publication number
JPH0558668A
JPH0558668A JP3299997A JP29999791A JPH0558668A JP H0558668 A JPH0558668 A JP H0558668A JP 3299997 A JP3299997 A JP 3299997A JP 29999791 A JP29999791 A JP 29999791A JP H0558668 A JPH0558668 A JP H0558668A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
optical member
laser
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3299997A
Other languages
Japanese (ja)
Other versions
JPH0742133B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Toshikatsu Matsutani
利勝 松谷
Hiroyuki Nishimura
裕幸 西村
Kyoichi Inagi
恭一 稲木
Toshiyuki Kato
俊幸 加藤
Atsushi Shimada
敦之 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP3299997A priority Critical patent/JPH0742133B2/en
Priority to DE199292913798T priority patent/DE546196T1/en
Priority to US07/977,397 priority patent/US5364433A/en
Priority to KR1019930700573A priority patent/KR0165695B1/en
Priority to PCT/JP1992/000821 priority patent/WO1993000307A1/en
Priority to EP92913798A priority patent/EP0546196B1/en
Priority to DE69219445T priority patent/DE69219445T2/en
Publication of JPH0558668A publication Critical patent/JPH0558668A/en
Priority to US08/286,538 priority patent/US5523266A/en
Publication of JPH0742133B2 publication Critical patent/JPH0742133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering

Abstract

PURPOSE:To provide a synthetic quartz glass optical member having sufficient stability against the irradiation of strong UV rays and reduced in the lowering of UV ray transmittance, in the optical member constituting of an optical system using a UV ray laser represented by an eximer laser as a light source. CONSTITUTION:The objective synthetic quartz glass optical member for a UV ray laser is characterized by containing <=100ppm of OH groups and <=200ppm of chlorine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発振波長300nm以
下の紫外線レーザー、特にはKrF,ArFエキシマレ
ーザーの照射に対して優れた安定性を有する合成石英ガ
ラスの光学部材に関し、特に前記エキシマレーザーを光
源とするリソグラフィ装置の光学系を構成する窓、鏡、
レンズ及びプリズム等の光学部材として使用されるエキ
シマレーザー用合成石英ガラス光学部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical member of synthetic quartz glass having excellent stability against irradiation with an ultraviolet laser having an oscillation wavelength of 300 nm or less, particularly KrF or ArF excimer laser, and particularly, the excimer laser described above. A window, a mirror, which constitutes the optical system of the lithographic apparatus that uses the light source
The present invention relates to a synthetic quartz glass optical member for an excimer laser used as an optical member such as a lens and a prism.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、ウエハ
ー上に集積回路パターンを描画する光リソグラフィー技
術においても、サブミクロン単位の描画技術が要求され
ており、より微細な線幅描画を行うために、露光光源の
短波長化が進められてきている。このため、例えばリソ
グラフィー用ステッパーレンズには、紫外線の照射に対
して、透過率、屈折率の均質性等の光学特性の優れた安
定性が求められている。この様な紫外線照射に対する光
学特性の優れた安定性を示しうる紫外線透過材料として
石英ガラスが用いられてきた。しかしながら、天然の水
晶を原料とした石英ガラスは、250nm以下の波長領
域の光透過性が悪く、また紫外線の照射に対する安定性
が不十分で300nm以下の領域に吸収帯が現れ、光透
過率が更に低下する。この石英ガラスにおける光吸収
は、主に石英ガラス中の不純物に起因するために紫外線
領域で使用される光学部材には、不純物含有量の少ない
合成石英ガラスが用いられている。
2. Description of the Related Art In recent years, with the high integration of LSIs, a submicron drawing technique is required for an optical lithography technique for drawing an integrated circuit pattern on a wafer, and finer line width drawing is performed. Therefore, the wavelength of the exposure light source has been shortened. Therefore, for example, a stepper lens for lithography is required to have excellent stability in optical characteristics such as homogeneity of transmittance and refractive index against irradiation of ultraviolet rays. Quartz glass has been used as an ultraviolet ray transmitting material capable of exhibiting such excellent stability of optical characteristics against ultraviolet ray irradiation. However, quartz glass made from natural quartz has a poor light transmittance in the wavelength range of 250 nm or less, and has insufficient stability against ultraviolet irradiation, and an absorption band appears in a region of 300 nm or less, resulting in a light transmittance. It further decreases. The light absorption in the quartz glass is mainly due to impurities in the quartz glass, and thus synthetic quartz glass having a small content of impurities is used for an optical member used in the ultraviolet region.

【0003】この合成石英ガラスは、通常、紫外線吸収
の原因となる金属不純物の混入を避けるために、化学的
に合成、蒸留された高純度の揮発性珪素化合物、一般的
には例えば四塩化ケイ素(SiCl)等のハロゲン化
ケイ素、例えばエトキシシシラン(Si(OC
)、メトキシシラン(Si(OCH)等のアル
コキシシラン類、さらに例えばメチルトリメトキシシラ
ン(SiCH(OCH)、エチルトリエトキシ
シラン(SiC(OC)等のアルキル
アルコキシシラン類の蒸気を、直接酸水素炎中に導入
し、火炎加水分解させて得られるシリカガラス微粒子を
直接回転する棒状芯部材上に融解堆積させて、透明なガ
ラスとして製造されるか、上記ガラス微粒子を棒状芯部
材上に堆積させて多孔質ガラスを作り、それを電気炉中
で加熱溶融して透明なガラス体として製造される。この
ようにして製造された透明な合成石英ガラスは、極めて
高純度で、金属不純物を殆ど含んでおらず、また190
nm程度の短波長領域まで良好な光透過性を示し、紫外
線レーザー光、例えば具体的にはKrF(248n
m)、XeBr(282nm)、XeF(351,35
3nm)、ArF(193nm)等のエキシマレーザー
及びYAGの4倍高調波(250nm)等についての透
過材料として用いられてきた。
This synthetic quartz glass is usually a high-purity volatile silicon compound that has been chemically synthesized and distilled, in general, for example, silicon tetrachloride, in order to avoid mixing of metal impurities that cause ultraviolet absorption. Silicon halide such as (SiCl 4 ), for example, ethoxysilane (Si (OC 2 H 5 ).
4 ), methoxysilane (Si (OCH 3 ) 4 ) and other alkoxysilanes, for example, methyltrimethoxysilane (SiCH 3 (OCH 3 ) 3 ) and ethyltriethoxysilane (SiC 2 H 5 (OC 2 H 5 )). 3 ) Vapors of alkylalkoxysilanes such as are directly introduced into an oxyhydrogen flame, and silica glass fine particles obtained by flame hydrolysis are directly melted and deposited on a rotating rod-shaped core member to produce transparent glass. Alternatively, the above glass fine particles are deposited on a rod-shaped core member to produce porous glass, which is heated and melted in an electric furnace to produce a transparent glass body. The transparent synthetic quartz glass produced in this way is of extremely high purity, contains almost no metallic impurities, and
It exhibits good light transmittance up to a short wavelength region of about nm, and is an ultraviolet laser beam, for example, KrF (248n
m), XeBr (282 nm), XeF (351, 35
3 nm), ArF (193 nm) and other excimer lasers, and YAG fourth harmonics (250 nm) and the like have been used as transmission materials.

【0004】[0004]

【発明が解決しようとする問題点】原料四塩化ケイ素の
一層の高純度化と共に、酸水素炎による火炎加水分解の
工程を改善することによって、金属不純物元素が0.1
ppm以下の高純度石英ガラスを合成し、かつ前記火炎
加水分解の条件を調節することによって製造される合成
石英ガラス中に、所定濃度のOH基が含まれるように
し、これによって耐紫外線レーザー性に優れた光学用の
石英ガラス素体を得る試みがなされている。(特開平1
−167258号公報参照)。しかしながら、これらの
方法は、合成石英ガラス光学部材を製造するのに、処理
工程数を増加することとなり、時間的にも、また経済的
にも問題がある。
Problems to be Solved by the Invention Along with further refinement of the raw material silicon tetrachloride, by improving the process of flame hydrolysis by an oxyhydrogen flame, the metal impurity element is reduced to 0.1%.
Synthetic silica glass produced by synthesizing high-purity quartz glass of not more than ppm and adjusting the conditions of the flame hydrolysis is caused to contain a predetermined concentration of OH groups, thereby improving the ultraviolet laser resistance. Attempts have been made to obtain excellent optical quartz glass bodies. (JP-A-1
-167258). However, these methods increase the number of processing steps in manufacturing the synthetic quartz glass optical member, and have problems in terms of time and cost.

【0005】ところで、合成石英ガラスに紫外線を照射
することによって生じる吸収帯は専ら、石英ガラス中に
存在する、例えばSiOHやSiCl等SiO以外の
構造をしたもの、Si−Si、Si−O−O−Si等の
酸素欠損又は酸素過剰構造による固有欠陥が光反応によ
って常磁性欠陥を生じることによるものと考えられてい
る。このような常磁性欠陥による光吸収は、これまでE
SRスペクトル等で数多く同定されており、例えばE’
センター(Si・)やNBOHC(ノンブリッジドオキ
シゲンホールセンター Si−O・)などがある。
By the way, the absorption band produced by irradiating synthetic quartz glass with ultraviolet rays is exclusively present in the quartz glass, for example, SiOH, SiCl, or the like having a structure other than SiO 2 , Si-Si, Si-O-. It is considered that intrinsic defects due to oxygen deficiency or oxygen excess structure such as O-Si are caused by paramagnetic defects due to photoreaction. Light absorption due to such paramagnetic defects has been
Many have been identified in SR spectra, etc., for example, E '
Center (Si.) And NBOHC (Non-Bridged Oxygen Hall Center Si-O.) Are available.

【0006】合成石英ガラスは、紫外線領域で、例え
ば、E’センターの215nm及び正確に同定されてい
ないが260nmに、常磁性欠陥による比較的ブロード
で且つ強い吸収帯を有しており、これらの吸収帯は、例
えば、ArFレーザー(193nm)やKrFレーザー
(248nm)用の光学部材として、大きな問題となっ
ている。本発明は、エキシマレーザーに代表される紫外
線レーザーを光源とする光学系を構成する光学部材にお
いて、かかる紫外線照射による透過率低下の問題を解決
することを目的としている。
Synthetic quartz glass has a relatively broad and strong absorption band due to paramagnetic defects in the ultraviolet region, for example, at 215 nm at the E'center and at 260 nm which has not been accurately identified. The absorption band poses a serious problem as an optical member for ArF laser (193 nm) or KrF laser (248 nm), for example. An object of the present invention is to solve the problem of a decrease in transmittance due to the irradiation of ultraviolet rays in an optical member that constitutes an optical system using an ultraviolet laser represented by an excimer laser as a light source.

【0007】[0007]

【課題を解決するための手段】本発明は、エキシマレー
ザーに代表される紫外線レーザーを光源とする光学系を
構成する光学部材において、強い紫外線照射に対しても
十分な安定性を有し、紫外線透過率の低下が少ない合成
石英ガラス光学部材を提供することを目的としている。
本発明者らは、研究の結果、合成石英ガラス中の固有欠
陥と結び付く不純物として、水酸基(OH基)及び塩素
があることを見い出し、合成石英ガラスにおけるOH基
含有量を100ppm以下、また塩素含有量を200p
pm以下に低減させることにより、合成石英ガラスによ
り構成された光学部材において、紫外線照射に対して安
定な特性が得られることを見い出した。
The present invention provides an optical member that constitutes an optical system using an ultraviolet laser represented by an excimer laser as a light source, which has sufficient stability against strong ultraviolet irradiation and It is an object of the present invention to provide a synthetic quartz glass optical member with a small decrease in transmittance.
As a result of research, the present inventors have found that there are hydroxyl groups (OH groups) and chlorine as impurities associated with intrinsic defects in synthetic quartz glass, and the OH group content in the synthetic quartz glass is 100 ppm or less. Amount 200p
It has been found that by reducing the thickness to pm or less, an optical member made of synthetic quartz glass can obtain stable characteristics against ultraviolet irradiation.

【0008】即ち、本発明は、合成石英ガラスが、10
0ppm以下のOH基の含有量及び200ppm以下の
塩素の含有量を有するものであることを特徴とする紫外
線レーザー用合成石英ガラス光学部材にある。
That is, according to the present invention, the synthetic quartz glass is 10
A synthetic quartz glass optical member for an ultraviolet laser, which has an OH group content of 0 ppm or less and a chlorine content of 200 ppm or less.

【0009】本発明において、合成石英ガラス中に含有
されるOH基及び塩素は、少なければ少ないほど(例え
ば、両者共に5ppm以下)好ましい。しかし、本発明
者らは、合成石英ガラス中において、OH基の濃度が1
00ppm以下、また塩素の濃度が200ppm以下で
あれば、紫外線照射において、良好な透過率安定性が得
られることを見い出した。また、本発明者らは、前記光
学部材を構成する合成石英ガラスにおいて、波長245
nmにおける光の内部透過率が99%以上である場合、
紫外線レーザーの照射に対してより安定性が向上する事
を見いだした。一般に245nmの吸収帯は酸素欠損に
よる吸収と言われており、この吸収がない光学部材が紫
外線レーザー用光学部材を構成する上で好ましいことが
分かった。
In the present invention, it is preferable that the OH groups and chlorine contained in the synthetic quartz glass are as small as possible (for example, both are 5 ppm or less). However, the present inventors have found that the concentration of OH group in synthetic quartz glass is 1 or less.
It has been found that when the concentration of chlorine is 00 ppm or less and the concentration of chlorine is 200 ppm or less, good transmittance stability can be obtained in ultraviolet irradiation. In addition, the inventors of the present invention used the synthetic quartz glass that constitutes the optical member with a wavelength of 245
When the internal transmittance of light in nm is 99% or more,
It was found that the stability is improved with respect to the irradiation of the ultraviolet laser. It is generally said that the absorption band at 245 nm is absorption due to oxygen deficiency, and it has been found that an optical member without this absorption is preferable for constituting an optical member for ultraviolet laser.

【0010】一般に、半導体のリソグラフィー装置に用
いられる光学部材においては、均一な露光をはかるため
に、耐レーザー特性にばらつきが生じないように、部材
中の均質性がきびしく要求されているが、合成石英ガラ
ス光学部材の光透過面における屈折率の分布が、屈折率
の最大値と最小値の差Δnで、Δn=5×10−6以下
であれば、光学部材中の耐レーザー特性が均一と見なし
得ることを見い出した。即ち、Δn=5×10−6以下
の場合は、紫外線照射に対する安定性に好ましくないO
H基及び塩素が、合成石英ガラス光学部材中に、ほぼ均
等に分布している状態となるので、該光学部材各部にお
いて、均等なレーザー耐性を得ることができる。更に前
記屈折率の均質性は、例えば、レンズ等の光学部材の場
合に好ましい特性である。
In general, in an optical member used in a semiconductor lithography apparatus, in order to achieve uniform exposure, the homogeneity in the member is strictly required so that the laser resistance characteristic does not vary. If the distribution of the refractive index on the light transmitting surface of the quartz glass optical member is Δn = 5 × 10 −6 or less with the difference Δn between the maximum value and the minimum value of the refractive index, the laser resistance property in the optical member is uniform. I found what I could think of. That is, when Δn = 5 × 10 −6 or less, the stability against ultraviolet irradiation is not preferable.
Since the H group and chlorine are distributed almost evenly in the synthetic quartz glass optical member, uniform laser resistance can be obtained in each part of the optical member. Furthermore, the homogeneity of the refractive index is a preferable characteristic in the case of an optical member such as a lens.

【0011】[0011]

【作用】本発明による合成石英ガラス光学部材は、OH
基の含有量が100ppm以下で、かつ塩素の含有量が
200ppm以下であるので、紫外線照射によって生じ
る常磁性欠陥の総量が低減でき、紫外線照射下に長時間
に渡って安定した光学特性を得ることができる。しか
も、本発明による紫外線レーザー用合成石英ガラス光学
部材は、その光透過面における屈折率の分布Δnが、5
×10−6以下であるので、紫外線レーザーの照射下
に、光学部材全体に渡って均一なレーザー安定性得られ
る。
The synthetic quartz glass optical member according to the present invention is
Since the content of the group is 100 ppm or less and the content of chlorine is 200 ppm or less, the total amount of paramagnetic defects caused by ultraviolet irradiation can be reduced, and stable optical characteristics can be obtained for a long time under ultraviolet irradiation. You can Moreover, the synthetic quartz glass optical member for ultraviolet laser according to the present invention has a refractive index distribution Δn of 5 on the light transmitting surface.
Since it is not more than × 10 −6 , uniform laser stability can be obtained over the entire optical member under the irradiation of the ultraviolet laser.

【0012】[0012]

【実施例】本発明の実施態様について、以下に例を挙げ
て説明するが、本発明は、以下の説明及び例示によって
何等制限されるものではない。 例1.四塩素珪素を酸水素バーナー中に導入し、火炎加
水分解して得られる微細なシリカ粒子を回転するターゲ
ット上に堆積させて、重量1Kgの多孔質シリカ堆積物
を形成した。該多孔質シリカ堆積物を雰囲気炉に入れ、
800℃に昇温、そのまま保持後、塩素、酸素、窒素、
1:1:8の混合ガスを10リットル/分の流量で流し
ながら、10時間加熱処理後、該多孔質シリカを取り出
し、真空炉に入れて、1×10−2の真空下で、160
0度に昇温し、1時間保持した後、冷却し透明な棒状の
合成石英ガラスを作成した。
EXAMPLES The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited to the following description and examples. Example 1. Silicon tetrachloride was introduced into an oxyhydrogen burner and fine silica particles obtained by flame hydrolysis were deposited on a rotating target to form a porous silica deposit weighing 1 Kg. Placing the porous silica deposit in an atmosphere furnace,
After raising the temperature to 800 ℃ and keeping it as it is, chlorine, oxygen, nitrogen,
After heat treatment for 10 hours while flowing a mixed gas of 1: 1: 8 at a flow rate of 10 liters / minute, the porous silica was taken out, put into a vacuum furnace, and put under a vacuum of 1 × 10 −2 to 160
The temperature was raised to 0 ° C., and the temperature was maintained for 1 hour, followed by cooling to prepare a transparent rod-shaped synthetic quartz glass.

【0013】該合成石英ガラスの両端を旋盤に固定し、
旋盤を回転しつつ、プロパンガスバーナーで軟化点以上
に加熱しながら均質化処理を行った。処理された合成石
英ガラスをグラファイト鋳型内にセットし、窒素雰囲気
中で1700℃に加熱成形した後、大気中でアニール処
理を行った。アニール処理は1100℃で20時間保持
後0.5℃/分で600℃まで除冷して行った。得られ
た合成石英ガラス成形体から分析用サンプルを採集した
後、外周部を研削後、端面を鏡面研磨して外径80m
m、厚さ20mmの光学窓用合成石英ガラス成形体を作
成した。
Both ends of the synthetic quartz glass are fixed to a lathe,
While rotating the lathe, the homogenization treatment was performed while heating above the softening point with a propane gas burner. The treated synthetic quartz glass was set in a graphite mold, heat-molded at 1700 ° C. in a nitrogen atmosphere, and then annealed in the atmosphere. The annealing treatment was carried out by holding at 1100 ° C. for 20 hours and then cooling to 0.5 ° C./min to 600 ° C. After collecting a sample for analysis from the obtained synthetic quartz glass molded body, after grinding the outer peripheral portion, the end surface is mirror-polished to have an outer diameter of 80 m.
A synthetic quartz glass molding for an optical window having a thickness of m and a thickness of 20 mm was prepared.

【0014】得られた光学窓用合成石英ガラス成形体の
OH基濃度を赤外分光光度法で測定したところ、20p
pmであった。また該光学窓用合成石英ガラス成形体の
紫外線透過率を紫外分光光度計で測定したところ245
nmにおける吸収は観測されず、内部透過率は99%以
上であった。図1に、実施例1の光学窓用合成石英ガラ
ス成形体の透過率曲線を示す。内部透過率は、図中の透
過率から試料の反射によるロスを減じた透過率を厚さ1
cmに於ける透過率に換算したものである。また分析用
サンプルを弗酸で分解し、硝酸銀比濁法で塩素濃度を測
定したところ100ppmであった。
The OH group concentration of the obtained synthetic quartz glass molding for an optical window was measured by infrared spectrophotometry to find that it was 20 p.
It was pm. Further, the ultraviolet transmittance of the synthetic quartz glass molding for the optical window was measured by an ultraviolet spectrophotometer to find 245.
No absorption in nm was observed, and the internal transmittance was 99% or more. FIG. 1 shows the transmittance curve of the synthetic quartz glass molded body for an optical window of Example 1. The internal transmittance is the transmittance obtained by subtracting the loss due to the reflection of the sample from the transmittance in the figure, and the thickness is 1
It is converted to the transmittance in cm. The analytical sample was decomposed with hydrofluoric acid, and the chlorine concentration was measured by the silver nitrate nephelometry to find that it was 100 ppm.

【0015】更に、上記光学窓用合成石英カラス成形体
の屈折率分布を、フィゾー干渉計にてオイルオンプレー
ト法でHeNeレーザーを用いて測定したところ、Δn
は1×10−6であった。該光学窓用合成石英ガラス成
形体にKrFエキシマレーザーをフルエンス500mJ
/cmp,100Hzで照射しその紫外域の吸光度変
化を測定した。測定結果を図2に示す。図2ではE’セ
ンターの吸収波長である215nmに於ける吸光度(−
Log(内部吸収))のショット数に於ける経時変化を
示している。後述する比較例に比べて、照射に対して吸
光度変化が少なく、光学部材として良好な特性を示して
いる。
Further, the refractive index distribution of the synthetic quartz glass molded body for the optical window was measured by a Fizeau interferometer by an oil-on-plate method using a HeNe laser.
Was 1 × 10 −6 . A KrF excimer laser was fluence 500 mJ on the synthetic quartz glass molding for the optical window.
/ Cm 2 p, 100 Hz was irradiated and the change in absorbance in the ultraviolet region was measured. The measurement results are shown in FIG. In FIG. 2, the absorbance at the absorption wavelength of 215 nm at the E'center (-
The change over time in the number of shots of Log (internal absorption) is shown. Compared with the comparative example described later, the change in absorbance is small with respect to irradiation, and good characteristics as an optical member are shown.

【0016】例2.前記例1と同様に多孔質シリカ堆積
物を作成し、雰囲気炉中で800℃に保持後塩素、酸
素、窒素、1:2:7の混合ガスを10リットル/分の
流量で流しながら10時間加熱処理後、該多孔質シリカ
を取り出し、真空炉中で1×10−2の真空下で160
0度に昇温、1時間保持して後冷却し透明な棒状の合成
石英ガラスを作成した。該合成石英ガラスを、例1と同
様に成形し、アニール処理し、分析用サンプル及び外径
80mm、厚さ20mmの光学窓用合成石英ガラス成形
体を作成した。得られた光学窓用合成石英ガラス成形体
のOH基濃度は、90ppmであり、塩素濃度は20p
pmであった。また該光学窓用合成石英ガラス成形体に
おいて、245nmにおける内部透過率は99%以上で
あった。該光学窓用合成石英ガラス成形体を実施例1と
同様の条件で、KrFレーザー照射を行った際の248
nmの吸光度変化を測定したところ、実施例1と同様の
結果が得られ、良好な安定性を示した。
Example 2. A porous silica deposit was prepared in the same manner as in Example 1, kept at 800 ° C. in an atmosphere furnace, and then a mixed gas of chlorine, oxygen, nitrogen, and 1: 2: 7 was flowed at a flow rate of 10 liter / min for 10 hours. After the heat treatment, the porous silica was taken out, and was put in a vacuum furnace under a vacuum of 1 × 10 −2 to 160
The temperature was raised to 0 ° C., held for 1 hour and then cooled to prepare a transparent rod-shaped synthetic quartz glass. The synthetic quartz glass was molded and annealed in the same manner as in Example 1 to prepare a sample for analysis and a synthetic quartz glass molded body for an optical window having an outer diameter of 80 mm and a thickness of 20 mm. The obtained synthetic quartz glass molding for an optical window has an OH group concentration of 90 ppm and a chlorine concentration of 20 p.
It was pm. Further, in the synthetic quartz glass molded body for an optical window, the internal transmittance at 245 nm was 99% or more. 248 when the synthetic quartz glass molded body for an optical window was irradiated with a KrF laser under the same conditions as in Example 1.
When the change in absorbance at nm was measured, the same results as in Example 1 were obtained, indicating good stability.

【0017】例3.実施例1と同様に作成した、透明合
成石英ガラスにおいて、均質化の際の処理時間を半分に
し、他の条件は同様に一連の処理を行い、分析用サンプ
ル及び外径80mm、厚さ20mmの光学窓用合成石英
ガラス成形体を作成した。得られた光学窓用合成石英ガ
ラス成形体のOH基濃度は90ppm、塩素濃度は20
ppmであった。また該光学窓用合成石英ガラス成形体
においても245nmにおける内部透過率は99%以上
であった。該光学窓用合成石英ガラス成形体における屈
折率の分布Δnを測定したところ、5×10−6であっ
た。屈折率分布を示す干渉縞を図3に示す。該光学窓用
合成石英ガラス成形体の中央部と外周部より、10mm
×10mm×40mmのサンプルを切り出し、実施例1
と同様の条件でKrFレーザー照射を行った際の248
nmの吸光度変化を図4に示す。中央部と外周部共に良
好な安定性を示し、かつ吸光度の変化も同様であるため
に、光学部材としての均一性が維持されているといえ
る。
Example 3. In the transparent synthetic quartz glass prepared in the same manner as in Example 1, the processing time at the time of homogenization was halved, and a series of processing was carried out in the same manner under other conditions, and a sample for analysis and an outer diameter of 80 mm and a thickness of 20 mm were prepared. A synthetic quartz glass molding for an optical window was prepared. The synthetic quartz glass molding for an optical window thus obtained had an OH group concentration of 90 ppm and a chlorine concentration of 20.
It was ppm. The internal transmittance at 245 nm of the molded synthetic quartz glass for optical window was 99% or more. The refractive index distribution Δn of the synthetic quartz glass molding for an optical window was measured and found to be 5 × 10 −6 . The interference fringes showing the refractive index distribution are shown in FIG. 10 mm from the central portion and the outer peripheral portion of the synthetic quartz glass molding for the optical window
A sample of × 10 mm × 40 mm was cut out, and Example 1 was cut out.
248 when performing KrF laser irradiation under the same conditions as
The change in absorbance at nm is shown in FIG. It can be said that the uniformity as an optical member is maintained because the central portion and the outer peripheral portion both show good stability and the changes in absorbance are similar.

【0018】比較例1.実施例1と同様に多孔質シリカ
体を作成し、そのまま真空炉中で1×10−2真空下で
1600度に昇温、1時間保持して後冷却し透明な棒状
の合成石英ガラス体を作成した。該合成石英ガラス体
を、実施例1と同様に処理し、分析用サンプル及び外径
φ80mm×20mmの光学ウインドウを作成した。得
られた光学ウインドウのOH基濃度は200ppm、塩
素濃度は10ppmであった。また同ウインドウにおい
ても245nmにおける内部透過率は99%以上であっ
た。該ウインドウを実施例1と同様の条件で、KrFレ
ーザー照射を行った際の248nmの吸光度変化を図2
に実施例1と共に示す。実施例1と比べて215nmに
於ける吸光度の上昇が認められ、紫外線レーザー用光学
部材として十分な安定性を示していないことが分かる。
Comparative Example 1. A porous silica body was prepared in the same manner as in Example 1, heated in a vacuum furnace under 1 × 10 −2 vacuum to 1600 ° C., held for 1 hour and then cooled to obtain a transparent rod-shaped synthetic quartz glass body. Created. The synthetic quartz glass body was treated in the same manner as in Example 1 to prepare a sample for analysis and an optical window having an outer diameter of φ80 mm × 20 mm. The optical window thus obtained had an OH group concentration of 200 ppm and a chlorine concentration of 10 ppm. Also in this window, the internal transmittance at 245 nm was 99% or more. FIG. 2 shows changes in absorbance at 248 nm when the window was irradiated with KrF laser under the same conditions as in Example 1.
It is shown together with Example 1. As compared with Example 1, an increase in absorbance at 215 nm was observed, which shows that the optical member for ultraviolet laser does not exhibit sufficient stability.

【0019】比較例2.実施例1と同様に多孔質シリカ
堆積物を作成し、雰囲気炉中で800℃に保持後塩素、
窒素、1:9の混合ガスを10リットル/分の流量で流
しながら、5時間加熱処理後、該多孔質シリカを取り出
し、真空炉中で1×10−2の真空下で1600度に昇
温、1時間保持した後、冷却して透明な棒状の合成石英
ガラスを作成した。該合成石英ガラスを、実施例1と同
様に成形し、アニール処理し、分析用サンプル及び外径
80mm、厚さ20mmの光学窓用合成石英ガラス成形
体を作成した。得られた光学窓用合成石英ガラス成形体
のOH基濃度は1ppm、塩素濃度は400ppmであ
った。また該光学窓用合成石英ガラス成形体においても
245nmにおける内部透過率は94.7%であった。
該光学窓用合成石英ガラス成形体の紫外線領域における
透過率曲線を図5に示す。245nmを吸収センターと
する吸収帯が現れている。該光学窓用合成石英ガラス成
形体を実施例1と同様の条件でKrFレーザー照射を行
った際の215nmの吸光度変化を実施例1と共に図6
に示す。248nmに於ける吸光度の急激な上昇が認め
られ、紫外線レーザー用光学部材として十分な安定性を
示していないといえる。
Comparative Example 2. A porous silica deposit was prepared in the same manner as in Example 1, kept at 800 ° C. in an atmosphere furnace, and then chlorine,
After heat treatment for 5 hours while flowing a mixed gas of nitrogen and 1: 9 at a flow rate of 10 liters / minute, the porous silica was taken out and heated to 1600 degrees under a vacuum of 1 × 10 −2 in a vacuum furnace. After holding for 1 hour, it was cooled to prepare a transparent rod-shaped synthetic quartz glass. The synthetic quartz glass was molded and annealed in the same manner as in Example 1 to prepare a sample for analysis and a synthetic quartz glass molding for an optical window having an outer diameter of 80 mm and a thickness of 20 mm. The obtained synthetic quartz glass molding for an optical window had an OH group concentration of 1 ppm and a chlorine concentration of 400 ppm. The internal transmittance at 245 nm of the molded synthetic quartz glass for optical windows was also 94.7%.
FIG. 5 shows a transmittance curve in the ultraviolet region of the synthetic quartz glass molding for the optical window. An absorption band with an absorption center of 245 nm appears. The change in absorbance at 215 nm when the synthetic quartz glass molded body for an optical window was irradiated with a KrF laser under the same conditions as in Example 1 and FIG.
Shown in. A sharp increase in absorbance at 248 nm was observed, and it can be said that the optical member for ultraviolet lasers does not exhibit sufficient stability.

【0020】[0020]

【発明の効果】本発明による合成石英ガラス光学部材
は、OH基の含有量が100ppm以下で、かつ塩素の
含有量が200ppm以下であるので、従来の合成石英
ガラス光学部材に比較して、長時間の紫外線照射下にお
いて、光の透過率が低下することなく使用できることと
なり、例えば、半導体のリソグラフィ装置において、長
時間の使用が可能となり、光学部材を交換する回数を減
らして、安定した露光を行うことができ、半導体リソグ
ラフィの処理効率を向上することができる。
The synthetic quartz glass optical member according to the present invention has an OH group content of 100 ppm or less and a chlorine content of 200 ppm or less. It can be used under ultraviolet irradiation for a long time without lowering the light transmittance. For example, in a semiconductor lithographic apparatus, it can be used for a long time, the number of times of exchanging optical members can be reduced, and stable exposure can be achieved. Can be performed, and the processing efficiency of semiconductor lithography can be improved.

【0021】また、本発明による紫外線レーザー用合成
石英ガラス光学部材は、その光透過面における屈折率の
分布Δnが、5×10−6以下であるので、従来の合成
石英ガラス光学部材では、達成できなかった紫外線レー
ザーの照射下における、光学部材全体に渡っての均一な
紫外線レーザーの透過を行うことができることとなり、
例えば、半導体リソグラフィ装置において、長時間に亙
って均一な露光を行うことができ、半導体リソグラフィ
の歩留まりの向上をはかることができる。
The synthetic quartz glass optical member for an ultraviolet laser according to the present invention has a refractive index distribution Δn of 5 × 10 −6 or less on the light transmitting surface thereof. Under the irradiation of the ultraviolet laser, which was not possible, it is possible to perform uniform transmission of the ultraviolet laser over the entire optical member,
For example, in a semiconductor lithographic apparatus, uniform exposure can be performed for a long time, and the yield of semiconductor lithography can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の光学窓用合成石英ガラス成
形体について、厚さ1.0cmの試料についての紫外線
領域における透過率曲線を示す図である。
FIG. 1 is a diagram showing a transmittance curve in an ultraviolet region of a 1.0 cm-thick sample of a synthetic quartz glass molded body for an optical window of Example 1 of the present invention.

【図2】本発明の実施例1及び比較例1の光学窓用合成
石英ガラス成形体についての波長248nmにおける吸
光度変化を示す図である。
FIG. 2 is a diagram showing a change in absorbance at a wavelength of 248 nm for synthetic quartz glass molded bodies for optical windows of Example 1 and Comparative Example 1 of the present invention.

【図3】本発明の実施例3の光学窓用合成石英ガラス成
形体についての屈折率分布を示す干渉縞を示す図であ
る。
FIG. 3 is a diagram showing interference fringes showing a refractive index distribution of a synthetic quartz glass molded body for an optical window of Example 3 of the present invention.

【図4】本発明の実施例3の光学窓用合成石英ガラス成
形体の中央部及び外周部についての波長248nmにお
ける吸光度変化を示す図である。
FIG. 4 is a diagram showing a change in absorbance at a wavelength of 248 nm in a central portion and an outer peripheral portion of a synthetic quartz glass molded body for an optical window of Example 3 of the present invention.

【図5】比較例2の光学窓用合成石英ガラス成形体につ
いて、厚さ1.0cmの試料についての紫外線領域にお
ける透過率曲線を示す図である。
FIG. 5 is a diagram showing a transmittance curve in an ultraviolet region of a 1.0 cm-thick sample of the synthetic quartz glass molding for an optical window of Comparative Example 2.

【図6】実施例1及び比較例2の光学窓用合成石英ガラ
ス成形体についての波長248nmにおける吸光度変化
を示す図である。
FIG. 6 is a diagram showing changes in absorbance at a wavelength of 248 nm for the synthetic quartz glass molded bodies for optical windows of Example 1 and Comparative Example 2.

フロントページの続き (72)発明者 稲木 恭一 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 (72)発明者 加藤 俊幸 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内 (72)発明者 嶋田 敦之 福島県郡山市田村町金屋字川久保88 信越 石英株式会社郡山工場内Front Page Continuation (72) Inventor Kyoichi Inagi, Kawamura, Kawamura, Kanayama, Koriyama, Fukushima 88 Shin-Etsu Quartz Co., Ltd. Quartz Technology Laboratory (72) Toshiyuki Kato, Kawakubo, Kawamura, Tamura, Koriyama, Fukushima 88 Shin-Etsu Quartz Co., Ltd. Koriyama Factory (72) Inventor Atsushi Shimada 88 Kawakubo, Kanaya, Tamura-cho, Koriyama City, Fukushima Prefecture Shin-Etsu Quartz Co., Ltd. Koriyama Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 合成石英ガラスが、100ppm以下の
OH基の含有量及び200ppm以下の塩素の含有量を
有するものであることを特徴とする紫外線レーザー用合
成石英ガラス光学部材。
1. A synthetic quartz glass optical member for an ultraviolet laser, characterized in that the synthetic quartz glass has an OH group content of 100 ppm or less and a chlorine content of 200 ppm or less.
【請求項2】 波長245nmの光について、内部透過
率が99%以上であることを特徴とする請求項1に記載
の紫外線レーザー用合成石英ガラス光学部材。
2. The synthetic quartz glass optical member for an ultraviolet laser according to claim 1, which has an internal transmittance of 99% or more for light having a wavelength of 245 nm.
【請求項3】 光透過面における屈折率の均質性が、Δ
nで5×10−6以下であることを特徴とする請求項1
に記載の紫外線レーザー用合成石英ガラス光学部材。
3. The homogeneity of the refractive index on the light transmitting surface is Δ
2. The value of n is 5 × 10 −6 or less.
The synthetic quartz glass optical member for an ultraviolet laser described in 1.
【請求項4】 前記紫外線レーザー用合成石英ガラス光
学部材が、波長300nm以下の紫外線レーザー用窓、
鏡、レンズ及びプリズムであることを特徴とする特許請
求の範囲1に記載の紫外線レーザー用合成石英ガラス光
学部材。
4. The synthetic quartz glass optical member for an ultraviolet laser has a window for an ultraviolet laser having a wavelength of 300 nm or less,
The synthetic quartz glass optical member for an ultraviolet laser according to claim 1, which is a mirror, a lens, and a prism.
JP3299997A 1991-06-29 1991-08-31 Synthetic quartz glass optical member for ultraviolet laser Expired - Fee Related JPH0742133B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3299997A JPH0742133B2 (en) 1991-08-31 1991-08-31 Synthetic quartz glass optical member for ultraviolet laser
EP92913798A EP0546196B1 (en) 1991-06-29 1992-06-29 Synthetic quartz glass optical member for excimer laser and production thereof
US07/977,397 US5364433A (en) 1991-06-29 1992-06-29 Optical member of synthetic quartz glass for excimer lasers and method for producing same
KR1019930700573A KR0165695B1 (en) 1991-06-29 1992-06-29 Synthetic quartz glass optical member for excimer laser and production thereof
PCT/JP1992/000821 WO1993000307A1 (en) 1991-06-29 1992-06-29 Synthetic quartz glass optical member for excimer laser and production thereof
DE199292913798T DE546196T1 (en) 1991-06-29 1992-06-29 SYNTHETIC GLASS OPTICAL ELEMENT FOR EXCIMER LASER AND ITS PRODUCTION.
DE69219445T DE69219445T2 (en) 1991-06-29 1992-06-29 SYNTHETIC OPTICAL ELEMENT MADE OF QUARTZ GLASS FOR EXCIMER LASER AND ITS PRODUCTION
US08/286,538 US5523266A (en) 1991-06-29 1994-08-05 Optical member of synthetic quartz glass for excimer lasers and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3299997A JPH0742133B2 (en) 1991-08-31 1991-08-31 Synthetic quartz glass optical member for ultraviolet laser

Publications (2)

Publication Number Publication Date
JPH0558668A true JPH0558668A (en) 1993-03-09
JPH0742133B2 JPH0742133B2 (en) 1995-05-10

Family

ID=17879494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3299997A Expired - Fee Related JPH0742133B2 (en) 1991-06-29 1991-08-31 Synthetic quartz glass optical member for ultraviolet laser

Country Status (1)

Country Link
JP (1) JPH0742133B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199735A (en) * 1999-11-15 2001-07-24 Shinetsu Quartz Prod Co Ltd Quartz glass body for optical part and method for producing the same
JP2002220287A (en) * 2001-01-19 2002-08-09 Shinetsu Quartz Prod Co Ltd Translucent ceramic and its manufacturing method
JP2002220278A (en) * 2001-01-19 2002-08-09 Shinetsu Quartz Prod Co Ltd Light-transmitting ceramic and method of manufacturing the same
JP2005519301A (en) * 2002-03-05 2005-06-30 コーニング インコーポレイテッド Optical member and method for predicting performance of optical member and optical system
JP2005289801A (en) * 2004-04-02 2005-10-20 Heraeus Quarzglas Gmbh & Co Kg Optical element of quartz glass, method of manufacturing the optical element and its use
JP2006298754A (en) * 2005-04-15 2006-11-02 Heraeus Quarzglas Gmbh & Co Kg Optical component of quartz glass, its production method and its use
WO2016208451A1 (en) * 2015-06-24 2016-12-29 日本電気硝子株式会社 Light guide plate
JP2017043530A (en) * 2015-06-24 2017-03-02 日本電気硝子株式会社 Light guide plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424048A (en) * 1987-07-17 1989-01-26 Seiko Epson Corp Defect-free quartz glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424048A (en) * 1987-07-17 1989-01-26 Seiko Epson Corp Defect-free quartz glass

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199735A (en) * 1999-11-15 2001-07-24 Shinetsu Quartz Prod Co Ltd Quartz glass body for optical part and method for producing the same
JP2002220287A (en) * 2001-01-19 2002-08-09 Shinetsu Quartz Prod Co Ltd Translucent ceramic and its manufacturing method
JP2002220278A (en) * 2001-01-19 2002-08-09 Shinetsu Quartz Prod Co Ltd Light-transmitting ceramic and method of manufacturing the same
JP4587350B2 (en) * 2001-01-19 2010-11-24 信越石英株式会社 Method for producing translucent ceramic body
JP2005519301A (en) * 2002-03-05 2005-06-30 コーニング インコーポレイテッド Optical member and method for predicting performance of optical member and optical system
JP2005289801A (en) * 2004-04-02 2005-10-20 Heraeus Quarzglas Gmbh & Co Kg Optical element of quartz glass, method of manufacturing the optical element and its use
JP2006298754A (en) * 2005-04-15 2006-11-02 Heraeus Quarzglas Gmbh & Co Kg Optical component of quartz glass, its production method and its use
WO2016208451A1 (en) * 2015-06-24 2016-12-29 日本電気硝子株式会社 Light guide plate
JP2017043530A (en) * 2015-06-24 2017-03-02 日本電気硝子株式会社 Light guide plate
KR20180020120A (en) * 2015-06-24 2018-02-27 니폰 덴키 가라스 가부시키가이샤 Light guide plate

Also Published As

Publication number Publication date
JPH0742133B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
KR0165695B1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP2859095B2 (en) Synthetic quartz mask substrate for excimer laser lithography
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
EP1035084A2 (en) Synthetic fused silica glass member
JPH09235134A (en) High-purity synthetic silica glass for far ultraviolet ray and production thereof
US8402786B2 (en) Synthetic silica glass optical component and process for its production
JP2588447B2 (en) Method of manufacturing quartz glass member for excimer laser
EP1061052B1 (en) Synthetic silica glass optical members and process for the production thereof
JP3125630B2 (en) Method for producing quartz glass for vacuum ultraviolet and quartz glass optical member
JP2001019465A (en) Synthetic quartz glass member for excimer laser and its production
JPH0558668A (en) Synthetic quartz glass optical member for uv ray laser
JP4437886B2 (en) Quartz glass blank for optical members and use thereof
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
EP1130000B1 (en) Synthesized silica glass optical member and method for manufacturing the same
JP2000290026A (en) Optical quartz glass member for excimer laser
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
US6946416B2 (en) Fused silica having improved index homogeneity
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JP4085633B2 (en) Synthetic quartz glass for optical components
JPH11302025A (en) Synthetic quartz glass optical member and its production
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2003176143A (en) Synthetic quartz glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees